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1 IntrodutionIn this paper we investigate the solvability and regularity of the veloity and pressure �elds ofa lass of uids with shear dependent visosity, where the onstitutive relation is of power-lawtype. The orresponding �eld equations are given by a quasilinear ellipti system of partialdi�erential equations, whih inlude as a speial ase the stationary, linear Stokes system.Besides the presentation of known results on loal regularity of the veloity �elds in appropri-ate Sobolev-Slobodekij-spaes, we derive some new aspets onerning the loal and globalregularity of the pressure, stress and veloity �elds on polygonal or polyhedral domains andinlude the ase of mixed non-vanishing boundary onditions. In the whole paper we willfous our attention on higher regularity in Sobolev-Slobodekij-spaes.Loal regularity results, i.e. higher regularity on subsets 
0 �� 
, for quasilinear degeneratedellipti systems of p�struture were derived e.g. by P. Tolksdorf, [25℄, F. de Th�elin, [8℄, andJ.-P. Raymond, [24℄. They used a di�erene quotient tehnique in order to obtain a betterregularity in Sobolev spaes of integral order. In ontrast to the systems they onsidered, theequations of our uid model also ontain a pressure term � (n > 1):div �� ��"D(u)�� 1n�1 "D(u)��r� = �f in 
;divu = 0 in 
;u = g on �D;�~n = h on �N :J. Naumann proved in [22℄ on the basis of Tolksdorf's and de Th�elin's results loal regularityof the veloity �eld u in three dimensions for this equation. We reformulate his result alsofor the two-dimensional ase and investigate in addition the regularity of the shear stress andpressure �eld. For this we apply tehniques whih were developed by C. Ebmeyer in [11℄. Wewill also use these tehniques to obtain higher regularity for tangential derivatives at a atpart of the boundary. Let us �nally note, that M. Fuhs proves loal regularity results inH�older spaes for a uid model, whih is a modi�ation of our model, [15℄.Global regularity results will be derived for a lass of polyhedral domains with mixed andnon-vanishing boundary onditions. Here we ombine Ebmeyer's onsiderations from [11℄and [13℄. In [11℄, Ebmeyer proved global results for non-Newtonian ows where the equa-tions ontain the onvetion term (u � r)u. Sine our model has no suh term we an arryover the investigations from [13℄ to our problem whih leads to a higher regularity thanin [11℄. Again, the proofs are based on a di�erene quotient tehnique to get estimates inappropriate Nikolskii-spaes, whih are losely related by embedding theorems to the usualSobolev-Slobodekij-spaes.Sine the linear Stokes system is a speial ase of our model, we will ompare the obtainedresults to those whih are well known for linear ellipti equations. This indiates some opti-mality of the results.The paper is organized as follows:In setion 2 we will shortly prove existene of solutions of �nite energy. This an be doneby well known arguments in the framework of the theory of monotone operators. We alsodesribe the onnetion between the weak formulation and the minimization problem for theorresponding energy funtional. 2



