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Abstract

We analyze a rate-independent model for damage evolution in elastic bodies. The central quan-
tities are a stored energy functional and a dissipation functional, which is assumed to be positively
homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage
variable and the displacements, solutions may have jumps as a function of time. The latter circum-
stance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical
concept of global energetic solution fails to describe accurately the behavior of the system at jumps.

Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-
dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on
arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-
independent damage model, which highlights the interplay of viscous and rate-independent effects in

the jump regime, and provides a better description of the energetic behavior of the system at jumps.

1 Introduction

In this paper, we focus on the modeling of damage in an elastic body Q C R, d = 2,3, during a time
interval [0,7], as a rate-independent, activated process. The phenomenon is described in terms of a
damage parameter z :  x [0,T] — R, assessing the soundness of the material: usually, z takes values in
the interval [0, 1], and one has z(z,t) = 0 (z(z,t) = 1, respectively), when the system at the process time
t € [0, 7] is fully damaged (completely sound), “locally” around = € €. The driving energy is a function of
time (through the external loading), of the damage parameter z, and of the displacement variable u. We
consider small strains and assume that the elastic energy is quadratic. The external loading encompasses
time-dependent displacement boundary conditions, as well as volume and surface loading. All in all, the
stored energy functional £ : [0,7] x U x Z — R (with the state space U = {v € H*(Q,R?); v|r, =0}
for u, and Z the Sobolev-Slobodeckij space H*(2), s € {1, %}, for z), is

E(t,u,z) = %as(z, z) + /Q f(z)dz + % /Q 9(2)Ce(u +up(t)) : e(u+up(t))de — (€(t),u),, (1.1)

where a, is the bilinear form associated with the H*® semi-norm on Z = H*(Q), s € {1, 3}, and £(u) is the
symmetrized strain tensor. For the precise assumptions on the nonlinearities f : R - R and g : R — R,
the elasticity tensor C, the external loading ¢ = £(t), and the Dirichlet datum up = up(t), we refer the
reader to Section 2. We impose that at each time ¢ € [0,T] the displacement u(¢) minimizes the energy
E(t,-, z(t)), namely

u(t) € argmin, o, E(t, v, 2(t)). (1.2a)

Dissipation occurs through the internal, fast variable z. As in [MR06, BMR09, TM10], we stay in the
rate-independent framework, which characterizes phenomena where the external loading is much slower

than the internal relaxation times. Hence, the evolution of z is described by the doubly nonlinear equation
OR1(Z'(t)) + DLE(t,u(t),2(t)) 20 in Z* for a.a.t € (0,T). (1.2b)

The above differential inclusion features the 1-positively homogeneous, unidirectional dissipation func-
tional Ry : Z — [0, 00| defined, for a given fracture toughness k > 0 and n € Z, by

kn(x)| dz if n <0 a.e. in Q,
Ra(n) = /Q

00 else.



In (1.2b), D€ is the Gateaux derivative of £ w.r. to z, whereas OR4 : Z = Z* is the (convex analysis)
subdifferential of R; in the frame of the duality between Z* and Z, i.e., for a given n € dom(R1)

¢ € OR1(n) if and only if Rq(w) —Ri(n) > (¢, w—n) for all w e Z. (1.4)
It is natural to reformulate (1.2a) and (1.2b) by means of the reduced energy functional
Z:[0,T] x Z =R, defined by Z(¢,2) = 316155(15,1),2), (1.5)
so that (1.2a) and (1.2b) are combined into
OR1(Z'(t)) + D.Z(t,2(t)) 20 in Z* for a.a.t € (0,7T). (1.6)

It will be shown in Lemma 2.7 that the Gateaux derivative D,Z is well defined on [0,T] x Z and, taking

into account its expression, (1.6) can be rewritten as

%g’(z(t))(CE(u(t)—i—uD(t)) ce(u(t)+up(t)) >0 foraa.te (0,T), (1.7)

OR1(Z'(t))+ Asz(t)+ [/ (2(t)) +
where Aj is the operator associated with the bilinear form a4(-, -), and u fulfills (1.2a). The model studied
here falls into the class of damage models introduced in [FN96, Kac86].

Notice that the range of R is 9R1(0), viz. a proper subset of Z*. Hence, since the reduced energy is
not strictly convex, solutions to (1.6) may have jumps as a function of time. This calls for weak solvability
notions for (1.6).

A well-established framework to describe rate-independent processes is the global energetic formulation
developed by MIELKE & THEIL, see [MT99, MT04, Mie05], and used, in the context of damage modeling,
in [MR06, BMR09, TM10, FKS10]. There, the evolution is characterized via a global stability criterion
and an energy balance, which must be satisfied during the whole evolution. Now, due to the global
stability condition, the prediction of the jumps of the solutions turns out to be not entirely satisfactory.
Indeed, global energetic solutions may change instantaneously in a very drastic way, jumping into very
far-apart energetic configurations (see, for instance, [Mie03, Ex.6.1], [KMZ08, Ex.6.3], and [MRS09,
Ex. 1]), while a local force balance criterion would predict a slow evolution.

In this paper, we discuss the vanishing viscosity approach as an alternative for the derivation of a
local rate-independent damage model. The philosophy that rate-independence should be considered as
limit of systems with smaller and smaller viscosity has by now been widely adopted in the applications,
see, e.g., [TZ09, DDMMO08, Cag08]. In the mainstream of the papers [EM06, MRS09, MRS10, MZ10]
on general rate-independent systems, and [KMZ08, KZM10, LT11] for rate-independent models of crack
propagation, we exploit this vanishing viscosity approach to obtain a more precise description of the

system behavior at jumps. Hence, we approximate (1.6) with the doubly nonlinear equation
OR(Z'(t)) + D.Z(t,2(t)) 20 in Z* for a.a.t € (0,T), (1.8)
where the dissipation functional R. features an additional L?-viscosity term, viz.
Re(n) = Ra(n) + Rac(n)  with Rac(n) = §[[nll72(q) = €Ra(n) for n € Z. (1.9)

Let us mention that damage models with viscous dissipation (possibly with viscosity and inertia in the
displacement equation, and coupled with thermal effects), have been analyzed in [BS04, BSS05, BBO0S,
FKO06], as well as in [HK10], where damage is coupled with phase separation processes. Bridging a

connection between the rate-dependent and rate-independent modeling approaches, in this paper we aim



to study the limit of (1.8), as the viscosity parameter € tends to zero. Our vanishing viscosity results
hinge on a preliminary analysis of (the Cauchy problem for) (1.8), for which we establish an existence
result, cf. Theorem 3.3.

As it was shown in [EM06, MRS09, MRS10, MZ10] for general rate-independent systems, passing to
the limit as e \( 0 in (1.8) leads to an alternative weak formulation of (1.6), featuring a finer description
of the solution jumps, which anyway occur later than for global energetic solutions. The key idea from
[EMO06] is that, at jumps the vanishing viscosity solutions to (1.6) follow a path which is reminiscent
of the viscous approximation. To reveal this, one has to go over to an extended state space and study
the limiting behavior of the sequence (Lte, 2.)e as € | 0, for a suitable reparameterization 2. = 2, o t. of
a family (z¢)e of wiscous solutions to (1.8). Following this approach, in Section 6 we will prove that,
up to a subsequence, the functions (Z, 2.). converge to a so-called Z-parameterized solution of (1.6).
While referring to Definition 6.2 for the precise assessment of Z-parameterized solutions, here we just
mention that the limit pair (£, 2) is a Lipschitz continuous curve (£, 2) : [0, 5] — [0,T] x Z, fulfilling, in

the non-degenerate case, a parameterized doubly nonlinear evolution equation, viz.
OR1(2'(5)) + A(s)2(s) + D.Z(t(s),2(s)) 20 in Z* for a.a.s € (0,5), (1.10)

where A : (0,5) — (0,+00) is a Borel function such that #'(s)A(s) = 0 a.e. in (0,5). Notice that
(1.10) encompasses both rate-independent evolution and, when the system jumps, the influence of rate-
dependent dissipation. To reveal this, we observe that the time function f : [0,S] — [0,T] encodes the
(slow) external time scale. When ¢ > 0 on some interval (sy,s2), we have A = 0 on (s1, s2), hence (1.10)
is simply a parameterized version of (1.6): the system dissipation is only due to rate-independent, dry
friction. When # = 0 on some interval (s1,82), the external time is frozen. Indeed, the system has
switched to a different regime, which is seen as a jump in the slow external time scale. If A > 0 in (1.10),
also wviscous dissipation is active. This is in accordance with the following interpretation: jumps are fast
(with respect to the slow external time scale) transitions between two metastable states, during which
the system may switch to a viscous regime. We refer to [EM06, MRS09, MRS10], and to Section 6, for
further observations on (1.10).

Let us shortly compare our model and results with the results for the damage model developed in [GLO09,
FGO6]. In these papers, the influence of the damage state on the elastic properties is not postulated as in
our case (where the effective tensor is defined by g(z)C), but it is the outcome of a certain homogenization
procedure that takes place during the evolution process. It is shown in [GLO09] that the solutions are
(possibly discontinuous) threshold solutions. Roughly speaking, this means in particular that solutions
do not jump before the forces reach a certain critical value. In the one-dimensional setting, the model from
[GL09] can be reformulated in terms of a convex, but not strictly convex, reduced energy Z (cf. Remark
6 in [FGO6]) and the dissipation potential Ry from (1.3). In this case, due to the convexity of Z, the
threshold solutions from [GLO09] coincide with solutions of the corresponding global energetic model, as
well as with the vanishing viscosity solutions considered here.

The main difficulties for the existence and vanishing viscosity analysis of (1.8) are of course related to
its doubly nonlinear character. In particular, let us note in (1.7) the simultaneous presence of a quadratic
term in e(u) (featured from the derivative D,Z of the nonconvez energy T), and of the multivalued oper-
ator ORq. Indeed, differently from [EM06, MRS09, MRS10, MZ10], here we are enforcing irreversibility,
hence the operator OR1 : Z = Z* is unbounded. This makes it difficult to derive suitable bounds for the
thermodynamically conjugated force, i.e. the derivative D,Z. Indeed, on the one hand it is possible to
derive an estimate for the term D,Z(¢, z(t)) only in the space L>°(0,T; £*), and a comparison argument
in (1.8) will not give additional information, due to the unboundedness of the term OR;(2(¢)). On the



other hand, it is crucial both for the existence and for the vanishing viscosity analysis of (1.8), that the
terms D.Z and 2’ be in duality.
In fact, the key step (cf. Theorem 3.3) for the proof of existence of viscous solutions to (1.8), is to

obtain for approximate, hence for viscous solutions (z.)cso C H'(0,T; L?(2)), the bound
2l z20.1:2) < Ce, (1.11)

where C, is a positive constant which depends on the viscosity parameter € and explodes as € N\, 0. We
will prove (1.11) by means of careful estimates, also based on a refined elliptic regularity result for the
Euler-Lagrange equation for the minimum problem (1.2a), from the recent [HMW11]. We highlight that
this regularity result does not hinge on smoothness of the boundary 02, and thus it allows us to deal
with a broad class of domains, as well as with mixed boundary conditions, which is crucial for real-world
applications.

Next, we develop enhanced estimates, relying on the parabolic character of (1.7) and partially drawn

from [MZ10]. In this way, we obtain for viscous solutions the further bound
Izell L1 0,752y < C, (1.12)

for a constant C' which is now independent of € > 0. Indeed, estimate (1.12) is the starting point for the
vanishing viscosity analysis developed Theorem 6.3. Without going into details, we may just mention
that, thanks to (1.12) it is possible to reparameterize viscous solutions (z).>o by the Z-arclength of their
graph, which leads in the limit € N\, 0 to the aforementioned Z-parameterized solutions.

We shall develop a twofold approach to the proof of estimates (1.11) and (1.12). First, in Section 4, we
shall regularize (1.8) by adding a Z-viscosity term, modulated by a “small” parameter § > 0. We shall
obtain both estimate (1.11) (with a constant depending on € but independent of §) and estimate (1.12)
(with a constant independent of € and §), for the solutions of the §-regularized viscous problem. Hence,
we shall pass to the limit as § \, 0 and conclude the existence of solutions to the Cauchy problem for
(1.8). Moving from (1.12), we shall perform the vanishing viscosity analysis as € N\, 0 in Section 6. Second,
in Section 5 we shall prove (1.11) and (1.12) by working on the time-discretization scheme associated
with (1.8). In this context, the main challenge is to mimic the parabolic-type estimates leading to (1.12),
on the time-discrete level. This can be done by means of careful calculations, which are developed with
some detail in Section 5.2.

While referring to the discussion in Section 3.1 for a thorough comparison between the time-continuous
and the time-discrete approaches, we emphasize that the latter is clearly interesting in view of numerical
analysis. Indeed, it has been proved in [MRS10] (cf. also the forthcoming [MRS11b]) for general rate-
independent systems, and in [KMZ08] for a crack propagation model that, passing to the limit in the
time-discretization scheme for (1.8) as both the viscosity parameter and the time-step tend to zero, leads
to the so-called BV solutions to (1.6). Loosely speaking, the latter concept is the “non-parameterized”
version of the notion of parameterized solution. Relying on the time-discrete analysis of Section 5, we
plan to address within our damage model this simultaneous passage to the limit, as well as the analysis
of BV solutions. In this connection, it would also be interesting to combine e-approximation, with time-
and space-discretization, like in [KS11].

A second issue we are going to address in the future, is to replace the linear s-Laplacian in (1.7) with the
nonlinear p-Laplacian operator, which is usually found in models for damage, cf. [MR06, BMR09, TM10].
The key step for doing so will be to obtain, via regularity arguments, enhanced estimates for the term
D.Z(t,2(t)) in (1.8).



Plan of the paper. In Section 2 we set up the model and thoroughly analyze the properties of the
reduced energy Z. Next, in Section 3 we state Theorem 3.3 (=existence of solutions and a priori estimates
uniform w.r. to the viscosity parameter ¢€) for (the Cauchy problem associated with) (1.8). In Sec. 3 we
also discuss uniqueness of viscous solutions under special assumptions. We prove Thm. 3.3 via a further
regularization in Section 4, and via a time-discretization in Section 5. Finally, in Section 6 we develop

the vanishing viscosity analysis of (1.8).

2 The energy functional and its properties

2.1 Set-up

Hereafter

QCRY de{2,3}, isabounded domain with Lipschitz boundary, and 8Q = Tp UTy,
with the open Dirichlet boundary I'p such that #%~1(I'p) > 0, and the Neumann boundary T'y.

We shall assume that

I'p and I'y are regular in the sense of Groger (2.1)

viz., loosely speaking, that the hypersurface separating I'p and T'y is Lipschitz, see [Gro89] for more
details.

Notation. For a given Banach space X, we shall denote by (-, )y the duality pairing between X*
and X, and, if X is a Hilbert space, we shall use the symbol (-,-) for its scalar product. For matrices
A, B € R™* the inner product is defined by A: B =tr(BTA) =", Z;l:l a;i;bij.

The letter @ shall stand for the space-time cylinder  x (0,7). The following function spaces and
notation shall be used for o > 0, p € [1, o0

e W7P(Q) Sobolev-Slobodeckij spaces, H° () := W2(Q),

o WEP(Q) = {ue WhP(Q); ul, =0} and Wy P(Q) = (WF ()" the dual space, 2 + L =1.

p/
We shall denote by u : Q — RY the displacement, and by z : Q2 — R the (scalar) damage variable. The

corresponding state spaces are

U={veH(QR); 0|, =0}=Wp*QRY) (2.2)
) d
Z=H*(Q), withs> 3 (2.3)
In fact, we restrict to the case s < 2, so that the associated bilinear form on Z is:
as(z1,22) = / Vz1-Vazdr ifs=1, (2.4a)
Q
\Y% -V (V -V
as(z1,22) = / / (Va1(@) 2’1(y))d+(2( Zfl()x) 2 W) dedy ifse(1,2). (2.4b)
aJo |z -y

Recall that Z is a Hilbert space, with the inner product (z1,22)z = (21, 22)L2(Q) +as(z1,22). We denote
by As: Z — Z* the associated operator, viz.

