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1 INTRODUCTION

In this paper we consider the aspect of time integration in the context of discontinuous
Galerkin methods (DG) for the three dimensional unsteady compressible Navier-Stokes equa-
tions. The method of lines approach leads in this context typically to very stiff problems, where
timesteps in explicit methods are driven by stability alone and in implicit methods by accuracy
alone. Thus, if the resulting large linear or nonlinear equation systems can be solved efficiently,
implicit methods are preferrable. In contrast to finite volume methods, where implicit methods
are standard [19], the lack of these efficient solvers in the DG context has limited the use of
implicit schemes.

So far, a number of people have looked at DG methods for unsteady flows. Wang and
Mavriplis looked at different time integration schemes for unsteady Euler equations in two
dimensions [37]. They found higher order DIRK methods to be superior to both BDF methods
and the implicit midpoint rule. As a solver, a p-multigrid method was employed. Kanevsky et
al. [22] considered both Euler and Navier-Stokes equations in two dimensions and suggested
the use of implicit-explicit (IMEX) schemes. A JFNK method was used to solve the nonlinear
systems. Persson and Perraire looked at the two dimensional unsteady Navier-Stokes equations
with BDF time integration in conjunction with an ILU preconditioned Newton-Krylov solver
[29]. The use of Rosenbrock-W methods for the Euler equations in meteorology was consid-
ered by St-Cyr et al. [35]. Another class of method is the so-called Space-Time-DG scheme
developed by van der Vegt and van der Veen [24] where time is simply treated as an additional
dimension in the DG discretization.

These articles leave a number of questions unanswered. First of all, only two dimensional
problems are considered. Second, with the exception of the study by Wang and Mavriplis, the
articles provide proofs of concept and only little comparison. Furthermore, the question of the
best time integration method depends both on the specific application and on the method used
to solve the resulting nonlinear equation systems. This is in particular shown by the studies [21]
for finite element discretizations of the unsteady incompressible Navier-Stokes equations and
[4] for finite volume discretizations of the unsteady laminar Navier-Stokes equations. Finally,
a reasonable assessment of time integration schemes needs to take into account time adaptive
calculations for realistic test cases.

To tackle these questions, we use a fixed solver for the appearing nonlinear systems, namely a
preconditioned Jacobian-Free Newton-Krylov (JFNK) solver. As a preconditioner, we employ
the newly suggested ROBO-SGS (for Reduced Offdiagonal Block-Order) that was shown to
be efficient and parallely scalable [5]. This preconditioner uses very little memory, which is
of crucial importance to tackle 3D problems using a DG method. In particular, ROBO-SGS
exploits the hierarchic properties of a modal basis, which is why we use the modal DG scheme
with nodal integration of Gassner et al. [16].

Then, we consider different explicit and implicit time integration schemes and compare them
regarding their errors, convergence orders and computational efficiency for several test prob-
lems. In particular, we will employ time adaptive schemes. Tolerance calibration and scaling
[33] is used to connect the tolerance, which is based on basic error estimates to the actual error.
In the end, this will result in methods where the user choses a tolerance for the time integration
error, which then automatically defines the tolerances for the Newton solver and the GMRES
method. Furthermore, it gives a tool to compare the error of different time integration schemes.

For explicit time integration methods, we will consider explicit Runge-Kutta methods and
the Space-Time-Expansion DG of Gassner et al. [25]. As implicit methods, we will consider
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Explicit step Singly Diagonally Implicit Runge-Kutta (ESDIRK) schemes, Singly Diagonally
Implicit Runge-Kutta (SDIRK) schemes and Rosenbrock methods. BDF methods are not con-
sidered for several reasons. First of all, all studies so far showed that for time adaptive flow
computations, other methods are more efficient. Furthermore, these methods are not A-stable,
but only A(α)-stable for orders greater than two. However, as we will demonstrate, some of
the eigenvalues of the DG discretized problems are typically very close to the imaginary axis,
rendering these methods unsuitable.

The outline of the paper is as follows: First we will describe the governing equations and the
DG methodology. Then we will describe the different time integration schemes, after which we
will briefly describe the JFNK method employed. Finally, numerical results are presented.

2 GOVERNING EQUATIONS

The Navier-Stokes equations are a second order system of conservation laws (mass, momen-
tum, energy) modeling viscous compressible flow. Written in conservative variables density ρ,
momentum m and energy per unit volume ρE:

∂tρ+∇ ·m = 0,

∂tmi +
d∑
j=1

∂xj(mivj + pδij) =
1

Re

d∑
j=1

∂xjSij + qi, i = 1 ... d

∂t(ρE) +∇ · (Hm) =
1

Re

d∑
j=1

∂xj

(
d∑
i=1

Sijvi −
1

Pr
Wj

)
+ qe.

Here, d stands for the number of dimensions, H for the enthalpy per unit mass, S represents
the viscous shear stress tensor and W the heat flux. As the equation are dimensionless, the
Reynolds number Re and the Prandtl number Pr appear. The equations are closed by the
equation of state for the pressure p = (γ − 1)ρe, where we assume an ideal gas. Finally, qe
denotes a possible source term in the energy equation, whereas q = (q1, ..., qd)

T is a source
term in the momentum equation, for example due to external forces.