Setion 3 is devoted to the study of loal regularity of the veloity, pressure and stress �elds.While the regularity of the veloity �eld is proved in [22℄, we dedue the regularity of thestress and pressure �eld by applying the tehniques from [11℄.In setion 4, we study the regularity properties of higher tangential derivatives of the �eldsnear a at part of the boundary. Thereby we admit non-vanishing Dirihlet- or Neumann-data.In setion 5 we state and prove global regularity results on polyhedral domains. As alreadymentioned, these results are a ombination of Ebmeyer's in [11℄ and [13℄ and therefore, theproofs are also based on Ebmeyer's ideas.This paper loses with an appendix, where some funtional analyti tools are olleted. Theappendix ontains some essential inequalities, mapping properties of the divergene opera-tor, a solvability theorem for nonlinear saddle point problems and a simpli�ed variant ofLjusternik's Theorem whih desribes the Euler-Lagrange equations for a minimization prob-lem with onstraints.2 Existene and uniqueness results2.1 Field equations for a lass of shear thinning uidsBy equations (3)-(6) here below we desribe the veloity and pressure �elds of the steadymotion of a lass of inompressible, shear thinning uids, where the onstitutive relation isof power-law type.Let 
 � Rd ; d = 2; 3 be a bounded domain, �
 = �D [ �N . By u : 
 ! Rd we denotethe veloity �eld of the uid, "(u) := 12(ru + ruT ) is the strain rate tensor, "D(u) :="(u)� 1d tr("(u))I is the deviatori part of "(u) and desribes the shear veloity. Furthermore,� is the stress tensor and is deomposed in the following way:� = ��I + T = ��I + �D; (1)where � an be interpreted as hydrostati pressure and T = �D = �� 1d tr�I is the tensor ofvisous stresses. Note, that this splitting of � into a pressure term and the visous stresses isnot stringent for an inompressible uid, in ontrast to the ase of ompressible uids, where� stands for the thermodynami pressure.We assume that the uid satis�es the following onstitutive relation between the shear rate"D and the shear stress �D: �D = � ��"D(u)�� 1n�1 "D(u); (2)where � > 0 and n > 1 are some material parameters whih an be �xed by experimentaldata. One an interpret the onstitutive law as follows:Consider as a speial ase a steady plane parallel ow where the veloity is of the form~u(~x) = (u1(x2); 0; 0), see Figure 1. In this ase"(~u) = "D(~u) = 0� 0 "12 0"12 0 00 0 01A ;and the onstitutive law redues to�12 = � j"12(u)j 1n�1 "12(u):3



This relation is plotted in Figure 1. The quantity �("12(u)) := � j"12(u)j 1n�1 an be interpretedas the shear visosity and is of Ostwald-de Waele type. For �xed n > 1, the shear visosity �dereases as the shear rate "12 inreases and therefore this model desribes a shear thinninguid. It should be mentioned, that for j"12j ! 0, the shear visosity � tends to in�nity andone should be areful when applying this onstitutive model to ows with very small shearrates j"12j. Examples for shear thinning uids are molten plastis and polymer solutions. Formore details we refer e.g. to [4℄.The problem we are interested in is the following: Find a veloity �eld u and a pressure �eld� suh that for given volume and surfae fores f and h and for a given surfae veloity gthere holds: div� + f = 0 in 
 equations of motion,�D � � ��"D(u)�� 1n�1 "D(u) = 0 in 
 onstitutive law,divu = 0 in 
 inompressibility ondition,u = g on �D;�~n = h on �N :The vetor ~n is the exterior normal vetor on the boundary �N . These equations an beshortly written as div �� ��"D(u)�� 1n�1 "D(u)��r� = �f in 
; (3)divu = 0 in 
; (4)u = g on �D; (5)�~n = h on �N : (6)Note, that in the ase n = 1, this system redues to the well known linear Stokes system.Remark 2.1. For n > 1 the funtion F : Rsnf0g ! Rs : ~x ! j~xj 1n�1 ~x an be extendedontinuously to ~x = 0 by setting F (0) = 0. We interpret the term in the brakets of equation(3) in this sense.Before we desribe in whih sense we solve these equations we have to introdue some appro-priate funtion spaes.