(As(2),w) z == as(z,w) for every z, w € Z. (2.5)



Notice that
ZeL"(Q) foreveryre[l,c0). (2.6)

Furthermore, since Z is dense in L%(f2), we have that (Z,L%(Q) = L?(Q)*, Z*) is a Hilbert triple. In

particular, every element of L?((2) is identified with an element in Z*, and we thus have

ZCL*Q) c 2~ (2.7)

2.2 The energy functional

Energy functional. The energy is given by the sum of the elastic energy and an energy only depending
on the damage variable. As for the latter contribution, we consider a function

feC*R), suchthat 3Ky, Ky, K3>0 VzeR: |f(@) <K, and f(z)> K |z|*— K. (2.8)

A typical choice for f is f(2) = (1 — 2)?2, see [Gia05]. We then have the functional

7, : Z - R defined by Z;(z) := %as(z,z) —|—/ f(z)de.
Q

Linearly elastic materials are considered with an elastic energy density

sym

1
W(x,n) = 5((3(35)17 :m,  for n € R4 and almost every z € Q.

Hereafter, we shall suppose for the elasticity tensor that

C € (9, Lin(R: REXD)) (2.9a)
399 >0 forall € € RYX! and almost all 2 € Q: C(a)é: € >y €[ (2.9b)

Let g : R — R be a further constitutive function such that
g € C*(R), with ¢/, ¢” € L®(R), and 371,72 >0: Vz€R : 7 < g(2) < 70. (2.10)

Given an external loading ¢ € C°([0,T],U*) and a Dirichlet datum up € C°([0,T]; H'(Q, R?)), we take
the elastic energy

E: [0, T] xU x Z —= R defined by & (t,u,z) := / g(2)W(e(u+up(t)))dr — (€(t), u), (2.11)
Q
where e(u) = $(Vu + Vu?) is the symmetrized strain tensor. For u € Y and z € Z the stored energy is
then defined as
E(t,u,z) =T1(2) + E(t, u, 2). (2.12)

Minimizing the stored energy with respect to the displacements we obtain the reduced energy

T:[0,T] x Z — R given by Z(t,z) = I1(z) + Io(t, z) with Zo(¢, z) = inf{ E (¢, v, 2); v €U ). (2.13)

Remarks on the model.

Remark 2.1. For our main results on the vanishing viscosity analysis of (1.6) (cf. Theorems 3.3 and 6.3

later on), it will be sufficient to suppose that the index s in (2.3) fulfills s = % In particular, let us

highlight that, in the bi-dimensional case d = 2, we have s = 1, hence the operator A reduces to the
usual Laplacian operator.



Remark 2.2. As we have already pointed out, the irreversibility of the damage process is enforced in
our model through the choice of the dissipation functional (1.3). Instead, so far we have not included in
our model the constraint that the damage variable z only take values in [0,1]: indeed, the term Ijg 1)(2)
does not contribute to the energy Z. However, in Section 5 we shall prove via a time-discretization
procedure that, under suitable assumptions on the nonlinearities g and f, if the initial datum zy satisfies
zo(x) € [0,1] for almost every x € , then there exists a viscous solution z € H(0,T; Z) with z(0) = 2o
and z(z) € [0,1] for almost every x € . Ultimately, with the vanishing viscosity analysis developed
in Section 6, we shall obtain parameterized solutions to the rate-independent system for damage, which

only take values in [0, 1].

Notation 2.3. Hereafter, throughout the paper we shall use the symbols ¢, ¢/, C, and C’ for various
positive constants which only depend on known quantities, and whose meaning may vary even in the

same line.

2.3 Properties of the energy functional

A regularity result from [HMW11]. The following result has been recently proved in [HMW11] (cf.
Thm. 1.1 therein): For C as in (2.9a), g as in (2.10), and z € Z, let L, be the linear elliptic operator
defined by

(L2(v),w), = /Qg(z(:c))(C(x)e(v(z)) e(w(z))dr for all v, w € U. (2.14)
Then,
there exists p > 2 s.t. forall pe [2,p] L, : W;f(Q;Rd) — Wr_Dl’ﬁ(Q;Rd) is an isomorphism, (2.15)
and there exists some constant co > 0, only depending on ||C|| () and ||g|| L (), such that

| L R < co||hHWF for all h € W{Dlﬁ(ﬂ) and p € [2,p]. (2.16)

Wi (@) @)

Notice that, in particular, the integrability exponent p and the constant ¢y are independent of z € Z.
Relying on this regularity result, in the next lemmatas we prove some crucial properties of the reduced
energy (2.13).

Assumptions on the initial data. Hereafter, we shall require that

Ce CHH0, T Wi P (U RY),  up € CHH([0,T); WHP(Q;R)) with p > 2 from (2.15). (2.17)

Coercivity of the reduced energy and properties of minimizers.

Lemma 2.4 (Existence of minimizers and their regularity).

Let s = d/2. Under assumptions (2.1), (2.8)—(2.10), and (2.17), for every (t,z) € [0,T] x Z there exists a
UNIqUE Umin (t, 2) € U, which minimizes E(t,z,-). Moreover, there exists p > 2 such that for all p € [2,p)
and (t,z) € [0,T] X Z it holds that umin(t,2) € WIED’?(Q), and

V(t.2) €10, T] x 2 & umin(t: 2) w50y < o (IO, 150) + D@y 50) ) (2.18)
D

where cq is the constant from (2.16). Furthermore, the following coercivity inequality for T is valid: There
exist constants c1,co > 0 such that for all (t,z) € [0,T] x Z it holds

2 2
I(t,z) = Cl( HZHHS(Q) + ||Umin(t7Z)HH1(5z)) - C2- (2.19)



Proof. Taking into account (2.10), (2.17), and employing Korn’s inequality, it is immediate to see that
for every (t,z) € [0,T] x Z the functional &(¢, z, -) is uniformly convex on U. Therefore, & (t, z,-) (and,

hence, £(t, z,-)), has a unique minimizer umin (¢, z), satisfying the Euler equation
L, (umin(t, 2) + up(t)) = £(t) for every t € [0,T]. (2.20)

Since £(t) € WF_DIP(Q) for all t € [0,T] by (2.17), from (2.15) we deduce that umi,(t, 2) € WllDﬁ(Q) for all
D € [2,p]. Then, (2.18) follows from (2.16) and assumption (2.17).
Finally, estimate (2.19) follows from combining

71

Ta(t:2) = Ealttmint.2),2) 2 250 | [etmin(t,2) + un(0) d = 10 122 ltmin8,)

2
> Cllumin(t, 15 = € (lupl s o.2.111 (0 + 13w 0,110 )
(where we have again used (2.10), Korn’s inequality, (2.17) and (2.18)), with
1
Ti(t,z) > 505(272) +Ol2l72 ) — €' = Cll2lfre o) — €
where the first inequality follows from (2.8), and the second one from a Poincaré-type inequality. O

Lemma 2.5 (Continuous dependence on the data).
Let s = d/2. Under assumptions (2.1), (2.8)—(2.10), there exists a constant cg > 0 such that for all £ and
up with (2.17), all 21,20 € Z, all t1,ta € [0,T] and all p € [2,p) it holds with r = pp(p — p) ~*

||umin(t1a Zl) — Umin (tQa ZQ) le,;(Q)

< CS( |tr — to| + [|z1 — ZQHLT(Q) ) ( |‘€Hcl([07T];W1:$”’(Q)) + HUDHCQ([O,T];WLP(Q)) ) (2.21)

Proof. For i = 1,2, let u; := umin(t;, 2;) € WHP(Q), with p from Lemma 2.4. From the Euler-Lagrange
equation (2.20) written for u;, i = 1,2, with algebraic manipulations we obtain that u; — uy satisfies for
allv el

/ 9(z1)Ce(ug — ug): e(v)da = / (9(22) — g(21))Ce(uz): e(v) dx
Q

Q

— /Q (g(zl)(Ca(uD(tl)) - g(zQ)(Ce(uD(tg))) ce(v)da + (U(ty) — L(t2),v),, -
(2.22)
Hence, the function u; — uy fulfills

/ 9(21)Ce(uy —up) : e(v)da = ({19,v) forallveld,

Q

where (; 5 € W;;ﬁ(Q) subsumes the terms on the right-hand side of (2.22). Therefore, (2.16) gives
S -
|| 1 2”W (Q) 0 1,2 W;I;p(Q)

whence we deduce the estimate

s = tallys 70y < co(1£082) = €l yy—r 7 + N9(21) = 9(22))Cew2) ] 50
I'p

+1lg(21)Ce(up(t1)) — g(22)Ce(up(t2))ll 5oy ) (2:23)



Now, the Lipschitz continuity of g and Holder’s inequality imply that

I(g(21) = 9(22))Ce(u2) | 50y < C'll2r = 22l Lr () (U2l 1o () < C" M2 = 22ll e () (2.24)

with r = pp(p — p)~!, where the second inequality follows from (2.17) and from estimate (2.18). We use
(2.24) to estimate the second term on the right-hand side of (2.23). As for the third summand, we have

l9(21)Ce(up(t1)) — g(22)Ce(up (t2))ll 15 o)
< [[(9(21) = 9(22))Ce(up (t1))ll 150y + [19(22)Cle(un(t1))) — e(un(t2)) 150,
< O(ll21 = 22/l ey lun |l L= o.0wrr @) + lun(t) — up(t2)llwre)), (2.25)
where the latter inequality again follows from (2.24), and from the fact that g € L>°(R). Combining all
of the above inequalities, and relying on (2.17), we finally arrive at (2.21). O
Differentiability w.r. to time.

Lemma 2.6 (Differentiability and growth w.r. to time).
Let s = d/2. Under assumptions (2.1), (2.8)~(2.10) and (2.17), for every z € Z the map ¢t — ZI(t, z)
belongs to C1([0,T],R) with

WZI(t,z) = / 9(2)C(e(umin(t, 2) + up(t))): e(ip(t)) dz — (U(t), umin(t, 2)). (2.26)
Q
Moreover, there exists a constant ¢y > 0 such that for allt € [0,T], z € Z and up, £ with (2.17) we have

2 2
0:Z(t, 2)| < ca(Nunlleno,rpmwrnay) + ||€||Cl([0,T];W1?;’p(Q)) )- (2:27)

Finally, for oll v € [ﬁ,oo) there exists a constant c; > 0 depending on ||€||Cl,1([O Twste(q)) and
A W,

lunllcraqo,rpwrm(a) such that for all t; € [0,T] and z; € Z we have

|8tI(t1, Zl) - 8tI(t2,2’2)| S C5( |t1 - t2| + ||Zl - ZQ‘ L7(Q) ) (228)

Proof. Relation (2.26) follows from direct calculations. Then,
2
0:Z(t, 2)| < es(Nuplloro,ryan @y + 1l qomay ) lumin(t 2oy + s lupller o,y ) -
In view of (2.18) we arrive at (2.27). In order to prove (2.28), we calculate

O0¢L(t1,21) — Oy L(t2, 22)
= /Q(9(21)—9(22))C(€(umin(t1721) +up(t1))): e(ip(tr)) dz
+ /Q 9(22)C(e(umin(t1,21) + up(t1))—&(Umin(t2, 22) + up(t2))): e(ip(ty)) dz

+/ 9(22)C(e(umin(t2, 22) + un(t2))): (e(ip(t1))—e(up(tz))) dz
Q
— (0(t1)—C(t2), umin(t1, 21)) + (€(t2), Umin(t2, 22) —tUmin(t1, 21)) = L1 + Lo + I3 + Is + I
To estimate I, I, and I3 we rely on the fact that g, ¢’ € L°°(R), on the previously proved (2.18) and
(2.21), and on the following Hélder-estimate: For z € Z and v; € W14(£2) we have

12 [V [Voalll 1) < Izl ) o1 llwra o) lo2llwra@) -

with ¢ defined by %—&—% =1,i.e.7 = ¢q/(q—2). The estimates for I, and I5 ensue from (2.17) and (2.21). O



Differentiability w.r. to z. The differentiability of Z with respect to z will be studied in the Z — Z*
duality. In particular, D.Z(¢,-) : Z — Z* shall denote the Gateaux-differential of the functional Z(t, ).

Lemma 2.7 (Gateaux-differentiability).
Let s = d/2. Under assumptions (2.1), (2.8)~(2.10) and (2.17), for all t € [0,T] the functional Z(t,-) :
Z — R is Gadteauz-differentiable at all z € Z, and for all n € Z we have

D.Z(t, 2)[1] = aa(zm) + /Q f(2nda + /Q ¢ ()W (t, Vttmin(t, )} d, (2.29)

where we use the abbreviation W(t, Vov) = W(Vo+Vup(t)) = 1Ce(v+up(t)):e(v+up(t)). In particular,
the following estimate holds

Jeg >0V (t2) €[0,T] x 2 : |DI(t2)|l

<c(llzllz+1). (2.30)

Proof. The Gateaux-differentiability of Z; follows from the definition of the bilinear form ay(-,-) and
assumption (2.8) on f. We only have to verify the Gateaux-differentiability of Zo(¢, z). In this direction,
let u € Wllf(Q) with p € (2,p), pasin Lemma 2.4, and ¢t € [0, 7] be fixed. The mapping & (¢, u,-) : £ - R
is Gateaux-differentiable, as can be seen from the following calculations: Let z,n € Z, h € R\{0}, and
set

1
bn(z,m) == Bt (52(75, u, z + hn) — Ea(t, u, z)) = / / g (z + ahn)nW (t, Vu)do dz.
aJo

For h — 0 the integrand pointwise converges to g’(z)nW(t,Vu). Moreover, since £ C L"(Q) for all
r € [1,00) and since W (t,Vu) € L% (), the function z — 19’ o my ()] W (t,Vu(z)) is an integrable
majorant Hence, with Lebesgue s theorem it follows that for A — 0 the sequence (b (z,7))n converges
to b(z,m) == [, 9'( nW (t, Vu)dx. Observe that for every z the mapping b(z,-) : £ — R is an element
of Z*. This proves that & (¢, u,-) is Gateaux differentiable, with

D.&(t,u, 2)[n] = / g ()W (t, Vu)dz forallne Z. (2.31)
)

The previous calculations show that for h N\, 0 we have

limsup h~! (Ig(t, z 4+ hn) — Io(t, z)) < ilir%) ht (Eg(t, Umin (£, 2), 2 + hn) — Ea(t, Umin (¢, 2), z))
RN\0

=D& (t, umin(t, 2), 2)[1]-

On the other hand, for A > 0 the following inequality is valid:
Bt (Ig(t, z + hn) — Ia(t, z)) >hpt (Sg(t, Umin (L, 2 + hn), z + hn) — Ea(t, Umin (t, 2 + hn), z))
1
= / / g (z + ahn)nW (t, Vumin(t, 2 + hn))do dz. (2.32)
aJo

Choose 2 < p < p with p from Lemma 2.4. From (2.21) it follows that umin(f7 z + hon) h30 Umin (¢, 2)
strongly in WP(Q). Hence, W (t, Vumin(t, z + hon)) converges strongly in L% () to W (£, Vumin (4, 2)).
Moreover, ¢'(z 4+ hon)n converges to ¢'(z)n strongly in LP/(P=2)(Q), since ¢’ is continuous and bounded.