3 SPATIAL DISCRETIZATION

We employ the mixed modal-nodal Discontinuous Galerkin scheme which has been sug-
gested by Gassner et al. [16]. One of the main advantages of this method is that it allows the
use of elements of arbitrary shape (i.e. tetrahedrons, prisms, pyramids, hexahedrons, ...) with
high order of accuracy.

3.1 The Discontinuous Galerkin Method

We consider conservation laws of the form

ut +∇ · ~f (u) = q(t,u), (1)

with suitable initial and boundary conditions in a domain Ω × [0, T ] ⊂ Rd × R+
0 . Here, u =

u (~x, t) ∈ Rd+2 is the state vector, ~f (u) = ~fC (u) − ~fD (u,∇u) is the physical flux, where
~fC (u) is the convective (i.e. hyperbolic) and ~fD (u,∇u) the diffusive (i.e. parabolic) flux
component. The possibly time and space dependent source term is given by q(t, ~x,u).
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We derive the DG method by first subdividing the domain Ω into non-overlapping grid cells
Q. In each grid cell we approximate the state vector using a local polynomial approximation of
the form

u (~x, t)
∣∣
Q
≈ uQ (~x, t) =

N∑
j=1

ûj (t)ϕQj (~x) , (2)

where in our case, {ϕQj (~x)}j=1,...,N are modal hierarchical orthonormal basis functions and
û are the corresponding coefficients in that cell. The basis functions are constructed from a
monomial basis with a simple Gram-Schmidt orthogonalization algorithm for arbitrary (refer-
ence) grid cell types. The dimension of the local approximation space depends on the spatial
dimension d and the polynomial degree p

N = N(p, d) =
(p+ d)!

p!d!
. (3)

The next step of our approximation is to define how the unknown degrees of freedom ûj (t) are
determined. Neglecting the source term for now, we insert the approximate solution (2) into the
conservation law (1), multiply with a smooth test function φ = φ (~x) and integrate over Q to
obtain

〈uQt +∇ · ~f
(
uQ
)
, φ〉Q = 0, (4)

where 〈., .〉Q denotes the L2(Q) scalar product over Q. We proceed with an integration by parts
to obtain

〈uQt , φ〉Q +
(
~f (u) · ~n, φ

)
∂Q
− 〈~f

(
uQ
)
,∇φ〉Q = 0, (5)

where (., .)∂Q denotes the surface integral over the boundary of the element Q. As the approxi-
mate solution is in general discontinuous across grid cell interfaces, the trace of the flux normal
component ~f (u) · ~n is not uniquely defined. To get a stable and accurate discretization, several
choices for the numerical approximation are known. Here, we use the HLLC flux [36]. For a
purely convective problem inserting the trace approximation ~f

(
uQ
)
· ~n ≈ gC (u−,u+, ~n) into

equation (5) would yield

〈uQt , φ〉Q +
(
gC
(
u−,u+, ~n

)
, φ
)
∂Q
− 〈~fC

(
uQ
)
,∇φ〉Q = 0. (6)

We denote by (.)− values at the inner side of a cell interface, i.e. values that depend on uQ and
by (.)+ values that depend on the neighbor cells sharing the interface with the cell Q.

The handling of the diffusive part of the flux is a little more delicate for DG methods, be-
cause the jump in the gradients needs special handling. Several authors have suggested so-
lutions for this problem [28, 8, 1, 2, 3] and all of these have been used in conjunction with
implicit temporal discretizations. In this work we apply the so-called dGRP flux by Gassner,
Lörcher and Munz [13, 15, 14, 26]. This is a symmetric interior penalty based method that
has been derived in a way that optimizes stability, i. e. minimizes the eigenvalues of the DG
operator and yields optimal order of convergence for mixed hyperbolic/parabolic PDEs such
as the compressible Navier-Stokes equations [13, 15]. From a technical point of view this
flux introduces an approximation of the trace of the flux normal component ~fD (u,∇u) · ~n ≈
gdGRP (u−,∇u−,u+,∇u+, η, ~n), where η is a parameter that depends on the geometry of the
cell Q and its neighbor and the local order of the polynomial approximation (2). To ensure ad-
joint consistency an additional surface flux term h (u−,u+, ~n) is introduced via two integrations
by parts [15] yielding the final DG formulation

〈uQt , φ〉Q +
(
gC − gdGRP, φ

)
∂Q
− (h,∇φ)∂Q − 〈~f

C − ~fD,∇φ〉Q = 0. (7)
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3.2 Nodal Integration

The computation of the volume and surface quadrature operators can be a very expensive task
if standard methods such as Gaussian quadrature are used, which is caused by the high number
of polynomial evaluations required for computing the fluxes. Based on the nodal DG scheme
developed by Hesthaven and Warburton [18], Gassner et al. developed a way of constructing
efficient quadrature operators that work on arbitrarily shaped elements, see [16] for further
details. This has the advantage that the number of degrees of freedom does not depend on
the element shape as it would be for a purely nodal scheme when using elements other than
tetrahedra. As points to define the nodal basis, Legendre-Gauss-Lobatto (LGL) points are used
on edges and then a method called LGL-type nesting is used to determine the interior points,
which leads to a small Lebesgue constant.