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2.2 The spaesThroughout the whole paper we do not distinguish in our notation between salars, vetorsand tensors sine in general it is lear from the ontext of whih type a variable or funtionis. Moreover we use the same notation for funtion spaes of salar valued, vetor valued ortensorial valued funtions. Only in some speial ases we will write e.g. Lp(
;Rd ) whih isthe spae of vetor valued funtions fu = (u1; : : : ; ud) : 
! Rd ; ui 2 Lp(
); 1 6 i 6 dg.For open subsets 
 � Rd , d > 1, we introdue the following Sobolev-Slobodekij-spaes:Let s = m+ �; where m 2 N0 ; 0 6 � < 1 and 1 < p <1. The spae W s;p(
) is de�ned byW s;p(
) := fu 2 Lp(
) : D�u 2 Lp(
) for j�j 6 m and kukW s;p(
) <1g;see also [1, 26℄. In this de�nition we make use of the usual multi-index notation, D� denotesthe distributional derivative of order � and the norm is given bykukpW s;p(
) = Xj�j6m kD�ukpLp(
) + Xj�j6mZ
 Z
 jD�u(x)�D�u(y)jpjx� yjd+p� dxdy:Furthermore, the orresponding trae spaes on � � �
, � open, are de�ned in the sense ofSobolev-Slobodekij-spaes on ompat manifolds, see [18℄. Here we need Ck;1-smoothness of�
 for the de�nition of W s;p(�), where s and k are related as follows: k 2 N0 ; jsj 6 k + 1.As a speial ase of [18, Thm. 1.5.2.1℄ we have for s = 1 and k = 0 the following traetheorem:Theorem 2.1. Let 
 � Rd be a bounded domain with Lipshitz boundary, � � �
 open and1 < p <1. Then the mapping ��� : u! u���;whih is de�ned for u 2 C1(
), has a unique ontinuous extension denoted by the sameoperator: ��� : W 1;p(
)!W 1� 1p ;p(�):Furthermore, the mapping ��� is surjetive.With this theorem the following de�nition is meaningful:De�nition 2.1. Let 
 � Rd be a bounded domain with Lipshitz boundary and �
 = �D[�N ,where �D and �N are open and disjoint; 1 < p <1. For g 2W 1� 1p ;p(�D) we setVp(g) := fu 2W 1;p(
) : u���D = gg:We will shortly write Vp instead of Vp(0).Furthermore,~W 1� 1p ;p(�N ) := nu : u = ~u���N ; where ~u 2W 1� 1p ;p(�
) with supp ~u � �No ;whih is endowed with the norm kuk ~W 1� 1p ;p(�N ) := k~ukW 1� 1p ;p(�
).Remark 2.2. By the linearity and surjetivity of the trae operator, there exists for everyg 2W 1� 1p ;p(�D) an element ~g 2W 1;p(
) with ~gj�D = g. Thus Vp(g) = ~g + Vp(0).5



Important tools in the proof of existene of solutions are Korn's inequality and a generalizedversion of Poinar�e-Friedrihs' inequality:Theorem 2.2 (Korn's inequality). [16℄ Let 
 � Rd be a bounded domain with Lipshitzboundary. For 1 < p <1 we have the following estimate: There exist 1; 2 > 0 suh that forall u 2W 1;p(
;Rd )1 kukW 1;p(
) 6 kukLp(
) + "D(u)Lp(
) + ktr "(u)kLp(
) 6 2 kukW 1;p(
) :Thus, the expression kjujkp := kukLp(
)+ "D(u)Lp(
)+ ktr "(u)kLp(
) de�nes an equivalentnorm in W 1;p(
). Furthermore, the spaes W 1;p(
;Rd) and U1;p(
;Rd ) := fu 2 Lp(
;Rd) :kjujkp <1g are equal.Theorem 2.3 (Poinar�e-Friedrihs' inequality). Let 
 � Rd be a bounded domain withLipshitz boundary and 1 < p <1.1. If V �W 1;p(
) is a losed, onvex subset with the propertyu 2 V;ru = 0 =) u = 0:Then there exists a onstant  > 0 suh that for every u 2 V :kukLp(
) 6  krukLp(
) :2. [16℄ If V �W 1;p(
;Rd ) is a losed, onvex subset with the propertyu 2 V; k"(u)kLp(
) = 0 =) u = 0;then there exists a onstant  > 0 suh that for every u 2 V :kukW 1;p(
) 6  k"(u)kLp(