Hence, the right-hand side in (2.32) converges to D & (¢, umin(t, 2), 2)[n] given by (2.31). This proves
that for every (¢,2) € [0,T] x Z

D.Z(t,z)[n] = / g (2)IW (t, Vumin(t, 2)) dz for all 5 € Z, (2.33)
Q
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whence (2.29). Relying on (2.8), which in particular yields that f’ is Lipschitz continuous on R, on (2.10),
and on (2.17), we easily deduce the estimate

ID:Z(t, 2)|

2 SC (14122 + luminlrne )
Then, (2.30) ensues from estimate (2.18). O

Lemma 2.8 (Lipschitz continuity of D,Z).
Let s =d/2. Assume (2.1), (2.8)—(2.10) and (2.17), and set

Z(t,z) :==Ia(t,2) + /Q f(z)dz forall (t,z) € [0,T] x Z. (2.34)

For every r € (%,—i—oo) (where p is as in (2.15)), there exists a constant ¢z > 0 depending on r,

HEHCI([O,T];W;;"’(Q)) and |upl| e o, wre (), such that for all t; € [0,T] and z; € Z, i = 1,2, we have

ID-Z(t1, 1) = DZ(t2, 22) || or gy < erllts = tol + [l21 = 22 () (2.35)

with o = ﬁ € (1,400) and o' its conjugate exponent. In particular, there exists a constant cs

depending on c; and v such that

Hsz(tl, 21) — sz(t27 2’2)’

2o Ses(ftr —tal + [lz1 — 22/l 1o ())- (2.36)

Hence,
if tn — t and z, — z weakly in Z, then DL (tn, 2,) — D.I(t,z) strongly in Z*. (2.37)

Proof. Since f’ is Lipschitz, in order to prove estimate (2.36) it remains to investigate the properties of
D.Z,, given by (2.29). For i = 1,2, let u; := umin(t;, 2;) €~W1’p(§2). For every fixed r € (psfp?,oo), set
p= prfr, and notice that 2 < p?’% < p < p, and that r = ppfpﬁ > ﬁ%g. Hence, the exponent o defined by
o=t +7r714+2p~! =1 belongs to (1,00). For all ¢; € [0,7], 2; € Z and n € L7(1) it follows with Hélder’s

inequality, and relying on the Lipschitz continuity of g, that

/ (Dzzg(tl, Zl) — DZIQ(tQ, 22))77(11’
Q

Lg(Q)

19 )y | W (b1, V) = Wz, V)|

<l oy (19'21) = ' (2l oy |21, F)|

s

LE(Q)>
<C ||77||LU(Q) (H21 — 2]

L@ (1wl + 1unl o 0. rowie @)))
+ (lur + up(tr)llwrwe) + luz + up(t2)llwree)) (I — v2lly 50y + llup(t) — UD(tz)lem(Q)))
2
<C ||77||LU(Q) ( l21 = Z2||LT(Q) + [t — tZ‘) (||£|‘Cl([07T];WIT$"’(Q)) + HUDHCl([o,T];Wl,P(Q))) : (2.38)

For the last estimate we have used (2.18) and (2.21), and (2.35) follows. Since for every o € (1,00) the
space Z is embedded in L7 (Q), hence L7 (Q) C Z*, we finally arrive at (2.36). Observe that the constant
cg also depends on the embedding constant for Lo () € Z*, and thus ultimately on r. O

Corollary 2.9 (Fréchet differentiability of 7).
Let s = d/2. Under assumptions (2.1), (2.8)~(2.10) and (2.17), the functional T is Fréchet differentiable
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on [0,T] x Z with a Lipschitz continuous derivative, i.e. Z € C*1([0,T] x Z,R). Furthermore, 7 (defined
in (2.34)), &L and D, T are weakly continuous and T is weakly lower semicontinuous, i.e.
liminf, oo Z(tn, zn) > Z(t, 2),
o Ity za) = T 2),
t, — t and z, — z weakly in Z implies (2.39)
8tI(tn, Zn) — 8tI(t, Z),
D.Z(tn, zn) — D.Z(t, z) weakly in Z*.
Proof. This follows from the previous Lemmatas 2.6 and 2.8. Notice that the continuity property (2.39)

of 8;Z and D,Z is an immediate consequence of estimates (2.28) and (2.36), joint with the compact
embedding of Z in L"(2). O

A further consequence of Lemma 2.8 is that D,Z fulfills a “generalized” monotonicity property.

Corollary 2.10.
Let s = d/2. Under assumptions (2.1), (2.8)=(2.10) and (2.17), for every r € (;’%2,—1—00) (where p is as
in (2.15)), there exist constants cg, c19 > 0 such that for allt € [0,T] and z; € Z, i = 1,2, we have

lz1—22ll72(q) + (D:Z(t 21)-D:L(t 22), 21—22) z > €0 | z1—22] % — cr0lz1—22ll 720 - (2.40)

Proof. Tt is sufficient to observe that for any r € (%, +00) (where p is as in (2.15)) there holds

lz1=22]1 72 + (D2Z(t, 21)—D.L(t, 22), 21— 22)
= |lz1—22ll72(0) + as(21— 22, 21—22) + (D.Z(t, 21)~DL(t, 22), 21— 22)
> ||z1—22ll% — esllz1—2llz |21—22l L (g »
where Z is defined as in (2.34). Then, (2.40) follows upon using that Z € L"(Q) C L2(Q), and the

well-known fact that for every n > 0 there exists C,, > 0 such that for all z € Z we have ||z| @)
nllzlz + Collzl 2 o). -

2.4 Improved estimates under special conditions

If the boundary of © is smooth and if the coefficients g(z)C in the elastic energy functional (2.11) are con-
tinuous on €2, then the previous estimates (2.21), (2.28), and (2.36) can be refined. These improvements
will be relevant for the uniqueness analysis of the viscous problem, see Section 3.2.

Throughout this section, in addition to (2.1) and (2.9a) we suppose that

Q CRY, de{2,3}, is a bounded domain with C!'-boundary and Dirichlet boundary T'p = 99, (2.41)
s> 4 (2.42)
Observe that (2.42) implies
Z e C**(Q) for some a € (0,1]. (2.43)
We shall then also require that, for the same « € (0, 1],

C € C%*(Q, Lin(RZXd, RIX)). (2.44)

Sym s —Usym

Under these conditions, we may apply to the linear elliptic operator L.(u) = —div(g(z)Ce(u)) (cf.
(2.14)) a WhP-regularity result for weak solutions of partial differential equations on smooth domains,

see e.g. [Giu03, Section 10.4]. Adapted to our situation it reads:

for every p € [2,00) the operator L, : Wy ({;RY) — Wol’pl (Q;RY)* is an isomorphism, (2.45)
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and the operator-norm of L;! depends uniformly on the ellipticity constant v, and on the Holder-norm
of C and of g(z) (thus, ultimately, on ||z| z in view of (2.43)).
In this setting, we have the following improved estimates.

Proposition 2.11. In addition to (2.1), (2.8)-(2.10), assume (2.41), (2.42), and (2.44). Let p € (2,00)
be fized, and suppose that (2.17) holds for the index p. Then, the estimates in Lemmatas 2.4/-2.8 are

valid, with constants depending uniformly on ||z||z. In particular, for p =4 there holds:

for all M > 0 there exist positive constants ¢o = éo(M), és = é3(M), such that
V(62) € 0,71 % 2, allz <M+ Jumin(t 2wt @ < 0 (10t gy + un@ ey ) (246)
V(ti,zi) €10, T] x Z, ||zillz <M, i =1,2:
||Umin(t1,Zl)*umin(t2722)||wlig(g) (2.47)
< & (t1—tal + lz1=22ll2) (I€llca go.ryamy 240y + lun lles o rpawr aca)

Proof. Estimate (2.46) can be proved by the very same argument as for (2.18), relying on (2.45) for p = 4.
Estimate (2.47) can be obtained as in the proof of Lemma 2.5, up to the following changes: One chooses
p=4in (2.23), and p=p =4 and r = oo in (2.24) and (2.25). O

3 The viscous problem

The viscous approximation. Recall that R. = R1 + Ra,c, with Ro () = § H77||2LQ(Q), denotes the
viscous dissipation functional, and OR,. : £ = Z* is its subdifferential (in the sense of convex analysis),
in the duality between Z* and Z, cf. with (1.4). Throughout this section, we shall analyze the viscous

doubly nonlinear evolution equation
OR(Z'(t)) + D.Z(t,2(t)) 20 in Z* for a.a.t € (0,T), (3.1)
with the initial condition, featuring zo € Z,
2(0) = 2o. (3.2)
We shall denote by R the convex conjugate of the functional R., taken in the Z — Z* duality, viz.
Re(o) =sup{({o,m)z —Re(n) : 1€ Z}.
The following lemma collects, for later use, two crucial formulae for OR. and R}.
Lemma 3.1. There holds
ORc(n) = OR1(n) + OR2,e(n) = OR1(n) +en  for alln € Z; (3.3)

1~ 1 ~
Ri(o)= inf “Ro(oc—p)=~- min Ry(o —
)= inf  Relo—p) =< min R0 —p)

slolieg if o€ L(Q),

with Ry(0) :=
+oo if o € ZX*\L?*(Q).

Proof. The first identity in (3.3) follows from [AE84, Cor. IV.6]. Next, we observe OR2 (1) = {DR2.(n)},
as Ra,e is Fréchet differentiable on Z. On account for (2.7), DRa . coincides with the Fréchet derivative

of Ry in the L?(Q)-topology, whence the second identity in (3.3).
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The inf — sup convolution formula (see, e.g., [IT79, Theorem 3.3.4.1]), for R* yields
Ri(0) =inf {R5 (0 —p) : p€IR1(0)}

whence the first identity in (3.4). Using that OR4(0) C Z* is weakly closed, it can be easily checked that

the inf is in fact a min. O

As a consequence of (3.3) and of (2.29), the doubly nonlinear evolution equation (3.1) reads

ORL(Z (1) + €2/ () + As(2(t)) + f(2(t)) + ¢ (2(t))W (£, Viumin (£, 2(1))) 50 for a.a. t € (0,T). (3.5)

3.1 Existence and a priori estimates for viscous solutions

The following result clarifies the properties of solutions to (3.1) (equivalently, of (3.5)), with the regularity
z€ HY0,T; 2).

Proposition 3.2. Let s = d/2. Assume (2.1), (2.8)=(2.10), and (2.17). Then, for a curve z €
HY(0,T; Z) the following are equivalent:

1. z is a solution to (3.1);

2. z fulfills for all 0 < s <t < T the energy identity

/t Re( (7))dT + /t RI(=D,Z(r,z(7)))dT + Z(¢, 2(t)) = Z(s, 2(8)) + /t OWI(r,z(7))dr; (3.6)
3. z fulfills for all 0 <t <T the energy inequality

/Otne( dT—i—/R* _DLI(r, 2(7)))dr + T(t, 2(t)) < (0, 2(0) /at e (3.7)

Proof. We start by observing the following crucial fact: For every z € H'(0,T; Z), there holds D, Z(-, 2(-))
€ L>(0,T; Z*) (thanks to (2.30)), and Corollary 2.9 guarantees the chain rule identity

%I(t,z(t)) — OI(t 2() + (DIt 2(1), 2/ (8), for aat € (0,T). (3.9)
Clearly, (3.6) implies (3.7). Suppose now that z fulfills (3.7): applying (3.8) we have that Z(0, z(0)) +
[30Z(r, 2(r)dr = Z(t, 2(t)) + [y (~D.Z(7,2(7)), 2 (1)) 5 d7, 50 that from (3.7) we deduce

/ Ro(2(7))dr + / R (—DLZ(r, 2(7))dr + I(t, 2(8)) < T(t, (1)) + / (=D.Z(r, 2()), /(7)) 5 dr.
0 0 0

Taking into account the elementary convex analysis inequality ((,v); < Re(v) + RE(¢) for all z €
Z,( € Z*, we immediately conclude that the above integral inequality indeed holds as an equality, in

fact pointwise
Re(2' (1)) + RE(=D.Z(t, 2(t))) — (—D.Z(t,2(t)),2' (¢)); =0 for a.a.t € (0,T).

Again by convex analysis, from the above relation we infer that —D,Z(¢, 2(t)) € OR(2'(t)) for almost all
€ (0,T), i.e. z is a solution to (3.1).
Suppose now that z fulfills (3.1), test it by 2’(¢), and use for every £(t) € OR(2'(t)) the convex analysis
identity (£(t),2'(t))z = Re(2'(t)) + RE(&(¢)) for a.a. t € (0,T). Then, (3.6) follows upon applying the
chain rule (3.8), and integrating on (s,t) for all 0 < s < ¢. O
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We may now state our main result on the viscous problem (3.1).

Theorem 3.3. Let s = d/2. Assume (2.1), (2.8)—(2.10), and (2.17). Suppose that the initial datum
zo € Z additionally fulfills
D.Z(0, z) € L*(Q). (3.9)

Then,
1. for every € > 0 there exists a viscous solution z. € H*(0,T; Z) to the Cauchy problem (3.1)-(3.2),

satisfying for all 0 < s <t < T the energy identity

| RaGUOeRa ) 4 min | Ra(=D.T(r () = ) dr -+ T, 2()

¢ (3.10)
=1Z(s,z:(s)) —|—/ NWI(1, z¢(7))dT.
2. There exists a family of viscous solutions (z¢)eso and a constant Cy > 0 such that
T
sup [ 21(7)z dr < Co. )
e>0J0

Outlook to the proof of Theorem 3.3. The proof shall be developed both in Section 4 and in
Section 5, following two distinct approaches.

In Section 4, we shall approximate (3.1) by a further regularization of the viscosity term, modulated
by a small coefficient § > 0. After briefly discussing the well-posedness of the d-problem, we shall prove
some a priori estimates on the approximate solutions (zs).,s. Exploiting condition (3.9), we shall obtain
for all € > 0 the estimate supg ”ZeﬁnHl(o,T;z) < C(e), with C(e) > 0 exploding as ¢ — 0. We shall as well
prove that sup, s [|2eslly11(9 7.2y < €, for a constant C' independent of 6 and e > 0. We shall use the
former bound to pass to the limit in the J-problem as § — 0, and prove the first part of Theorem 3.3,
while from the latter bound we shall deduce estimate (3.11) by a lower semicontinuity argument.

In Section 5, we shall instead work on the time-discretization scheme associated with (3.1). Again, we
shall obtain for the approximate solutions both a H'(0,T; Z)-estimate, with a constant depending on
e > 0, and a WH1(0,T; Z)-estimate, independent of ¢ > 0. Furthermore, arguing on the time-discrete
approximation of (3.1), we shall prove the following remarkable fact (cf. Proposition 5.5): Under special
conditions, if the initial datum zq fulfills zo(z) € [0, 1] for a.a.x € €2, then there exist viscous solutions z.
with z.(z) € [0,1] for a.a.z € Q.

We think it is worthwhile to develop both the time-continuous and the time-discrete approaches to the
proof of Theorem 3.3. Indeed, the former relies on more readable calculations, and allows for a direct
comparison with the arguments developed in [Mie09, MZ10], see Remark 4.7. The latter is more inter-
esting from the viewpoint of numerical analysis, and, in a special framework, it brings about additional
information, cf. Proposition 5.5.

Finally, let us emphasize that, when the solutions to the Cauchy problem (3.1)-(3.2) are unique, the
solutions arising as limits of the time-discrete scheme, and the solutions as limits of the §-viscous problem
as 6 — 0, do coincide. Proposition 3.5 below provides sufficient conditions for a continuous dependence

estimate of the solutions to (3.1) on the problem data, which implies uniqueness, see Theorem 3.6.