The coexistence of modal and nodal elements is quite natural for a DG scheme since the
transformation from modal (û) to nodal (ũ) degrees of freedom is nothing else but a polynomial
evaluation of the modal polynomials at the nodal interpolation points which can be expressed
in the form of a matrix-vector-multiplication:

ũ = Vû. (8)

Here V is a Vandermonde matrix containing the evaluations of the modal polynomials at the
interpolation points. The back transformation can be implemented using the inverse of the
Vandermonde matrix:

û = V−1ũ. (9)

Should the number of nodal interpolation points not be equal to the number of modal degrees
of freedom, as it is the case for elements other than tetrahedra, the inverse V−1 is defined using
a least squares procedure based on singular value decomposition [16].

The nodal DG method can be conveniently formulated in terms of matrices representing the
discrete integrals in (7):

Mũt +
nFaces∑
i=1

MS
i g̃i −Nih̃i︸ ︷︷ ︸

surface integral

− d∑
k=1

Sk f̃k︸︷︷︸
volume integral

= 0. (10)

Should the equations be nonlinear such as e.g. the compressible Navier-Stokes equations the
nonlinearity is present in the evaluation of the fluxes. In Eq. (10), f̃k, k = 1, ..., d are the
vectors of flux evaluations at all nodal points, while g̃i and h̃i stand for the evaluations of the
surface flux approximations at the nodal points of the element face i. The operators in Eq. (10)
are designed to act on nodal input vectors and to produce a nodal output. Using Eq. (9) all the
operators in Eq. (10) can be modified in order to produce a modal output yielding the mixed
modal-nodal DG method:

ût = −V−1M−1

(
nFaces∑
i=1

(
MS

i g̃i −Nih̃i

)
−

d∑
k=1

Sk f̃k

)
. (11)

4 TIME INTEGRATION METHODS

Equation (11) represents an ordinary differential equation in the cell Q. If we combine the
modal coefficient vectors in one vector u ∈ Rm, we obtain a large system of ODEs

u(t) = f(u(t)), (12)
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where f is a vector valued function corresponding to the right hand side (11) for the whole grid.
Generally, a vector with an underbar will denote a vector from Rm. We will now consider a
number of classes of time integration schemes for the solution of (12), in particular SDIRK,
ESDIRK, Rosenbrock, Space Time Expansion with local time-stepping and explicit RK. From
each of these, we will consider a few specific methods. Generally, we will call the time step
size ∆t and un is the numerical approximation to u(tn).

Figure 1: Eigenvalues for a 2D problem with Re = 100, 6× 6 mesh, 4th order in space

In figure (4), a plot of the eigenvalues of (12) at t0 for the described DG discretization of a
2D problem is shown. As can be seen, there are eigenvalues directly on the imaginary axis. For
this reason we won’t consider BDF methods, since these are only A(α)-stable for orders greater
than two. Furthermore, it shows that the problem is stiff, since the largest real part is -250.

4.1 Explicit Methods

Explicit time integration methods are very popular in the DG community. While the imple-
mentation is easy compared to implicit methods, they have the drawback of a bounded stability
region. For the purely hyperbolic case, the timestep is limited by the CFL condition

∆tQ ≤ σC
1

2N + 1

∆x

max
(
λCQ
) , (13)

where σC is a user-defined parameter and max
(
λCQ
)

stands for the maximum of the hyperbolic
eigenvalues in a cell Q. Different from high order finite volume methods, the degree of the
polynomial approximation influences the timestep significantly as the constraint scales with
2N + 1. In the paracolic case, the stability condition turns out to be even more restrictive:

∆tQ ≤ σD
1

N2

∆x2

max
(
λDQ
) , (14)

where again σD is a user-defined parameter and max
(
λDQ
)

stands for the maximum parabolic
eigenvalue in the cell Q. In addition to the fact that this stability condition scales with ∆x2,
which is a problem for all kinds of spatial discretizations, the scaling imposed by the DG poly-
nomial on the maximum eigenvalue becomes quadratic. These conditions haven to be fulfilled
in every cell in order to obtain a stable scheme.

4.1.1 Explicit Runge-Kutta Methods

Explicit Runge-Kutta (ERK) methods are more or less the standard for time integration in
conjunction with DG spatial discretizations. They are straightforward to implement and offer
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good performance in serial and parallel computing environments. In this work we focus on
an efficient low storage ERK (LSERK) methods of fourth order with five stages (s = 5) of
Carpenter and Kennedy [?]. The scheme can be implemented efficiently in the following form:

u = un

k = 0

i ∈ [1, ..., s] :

{
k = ai k + ∆tf (u)
u = u + bi k

un+1 = u

(15)

4.1.2 Space Time Expansion with Time Consistent Local Time-Stepping

While all the other time integration schemes considered here are actually ODE solvers and
hence, are based on the method of lines, we now consider a different approach. Lörcher et
al. developed the so-called Space Time Expansion (STE) method for DG discretizations [25,
12] which is very similar to Harten’s variant but has the feature of time consistent local time-
stepping. There it was also shown that the approach is in general a predictor-corrector method.
Since the method is not well known we will describe it in greater detail here.