) :We will prove the regularity results by estimating di�erene quotients of weak solutions.Suitable spaes, where the norms take into aount di�erene quotients in an expliit way,are the Nikolskii-spaes.De�nition 2.2 (Nikolskii-spae). [1℄ Let s = m + � where m > 0 is an integer and0 < � < 1. For 1 6 p <1N s;p(
) := nu 2 Lp(
) : kukN s;p(
) <1o ; (7)where kukpN s;p(
) = kukpLp(
) + Xj�j=m sup�>0h2Rd0<jhj<� Z
� jD�u(x+ h)�D�u(x)jpjhj�p dx (8)and 
� = fx 2 
 : dist(x; �
) > �g.The relation between Nikolskii-spaes and Sobolev-Slobodekij-spaes is desribed in the nextlemma: 6



Lemma 2.1. [1℄ Let s; p be as in De�nition 2.2. The following embeddings are ontinuous:for every " > 0 : N s+";p(
) �W s;p(
) � N s;p(
):In the de�nition of Nikolskii-spaes we have to take into aount di�erene quotients withrespet to every diretion h 2 Rd . It is also possible to de�ne a spae, where the di�erenequotients are formed with respet to a �xed basis of Rd , only. If 
 is a bounded Lipshitziandomain, then these two de�nitions oinide. More preisely:Let �1; : : : ; �d be a basis of Rd with j�ij = 1. For s; p as in De�nition 2.2 we de�ne~N s;p(
) := fu 2 Lp(
) : N�;i(u) <1 for 1 6 i 6 d and j�j = mg ;kuk ~N s;p(
) := kukLp(
) + X16i6dj�j=mN�;i(u);where N�;i(u) := suph>0�Z
h jD�u(x+ h�i)�D�u(x))jph�p dx� 1p for 1 6 i 6 d:Lemma 2.2. Let 
 � Rd be a bounded domain with Lipshitz-boundary and �1; : : : ; �d � Rda normed basis of Rd . Then N s;p(
) = ~N s;p(
)and the norms are equivalent. The onstants in the equivalene relation of the norms dependon the hoie of the basis.Proof. Sine 
 is a bounded Lipshitzian domain, funtions from N s;p(
) and ~N s;p(
) an beextended to Rd with preservation of the norm, [23, Thm. 1, Thm. 2, pp. 381℄. Furthermore,~N s;p(Rd) = N s;p(Rd) and the norms are equivalent, [20℄. �2.3 Existene resultsWe are now able to desribe in whih sense we want to solve equations (3)-(6).De�nition 2.3 (Weak Solution). Let 
 � Rd be a bounded domain with Lipshitz boundary,�
 = �D [ �N where �D and �N are disjoint open sets. Let further be n > 1; p = n + 1and q = p0 = 1 + 1n . We assume that the given data satisfy f 2 V 0q , g 2 W 1� 1q ;q(�D) andh 2 ( ~W 1� 1q ;q(�N ))0.A pair (u0; �) 2 Vq(g) � Lp(
) is a weak solution of the nonlinear �eld equations (3)-(6) iffor every v 2 Vq(0), r 2 Lp(
):Z
 � ��"D(u0)��q�2 "D(u0) : "D(v) dx� Z
 �div v dx = Z
 fv dx+ Z�N hv ds; (9)Z
 r divu0 dx = 0: (10)The integrals on the right hand side are to be understood in the sense of the dual pairingbetween Vq, V 0q and ( ~W 1� 1q ;q(�N ))0, ~W 1� 1q ;q(�N ), respetively.7



The weak formulation an formally be obtained by multiplying the �eld equations (3)-(6)with v and integration by parts.The weak formulation has the struture of a nonlinear saddlepoint problem. To make thismore evident we introdue the following forms for p; q; n as in De�nition 2.3:a(�; �) : W 1;q(
)�W 1;q(
)! R : a(u; v) = Z
 � ��"D(u)��q�2 "D(u) : "D(v) dx; (11)b(�; �) : Lp(
)� Vq ! R : b(�; v) = �Z
 � div v dx: (12)The next lemmata ollet some properties of the forms a and b whih we will need in thesequel.Lemma 2.3. Let p; q; n be as in De�nition 2.3. For (u; v) 2W 1;q(
)�W 1;q(
) the expressiona(u; v) is well de�ned and by H�older's inequality the following estimate holds: There exists aonstant  > 0 suh that for every (u; v) 2W 1;q(
)�W 1;q(
) :ja(u; v)j 6 �"D(u)q�1Lq(
) "D(v)Lq(
) 6  kukq�1W 1;q(
) kvkW 1;q(
) : (13)Thus we an assoiate to every �xed u 2 W 1;q(