Remark 3.4 (Results under the sole condition zy € Z). As it will be clear from both the discussion in
Section 4 (see Remark 4.5), and in Section 5 (cf. with Remark 5.4), we are not able to prove existence

of viscous solutions under the sole condition zy € Z. Indeed, with the latter condition, and standard
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energy estimates in either the d- or the time-discrete approximate problem, we can prove that there
exists 2. € L°°(0,T; 2) N HY(0,T; L?(2)), with 2.(0) = 2, fulfilling the energy inequality (3.7) for all
0 <t < T. However, without the additional condition (3.9), we are not able to obtain the further
regularity z. € H'(0,T; Z) (viz., the higher spatial regularity z/ € L?*(0,T;Z) for z). On the other
hand, only such a regularity ensures the validity of the chain rule (3.8), and (3.8) is the key point for
deducing, from (3.7), that z. in fact fulfills (3.1), cf. the proof of Proposition 3.2 and Remark 4.5.

3.2 Uniqueness for the viscous problem under special conditions

In the setting of Proposition 2.11, we have the following uniqueness result for viscous solutions.

Proposition 3.5 (Uniqueness for viscous solutions). In addition to (2.1), (2.8)—(2.10), assume (2.41),
(2.42), and (2.44). Suppose further that for i € {1,2} the data (u'y, €%) satisfy (2.17) for p =4, and that
for 2% € Z it holds D,Z(0,28) € L*(Q). Let 21, 20 € H*(0,T; Z) be solutions to (3.1), supplemented with
the data (uk, %) and (u%, £?), respectively.

Set M = Z?Zl [2ill o< (0,7, 2)- Then, there ezists a constant C1 > 0, depending on M, on T, and on
a2 (cf. (2.10)), such that for almost all t € (0,T) it holds

l21(t) =22 ()| 2 + Vellz1—22ll 12 (0.:12(02))
1.2 1 2 142 (3.12)
< HZO_ZOHZ + H“D‘“DHH(O,T;WM(Q)) +]jet ¢ HLQ(O,T;WF_;’“(Q)) :

Proof. We subtract the differential inclusion (3.1) for z from (3.1) for z;, and we use zj—z5 as test
function. Taking into account that, by monotonicity, (9R1(z1(t))—0R1(25(t)), 21 (¢)—25(t)) > 0 for
almost all ¢t € (0,7) (where with abuse of notation we have written OR; as single-valued), we arrive at

the following inequality
(e(21(t)—25(t)) + D.Z(¢, 21(t))—D,Z(t, 22(¢)), 21 (t)—25(t)) s <0 for a.a.t € (0,T)

We rearrange the terms, and add and subtract (z1(t)—22(t), 21(t)—25(t)) z. Thus,

clza() =22 + 555 151D —22(O a0y + 5501 =22(8), 1 (1)~ (1)
<= [ (=20 - FEaO) ) -5 0)ds (3.13)

—A@m%awmm%amM£&+&

where we have used the short-hand notation Gy (t) := ¢ (2;(t))W (t, Vttmin (£, 2 (1)), and wmin (£, z:(t)) is
the minimizer of £§(;-, 2;(t)) with the data u’,(t), £*(t).
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Now, for almost all ¢t € (0,T) the following estimate holds
[[ORAGIH

< 2/ 19 (21(8) =g (22(6) P W (¢, Veumin (£, 21 (1)) da
Q
+2/Q\9'(Zz(t))|2\w(tvVumin(tvZl(t)))*W(t,Vumin(t,ZQ(t)))\zdx

<C ||Zl(t)—22(t)||ioo(g) ([[emin (2, Zl(t))”éle(Q) + HulD(t)H;l/Vl"l(Q))
+C (g2 ()17 = e (It (22 () Htmin (£ 22() 1.1y + [ B+ (B) [0
X (|| thmin (t, 21(t)) —Umin(t, 22(t))||€v1,4(9) + H“}D(t)—“%(t)HiVM(Q))
2
<o) (1 + o Ol + [0y
x (nzl(t) — 2% + [[ub(t) — Oy + (0) - e?<t>HiVF;4<m)
where the second inequality follows from (2.10) and Holder’s inequality, and the last one from the estimate

ot 24(8)) = tmin(t, 208 11

< JJetmin(ts 20 (), €1 (1), w0y (£)) = tmin (8, 21.(8), £2(8), uy ()|l 1.

+ [ tmin (£, 21.(2), (1), ub (1)) = wmin(t, 22(8), (1), b (1) || ya.a g
< O'(M2) (a1 (B) =220z + |68 O~ D140 + [ub (O =ub Ol yr.4() )

for some C’(M,~2), which follows from (2.46) and (2.47). Notice that the constants C'(M,~s) and
C'(M,~2) depend on M and on vs.

Then, also taking into account that f is Lipschitz continuous, the terms S; and S on the right-hand
side of (3.13) can be estimated via

€ 2
111 € 125 (=B a(y + C 21 (D=0 Pagey

€ 2
|S2] < 2 1121 (8) =2 ()lI12 (@) + CIIG1(£)=Ga(t) |72 (q

€ 2

<7 l[21(t)=22(t) 1120
2 2
+C (HZI (t)_’z?(t)HQZ + Hgl(t) - ez(t)HWITEI’4(Q) + Hub(t)_u%(t)HW14(9)> .
Now, we integrate (3.13) on (0,t), and, taking into account all of the above calculations, conclude

€ 2 2
By l21=25]1 720,622 ) + € 21 (8) =22 (1)1 2

t
2 2 2
<cli-l%+¢ [ (Ia@-20lE + 160 - O + lib )=t ) o
Gronwall’s inequality (cf. e.g. [Bre73, Lemma A.4]) finally yields (3.12). O

We conclude this section with the following corollary of Proposition 3.5.

Theorem 3.6. In addition to (2.1), (2.8)—(2.10), assume (2.41), (2.42), (2.44), and that (2.17) holds
forp=4.

Then, for every initial datum zo € Z fulfilling (3.9), there exists a unique solution z € H*(0,T; Z) to
the Cauchy problem for (3.1).
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4 A regularized viscous model and uniform estimates

We consider the “augmented” viscous dissipation for n € Z

Res(n) :=Re(n) + Rz5(n) = Ri(n) + Rae(n) + Rzs(n) with Rzs(n) =303,

where 1|z := \/as(n,n) denotes the semi-norm on Z induced by the bilinear form a,. The regularized
viscous problem reads
ORes(2'(t)) + D.Z(t, 2(t)) 20 for a.a.t € (0,T), (4.1)

coupled with some initial condition z(0) = zo. Here, OR. s : Z = Z* is the subdifferential of R, s in the
sense of convex analysis, in the frame of the duality between Z and Z*. Notice that DRz 5(z) = d A,z
for all z € Z, hence (4.1) can be in fact rewritten for almost all ¢t € (0,7 as

ORL(Z (1) + €2 () + 0AZ (1) + Az (t) + F/(2(8)) + ¢ (2())W (£, Vim(t, 2(1)) 3 0. (4.2)

Moving from a well-posedness result for the Cauchy problem for (4.1), we shall obtain crucial a priori
estimates on the solutions of (4.1), which are independent of the parameter § > 0. In this way, we shall
pass to the limit as § \, 0 in (4.1), and ultimately prove an existence result for the (Cauchy problem for

the) e-viscous equation
OReo(2'(t)) + D.Z(t, 2(t)) 20 for a.a.t € (0,T). (4.3)

This will be discussed in Section 4.1.
As mentioned in Section 3.1, in order to perform the vanishing viscosity analysis of (4.3), we need to
provide L' (0, T; Z)-estimates for the derivatives z, 5 of the viscous solutions z. s to (4.1), with constants

uniform in € and §. This will be investigated in Section 4.2.

4.1 Analysis of the regularized viscous problem and uniform estimates

Preliminarily, let us point out that the operator
Gs := (0R.s5)"': 2* = Z is single-valued and Lipschitz continuous, and satisfies Gs(0) = 0.  (4.4)

Indeed, for fixed €, > 0 the functional R s is §-uniformly convex on Z, hence its subdifferential OR. ;

is a strongly monotone operator, i.e. it fulfills

o
<£1 — 52,21 — Z2>Z > 5 ||Zl — 22||2Z for all 21, 29 € Z, 51 S (97?,675(2’1), 52 S 8R5,5(Zg),
whence we have that Gs is single-valued and Lipschitz continuous. Hence, we can rewrite (4.1) as
2'(t) = Gs (-D.Z(t, 2(t))) for a.a.t € (0,T). (4.5)

Proposition 4.1.

Let s =d/2. Assume (2.1), (2.8)~(2.10) and (2.17) and let €,6 > 0. Then, for any initial datum zy € Z
there exists a unique function z € W%>(0,T; Z) satisfying the doubly nonlinear equation (4.1) and the
ingtial condition z(0) = zg. Furthermore, z complies for all 0 < s <t < T with the energy identity

/ (Rl -+ RQ@ -+ RZ,é) (Z/(T))d’r

+/ (Ri+ Rae+Rzis) (=D.I(7,2(7)))dr + Z(t, 2(t)) = (s, 2(s)) +/ OI(r,z(7))dr. (4.6)
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Proof. Due to the regularization term R z s and the Lipschitz continuity of D,Z, cf. Lemma 2.8, equation
(4.5) has the character of an ODE with a Lipschitz-continuous nonlinearity. Hence, the existence and
uniqueness proof can be done based on the Banach fixed point theorem and we refer to [Sof93, Theorem
2.1] for more details.

Since the map (t, z) — D,Z(t, z) is Lipschitz, we immediately have that the function t — D,Z(¢, z(t))
is in WH°°(0,T; Z*). Thus, from (4.5) we infer that 2’ € W1°°(0,T; Z), whence z € W2°°(0,T; Z). As
a consequence, 2’ € CY([0,T]; Z), and (4.1) holds for ¢ = 0 as well, i.e.

OR1(2'(0)) + €2’ (0) + 6 A4(2'(0)) + D,Z(0, z9) > 0. (4.7

Finally, (4.6) follows from testing (4.1) by 2/, and arguing in the very same way as in the proof of
Proposition 3.2. O

The next proposition is an immediate consequence of the energy identity (4.6) in combination with the

coercivity estimate (2.19) and the upper bound for 9;Z in (2.27).

Proposition 4.2.
Let s = d/2. Assume (2.1), (2.8)-(2.10), (2.17) and let z9 € Z. There exist constants Cy,C5,Cy > 0
such that for every €,6 > 0 the solution zes of (4.1) with z. 5(0) = 2z satisfies

T
/ Rl(zé,é(t))dt < Cy, S[%F;] ||ZE,5(t)||Z < (s, \@ ”Ze,ti”Hl((),T;L’z(Q)) < Cy. (4'8)
0 te|0,

In order to prove the existence of e-viscous solutions (i.e. § = 0), a d-independent bound is needed also
for the H'(0,T; Z)-norm. This bound is proved in the next proposition.
We recall that, by the 1-positive homogeneity of R, its convex analysis subdifferential R satisfies

the following relations for every v € Z:

(n,v)z = Ra(v)

' 4.9
(n,w) z < Ri(w) for all w e Z. (4.9)

ne 6R1(v) = {
Proposition 4.3 (Crucial a priori estimate).
Let s = d/2. Assume (2.1), (2.8)—(2.10) and (2.17) and let z9 € Z. There exist constants Cs, Cg > 0
such that for all €,6 > 0 the solutions z. s of the Cauchy problem (4.1) with z.5(0) = zo satisfy

/O ' = s(% dr < Cs (e |22 5O)[3a gy + 8120505 +1) T (4.10)
If the initial datum satisfies (3.9), viz. D,Z(0,20) € L*(Q) , then for every €,6 > 0 it holds
€[22 50720y + 3 12La(O)]5 < € M ID2Z(0,20) 72y - (4.11)
Hence, under the additional condition (3.9), there holds
?Slig /OT ||z25(T)HQZ dr < C., with C. := Cj (671 |ID.Z(0, ZO)H%Q(Q) + 1) eCeT/e, (4.12)

Proof. Within the proof, for the sake of simplicity we shall simply denote the solutions of the Cauchy
problem for (4.1) with the symbol z;.
We first prove estimate (4.11) by testing (4.7) with 25(0) and using (4.9):

2 2
R1(25(0)) + €l125(0) I 20y + 0 l125(0)1 2 = —/QDZI(O,Zo)Zé(O) dz

€ 2 1
< 5 125(0) |72y + % ”DZI(OVZO))Hiz(Q) ;(4.13)
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whence (4.11). Let us now prove estimate (4.10) in the two following steps.
Claim 1: There holds for almost all t € (0,T)

€ (25 (1), 25(1)) 12 +6 (As(25 (1)), 25(1)) z + <%Dz1(t7 25(1)), 25(1)) = 0. (4.14)

For almost all ¢ € (0,7) let us set hs(t) := e25(t) + §As(25(t)) + D.Z(¢, 25(t)). Since z5 € W3>(0,T5; Z),
the function hs is in W1°°(0,T; Z*), and clearly fulfills, in view of (4.2),

—hs(t) € OR1(25(t)) for every t € (0,T). (4.15)

Hence, for every s,t € (0,T), from (4.15) written for ¢ and s we deduce, on account of (4.9), that
(—hs(t), 25(5) 5 = Ra(z5(t)) and (—hs(s), 24(8)) 5 < R (24(¢)), whence

(hs(s) — hs(t),z5(t)) z > 0 for every s, t € (0,T). (4.16)

Let now t € (0,7) be a differentiability point (outside of a negligible set) for hs. Choosing s =t + T,

with 7 > 0 and 7 < 0, in (4.16), and dividing it by 7, we conclude
1 1
- (hs(t +T) — hs(t), 25(t)) z > 0 for 7 > 0, - (hs(t+7) — hs(t), 25(t)) z <0 for 7 < 0.

Then, taking the limits as 7 | 0 and 7 1 0, we conclude that (hj§(t),25(t)); = 0 for a.a.t € (0,7),
whence (4.14).

Claim 2: Estimate (4.10) holds.

For any t € [0,T] we integrate (4.14) over (0,t¢) and obtain after adding fot |25 (T)Hiz(ﬂ) d7 on both sides:

DNy + 3 1O + / ||z;<v>\|iz<m +ay(# (1), 25(7)) dr
= 1O aoy + 5 15(0) % + / #5220 — (55 (DT, 25(r). 24(r)) = dr

< Ci(e,0) + / l2(r ||L2<Q)+\<d (D.Z(r, 25(r)), 24(r)) 2| dr, (4.17)

where 2C (¢,9) :== ¢ ||z(’;(0)||2L2(Q) +9 |z(’;(0)|22 Next, we estimate the last term on the right-hand side in
the same way as in (2.38). Indeed, for arbitrary p € (2,p) let 7,0 € (1,00) be defined by r = pp(p — p) ~*
and % + % + % = 1. Observe that r > 2 and o > 2. Using (2.38) for Z, and the fact that f’ is Lipschitz
by (2.17), for a.a. 7 € (0,T) we find that

d

’< at (D I(T z5(T )))723(7»2 <C ||Z</§(T)||LU(Q) (||Z(/§(T)HLT(Q) + 1)' (4.18)

Let 0¢p = max{o,r} > 2. Since s = g, the space Z is embedded in L7°(Q2). Using a Gagliardo-Nirenberg
type inequality for Sobolev-Slobodeckij spaces (cf. e.g. [BMO01, Cor. 3.2]), it follows with a suitable
6 € (0,1) and p > 0 to be chosen later that
2 2(1-0 20 2 2
125(T) 00y < e 5Dy 125(INZ < pellzs (% + e l125(7) 720 -
In the last estimate we have applied the Young inequality. Hence, estimate (4.18) can be continued as
follows
d 2
(o (D I(r,25(m)), 2%(m) 2| < Cll25(T) o0 @) + C 175(T)ll 5

2 2 2
< pC’ lz5(m)lz + Cp 25(T)lI 72 () + PC ll25(7)lIZ + Cp. (4.19)
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Here again, we have applied the Young inequality to the linear term ||25(7)|| ;. Combining (4.19) with

(4.17) we arrive at

€ ) t
S 15Ol + 5 15015 + [ 15l ar
t t
gCﬂmﬂ+@T+A(LH%M%UM;mﬂT+A/ﬂT+Cm%ﬁm;h (4.20)

Choosing p = (2(C’" + C))~! we absorb the last term on the right-hand side into the last term on the
left-hand side. Applying Gronwall’s inequality to § ||z(’;(t)||2L2 ()» We conclude that

€ 2(14+C)t
Sz (O32() < (C,T + Cale, 0)) exp ().