The basic idea is to advance a PDE in time by integrating it from tn to tn+1:

un+1 = un −
∫ tn+1

tn
∇ · ~f (u)dt. (16)

Since the temporal evolution of u (~x, t) is unknown, there is no obvious solution for the integral
in Eq. (16). The idea of the STE scheme is to construct a high order predictor p (~x, t) approx-
imating u (~x, t) in the time interval [tn, tn+1] in each cell and insert it into eq. (16). This way
one obtains a corrector equation that yields the actual time update:

un+1 = un −
∫ tn+1

tn
∇ · f (p (~x, t)) . (17)

The integral can be solved numerically using e. g. Gaussian quadrature:

un+1 = un − ∆t

2

nGP∑
j=1

ωj∇ · f (p (~x, tj)) . (18)

The construction of the predictor used to be a delicate task which has earned the method a
bad reputation and rendered it unattractive to prospective users. In recent years a number of
efficient and easy to implement methods have been devised. Here, we use continuous explicit
Runge-Kutta methods, as suggested in [12].

While an STE timestep is less expensive than one of a classical ERK method, the stability of
the STE method is somewhat limited resulting in approximately the same computational effort
for both schemes. The scheme becomes interesting once one considers the main drawback of all
explicit methods, namely that the stability conditions (13) and (14) must not be violated in any
cell. Since classical methods such as the ones in section (4.1.1) require all cells to be advanced
using a uniform timestep, such schemes can become very inefficient, since it is not uncommon
that the minimum timestep in the computational domain is several orders of magnitude smaller
than the maximum one. Good examples that cause this behavior would be hp refinement for the
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resolution of boundary layers or shocks. When considering this, the idea of advancing each cell
individually only abiding to its own stability constraint becomes very attractive. Lörcher et al.
have constructed such a temporal method for DG spatial discretizations in [25]. The main idea
is to consider the evolution equations (17) for the degrees of freedom of each individual cell
separately, instead of all of the degrees of freedom in the computational domain Ω at once. To
summarize this method, we first combine Eq. (17) with the DG operator in Eq. (11) to obtain
an evolution equation for the degrees of freedom in an individual cell Q

ûn+1
Q = ûnQ −

∫ tn+1

tn
V−1

(
nFaces∑
i=1

(
MS

i g̃i −Nih̃i

)
−

d∑
dim=1

Sdimf̃dim

)
dt. (19)

A straightforward analysis of Eq. (19) turns out that it can be split into an operator for the the
volume terms

RV (p̃Q) = V −1
d∑

dim=1

Sdimf̃dim, (20)

and an operator for the surface terms

RS

(
p̃Q, p̃

+
Q

)
= V −1

(
nFaces∑
i=1

(
MS

i g̃i −Nih̃i

))
, (21)

allowing us to rewrite Eq. (19) into

ûn+1
Q = ûnQ +

∫ tn+1

tn
RV (p̃Q) dt−

∫ tn+1

tn
RS

(
p̃Q, p̃

+
Q

)
dt. (22)

Assuming that there is a predictor p̃Q (t) ≈ ũQ (t) available in each cell, the time integral
of the volume operator can be solved without further considerations since it only depends on
p̃Q (t), provided that ∆tQ = tn+1

Q − tnQ does not violate the stability conditions (13) and (14).
The surface part is the difficult one, since it involves not only the local predictor p̃Q (t) but
also predictor values from neighboring cells p̃+

Q (t) in order to compute the time integral of the
surface terms.

The sequence in Fig. (2) illustrates a typical situation where local time-stepping is applied.
The three cells Q1, Q2 and Q3 all have different maximum stable timesteps and thus can reach
different maximum target time levels tn+1

i as depicted by the dashed bars in the first figure.
As already stated, to update the degrees of freedom of a cell Qi using Eq. (22) we need the
predictor values in the cell itself as well as the ones of all neighbor cells up to the target time
level tn+1

k . It is clear that in this example, the condition is only fulfilled for cell Q2. From this
observation we can derive a general condition that has to be fulfilled by a cell in order to be
advanced in time, the so-called ”evolve condition”

tn+1
i ≤ min

{
tn+1
j

}
∀j : Qj ∩Qi 6= 0. (23)

In order to make the method time consistent and fully conservative, the time integral of the
surface operator has to be applied to both cells sharing a common side as depicted in the second
figure of the sequence. After a full update of cell Q2, all data is available for computing the
predictor p̃Q2 (t) and the next maximum stable timestep at time level tn+1