) a unique operator A(u) 2 (W 1;q(
))0 =W�1;p0 (
) suh that for every u; v 2W 1;q(
):hA(u); vi(W�1;p0 (
);W 1;q(
)) = a(u; v):Consider now the mappingA : W 1;q(
)!W�1;p0 (
) : u 7! A(u):The properties of this nonlinear operator are desribed in the next lemma.Lemma 2.4. Let p; q; n be as in De�nition 2.3.A : W 1;q(
) ! W�1;p0 (
) is a ontinuous operator. There exists  > 0 suh that for everyu; v 2W 1;q(
):hA(u)�A(v); u � vi(W�1;p0 (
);W 1;q(
)) > Z
G("(u)(x); "(v)(x)) dx; (14)where we have set for "1; "2 2 Rd�d :G("1; "2) = ((j"1j+ j"2j)q�2 j"1 � "2j2 if ("1; "2) 6= (0; 0);0 else.Thus, A is a monotone operator on W 1;q(
). Note, that hA(u)�A(v); u� vi = 0 if and onlyif "(u) = "(v).Remark 2.3. The above de�ned funtion G is ontinuous on Rd�d � Rd�d .Proof. The ontinuity of A is a diret onsequene of the ontinuity of the operatorW 1;q(
)!Lq(
): u 7! ��"D(u)��q�2 "D(u), whih follows with the help of [29, Prop. 26.6℄ where theontinuity for a lass of Nemikij-operators is shown.8



Inequality (14) an be derived by a pointwise appliation of the following inequality, see alsoLemma A.1:For every 1 < q < 2; s 2 N exists  > 0 suh that for every x; y 2 Rs with (x; y) 6= (0; 0) :(jxjq�2 x� jyjq�2 y) � (x� y) > (jxj+ jyj)q�2 jx� yj2 : �Obviously, the form b(�; �) : Lp(
)� Vq ! R is a ontinuous bilinear form, i.e. there exists aonstant  > 0 suh that for all � 2 Lp(
) and u 2 Vq there holds:jb(�; u)j 6  k�kLp(
) kukW 1;q(
) :Thus we an assoiate in a unique way the following linear and ontinuous operators withb(�; �): B : Lp(
)! V 0q ; � 7! B(�) = �Z
 �div (�) dx; (15)B� : Vq ! Lq(
); u 7! �divu: (16)B and B� are onneted via the relationhB�(u); �i((Lp(
))0;Lp(
)) = �Z
 �div udx = hB(�); ui(V 0q ;Vq) for every u 2 Vq; � 2 Lp(
):For 1 < q; p <1; q = p0 the spaes Vq and Lp(
) are reexive, thus the operators B and B�are adjoint. In appendix B, the mapping properties of the operators B and B� are investi-gated in detail.We now reformulate equations (9)-(10) in terms of the the operators A;B;B�:Let �D � �
 be open, p; q; n as in De�nition 2.3. Let further f 2 V 0q ; h 2 ( ~W 1� 1q ;q(�N ))0; g 2W 1� 1q ;q(�D). By Theorem 2.1 and remark 2.2 we have Vq(g) = g0+Vq(0), where g0 2W 1;q(
)with g0j�D = g.We de�ne ~A : Vq ! V 0q : u 7! ~A(u) := A(g0 + u):Furthermore, we an assoiate to f and h an element F 2 V 0q in a unique way. With thesenotations, the weak formulation (9)-(10) is equivalent to the following problem:Find (~u; �) 2 Vq � Lp(
) suh that~A(~u) +B� = F in V 0q ; (17)B�~u = div g0 in Lq(
): (18)There holds: (u0; �) is a solution of (9)-(10) if and only if (~u; �) = (u0 � g0; �) is a solutionof (17)-(18).We are now ready to state the main theorem of this setion:Theorem 2.4 (Existene and uniqueness of weak solutions). Let 
 � Rd be a boundeddomain with Lipshitz boundary, �
 = �D[�N , where �D and �N are open and disjoint. Letfurther be n > 1; p = n+ 1; q = p0 = 1 + 1n . We assume that f 2 V 0q ; h 2 ( ~W 1� 1q ;q(�N ))0; g 2W 1� 1q ;q(�D). 9



1. Assume that mes�D > 0. If �D = �
, we further assume that the Dirihlet-data gsatis�es the following solvability ondition:there axists g0 2W 1;q(
) suh that g0j�
 = g and Z
 div g0 dx = 0: (19)Then there exists a pair (u; �) 2 Vq(g) � Lp(
) whih is solution of the weak problem(9)-(10). u is unique, � is unique if �D 6= �
. If �D = �
 then � is unique up to aonstant. The solvability ondition (19) is neessary and suÆient.2. Assume that �D = ;. In this ase we have a pure Neumann problem and Vq =W 1;q(
).We assume further that the data f; h satisfy the following solvability ondition:For every v 2 ker(") �W 1;q(
)hf; vi(W�1;p0 (
);W 1;q(
)) + hh; vi((W 1� 1q ;q(�
))0 ;W 1� 1q ;q(�
)) = 0: (20)Then there exists a pair (u; �) 2 W 1;q(
) � Lp(
) whih solves the weak formulation.Furthermore, u is unique up to the addition of elements in ker("), � is unique. Thesolvability ondition (20) is neessary and suÆient.Note, that ker(") is the �nite dimensional spae of rigid motions.Remark 2.4. Condition (19) is equivalent to: g 2 W 1� 1q ;q(�
) with R�
 g~n ds = 0. Note,that this ondition is well known in the ase n = 1, i.e. in the ase of the Stokes system withpure Dirihlet onditions.Proof. We �rst prove the theorem for the ase mes �D > 0. Here we make use of formulation(17)-(18). In the proof we apply Lemma 2.4 and Theorem B.1 where we olleted someproperties of the operators A;B;B� and Lemma C.1 on the solvability of nonlinear saddlepointproblems.By Lemma 2.4, ~A : Vq ! V 0q is ontinuous and strongly monotone, B : Lp(
) ! V 0q isontinuous and linear, B� : Vq ! Lq(
) is the adjoint of B and by Theorem B.1, Im B� andtherefore also Im B are losed. Furthermore, it follows by Theorem B.1 and the solvabilityondition that div g0 2 Im B�. In order to apply Lemma C.1 to our equation we only haveto verify the oeritivity of ~A on M := fv 2 Vq : B�v = div g0g.Let (un)n2N �M with kunkW 1;q(
) !1 as n!1. Thenh ~A(un); uni = � "D(un)qLq(
) :By Lemma 2.3, there exists  > 0 suh that for every u 2M :kukW 1;q(
) 6 �"D(u)Lq(
) + kdivukLq(
)�= �"D(u)Lq(
) + kdiv g0kLq(
)�and therefore kunkW 1;q(
) !1 if and only if "D(un)Lq(
) !1. Thush ~A(un); unikunkW 1;q(
) > ~ "D(un)qLq(
)k"D(un)kLq(
) + kdiv g0kLq(
) !1 as n!1;10



whih shows the oeritivity of ~A on M . The �rst part of the theorem follows by Lemma C.1.Now let �D = ;. To prove the assertions for that ase we also would like to apply LemmaC.1. Sine we annot prove the oeritivity of A on kerB� � W 1;q(
) we have to split ourproblem. We deompose W 1;q(
) into two losed subspaes and solve the problem only onone of these subspaes. In a seond step we show that the solution we found there is alreadya solution for the whole problem.Sine ker " � W 1;q(
) is a �nite dimensional subspae there exists a losed subspae V �W 1;q(
) suh that W 1;q(
) = ker(")� V;see [2, Satz 7.16℄. Again by Lemma 2.4, A : V ! V 0 is ontinuous and strongly monotone.Furthermore we an prove as before with Lemma 2.3 the oeritivity of A on kerB� \ V .Consider now the following problem: Find (u; �) 2 V � Lp(
) suh that for all v 2 V; r 2Lp(
): hAu; vi(V 0;V ) + hB�; vi(V 0;V ) = hf; vi+ hh; vi; (21)hB�u; ri(Lq(
);Lp(
)) = 0: (22)Before we an apply Lemma C.1 to this problem we have to hek that Im B is losed in V 0 forB : Lp(
)! V 0, or, what is equivalent, Im B� is losed in Lq(
) for B� : V ! Lq(
).By the splitting of W 1;q(
) = ker "�V we have the following representation for u 2W 1;q(
):u = r + v, where r 2 ker " and v 2 V are uniquely determined. Consider now B�u =B�r+B�v = �div r� div v. Diret alulations show that for r 2 ker " there holds div r = 0.Thus, B�u = B�v and therefore by Theorem B.1: B�(V ) = Lq(
).Lemma C.1 now implies that (21)-(22) has a solution (u; �) 2 V �Lp(