Hence, in combination with (4.20) we finally obtain

T 2(1+C)T
[ I ar < @1+ e e (T,
0
which is (4.10). O

Theorem 4.4 (Existence of viscous solutions, € > 0, § = 0).
Let s =d/2, and € > 0 be fived. Assume (2.1), (2.8)~(2.10) and (2.17). Let (zs)s>0 C H(0,T; Z) be the
family of solutions to (4.1), supplemented with an initial datum zy satisfying (3.9).

Then, for every sequence &, \, 0 there exists a (not relabeled) subsequence and z € H'(0,T; Z) such

that the following convergences hold as n — oo
zs, — z weakly in H'(0,T; Z), (4.21)
t t
/R@Mﬂ&e/&@@ﬁjﬁﬂ%&ﬂ (4.22)
0 0

Moreover, z(0) = zo and for all 0 < s <t < T, the limit function z satisfies the energy identity (3.6).

Proof. Let € > 0 be fixed, and let us consider d,, N\, 0 and accordingly the sequence (z;s, ), of solutions of

the Cauchy problem for (4.1). By Proposition 4.3 (cf. estimate (4.12)), there exists z € H(0,T; Z) such

that (4.21) holds along some subsequence. Moreover, since for all ¢ the trace operator v, : H'(0,T; Z) —

Z, & = £(t), is linear and bounded (uniformly in ¢), it follows that z5 ) — 2(t) weakly in Z for all

t € [0,T]. Hence, with Corollary 2.9 and the compact embedding (2.6) we conclude for all ¢ € [0,T]
liminf Z(¢t, 25, (t)) > Z(¢, 2(¢)),

n—oo
D.Z(t,zs,(t)) = D, Z(t,2(t)) weakly in Z*,
WL (t,z5,(t)) = O0Z(t,2(t)) inR, and sup  |0:Z(t,z25, (1)) < e
te[0,T], neN
The next goal is to pass to the limit in the energy identity (4.6) on the interval (0,¢) for arbitrary t.
Now, it can be easily checked that the sequence of functionals (R + Rz + Rz5, )n Mosco-converges
(for the definition of Mosco-convergence, see, e.g. [Att84, § 3.3, p. 295]) as n — oo to the functional
R1 4+ Ra,. Therefore, also taking into account the characterization of Mosco-convergence in terms of
conjugate functionals in [Att84, Chap. 3|, we find that for all ¢ € [0, 7] it holds

¢ ¢
liminf [ (R1+ Roe+ Rzs,)(25, (1))dr > / (R1+ Ra.e)(2'(1))dr,
0

n—0o0 0

n—oo

lim inf/ (R1+ Rae + Rz.5,)" (—=D:I(7, 25,(7)))dr = / (R1+ Ra,e)"(=D-Z(7, 2(7)))dr
0 0
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For an alternative proof of the latter inequality, the reader is referred to Lemma A.1 in the Appendix,
which is based on the inf-convolution formula for the convex conjugate of the sum of convex functionals
(cf. [IT79, Theorem 3.3.4.1]), combined with Fatou’s Lemma. We now pass to the limit in the energy
identity (4.6) and obtain the following chain of inequalities

/O (Ra + R ) (2 (1) + (Ri + o) (=DLI(r, 2(r)))dr + I(t, 2(¢)

t
< lim inf/ (Rl +Ra,e + Rzﬁn)(zén (7‘)) + ('Rl +Ra,e + 'Rzﬁn)*(—DzI(T, zs,, (T)))dT —|—I(t, zs, (t))
0

n—roo

t
< lim sup/ (R1+Rae+Rzs,) (25, (1) + (R1 + Roe + Rz5,) (=D.I(7, 25, (1)))dT + Z(t, 25, (1))
0

n—oo

< 70, 20) + /0 OI(r, 2(r))dr. (4.23)

Applying the chain rule (3.8) for the functional Z, and arguing as described in Proposition 3.2, it follows
that all inequalities in (4.23) in fact are equalities. From this, (4.22) ensues, see the similar arguments in
the proof of [RMS08, Thm. 3.5], and [MRS11a, Thm. 4.4] for more details. O

Remark 4.5. If the strong estimate (4.10) is not available, i.e. if only the estimates stated in Proposition 4.2
hold, then we may at least deduce that z5, — z weakly in H(0,7T; L?(2)) N L>(0,T; Z). Arguing as in

the proof of Theorem 4.4 we then conclude that the limit function for all ¢ satisfies the energy inequality
t t
/ (R1+ Ra.e)(Z' (7)) + (R1 + Ra,o) (—D.Z(7, 2(7)))dr + Z(t, 2(t)) < Z(0,20) + / OWZL(7,z(T))dT.
0 0

But now, we only know that DZ(¢,2(t)) € Z* and 2/(t) € L*(Q), which is not enough regularity
for proving the energy equality using the chain rule argument, since one has to deal with the pairing
(DZ(t,2(¢)),2' (1)) z.

4.2 A uniform L'-estimate

Proposition 4.6. Let s = 2. Assume (2.1), (2.8)(2.10), (2.17), and that zy € Z. Let further P C
(0, €0] x (0,00] be a set of parameters satisfying sup(. s)ep de b =y < 0.
Then there exist constants C7, Cs > 0 (depending on ) such that for all (e,0) € P and all solutions

Ze.s to the Cauchy problem for (4.1) it holds

2

T 5 3 T
/0 Hzé,é(t)Hz dt < eCy (Hzé,d(o)ui'z(g) + < 132,5(0)’Z> + CS/O (1 + Rl(é,s(t))) dt. (4.24)

Proof. Within the proof, for the sake of simplicity we shall denote the solutions of the Cauchy problem
for (4.1) with the symbol zs, like in the proof of Proposition 4.3.

As in the proof of Proposition 4.3, for a.a. t € (0,7 the function zs(t) satisfies (4.14), that is (after
adding Hzg(t)HQLQ(Q) on both sides)

ed 2 1) 2 2 d jod 2
5 (||zg<t>L2<Q> +- |zs<t>|z) IO = = (DIl 2s(0), 25(0)_+ 150y - (4:25)

With r,0 € (2,00) and 0¢p = max{r,o} as in the proof of Proposition 4.3, the right-hand side can be
estimated analogously to (4.18) as follows

d ~
| <&Dzz<t,z(s<t>>,z:;<t>>z\ + 1125020 < CUD o0y + 1250 1o gey) < CUZD w0 () + 1),
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where in the last estimate we have used the Young inequality. Similar to the arguments subsequent to
(4.18), by applying a Gagliardo-Nirenberg type inequality and Young’s inequality it follows that there
exists a # € (0,1) such that for p > 0 to be chosen later we obtain ||z(’5(t)||i(,0(m <G, Hz(’;(t)HQLl(Q) +
pC Hzg(t)||2z . Hence, returning to (4.25) we have

ed 2 6 2 2 2 2
3t (150 + S 15O ) + 151 < o0 14013 + Gy 1Ol oy +

with constants C’, C, and C, which are independent of ¢, € and §. Choosing p = (2C”")~! we absorb
the first term on the right-hand side into the last term on the left-hand side. Since by (1.3) it holds
Hzg(t)HLl(Q) < kT R1(25(t)) we arrive at

5

€

e d

P (nzg(t)n;(m + |zg<t>|';) 5 1501 <€ (15O Ri () +1) (126)

for a.a. t € (0,T"), and the constant C is independent of ¢, € and 4.

Observe that the constant term “+1” on the right-hand side of (4.26) is not present in [Mie09, Propo-
sition 4.17], hence we cannot adapt directly the estimates provided there. Instead we will distinguish two
cases. Let v € AC([0,T];R) be defined by

5 3
o) = (15O + 5 1501

We first assume that ¢t € M_ := {7 € [0,T]; v(7) < 1}. Since [|25(t)]| ;1 (q) < cv(t) < ¢, estimate (4.26)
implies for a.a. t € M_

e d 1 2
A+ S 1013 < € (Ra(e5(0) +1)
Integration over M_ yields
L 2 ed 2 ’ /
= |lz5(t)||z dt + ——vo(t)dt < C(Ri(z5(t)) +1) dt. (4.27)
M2 Mo 2 dt 0
Observe that
cof 2 Cof 2 Td o 2 d
min{v*(7T),1} — min{r=(0),1} = — min{v=(¢),1} dt = —v(t) dt.
o dt v dt

Hence, (4.27) can further be continued by

T
|l as [ (; ||zg<t>|2+;) at < eminfiP 0.1} +C [ (Raleh0) +1) . (428)

We now turn to the case t € My := {7 € [0,7]; v(1) > 1}. Observe that v(t) < /I +~|z5(t)||; and
25l g1 () < ev(t). Hence, from (4.26) we deduce that for a.a. ¢ € M it holds

ev(t)V(t) + (1) [25(t)]| z < Cow(t) (Ra(25(1) +v(t) ") ,
with C, depending on v. After dividing by v(t) we obtain e'(t) + [|z5(t)]|; < C, (Ri(z5(t)) + 1).

Integration over M, yields

/0 Cy (Ra(z5(t)) +1) dtZ/ (e (t) + llz5 (1)l 2) dt

My

T
= A 2500z dt e [ Gmax{ue). 1t > [ 0]l at - emax{u(0).1). (@4.2)

M
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Adding (4.28) and (4.29) and taking into account that min{r?(0), 1} + max{r(0),1} < v(0) + 1, we have
finally shown (4.24). O

Remark 4.7. Starting from (4.26), one can also follow the arguments in [MZ10, Sec. 3] in order to prove
Proposition 4.6. Therein, the arguments are based on a weighted Gronwall inequality. Therefore, in
Proposition 4.6 we have provided a proof of the L!-estimate, alternative to the one in [MZ10, Sec. 3]. In
turn, in Section 5, we will generalize the Gronwall estimates from [MZ10, Sec. 3], to the time-discrete

setting.

The next Corollary of Proposition 4.6 provides a uniform estimate for viscous solutions in the case
€ > 0 and 6 = 0. This estimate is needed in order to finally study the vanishing viscosity limit of the
e-viscous model (3.1).

Corollary 4.8. Let s = 4. Assume (2.1), (2.8)-(2.10), (2.17), and that zy € Z fulfills (3.9), viz. with
D.Z(0,29) € L3(2). Fore € (0,¢0] let (2¢)e € HY(0,T; Z) be a family of solutions of the Cauchy problem
for (4.3), which are limits of sequences (z s)s~0 of solutions of the Cauchy problem for (4.1).

Then there exist constants Cgy, C19, C11 > 0 independent of € > 0 such that

T T
/ lze®)llz dt < Co[|D-Z(0, 20) | p2(q) + 010/ (14 Ra(z(t))) dt < Crr. (4.30)
0 0
Proof. Multiplying (4.11) (which holds thanks to (3.9)) by € > 0, we deduce that

1
€ <||Z;6(O)||i2(sz) T

€

1
9 2
’22,5(0)|z) < [1D-Z(0, 20) | 2oy -

Combining this with (4.24), we arrive at

T T
| 0] de < CrIDZ0.20) gy + Cs [ (14 Ra(et 0
0 0

where we take the limit as § \, 0. Using lower semicontinuity arguments joint with estimate (4.8) and
convergence (4.22), we derive in the limit 6 \, 0 estimate (4.30). O

5 Time-discrete viscous approximation and uniform estimates

In this section, we shall prove Theorem 3.3 by passing to the limit in a time-discretization scheme which
we set up below. First, in Section 5.1 we show the existence of viscous solutions. Next, in Section 5.2 we
prove estimate (3.11).

Throughout this section, we omit the dependence of the discrete solutions on € > 0, and only highlight

their dependence on the (fineness of the non-constant) time-step(s).

Time-incremental problem. We consider the following time-discrete incremental minimization prob-
lem: Given € > 0, zp € Z and a partition {0 =] < ... <t} = T} of the time interval [0, T] with fineness

T = supg<<n(thy1 — th), the elements (2] )o<r<n are determined through 2§ = zp and

ST
z 2L

2541 € Argmin{ Z(t}, 1, 2) + Tk Re < ) iz € Z} (5.1)

Here, 7, = tj,, — t, and R, is defined in (1.9). The existence of minimizers follows with the direct

method in the calculus of variations, thanks to the properties of the reduced energy Z formulated in
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Section 2.3. Relying on Corollary 2.10, it can be easily shown that, indeed, the minimum problem 5.1
has a unique solution provided that 7 is small enough.

We point out that any family {z7,...,2%} C Z of minimizers of the incremental problem (5.1) satisfy
for all k € {0,..., N — 1} the discrete Euler-Lagrange equation

2. — 27 2l — 2z
am( ’““Tk ’“) +e ’“+1Tk b D Z(ts1, 2041) D0, (5.2)

also taking into account (3.3).

Notation 5.1. The following piecewise constant and piecewise linear interpolation functions will be used
in the sequel:

Zr(t) = 2141 for t € (t},,t7. 1],
2. (t) = 2] for t € [t} t}41),
s T t— tg T T T 4T

Z:(t) = 2, + (2511 — 25) fort € [t th q]-

Furthermore, we shall use the notation
T(T') =7 for r € (t;c—vt;c——i-l)? E7'(70) - t;c—+1 ifre (t;c—vt;+l]7 L_(T) - t;; ifre [tza 7!;—0—1)'

Clearly,

s Lt

t-(t), L. (t) >t asT—0foralltel0,T] (5.3)
Moreover, for any given function b which is piecewise constant on the intervals (¢7,t7, ) we set
Armyb(r) = b(r) — b(s) for r € (t;,t;1) and s € (t;_y,17).
With the above notation, (5.2) can be reformulated as

ARy (ZL()) + €5.(t) + DZ(E, (1), Z-(1) 20 for a.a.t € (0,T). (5.4)

5.1 Existence of viscous solutions

The following result states the crucial a priori estimate on the approximate solutions (2, ).

Proposition 5.2. Let s = d/2, and assume (2.1), (2.8)—(2.10) and (2.17). Suppose that zy € Z also
fulfills (3.9), viz. D,Z(0,2) € L*().
Then, there exist constants C12, C13 > 0 such that for every e,7 > 0 the solutions of the time incre-

mental problem (5.1) satisfy

T
/ 1220113 dt < (1+ € [DLZ(0, 20) 220 ) exp (Cra(l + L)), (5.5)
0

T
Al 71

where t7 is the first non-zero node of the partition of [0,T].

C
< (Ci3 (\/E—‘r ||DZI(0, ZO)HLQ(Q)) exp (12{{) , (56)
L2(9) ¢

Proof. Let 7 > 0 and let {z],...,25} C Z be minimizers of the incremental problem (5.1). For ¢ €
(t],thy1) we define ho(t) := €2 (t) + Az (t) + D.Z(i,(t),Z,(t)), where T is as in (2.34). Hence, relation
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(5.4) is equivalent to —h,(t) € OR1(2L(t)) for t € (], ¢}, ). By the 1-homogeneity of Ry using (4.9) we
deduce

Ve (thtii) —R1(2:(t) = (hr(8), 2.(1)) 2, (5.7)
vr e [0, TI\{t5, ...t} Ri(2(t) = (=ho(r), 22(t) 2. (5.8)
Adding both relations and choosing p € (t7,t7, 1), 0 € (t7_y,t7), it follows 0 > 7, (h,(p) —h-(0), 2.(p)) 2.