2 . The next cell that
fulfills the evolve condition in our example would be Q1. The interesting part in this update
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ti

t=0

t

t

i−1

i+1

i−1 iQ Q Q i+1

1

1

1

fi−1/2

ti

ti

t=0

t

t

i−1

i+1

i−1 iQ Q Q i+1

1

1

1

fi+1/2

2

ti

ti

fi−1/2

t=0

t

t

i−1

i+1

i−1 iQ Q Q i+1

1

1

1

2

fi−3/2

ti−1
2

ti

tifi−1/2

ti

t=0

t

t

i−1

i+1

i−1 iQ Q Q i+1

1

1

1

2

ti−1
2

fi+1/2

3

Figure 2: Sequence of steps 1-4 of a computation with 3 different elements and local time-stepping

process is the time integral at the interface with cell Q2 since a part of this integral has already
been computed during the update process of Q2. Since it is mathematically equivalent to split
the integral of an interval into a sum of an arbitrary number K of subintervals∫ tn+1

tn
...dt =

∫ t1

tn
...dt+

∫ t2

t1
...dt+ ...+

∫ tK−2

tK−2

...dt+

∫ tn+1

tK−1

...dt,

we split the interval
[
tn1 , t

n+1
1

]
into the intervals

[
tn1 , t

n+1
2

]
and

[
tn+1
2 , tn+1

1

]
which yields∫ tn+1

1

tn1

RS (p̃1, p̃2) dt =

∫ tn+1
2

tn1

RS (p̃n1 , p̃
n
2 ) dt+

∫ tn+1
1

tn+1
2

RS

(
p̃n1 , p̃

n+1
2

)
dt.

This way we obtain a consistent local time stepping method which is not possible using e. g.
ERK methods. This method can be implemented with very little additional logic once the STE
method is available. One only has to make sure that the evolve condition (Eq. (23)) is not
violated if a cell is to be advanced in time and that the time integrals over the surface operators
are split in a consistent manner. It is interesting to note that this process only works due to the
fact that the STE scheme naturally allows the imposition of time dependent boundary conditions
without loss of accuracy, which is a problem for Runge Kutta methods, see Carpenter et al. [6].

4.2 Implicit Methods

Implicit methods can be constructed to have unbounded stability regions, but require the
solution of linear or nonlinear equation systems. This makes them more expensive per step
and more difficult to implement. Nonetheless the severe timestep limitation of explicit schemes
makes implicit timestepping schemes attractive.
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4.2.1 DIRK methods

A general implicit Runge-Kutta methods requires solving a nonlinear equation system with
s · m unknowns. We will therefore restrict ourselves to so called diagonally implicit Runge-
Kutta methods or short DIRK methods. Given coefficients aij and bi, such a method with s
stages can be written as

Ui = un + ∆t
i∑

j=1

aijf(Uj), i = 1, ..., s (24)

un+1 = un + ∆t
s∑
i=1

bif(Ui). (25)

Thus, all entries of the Butcher array in the strictly upper triangular part are zero. If additionally
all values on the diagonal of A are identical, the scheme is called singly diagonally implicit,
short SDIRK. Furthermore, we require, that the coefficients b and the last line of the matrix
A coincide. Thus, the resulting scheme is, if A-stable, also L-stable. This class of schemes is
called stiffly accurate and is popular for the solution of differential algebraic equations (DAEs).
Note that the application of (25) is therefore not necessary, since then un+1 = Us.

The point about DIRK schemes is, that the computation of the stage vectors is decoupled
and instead of solving one nonlinear system with sm unknowns, the s nonlinear systems (24)
with m unknowns have to be solved. This corresponds to the sequential application of several
implicit Euler steps in two possible ways. With the starting vectors

si = un + ∆t
i−1∑
j=1

aijf(Uj), (26)

we can solve for the stage values

Ui = si + ∆taiif(Ui). (27)

The equation (27) corresponds to a step of the implicit Euler method with starting vector si and
time step aii∆t. Note that aii is typically smaller than one and thus the equation systems are
easier to solve than a system arising from an implicit Euler discretization with the same ∆t.
Second, if a time adaptive strategy is used, the higher order leads to larger time steps compared
to the implicit Euler method and thus for a certain tolerance, we have less than s times the
number of nonlinear systems to solve.

Additionally, it is usually possible to give a second set of coefficients b̂, which define for the
otherwise identical Butcher tableau a method of lower order. This can be used for the estimation
of the time integration error, as will be explained later.

A method of third order (SDIRK3) with an embedding of second order was developed by
Cash [7]. This method is A- and L-stable.

Furthermore, there is the class of ESDIRK schemes, where the first step of the Runge-Kutta
schemes is explicit. This allows to have a stage order of two, but also means that the methods
cannot be algebraically stable. The use of these schemes in the context of compressible Navier-
Stokes equations was analyzed by Bijl et al. in [4] where they were demonstrated to be more
efficient than BDF methods for engineering accuracies. They suggested the six stage method
ESDIRK4 of fourth order with an embedded method of third order and the four stage method
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ESDIRK3 of third order with an embedded method of second order, both designed in [23].
Again, these schemes are A- and L-stable.

The use of a first explicit stage involving f(un) only, allows to reuse the last stage derivative
from the last time step in the first stage, since f(un+1) from the last time step is just the same
thing.

4.2.2 Rosenbrock methods

To circumvent the solution of nonlinear equation systems, Rosenbrock methods can be used
[17]. The idea is to linearize a DIRK scheme, thus sacrificing some stability properties, as
well as accuracy, but reducing the computational effort per time step. Therefore, this class
of schemes is also referred to as linearly implicit or semi-implicit. More precise, an s-stage
Rosenbrock method with coefficients ãij , γij , bi, γi =

∑i
j=1 γij and ai =

∑i−1
j=1 ãij is given by

(I− γii∆tW)ki = f(tn + ai∆t, Ũi) + ∆tW
i−1∑
j=1

γijkj + ∆tγii∂tf(tn,un), i = 1, ..., s

Ũi = un + ∆t
i−1∑
j=1

ãijkj, i = 1, ..., s (28)

un+1 = un + ∆t
s∑
i

biki.