). Moreover, equations(21)-(22) are true not only for v 2 V but also for arbitrary r 2 ker ". This is due to thesolvability onditions on the data f and h, see equation (20). Thus (u; �) is a solution ofproblem (9)-(10).The uniqueness properties follow by onsiderations whih are similar to those in the proof ofLemma C.1. �2.4 A minimization problemIn this setion we show that one an also assoiate a minimization problem with onstraintto (3)-(6) and desribe how this minimization problem is related to the weak formulation.For n > 1; q = 1 + 1n , u 2 W 1;q(
), f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2 W 1� 1q ;q(�D)we set I(u) := Z
 �nn+ 1 ��"D(u)��q dx� Z
 fudx� Z�N huds (23)and Mg := fu 2 Vq(g) : divu = 0g :De�nition 2.4 (Minimization Problem). Let 
 � Rd be a bounded domain with Lipshitzboundary, �
 = �D [ �N , where �D and �N are disjoint open sets. Let further n > 1; p =n+ 1; q = p0 = 1 + 1n , f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2W 1� 1q ;q(�D).The minimization problem is the following:Find u 2Mg suh that I(u) 6 I(v) for all v 2Mg. (24)11



Theorem 2.5 (Existene of minimizers). Let 
 � Rd be a bounded domain with Lipshitzboundary, �
 = �D [ �N , where �D and �N are disjoint open sets. Let further n > 1; p =n+ 1; q = p0 = 1 + 1n , f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2 W 1� 1q ;q(�D). In the ase�D = ; we further require that solvability ondition (20) is satis�ed, in the ase �D = �
 werequire that ondition (19) is ful�lled.Then there exists a solution u 2Mg of problem (24). In the ase �D 6= ;, u is unique and if�D = ;, then u is unique up to the addition of elements from ker(").Proof. The assertion follows by a standard argument for the minimization of funtionals,see [30, Prop. 38.15℄. To apply this Proposition we have to verify that Mg � W 1;q(
) isonvex and losed and that I is ontinuous, onvex and oerive onMg, i.e. for any sequenefvk; k 2 Ng �Mg with kvkkW 1;q(
) !1 as k !1 there holds I(vk)!1 as k !1.The ontinuity and onvexity of I follow by onsiderations whih are similar to those ofLemma 2.4. Theorem B.1 and the solvability ondition for the ase �D = �
 guarantee thatMg 6= ;.If �D 6= ;, the oeritivity of I follows by the same arguments as in the �rst part of the proofof Theorem 2.4 whih yields the assertion.In the ase �D = ;, we have M = fu 2 W 1;q(
) : divu = 0g. Note, that ker " � M is a�nite dimensional subspae and therefore we an split M = ker " � V , where V � M is alosed subspae. The restrition of I to V is oerive and therefore there exists a solutionfor problem (24) with M replaed by V . By the solvability ondition this solution is also aminimizer of the whole problem. �The next theorem shows that equations (9)-(10) desribe the weak Euler-Lagrange equationsfor the minimization problem (24). The pressure � appears as a Lagrange-parameter.Theorem 2.6. Let 
 � Rd be a bounded domain with Lipshitz boundary, �
 = �D [ �N ,where �D and �N are disjoint open sets. Let further be n > 1; p = n + 1; q = p0 = 1 + 1n ,f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2W 1� 1q ;q(�D). We assume that u0 2Mg � Vq(g)is a solution of the minimization problem (24).Then there exists a funtion � 2 Lp(
) suh that the pair (u0; �) satis�es equations (9)-(10).Proof. The proof onsists in applying a variant of Ljusternik's Theorem, Theorem D.1, to theminimization problem. In our ase, we have to verify the following onditions:a.) I : Vq(g)! R is Fr�ehet-di�erentiable,b.) the onstraint operator div : Vq(g)! Lq(