This relation can be rewritten as

—1 ~

er; (2 (p) — 2(0), 21(P)) p2 () + 70 (As(Z0(p) — 27(0)), 21(p)) 2
< =7, {D.Z(T-(p), Z-(p)) — D.Z(t7(0), 2(0)), 2. (p)) z-  (5.9)

Observe that 7, ' (Z,(p) — Z.(0)) = 2.(p), hence the second term on the left-hand side can be replaced
with as(22(p), 2-(p)). Moreover, using that 2a(a — b) = a® — b*> + (a — b)?, the first term is equal to

» YT

€. A A € A 2 A 2 N N 2
—(22(p) = 22(0), 22(p)) 2 () = 9 (||Z;(P)||L2(Q) - ||Z/T(U)HL2(Q) +[122(p) — Z/T(U)Hm(ﬂ)) :

Ti

Next, we “integrate” (5.9) on the time interval (79,¢) (that is, we multiply both sides of (5.9) by 7;

and sum for ¢ = 1,...,k, assuming ¢t € (tf,t;,,)). Since 2, = ZIT_OZO on (0,7p), we have in particular
ZIT;OZU = 2/ (%) and thus, neglecting the non-negative term ||2..(p) — 2..(0) ”iz(ﬂ)’ we obtain the following
estimate

€ . 2 €
3 12272 () — 3

()]
() ~
< —/ ) (DryDZ(Er(r), 20 (1)), 27(7)) 5 dr - for t € [0, TI\{t5, ..., tN},

see Notation 5.1. Adding the squared L?(L?)-norm of 2. on both sides we arrive at

2 o (t)
T / as(E(r), 2.(r)) dr

L*(Q) o

T (t)
€4 2 IS 2
S IOl + [ 1201 o
70
£ (t) t,(t)
o (ToN |2 " 2 1 = _ "
4 (P + | IO dr / DI 0),2 () () 2 dr - (5:10)

Next goal we derive for the right-hand side an upper bound that is independent of the time step size 7.

<

€
2
Since by assumption the initial condition satisfies D.Z(0, z9) € L?(f), choosing t = 2 in (5.7) gives

0 =Ry (£(10/2)) + (hr(70/2), 2 (70/2)) 2 > € |2 (70/2) [ 120y + (D=L (Er (70/2),Z-(70/2)), 4 (70/2)) 2.
Hence,

€124(70/2) 23 @y < ~(DAT(0,20). 2, (70/2)) — (D-I(1 2]) — D.T(0, 0), Z(m0/2) 2

1 2 €15 2 oo o .
< 5 10200, 20) oy + § 15/ ) — [ 75 (DT, ) — DZ(0,20), 2/ 2) 2 .

Absorbing the second term on the right-hand side into the term on the left-hand side, and combining the
resulting estimate with (5.10) leads to

¢ O
SIE O+ [ 1201 o
0 B} B} (5.11)
1 2 tr (t) N 2 tr (t) 1 ~ _ _ N
< 5 10200y [ 10Oy dr = [ S8 DI )30, 250 2
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We now derive an estimate for the last term. Arguing as in the proof of Claim 2 of Proposition 4.3, we
first use (2.38) in Lemma 2.8 and then Gagliardo-Nirenberg type and Young inequalities to obtain

(1) . B N £ (t) ¥ ) 1 [t® . 9
| St eeDZE 0z ) )z ar| <0 [T g [ 18I ar K

(r)

for some positive constants C' and K independent of 7 (and €). Absorbing the term % fOET(t) 122 (m)))% dr
on the left-hand side of (5.11) we have finally shown that there exist constants C' > 0 and C’ > 0 such
that for all 7 and all ¢ € [0, T|\{¢],...,tR} it holds

€ . 2 1 i (1)
Oy 3 [ IO A= [ 10 ey @ L IO )y O 512

Applying Gronwall’s inequality, we conclude that for all 7 and all ¢t € [0, T)\{¢F,...,t&}

. 1 _
IO < (€ + o IDLZ0.0) e ) explCE (0] (5.13)

which after multiplying with € and taking the root, in particular yields (5.6). Then, estimate (5.5)
immediately follows from (5.12). O

We are now in the position of proving the first part of Theorem 3.3, and pass to the limit in (5.4) as
T — 0.

Theorem 5.3 (Existence of viscous solutions). Let s = d/2. Assume (2.1), (2.8)—(2.10), and (2.17). Sup-
pose that the initial datum 2o € Z also fulfills (3.9), viz. D, Z(0,20) € L?(Q). Let (2;),50 C H(0,T; 2)
be a family of piecewise affine interpolants constructed from the solutions of (5.1) and supplemented with
the initial datum zq.

Then, for every sequence of fineness-parameters (Tj)j with 77 N\, 0 as j — oo there ewists a (not
relabeled) subsequence of (2,5) and z € H*(0,T; Z) such that z is a solution to the Cauchy problem
(3.1)—(3.2) and the following convergences hold as j — co:

2,5 — z weakly in H'(0,T; Z), (5.14)

5 (t) t
/ Ra(2, () dr — / R (2 (r)) dr (5.15)
0 0

Proof. We split the proof in three steps.

Step 1: compactness. It follows from estimate (5.5) that

HET_'QTHLOO(o,T;z) ) ||§7— JrHLOO(o T;2) < T'/? HZTHL?(o,T;Z) : (5'16)

Now, in view of (5.5) and standard compactness results, there exist a (not-relabeled) sequence (77); and
z € HY(0,T; Z) such that, as j — oo,

2. —zin HY0,T; 2Z), 2,(t) — 2(t) in Z for all t € [0,T], and 2,5 — z in C°([0,T]; X)  (5.17)

for every Banach space X such that Z € X. Due to estimates (5.16), we conclude that, along the same
sequence,
Zri(t), 2,5 (t) = 2(t) in Z for all ¢ € [0,T]. (5.18)
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Step 2: discrete energy equality. Arguing in the very same way as in the proof of [MRSI0,
Thm. 4.10], we see that the approximate solutions Z,;, z.;, 2,; fulfill the discrete energy identity

L1y

-3 ()
/t - (Re(2,)(r) + RE(=D2Z(t15(r), 275 (7)) dr + Z(t75 (1), 24 (¢))

t,5 (1) Tt q B

2t G2+ [ ATzt [ B (0200 5 1) dr
t,4(5) ta(s) ()

where we have used the short-hand notation F(t;z,w) = Z(t,z) — Z(t,w) + (D.Z(t,w), w — z) . We

have the following estimate

1

|F(t; z,w)| = (D, Z(t,w)-D,Z(t,(1 — 0)z4ow), w—=2) ; do

/ (1-o0)as(w—z,w— zdchr/ ' (D.Z(t,w)—D.Z(t,(1 — 0)z+ow), w— Z>Z’d0'

—

< Sllw = 2% + esllw = 21| g o = 2l 2),
where the last inequality follows from (2.36), and r is any fixed index in (p3p2 , +oo)
Therefore, the last term on the right-hand side of (5.19) is estimated as follows:

IO )
/ IF 73 (1); 275 (r), 273 ()| dr < C sup HZTJ() z (t)”z'/ 127 (F)ll z dr. (5.20)
t

i (s) TJ te(0,T (s)

tj

Step 3: passage to the limit in the discrete energy inequality. Writing (5.19) for s = 0 and any
t € [0,T], and taking into account (5.20), we find

o
/ (Re(255 (1)) + RE(=D.Z(8r4(r), 273 () dr + Z(Er (t), 214 ()
0 - (5.21)

.5 (t) T_;(t)
SI(0,20)+/ OHIL(r, zx5(r)) dr + C sup ||5w'(t)—érj(t)|\z'/ 1275 ()]l 7 dr-
0 0

te(0,T)

We will refer to the integral term on the left-hand side of (5.21) as Iij, and to the second and third term on
the right-hand side as Ifj and Ifj, respectively. Now, we take the liminf as 77 — 0 of both sides of (5.21).
Combining (5.18) with (2.39), we find that D, Z(¢,s(t),Z,4(t)) — D,Z(t,2(t)) in Z* for all ¢ € [0,T].
Therefore, also taking into account (5.17) and arguing as in the proof of Theorem 4.4, we conclude that
liminf, oI}, > fo 7))+RE(=D.Z(r, z(r)))dr. In view of (5.17) and the weak lower semicontinuity
of the energy Z, cf. (2 39) we also have that liminf,; o Z(¢,5(t),Z.5(t)) > Z(t, 2(t)). Again by (5.18),
(2.39) and estimate (2.27), with the Lebesgue theorem we find lim,;_,o I? = fo WZ(r, z(r))dr. Finally,
Jim 12, < Cflzlglot:(%pﬂ 1z =275 | Loe 0,729 1275 I 1 0,7, 2) = O (5.22)
in view of the second estimate in (5.16), combined with (5.5). From the above arguments, we deduce
that the limit function z € H'(0,7T; Z) fulfills the energy inequality (3.7). In view of Proposition 3.2,
we conclude that z is a solution to the Cauchy problem (3.1)—(3.2). Finally, in order to obtain (5.15),
we may argue in the same way as in the proof of Theorem 4.4. Indeed, let us point out that, thanks to
(5.22), the remainder term on the right-hand side of (5.19) (viz., the third summand) converges to zero
as 7/ — 0. Therefore, passing to the limit in (5.19), in the present discrete setting as well we may write
a chain of inequalities analogous to (4.23), and then use the chain rule for Z, to infer that all inequalities
in fact hold as equalities. Then, (5.15) ensues. O

28



Remark 5.4 (Proof of the energy inequality under the condition zy € Z). As we have already mentioned
in Remarks 3.4 and 4.5, if we just assume zg € Z for the initial datum, taking the limit as 7 — 0
of the time-discrete approximation, we are only able to deduce that there exists a limit curve z €
L>(0,T; Z) N HY(0,T; L?(Q2)) fulfilling (3.7). However, let us mention that we cannot prove any longer
such a fact by simply passing to the limit in the energy inequality (5.21). Indeed, under the sole condition
2o € Z we are not able to obtain the crucial H'(0,T; Z)-estimate (5.5) for 2,;, which guarantees that
the remainder term on the right-hand side of (5.21) converges to zero, cf. (5.22).

A possible way to obtain the energy inequality (3.7) for z, is to pass to the limit in an enhanced
approximate energy inequality for the interpolants of the discrete solutions, which has no remainder term
on the right-hand side. Such an inequality was proved for (the time-discrete approximation of) abstract
doubly nonlinear evolution equations in [MRS11a]. It involves a kind of variational interpolation of the
discrete solutions (2] )o<k<n, i.e. the so-called De Giorgi interpolant, see also [Amb95, AGS08, RS06].

Proposition 5.5. In addition to (2.1), (2.8)-(2.10), and (2.17), suppose that
the space dimension is d = 2, hence s =1 and Ay is the Laplace operator, (5.23)
and the nonlinearities f and g have the following property
f(0) < f(z), ¢(0)<g(z) forallz<O0. (5.24)
Suppose moreover that the initial datum zo fulfills (3.9) and that
zo(x) € 0,1]  for a.a.xz € Q. (5.25)
Then, every viscous solution z constructed via time-discretization also fulfills
z(t,x) € [0,1] for a.a.x € Q, for allt € [0,T). (5.26)

Proof. Indeed, we shall prove that, starting from zo which fulfills (5.25), all solutions of the time-

incremental minimization problem fulfill
zi(z) €]0,1] foraa.xze forallk=1,...,N, (5.27)

and then deduce (5.26) by passing to the limit as 7 — 0 in the time-discretization scheme, relying on
convergences (5.17), cf. the proof of Theorem 5.3. We shall prove (5.27) by induction on the index k,
namely we are going to show that, 2 (z) € [0, 1] for a.a. x € Q implies that zf, (x) € [0, 1] for a.a. x € Q.

Indeed, on the one hand, from Ri((zf,, — 27)/7k) < 400 we gather that 2] ,(v) < z{(z) < 1 for
almost all € Q. On the other hand, it follows from (5.1) (choosing z = (2},,)"), that

T T € T T 1 T T T
Ri (1 = 40) + 5 [ (@) = F@P ot 5 [ [Vaa@Pdo+ [ f(eF (@) o+ Tafton, )
27k Jo 2 Ja Q
T T € T T 1 T
<Ry ()t =3 + o [ G @) @ do+ 5 [ V() @) da
Tk Ja Q

+ | H(EE ) @) do+ T, ().
(5.28)

Now, with easy calculations one sees that
Ri((2310) " = 27) < Ralzfgr — 270), 1(z7s) " = 2872 () < 12741 — 201720

(5.29)
||V(zl€+1)+||%2(9) < HVZI:JAH%?(Q)'
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Furthermore, it follows from assumption (5.24) on f that

/ F(La) ) da < / f (2 (@) da. (5.30)
Q Q

Moreover, again in view of (5.24),

Ty (t+1, (25g1) ") S/g(<zl‘;—+l)+)w(5(uz+l T up(trs1))) de — (C(tes1), ufqa)y
@ (5.31)

< /Qg(Z;ZH)W(s(UEH Fup(tie1)) dz = (L(trr1)s uppr)y = To(trrrs 2641),

where we have used the short-hand notation uj_ , := umin(tks1,27,,). In view of (5.29)-(5.31), we

+

conclude that (2], ;)" as well is a minimizer for (5.1). Since the latter minimum problem has a unique

solution, we thus have 2], | = (2],,)". Therefore, 2], (x) > 0 for almost all z € Q. O

Remark 5.6. Notice that f(z) = (1 — 2)? from [Gia05] fulfills (2.8) and (5.24) as well. An example of g
which complies with both (2.10) and (5.24) is

g € C*(R), g non-decreasing, 3y € (0,1) : g(z) = for 2 <0, g(z) =1 for z > 1.

Functions with this property are often used to model incomplete damage of elastic materials. The value
z = 1 then describes the undamaged state, whereas z = 0 stands for maximal damage. The monotonicity

of g reflects the fact that, with increasing damage (i.e. decreasing z), the material becomes weaker.

5.2 A uniform discrete L'-estimate

We now prove the discrete version of Proposition 4.6, viz. we obtain an L!(0,T; Z)-estimate for the

derivatives (2!),, with a constant independent of both parameters 7 and e. Hereafter, we restrict to
uniform time steps 7 =7V = T/N

and suppose that the parameters 7, € satisfy 7 < 2e. This is sufficient since we are ultimately interested

in obtaining estimates for the limit 7\, 0.

Proposition 5.7. Assume (2.1), (2.8)—(2.10) and (2.17). Suppose that zo € Z fulfills D,Z(0,29) €
L? (Q). Then, there exists a constant Cy4 such that for every e, 7 > 0 with 7 < 2¢ and the piecewise linear
interpolants (2;). defined via the solutions z], of (5.1), the following estimate holds

T T
| ae < cu <T+ﬁ+||Dzz<o,zO>|Lz<m+ / m(é;@))dt). (5.32)

Proof. The idea is to combine a time-discrete Gronwall estimate with weights (generalizing [NSV00,
Lemma 3.17]) with a suitable discrete version of the arguments in the proof of [MZ10, Lemma 3.4].