Note that in the autonomous case, the last term on the right hand side is zero.
Thus, per time step, s linear equation systems with the same system matrix and different

right hand sides have to be solved. If, instead of the exact Jacobian ∂f
∂u

(tn), an approximation
W is used, we obtain so called Rosenbrock-Wanner methods or short ROW methods. If the
linear system is solved using a Krylov subspace method, the scheme is called a Krylov-ROW
method.

The decreased accuracy of Rosenbrock methods compared to SDIRK methods, will later
result in the time step selector chosing smaller time steps for Rosenbrock methods. Regarding
stability, it is possible to design A-stable and even L-stable schemes. In [21], Rosenbrock
methods are compared to SDIRK methods in the context of the incompressible Navier-Stokes
equations and found to be competitive, if not superior.

The efficient implementation of Rosenbrock methods is done using a set of auxiliary vari-
ables

Ui = ∆t
i∑

j=1

γijkj

and circumvents the matrix-vector multiplication in the previous formulation. Using the identity

ki =
1

∆t

(
1

γii
Ui −

i−1∑
j=1

cijUj

)
with coefficients cij explained below, we obtain

11
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(I− γii∆tW)Ui = ∆tγiif(tn + ai∆t, Ûi) + γii

i−1∑
j=1

cijUj + ∆t2γiiγi∂tf(tn,un),

Ûi = un +
i−1∑
j=1

aijUj, (29)

un+1 = un +
s∑
i

miUi,

where again in the autonomous case, the last term on the right hand side is zero. The relation
between the two sets of coefficients is the following:

C = diag(γ−111 , ..., γ
−1
ss )− Γ−1, A = ÃΓ−1, mT = bTΓ−1.

Here, we consider the method ROS34PW2 from [31].

4.3 Adaptive time step size selection

For unsteady flows, we need to make sure that the time integration error can be controlled.
To do this, we will estimate the time integration error and select the time step size accordingly.
For DIRK and Rosenbrock methods, this is done using the embedded schemes of a lower order
p̂. Comparing the local truncation error of both schemes, we obtain the following estimate for
the local error of the lower order scheme:

l ≈ ∆tn

s∑
j=1

(bi − b̂i)ki, (30)

respectively, for the efficient formulation (29) of the Rosenbrock method

l ≈
s∑
j=1

(mi − m̂i)Ui.

The error estimate is then used to determine the new step size. To do this, we decide be-
forehand on a target error tolerance, which we implement using a common fixed resolution test
[34]. This means that we define the error tolerance per component via

di = RTOL|uni |+ ATOL. (31)

Then we compare this to the local error estimate via requiring

‖l./d‖ ≤ 1,

where . denotes a pointwise division operator. For the norm, we are going to use the 2-norm,
since GMRES is based on that. A more substantial and less heuristic choice of norm would be
desirable for the future.

The next question is, how the time step has to be chosen, such that the error can be controlled.
The classical method is the following, also called EPS (error per step) control [17]:

∆tnew = ∆tn · ‖l./d‖1/(p̂+1). (32)

12
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This is combined with two safety factors to avoid volatile increases or decreases in time step
size:

if ‖l./d‖ ≥ 1, ∆tn+1 = ∆tn max(fmin, fsafety‖l./d‖1/p̂+1)

else ∆tn+1 = ∆tn min(fmax, fsafety‖l./d‖1/p̂+1).

Here, we choose fmin = 0.3, fmax = 2.0 and fsafety = 0.9. Finally, we use tolerance scaling
and calibration [33]. The first is useful, since, although for the above controller, convergence
of the method for TOL → 0 can be proven, the relation between global error and tolerance is
typically of the form

‖e‖ = τ · TOLα, (33)

where α is smaller than one, but does not depend strongly on the problem solved. Therefore, an
internal rescaling TOL′ = O(TOL1/α) is done, so that the user obtains a behavior where a de-
crease in the rescaled tolerance TOL′ leads to a corresponding decrease in error. Furthermore,
it is useful to calibrate the solver, such that TOL = TOL′ = TOL0 for a specific tolerance
TOL0:

TOL′ = TOL
(α−1/α)
0 TOL1/α. (34)

5 SOLVING EQUATION SYSTEMS

5.1 Inexact Newton method

To solve the appearing nonlinear systems, we use an inexact Newton’s method. As a termi-
nation criterion we use a residual based one with a relative tolerance, resulting in

‖F(uk)‖ ≤ ε = εr‖F(u0)‖.

If the iteration does not converge after a maximal number of iterations, the time step will be
repeated with half the time step size. In particular, we will use the inexact Newton’s method
from [10], where the linear system in the k-th Newton step is solved only up to a relative
tolerance, given by a forcing term ηk. This can be written as:

∥∥∥∥∥∂F(u)

∂u

∣∣∣∣
u(k)

∆u + F(u(k))

∥∥∥∥∥ ≤ ηk‖F(uk)‖ (35)

u(k+1) = u(k) + ∆u, k = 0, 1, ....