We start from (5.9), written for p = my and o = my_1, where my, := %(1%71 +t,)and k€ {2,...,N}.
Adding the term ||2. (mk)H%z(Q) on both sides, we obtain

(21 me) = 24 (mia), 2 (ma) o) + 7 (A (me) = Z(mie)). 2 me)z + (12 0m0) 2 0

<~ DL (b Z (ma)) — DL (b1, Zr (mi1)), 2 (mi)) 2 + 120 (mi) |72y - (5.33)
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where Z is defined as in (2.34). The left-hand side of (5.33) can be estimated by

€ 5 o A o 2
Lhs. > o= (12 0ma) | ey (1200l = 10 (-1l aqey ) + 125 (ma) 5

4.25)—(4.26), the right-hand side of (5.33) can be bounded as follows

—

By the same arguments as in

rhs. < 5 12 me)|% +C (14 1200l 200 Ra(Z0ma)) -

N |

Hence, estimate (5.33) yields
€ . R . 1. 2
o 2 ma) aay (120 ()l ey = 12 (k1) aqey ) + 5 12 m)lI%

2T
< C (14 12 0mi) |z Ra (B (ma) )

where the constant C' is independent of 7,k and e. Multiplying this inequality by 47/¢ and taking into

account that ||,§’T(mk)\|22 > ||2’T(mk)||iz(m, we arrive at

~ ~ ~ 2
21125 (m)ll gy (1200l gy = 125 0me)lzqen ) + = 1200 ey + = 120 (ma)l13
47'0 47C R
<+ 2 ) g Ra(Ema), (5.34)
which is valid for all 2 < k£ < N. We define now for 0 <: < N —1
. 1. 1 27C T
ai = |2l ey s b= (/R 12 min) 7, = (@rC/E,  di= “=Ra(Eh(misr), 7= 5

With this, (5.34) can be rewritten as
2a;(a; — a;_1) + 2va? + b2 < ¢ + 2a,d;,
which holds for 1 < i < N — 1. Thus, estimate (5.49) in Lemma 5.9 below implies that for all j < N —1
j o _ j o j 2

D A4+ <214 y) Hag +2) (149207 + (Z (14 )71, ) .

i=1 i=1 i=1
Reinserting the explicit values of a;, b; and d;, and using the fact that ¢? = 8C'y, the above inequality
yields for 2<n < N (withi+ 1=k n=j+1):

1 n
ED DR ) K EA G
k=2

n n 2
< 2(1+9) 72" |2 (ma) |72y + 160y Y (1 +7)"* 77! 4 16C° (Z (L+ )" R (2 (m k))) :

k=2 k=2
(5.35)
We now calculate and estimate the second term on the right-hand side of (5.35) explicitly, using that by

assumption we have v < 1:

1— (1 + ,7)2(n+1) 1
< =(1 <1 5.36

Y (A7) ETT <y (1 4yt
k=2

Combining (5.36) with (5.35) yields

1 n
=3 )2E 5 ) |5
€ k=2
n 2
—on 114 T e R
<C1+0+y)72 ||Z/T(ml)||i2(g) + ( E(lJF’Y)k lRl(Z/T(mk))> , (5.37)

k=2
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which is the discrete counterpart of estimate (3.23) in [MZ10].

We now proceed following the arguments in the proof of [MZ10, Lemma 3.4]. Note that it is not trivial
to translate them suitably in a time-discrete setting. For this reason and for the sake of completeness we
give the details. Let us stress once again that, hereafter, the generic constant C' > 0 shall be independent

of 7 and e. We start by observing that, by Holder inequality,

,Z 1+7)32 2(k—n)— 1||z (mi)llz < (Z:(1+7)2(kn)1>

k=2

1
n 2
T =1 s
(Z —(1 )2 IIzL(mk)IIZQ) :
k=2
(5.38)
Recalling that T = 2y < 2 we find with (5.36) that the first factor on the right-hand side is bounded by
v/2. Hence, from (5.38) and (5.37) we deduce

D=

n

1
=L+ ()
k=2

<C (1 + @+ 2 (m) | 2y + %(1 + W)k_n_lRl(flT(mk))> - (5.39)

k=2

Now we multiply both sides of (5.39) by 7 and sum over n =2,..., N:

N n
1 —n)—1 12
L S L 2 )

n=2 k=2

<y - (1 (L) 2 )l oy + Z (1475 Ry (2 (m k») . (5.40)
n=2

We discuss the different terms on the left-hand and on the right-hand side of (5.40) separately. Now, we

introduce for every k,n = 2,..., N the coefficient ¢! defined by 1 if £k < n and 0 if £ > n. This coefficient

will be used below to change the order of the sums. Starting with the left-hand side of (5.40), we have

N n N N
1 n 1 n —n)—1 |2
EE Y (L4 )2 ()] = EZTE e (14 7)2 72 ()| 5
n=2 h—2 n=2 k=2
= E 122 () || E (1+7)2(k_")_1 (5.41)

nk

1+~ 2(k—N)—2
fzmzvn (ma)lz (1 - (1 +7) ).

Passing to the right-hand side of (5.40), using again the definition of v we find

N
S r (7)1 ) ey < e l1E0ma) |z - (5.42)
n=2
Next we discuss the term
N n - N T
T fl—i—vk" 'Rz TRl fl—i—'yk_"_l
N .

<2 Z TR (2L (m
k=2

32



where the last inequality follows from calculations analogous to (5.41). Combining (5.40) with (5.41)—
(5.43), and recalling that 7 = %, so that 227:2 T < T, we get

N

N
Sl mllz (1- (1 +7)20M72) < ¢ (T + e 12 (m)ll oy + Zﬂ%(é;(mk))) :
k=2

k=2

that is

N N
YTz m) 2 <C (T +ellz(m)ll L2 ) + ZTRl(é’T(mk))>

k=2 k=2

N (5.44)
3 T P2 2 ()5
k=2
Using (5.39) to estimate the last term in (5.44), we arrive at
N N
S 72 )l < © (T 412 0m)l gy + Zﬂzl(é;(mk») . (5.45)
k=2 k=2
Taking into account (5.6) together with 7 < 2¢, we finally obtain (5.32). O

Combining estimate (5.32) with (5.15) it follows that

Corollary 5.8. Assume (2.1), (2.8)(2.10) and (2.17). Suppose that zg € Z and that D, Z(0, z) € L*(Q).
For e € (0, let (2¢)c € H(0,T; Z) be a family of solutions to the Cauchy problem for (3.1), which are
limits of sequences (Z2¢.r)-~o0 of solutions to (5.1) (as in the statement of Theorem 5.3).

Then there exist constants C15, C16 > 0 such that for all € > 0 it holds

T

T
| 1@z d < Cos D20, 20) 0 + Cua | (14 Rl . (5.46)
0 0

Estimate (3.11) then follows from inequality (5.46), because, with the same arguments as for Proposi-
tion 4.2 it is possible to show that sup,. g fOT llz.(T)|| z dT < C.
In the proof of Proposition 5.7 we used the following time-discrete Gronwall-type estimate with weights.

Lemma 5.9. Let {a;}Y_, and {by,ck,dx}r_, be nonnegative numbers and v > 0. Assume that for
1 <k <N it holds

2ai(ay, — ap—_1) + 2vai + b < ci + 2axdy. (5.47)

Then the following estimates are valid for all n > 1:
1

n 2 n
ay < <(1 + 7)—2nag + Z(l + 7)2(k—n)—1ci> + Z(l + ’Y)k_n_ldk , (5.48)

k=1 k=1
1

< ((1 + )" a3 + Zn:(l + 7)2(k")1ci> 2 + \/izn:(l + )l (5.49)

k=1 k=1

[N

<i<1 - w>2<’f">1bi>

k=1

Remark 5.10. If v = 0, then Lemma 5.9 exactly reproduces [NSV00, Lemma 3.17]. Hence, our proof
follows closely the steps in [NSV00], introducing the weight (1 + ) in a suitable way.
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Proof. We set ag = Ry and define for 1 < n < N the quantities

n

Rpy=& +0,,  6u=> (L+y9)" " 4y, (5.50)
k=1
&n = ((1 + )" *ad + Z(l + 7)2<kn)10i> . (5.51)
k=1

As in [NSV00], we first prove the inequality a,, < R,, for all 1 < n < N, which then gives (5.48). Since
by, > 0, from (5.47) we find that

(1 + ’Y)QEL - (Cbn,:[ + dn)an < %CEL
Hence, investigating the roots of a,, in the quadratic inequality, we find since a,, > 0
21+ Van < an-1+dp + ((an—1 + dn)> +2(1+7)c2)* . (5.52)

Observe that (1 + 7)d, = 0,1 + d,, and that (1 4+ )&, > &,—1. Therefore, from the definition of R,, it
follows that

(L4 9B = (Rums + do) B = R (L4 )60 + (147)00 = Eumt = 81 — d)

> & ((1+7)& — &n1)
Using Young’s inequality with &,&,—1 < %((l—l—'y)fg—&—(l—}—'y)*l 2 ) and taking into account the definition

n—1

of &,, we conclude that

(L& - (1+7)7'8 ) = 2.

DN | =

En((L+7)6n — &nm1) 2
Hence, we have shown that
(1+7)R: — (Rp—1 + dn)R, > 12
In the same way as for a, (cf. (5.52)), we deduce the estimate
21+ )Ry > Ryo1 +dp + (Rt +dn)® +2(1 + 'y)ci)% ) (5.53)

Since ag = Ry, by induction from (5.52) and (5.53) we have a,, < R, for every n < N, whence (5.48).
We now prove (5.49). Let 1 <n < N. From (5.47),applying the Young inequality to the term 2axar_1
and taking into account that ap < Ry, we find for 1 < k <mn

by < cp + 2Rpdi + (L+7) ai_y — (1 +7)aj.

Multiplying this inequality with (1 4 4)?*=™~1 using that (1 + 7)*""Rj < R,, and summing up we
obtain

n n

n
Z(l + 7)2(k—n)—1b£ < Z(l + W)Q(k—n)—lci + 2R, Z(l + ’Y)k_n_ldk
k=1 k=1 k=1

+ > (147226 =Y (1 49)*FMag. (5.54)
k=1 k=1

Observe that the last two terms add up to (14 v)7?"a2 — a2. Thus, we finally arrive at

n 2
SO+ < €24 2R 8 < (0 +V20)

k=1
whence (5.49). O
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6 Existence of parameterized solutions

Throughout this section, we shall work with a family (z.)e C H(0,7T; Z) of solutions to the e-viscous
Cauchy problem (3.1)—(3.2), for which the L!-estimate

T
sup/ 12(0)|l dt < C < oo (6.1)
e>0J0

is valid. The existence of such a family is ensured by Theorem 3.3, under condition (3.9) on the initial
datum zo € Z.

6.1 The vanishing viscosity analysis

For every ¢ > 0, we consider the graph Graph(z.) := {(¢,2.(¢));t € [0,T]} C [0,T] x £ and its Z-

arclength parameterization .
sy =+ [ 1) an (62)
For S, = s.(T) we introduce the functions £, : [0, S.] — [0,T] and Z. : [0,S] — Z
te(s) = s5.1(s),  Ze(s) = ze(ie(s)) (6.3)

and study the limiting behavior as € — 0 of the parameterized trajectories { (f.(s),2:(s)); s € [0, 5]},

which fulfill the normalization condition
t(s)+ [|Z.(s)]|z =1 for a.a.s € (0, S,). (6.4)

Observe that, in view of estimate (6.1), there holds sup..Se < +00. Therefore, up to a subsequence
Se — S as e — 0, with S > T (the latter inequality follows from the fact that s.(t) > ¢). With no loss of
generality, we may consider the parameterized trajectories to be defined on the fixed time interval [0, .5].

For this passage to the limit, following [MRS09, MRS10] we adopt an energetic viewpoint, namely we
take the limit of the energy identity fulfilled by the parameterized trajectories (f(s), 2¢(8))sefo,5)- With
the notation

da(§,0R4(0)) = ueg%ia?m) 2Ry ({—p)

the energy identity (3.10) written for the pair (f, 2.) on any time interval (o1, 09) C [0, S] reads

[ (Rt 357 1Ly 5 L Do) 2:9), 01 (0)) s+ Tl )

= T(t(01), 2c(01)) —l—/ 0L (t(s), 2(8))t.(s)ds.
The above identity can be also reformulated by means of the functional (cf. [MRS09, Sec. 3.2])
M. (0,+00) x L*(Q) x [0,400) — [0, +00], M(,v,() := Ryi(v) + i ||v||iz(m + %Cz, (6.5)

whence

/ M (t(s), 2.(s),d2(=D:Z(te(s), Zc(s)), OR1(0))) ds + Z(te(02), 2e(02))
" o (6.6)
— T(.(01), (o)) + / OT(.(5), 5(s))F (5)ds.

For the passage to the limit as e — 0 in (6.6), we shall rely on the following I'-convergence/lower

semicontinuity result, which was proved in a finite-dimensional setting in [MRS09] (cf. Lemma 3.1 therein).
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Lemma 6.1. Extend the functional M, (6.5) to [0,+00) x L?(2) x [0, 4+00) via

0 forv=0 and ¢ € [0,400),

M(0,v,¢) := )
+oo  forv e L*(Q)\{0} and ¢ € [0,400).

Define My : [0, +00) x L?(Q) x [0, 4+00) — [0, +00] by

R(v) + Clloll 2y ifa =0,

MO(OZ,U,C) = 3
Ri(v) + 1(¢) if a >0,

(6.7)

where 1y denotes the indicator function of the singleton {0}. Then,
(A) M. T-converges to Mgy on [0, +00) x L3(Q) x [0,+00) w.r. to the strong-weak-strong topology, viz.

T-liminf estimate:

(a87 CE) - (Oé,g) and Ve — 0 in LQ(Q) S Mo(O@U, C) S liIn\iélst(Oéea'Usa CE) ) (68a)
T-limsup estimate:
(e, ¢) = (,¢), v — v in L*(Q) and (6.8b)

V(O[,’U, <) 3 (O‘Ea/UEvCE)E>O : 5
MO(av v, C) > lim SuPeN 0 Ms(as, Ve, CE) .

(B) If ac — & in L'(a,b), ve — v in L'(a,b; L?(Q)), and liminf. .o (.(s) > ((s) for a.a. s € (a,b), then

/Mo& ),9(s), C(s)) ds<hm1nf/ M (ae(s),ve(s), ((s))ds

The proof can be developed arguing in the same way as in the proof of [MRS09, Lemma 3.1], up to re-
placing the usage of Ioffe’s theorem [Iof77] with its infinite-dimensional version, see e.g. [Val90, Thm. 21].
Moving from this result, and following [MRS09, Def. 3.2], [MRS10, Def. 5.2], we give the ensuing

Definition 6.2. A pair (£, 2) € CPp ([0, 85[0, T] x Z) is a Z-parameterized solution of (1.6), if it satisfies
the energy identity for all 0 < o7 < 09 < §

/ " Mo(#(5). 2/ (5) da(—~DLZ(E(s). 2(5)), R4 (0))) ds + T(E(02), 2(02)

o (6.9)
2
=Z(t(01), 2(01)) +/ O Z(t(s), 2(s))t' (s)ds.
o1
We say that a Z-parameterized solution (£,2) € CPp ([0, 85[0, T] x Z) is non-degenerate if it fulfills
t'(s)+[2'(s)||z >0 for a.a.s € (0,9). (6.10)

We are now in the position of stating the main result of this section.

Theorem 6.3. Let s = d/2. Assume (2.1), (2.8)—(2.10), and (2.17). Let (z.)c C H'(0,T; Z) be a family
of solutions to the e-viscous problem (3.1)~(3.2), for which estimate (6.1) is valid, and let (t,%c)es0 C
CPp ([0, 51;[0,T] x Z) be defined by (6.3).

Then, for every sequence e, \, 0 there exist a pair (t,2) € Cp, ([0, S]5[0,T] x Z) and a (not-relabeled)

subsequence such that

(tens 2e,) = (£,2) in WH™(0,5;[0,T] x Z),
te, — 1 in C°([0,S);[0,T]), 2., (s) — 2(s) in Z for all s € [0, 5],

n

(6.11)
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and (, 2) is a Z-parameterized solution of (1.6), fulfilling
t(s)+ 2 (s)|z <1 fora.a.s€(0,5). (6.12)

Remark 6.4. At the moment, it remains an open problem to prove that, the limiting Z-parameterized
solution in Thm. 6.3 is also non-degenerate. Without going into details, we may mention that, in some
sense, this is due to the gap between condition (6.10), which involves the Z-norm of 2’, and our energetic
method for taking the vanishing viscosity limit of (3.1). The mismatch occurs because, neither the viscous
energy identity (6.6), nor its limit (6.9) contain information on the term ||2’[ ;.