In [11], the choice of the sequence of forcing terms is discussed and it is proved that for a prop-
erly chosen sequence of forcing terms, the convergence can be quadratic. They also construct a
sequence of this type, which is employed here.

5.2 Jacobian-free GMRES

The linear systems are solved using a Jacobian-free Krylov subspace method, in particular
the GMRES method of Saad and Schultz [32], which was explained by McHugh and Knoll
[27] to perform better than others in the Jacobian-free context. In their basic version, Krylov
subspace schemes need the Jacobian and in addition a preconditioning matrix to improve con-
vergence speed, which is storage wise a huge problem. Furthermore, the use of approximate
Jacobians to save storage and CPU time leads to a decrease of the convergence speed of the
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Newton method. To get rid of the Jacobian, the idea is that in Krylov subspace methods, the
Jacobian appears only in the form of matrix vector products Avi which can be approximated
by a difference quotient

Avi ≈
F (ū + εvi)− F(ū)

ε
= vi − aν+1∆t

f (ū + εvi)− f(ū)

ε
. (36)

The parameter ε is a scalar, where smaller values lead to a better approximation but may lead
to truncation errors. A simple choice for the parameter, that avoids cancellation but still is
moderately small is given by Quin, Ludlow and Shaw [30] as

ε =

√
eps

‖∆u‖2
,

where eps is the machine accuracy. Second order convergence is obtained up to ε-accuracy if
proper forcing terms are employed, since it is possible to view the errors coming from the finite
difference approximation as arising from inexact solves.

5.3 Preconditioner

A much more sophisticated method that is very good preconditioner for compressible flow
problems is the symmetric block Gauss-Seidel-method (SGS), which corresponds to solving the
equation system

(D + L)D−1(D + U)x = xP . (37)

This needs a huge amount of storage, therefore, we employ ROBO-SGS, which makes use
of the fact that the modal DG scheme has a hierarchical basis which also gives the element
Jacobians a hierarchical structure. This gives us the opportunity to reduce the inter-element

Figure 3: Reduced versions of the off-diagonal blocks of the Jacobian, k = 0 and k = 1 variants

coupling by neglecting all derivatives of higher-order degrees of freedom of the neighboring
cells in the Jacobian. For example, in the case k = 0 we take only the DOFs of the neighbors
into account, which correspond to the integral mean values of the conserved quantities, see
Fig. (3). However, we keep not only the derivatives of the remaining degrees of freedom with
respect to themselves, but to all degrees of freedom, resulting in a rectangular structure in the
off diagonal blocks of the preconditioner. For k = p, we keep everything, thus recovering the
original block SGS preconditioner. If we formally set k = −1, we neglect all off diagonal block
entries, thus recovering block Jacobi. Here, we employ ROBO-SGS-1, which gives a very good
compromise between efficiency and storage.

14



Philipp Birken, Gregor Gassner, Mark Haas and Claus-Dieter Munz

6 NUMERICAL RESULTS

6.1 Test cases

The first test case is about the convection of a 2D vortex in a periodic domain, which is
designed to be isentropic for inviscid flows [9]. However, we will consider this in the setting
of laminar flows. The initial conditions are taken as freestream values (ρ∞, v1∞ , v2∞ , T∞) =
(1, v1∞ , 0, 1), but are perturbed at t0 by a vortex (δv1, δv2, δT ) centered at (x̃1, x̃2), given by the
formulas

δv1 = − α

2π
(x2 − x̃2)eφ(1−r

2),

δv2 =
α

2π
(x1 − x̃1)eφ(1−r

2),

δT = −α
2(γ − 1)

16φγπ2
(x1 − x̃1)e2φ(1−r

2),

where φ and α are parameters and r is the euclidian distance of a point (x1, x2) to the vortex
center, which is set at (x̃1, x̃2) = (0, 0) in the domain [−7, 7] × [−3.5, 3.5]. The parameter α
can be used to tweak the speed of the flow in the vortex, whereas φ determines the size and is
chosen as φ = 1. Here, we will employ α = 4.0, v1∞ = 0.5 and tend = 4.0. The Reynolds
number is set toRe = 100 and the grid is chosen cartesian with 100×50 cells. For the reference
solution, the LSERK4 method is used with ∆t = 0.0001. The spatial order is four.

As a second test case, we consider a density wave on the 2D square [0, 2]×[0, 2] for t ∈ [0, 1],
governed by the Euler equations. Here, the exact solution is given by

ρ(x, t) = 2(1 + 0.5 sin(π|x− vt|)),

which is used as a reference and defines the initial conditions at t = 0. Otherwise, all the
primitive variables are equal to two. The grid is chosen cartesian with 10 × 20 cells and the
spatial order is five.

The third test case is vortex shedding behind a 3D sphere at Mach 0.3 and Reynolds number
of 1,000. The unstructured grid consists of 21,128 hexahedral cells. To obtain initial conditions
and start the initial vortex shedding, we begin with free stream data and linear polynomials. Fur-
thermore, to cause an initial disturbance, the boundary of the sphere is chosen to be noncurved
at first. In this way, we compute 120 s of time using an explicit time integration scheme. Then
we switch to polynomials of degree three and compute another 10 s of time using the explicit
method. From this, we start the actual computations with a polynomial degree of four and a
curved representation of the boundary. In total, we have 739,480 unknowns for this test case.