These considerations also suggest that, in order to obtain non-degenerate parameterized solutions,
it could be necessary to implement on this vanishing viscosity limit the alternative reparameterization

techniques which we will discuss in Section 6.3. We plan to address this issue in a future paper.

Remark 6.5. By reparameterizing degenerate Z-parameterized solutions, non-degenerate Z-parameterized
solutions can be obtained: Let (£, 2) € W (0, S; ]R) x Wt oQ(O S; Z) be a Z-parameterized solution with
t(p)+112'(p)||z < 1 for a.a. p € (0,S5). Define m(p) := [ '(0)+|2'(0)||z do, r(p) := inf{p > 0; m(p) =
p} and t(p) = t(r(p)), Z(n) = 2(r(p)). Clearly, m is monotone and Lipschitz while r is monotone and
belongs to BV([0, R]) with R := r(m(S)). Moreover, it holds m(r(u)) = p and for every p € J(r) (where
J(r) denotes the jump set of the BV-function r) we have m(r(u—)) = m(r(u+)). Hence, with the chain
rule in [AFP00, Theorem 3.96] it follows that

djr = Dm(r() = m'(r()Dr+ 3 (mlr(u4)) = m(r(u=))d, = m'(r()Dr.  (6.13)
REJ(r)

Here, Dr denotes the diffuse part of the distributional derivative Dr. The Lipschitz continuity of ¢ and

Z now is an immediate consequence of the above calculations. Indeed, let 0 < p1 < po < R. Then

H2 H2

#(r(1)Dr(u) = / (m'(r(1)) = |12/ (r (1))l 5 ) Dr (1)

1

0 < ) ~ ) = |

1

2 H2 _
— [T [T 1)) Brte) < pa -
M1 M1
where the second equality is due to the definition of m and the third one follows from (6.13). The last
inequality is due to the monotonicity of r. Similarly we show that z is Lipschitz continuous. Hence, the
pair (£, Z) belongs to W1H(0, R;R) x W*°(0, R; Z) and satisfies ¢/ (u) + ||Z()||z = 1 for a.a. u € (0, R).
Finally, it is easy to check that (f,Z) satisfies the energy identity (6.9), whence (t,?) is a non-degenerate

Z-parameterized solution of (1.6).

The proof of Theorem 6.3 is based on the following result, which is the “parameterized counterpart” to
Proposition 3.2. Indeed, it provides an equivalent formulation of (6.9). The reader is referred to [MRS10,

Prop. 5.3] for further characterizations of parameterized solutions.
Lemma 6.6. Lets = d/2. Assume (2.1), (2.8)-(2.10), and (2.17). Then, a pair (1, 2) € Ch, ([0, 5; [0, T
Z) is a Z-parameterized solution of (1.6) if and only if it satisfies for all0 < o < S the energy inequality

/a Mo(#'(5), 2'(s), d2(=D.Z(i(s), £(5)), OR1(0))) ds + Z(#(0), 2(0))
0 (6.14)

< Z(#(0) / NI(t(s), 2(s))t (s)ds.
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Proof. Like in the proof of Proposition 3.2, we observe that, due to the smoothness of the energy functional

7T (cf. Corollary 2.9), any pair (t,%) € CP, (10, 5]; [0, T] x Z) fulfills the “parameterized chain rule” identity
d
ds

Now, let p(s) € OR1(0) satisfy ||—DZI(Z(3) — u(s)HLQ(Q) = do(—D.Z(#(s),2(s)), 0R1(0))) for almost all

s €(0,5) (cf. Lemma 3.1). Then, there holds

~L7(s), 2(5)) + OT(W(s), 5P () = (~D.T(W(5), 5(5)) — nls), Z(s)) L2y + (1(s), 2'(9)) 2

ds
< da(=D.Z(t(s), 2(5)), IR1(0))) 1 (5) | p2ery + R1(Z'(5)),

Z(t(s), 2(s)) = O Z(t(s), 2(s))' (s) + (D.Z(t(s),2(5)),Z'(s))z for a.a.s € (0, S). (6.15)

(6.16)

where the latter inequality follows from the definition (1.4) of 9R;(0). Hence, let (£, #) comply with (6.14).
In particular, Mo (#(s), 2’ (s),d2(=D.Z(£(s), 2(s)), 0R1(0))) < oo for a.a. s € (0,5), which yields that

t'(s) >0 = do(—D.Z((s), 2(s)),0R1(0)) = 0. (6.17)
Therefore, for (£, 2) the following inequality holds
da(=D:Z(#(s), 2(s)), OR1(0))) |2 (8) 12 (2) + R1(Z'(5))

) R (6.18)
< Mo(t'(s), 2'(s),da(—=D,Z(t(s), 2(s)),0R1(0))) for a.a.s € (0, S5).

Combining (6.16) with (6.18) and integrating in time, we deduce from (6.14) the chain of inequalities
(ultimately, identities)

OUMO(i/(s)v Z(s), da(=D:L(i(s), £(s)), OR1(0))) ds + Z(i(0), £(0))

<T(0).20)) + [ AZ(e). 2 (5)ds

= | Mo(t'(s),2'(s),d2(=D.Z(f(s), 2(s)), 0R1(0))) ds + Z((o), 2(7))

for all o € [0, S5]. Then, with the very same arguments as in the proof of Proposition 3.2, we find that
(£, 2) complies with (6.9) for all 0 < 0y < 03 < S. O
Proof of Theorem 6.3. From estimate (6.4), we deduce that there exists (£, 2) € CP, ([0, 81;[0, T x 2)
such that convergences (6.11) hold along some subsequence. Arguing as in the proof of Theorem 4.4 and
relying on Corollary 2.9, we then find that, for all s € [0, 5]

liminf Z(f,, (s), 2, (s)) > Z(£(s), 2(s)), D.Z(fe, (s), 2, (s)) — D.Z(£(s), 2(s)) weakly in Z*,

n—oo (6.19)

O L(te, (8), 2, () = O Z((s),2(s)) in LP(0,S) for all 1 < p < oc.

Now, (6.12) follows by taking the limit as €, — 0 in (6.4), with a trivial lower semicontinuity argument.
Thanks to Lemma 6.1 and convergences (6.19), we have that, for all 0 <o < §

€n—0

lim inf /0 0 M., (t. (), 2. (s),d2(=D.Z(tc, (5), 2, (5)), OR1(0))) ds

> /0 " Mo(#/(s), £'(s), da(~D.T(i(s), 2(5)), OR1 (0))) dss.

Then, combining (6.11) and (6.19), and using that 2.(0) = z.(0) = % for all € > 0, we pass to the limit
in (6.6) written for o1 = 0 and oy = 0. We thus find that the pair (£, 2) satisfies (6.14) for all 0 < o < S.

In view of Lemma 6.6, we conclude that (f,2) is a parameterized solution. [
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6.2 Properties of non-degenerate parameterized solutions

The following characterization of non-degenerate parameterized solutions was proved in [MRS10, Prop. 5.3,
Cor. 5.4]. Adapted to our setting, it reads

Proposition 6.7 (Differential characterization). Let s = d/2. Assume (2.1), (2.8)~(2.10), and (2.17).
Then, a pair (,2) € CPp ([0, 81;[0,T] x Z) is a non-degenerate Z-parameterized solution of (1.6), if and
only if there exists a Borel function A : (0,S) — [0,+00) such that

OR1(2(s)) + A(5)Z'(s) + D2Z(i(s), (s)) 2 0,

X for a.a.s € (0,5). (6.20)
t'(s)A(s) =0

Remark 6.8 (Mechanical interpretation). As in [MRS10, Rmk. 5.6] (see also [EM06, MRS09]), from the
differential characterization (6.20) of parameterized solutions we may draw the following conclusions on

the evolution described by the notion of parameterized solution:
e the regime (' > 0,2 = 0) corresponds to sticking;

e the regime (£ > 0,2 # 0) corresponds to rate-independent evolution: From the second of (6.20)
and #'(s) > 0 we deduce that A(s) = 0, hence the first of (6.20) reads

OR1(2(s)) + D, Z(f(s),2(s)) 2 0
where only the rate-independent dissipation is present;

e when (# = 0,2 # 0) (note that the latter condition is implied by the non-degeneracy (6.10)), the
system has switched to a viscous regime. The latter is seen as a jump in the (slow) external time
scale, encoded by the time function #, which is frozen. Since #'(s) = 0, the second of (6.20) is
satisfied and A(s) may be strictly positive. In this case, in the first of (6.20) also viscous dissipation

is active. Indeed, (6.20) describes the energetic behavior of the system at jump points, see also
[MRS09, MRS10].

6.3 Alternative reparameterization techniques and conclusions

As we have already mentioned in the introduction, in the papers [MRS09, MRS10] and [EMO06, Mie09,
MZ10], the vanishing viscosity analysis of rate-independent systems has been developed by reparameter-
ization techniques as well, however based on choices of the parameterization functions different from our
own (6.2).

The reparameterization considered in [MRS09, MRS10] (see also the forthcoming [MRS11b]) would
feature, in the present setting, the “energetic quantity”

5.(1) = / (14 Re(2(7)) + RE(-DI(r, z.(r))))dr (6.21)

which can be considered as some sort of energy-dissipation arclength of the viscous solution z.. In fact,
under the sole assumption zy € Z, from the energy identity (3.6) fulfilled by viscous solutions it is
immediate to deduce that sup,. o 5.(7) < +o0.

On the other hand, the L(0,T; Z)-estimate (6.1) for (z.) (which can be proved under the additional

condition D,Z(0, z9) € L%*(Q)) clearly yields that sup, fOT [22(r)ll 2y dr < €' < oo. In principle, this

would also allow us to reparameterize by the L?(Q)-arclength

5(t) = / (14 1122(7) ]| 2y ) dr (6.22)
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of the graph of z, like in [Mie09, MZ10]. The advantage of the L2-arclength reparameterization, in
comparison with the energy-dissipation arclength and the Z-arclength repameterizations, is that it leads
to a more understandable “parameterized formulation”, both on the e-level and in the vanishing viscosity
limit. More precisely, setting t.(s) := 52 (s), Ze(s) := zc(tc(s)) for s € [0,3.(T)], it can be easily calculated
that the pair (t, %) fulfills

i(o) =0, 276(0) = 20, Z(S) + ||gé(S)HL2(Q) =1,
OR1(ZL(3)) + T 2e(8) + DZ(te(s), Z(5)) 2 0

. for a.a.s € (0,5.(7)). (6.23)
S)HLZ(Q)
As in [Mie09, Section 4.4] (cf. also [EM06, MZ10]), one observes that the e-viscous term is the subdiffer-

ential of the potential V., which is defined for every n € L?(Q2) as follows:

~log(1—¢&) —¢ ife<1,

Vo) = v (Inll o) with v(€) = ) 1
oo else.

With Re(n) := Ri(n) + Ve(n), the differential inclusion in (6.23) can be rewritten as
OR(Z(s)) + D.Z(t(s),%.(s)) 20 for a.a.s € (0,5.(T)). (6.24)

Notice that (6.24) has the same structure as the “viscous” doubly nonlinear equation (3.1). It can be
checked (cf. with [MZ10, Lemma A.4] in the reversible case R1(-) = [|*||;1(q)), that the potential Re
converges monotonously to the limit functional Ro with Ro(n) = R1(n) if [nllp2(0) < 1 and +oo else.

Therefore, recalling the results in [Mie09, MZ10], it is to be expected that, up to a subsequence, the
pairs (f, 2 ) converge to (,%) € Cp, ([0, S):[0,T) x L2(2)) (with § = lim_,o 5.(T)), satisfying

10)=0, ¢(S)="T, t'(s) >0, ¢ 7 oy < 1, _
© (%) (s) 2 () + 7). ) = for a.a.s € (0,9). (6.25)
>

ORo(F(s)) + D.Z(1(s),%(s)) 2 0

However, at the moment we are not able to prove this convergence result. Our main difficulty in the
passage to the limit as € N\, 0 in (6.24) is related to the unboundedness of the operator 9R. Because
of this, it is not possible to perform those comparison estimates in (6.24), which would give a bound in
L2(0,5; L2(Q)) for the term D,Z(.(-),2.(-)). As it stands, such a term is only estimated in L (0, T’; Z*),
which is not sufficient for passing from (6.24) to (6.25), since we only have an L(0, T; L?(£2))-bound for
(Z').. Roughly speaking, the terms D,Z(t., Z.) and 2/ are no longer “in duality”: This prevents us from
applying the passage to the limit techniques developed in [MZ10] for the “reversible” case. Furthermore,
we cannot develop the “energetic” arguments of the proof of Theorem 6.3 any longer. Indeed, in this
new setting it would still be possible to prove that (tNG,EG)E converge in suitable topologies to a pair
(t,2) € Cpi, ([0, S); [0, T] x L2(2)) which satisfies the energy inequality related to the limit problem (6.25):
S _ S
(T, %(5)) +/ Ro(Z'(s)) ds +/ (Ro)* (=D:Z(i(s), 2(s))) ds
0 0 (6.26)

S ~ ~
< Z(0,2(0)) —l—/o 0 Z(t(s),2(s))t'(s) ds.

Still, from (6.26) we would not be able to conclude that (6.25) holds via chain rule arguments, like in the
proof of Theorem 6.3. In fact, we do not dispose of the “parameterized chain rule” (6.15) any longer, due
to the lack of further spatial regularity for D,Z(t., Z.).

The vanishing viscosity analysis via the energy-dissipation arclength reparameterization would bring
forth the same difficulties. Nonetheless, we plan to address these issues in the future, relying on some

improved regularity results for the term D,Z(¢, z.(¢)) in (3.1).
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A Appendix

Lemma A.1. Fiz € > 0, and let (6,), C (0,00) and (n,)n C Z* be sequences with 6, \ 0 and 7, — 7
weakly in Z*. Then

liminf (Ry + Ra.e + Rz.s,) () > (Ri +Rae) (1) (A.1)

22* = (n, (I+ As)~'n)z. Observe that due to [IT79, Theorem 3.3.4.1]

and since R is positively homogeneous of degree 1, for every n € Z* the following identity is valid

Proof. On Z* we use the norm |||

(Ri+Roe+ Rz,) (n) = mf{R5 5, (m2) + (% 1% ) (1) s m = 112 — m3 € IR1(0) }

. x 1
=inf{R3 .5, (n2) + % 3l % s 1 — 12 — 13 € OR4(0) }.

Assume that the liminf in (A.1) is finite and equal to some C' > 0 and that the liminf in fact is a limit.
For the sequence 7, — 7, let 0, 7§ € Z* be elements such that 7, —n5 —n5 € OR1(0) and (R + Ra,e +

*
Rzs.) () = R 5, (05) + 55— 03]
and hence, limy, o 7% = 0 strongly in Z*. Moreover, the inequality R3 .5 (n3) > R3 (n3) is valid for

2.. It follows from the above lines that sup,, &, |[n%[%. < oo

all n € N. Hence, the sequence (n%), is bounded in L?(2) and contains a subsequence that converges
weakly in L?(Q2) and strongly in Z* to an element 1, € L?(Q). Hence, for this subsequence it holds
OR1(0) > np—nf —nf — n—mn9 weakly in Z*. Since IR4(0) is weakly closed, we also have n—n2 € 9R1(0).
Altogether, we find with this subsequence

2
Z*

. * . * n ]' n
C = nli)ﬂ;o (Rl + RQ,E + RZ,(L,,) (nn) = nh~>n;o R27€_5n (772) + E H773 |

> liminf RS (1) > B3, (12) > inf{R3, (o) : m — 7 € ORa(0)} = (Ry + Rae) (),

whence (A.1). O
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