For the first time step, we chose ∆t = 0.0065, from then on the steps are determined by
the time adaptive algorithm. This time step size was chosen such that the resulting embedded
error estimate is between 0.9 and 1, leading to an accepted time step. Then, we perform the
computations on a time interval of 30 seconds. The initial solution and the result at the end
when using ESDIRK4 time integration with a tolerance of 10−3 are shown in figure 4, where
we see isosurfaces of λ2=−10−4, a common vortex identifier [20]. Note that there is no visual
difference between the results for ESDIRK4 and LSERK4.

6.2 Order of convergence

First of all, we’ll look at the order obtained by the different methods by comparing the results
obtained for fixed time step calculations of ∆t = 1.0, 0.5, ..., 0.03125 with those of a reference
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Figure 4: Isosurfaces of λ2=−10−4 for initial (left) and final solution of sphere problem (right).

solution for the first variant of the vortex convection problem and the density wave problem.
The nonlinear systems are solved up to a relative tolerance of 1E − 7. As can be seen in figure
6.2, the theoretical order is obtained by all methods considered. ESDIRK4 reaches the error of
the reference solution at some point. It is striking that all third order methods produce almost
the same error. Since the Rosenbrock method is obtained from a linearization of SDIRK 3, this
means that these problems are only weakly nonlinear.

Figure 5: Order of the methods; Vortex convection problem (left), Density wave problem (right)

6.3 Tolerance scaling

To determine the correct tolerance scaling, we consider the vortex convection problem and
the density wave problem. These problems are then solved by the different implicit time adap-
tive schemes for different tolerances. Comparing with the reference solutions, the obtained
relation between TOL and the error in the discrete L2 norm for different methods can be seen
in table 6.3 and 6.3. Note that this is not the norm that the error estimator works in, since
that is the 2-norm. As can be seen, ESDIRK 3, ESDIRK 4 and ROS34PW2 produce simi-
lar errors, whereas SDIRK 3 produces errors that are ten times smaller for the same tolerance.
However, SDIRK 3 has a better relation between TOL and error for the vortex convection prob-
lem, whereas the other method have a better relation for the density wave problem. From these
values we deduce the values for α in (33) to be those in (6.3).

Finally, the new tolerance TOL′ is calibrated via (34) at TOL = 1.E− 4, leading to a factor
of 10 for ROS34PW2 and rougly 2.78 for the other methods.
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TOL SDIRK 3 ESDIRK 3 ESDIRK 4 ROS34PW2
10−2 3.989257e-2 4.854288e-1 2.964846e-1 1.618823e-1
10−3 5.093144e-3 6.277344e-2 4.103350e-2 2.847235e-2
10−4 6.070536e-4 7.383178e-3 8.313921e-3 5.922446e-3
10−5 7.023503e-5 8.109867e-4 1.155345e-3 1.180773e-3
10−6 1.327953e-5 8.366576e-5 1.235267e-4 2.191002e-4

Table 1: Relation between TOL and error in discrete L2 norm for different methods, vortex convection problem

TOL SDIRK 3 ESDIRK 3 ESDIRK 4 ROS34PW2
10−2 1.411442e-3 1.662924e-2 1.315162e-2 1.485843e-2
10−3 1.801086e-4 1.704417e-3 1.160576e-3 3.064769e-3
10−4 1.878412e-5 1.774249e-4 1.272843e-4 5.401451e-4
10−5 1.301709e-6 1.762944e-5 1.439278e-5 9.672057e-5
10−6 1.427034e-6 1.758030e-6 1.459053e-6 1.735513e-5

Table 2: Relation between TOL and error in discrete L2 norm for different methods, density wave problem

6.4 Time adaptive calculations

Now, we will consider time adaptive calculations and compare different time stepping schemes
for the sphere problem, where we used a tolerance of 10−3. The results are shown in table 4.
As can be seen, the explicit scheme LSERK4 is by far the slowest with about a factor of five
between ESDIRK4 and LSERK4. Thus, even when considering that a fourth order explicit
scheme is probably overkill for this problem, the message is that explicit Runge-Kutta methods
are significantly slower than implicit methods for this test case. Furthermore, the local-time
stepping RKCK scheme is about 20% slower than ESDIRK4. Note that for this test case, the
time step of the explicit scheme is constrained by the CFL condition and not the DFL condition.
Therefore, it can be expected that for higher Reynolds number and finer discretizations at the
boundary, the difference in efficiency is even more significant.

When comparing the different implicit schemes, we can see that SDIRK3 is significantly
slower than the ESDIRK methods, wheras ESDIRK3 is competitive with ESDIRK4. The worst
scheme is the Rosenbrock method, which chooses time steps that are significantly smaller than
those of the DIRK methods, which is in line with experiences from the finite volume case.

7 CONCLUSIONS

We considered different time integration schemes in the context of a modal DG scheme
and employed tolerance scaling to make a more valid comparison. Without much additional
memory, all implicit schemes outperform a standard explicit scheme for a wallbounded flow
test case. However, only ESDIRK3 and ESDIRK4 manage to beat a local time stepping explicit
scheme.
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