) has a losed image.The Gâteaux-di�erentiability of I an be proved with arguments whih are similar to thosein [6, Appendix A.8℄ and we get as Gâteaux-derivative:DI : Vq(g)! V 0q : u! DI(u)[ � ℄ = Z
 � ��"D(u)��q�2 "D(u) : "D(�) dx:The ontinuity of the Gâteaux-derivative DI : Vq(g) ! V 0q : u ! DI(u) with respet to ufollows by Lemma 2.4. Therefore, I is Fr�ehet-di�erentiable and a.) is proved.The properties of the div -operator are disussed in Theorem B.1. Now, Theorem D.1 yieldsthe assertion. �12



3 Interior regularity of weak solutionsBefore we state and prove higher interior regularity results for the veloity, stress and pressure�elds, we reall the de�nitions of � and �D:�D = � ��"D(u)��q�2 "D(u); where "D(u) = "(u)� 1d tr("(u))I;� = ��I + �D:Note, that "D(u) = "(u) sine tr "(u) = divu = 0.Theorem 3.1 (Interior regularity). Let n > 1; p = n+ 1; q = p0 = 1 + 1n and f 2 Lp(
).For a weak solution (u; �) 2W 1;q(
)� Lp(
) there holds for every Æ > 0; � > 0:u 2W 2;�lo (
); �D 2W q�1�Æ; �q�1lo (
); � 2W q�1�Æ;plo (
); (25)where � = (2� � if d = 2;3q1+q if d = 3: (26)Note, that 1 6 q 6 � 6 2 and p 6 �q�1 . Furthermore, � 2W q�1�Æ; �q�1lo (
) if f 2 L �q�1 (
).Remark 3.1. If we hoose n = 1, then p = q = 2 and equations (9)-(10) redue to the linearStokes system. By Theorem 3.1 we get u 2 W 2;2��lo (
) whih is (up to �) exatly the wellknown result for linear ellipti equations, see e.g. [28℄.For d = 3 and n!1 the regularity of u is dereasing as n grows: 3q1+q = 3n+32n+1 & 32 .Remark 3.2. In the ase d = 2 the result oinides with a result for the p�Laplaian:Let 
 � R2 be a onvex domain, 1 < q 6 2; p = q0, f 2 Lp(
) and assume that u 2W 1;q0 (
)satis�es Z
 jrujq�2rurv dx = Z
 fv dx for every v 2W 1;q0 (
);then u 2W 2;2(
), [3℄.Proof (of Theorem 3.1). The result for the veloity �eld u was proved by Naumann in [22℄for the three dimensional ase. In a �rst step, he applied a di�erene quotient tehnique,whih is based on Tolksdorf's ideas, [25℄, in order to prove u 2 W 2;qlo (
). He used essentiallythe monotoniity properties of the nonlinear di�erential operator, see also Lemma 2.4. Thearguments of the �rst step are independent of the dimension of the domain 
. In a seondstep he derived with the help of embedding theorems for Sobolev-Slobodekij-spaes the bet-ter result u 2W 2;�lo (
), � as in (26). Sine the dimension of 
 plays a role in the embeddingtheorems, the quantity � in (26) depends on d. We remark, that � = dqd+q�2 if d > 3.Regularity of �D:For the proof of the regularity of �D = � ��"D(u)��q�2 "D(u) we follow the ideas in [11℄. Let 
0 �� 
00 �� 
 be open subsets of 
 with smooth boundaries, h0 := minfdist(
0; �
00); dist(
00; �
)g.Let further be � = (2� � if d = 2;3q1+q if d = 3:13



Sine u 2W 2;�lo (
) we have "(u) 2W 1;�lo (
) and therefore for h 2 Rd with 0 < jhj < h0:Z
0 ���D(x+ h)� �D(x)�� �q�1 dx (61)6 Z
0 ��"D(u(x+ h)) � "D(u(x))��� dx[17;Lemma 7.23℄6  jhj� r"D(u)�L� (
00) :Thus, with 
0Æ = fx 2 
0 : dist(x; �
0) > ÆgsupÆ>00<jhj<Æ Z
0Æ �����D(x+ h)� �D(x)jhjq�1 ���� �q�1 dx <1 (27)and therefore �D 2 N q�1; �q�1 (
0), see also De�nition 2.2. Now, the assertion follows withLemma 2.1.Regularity of �:We follow again the ideas from [11℄.Let P 2 
 and hoose R0 > 0 suh that with 
0 := BR0(P ), 
00 := B2R0(P ) there holds
0 �� 
00 �� 
. Let further h0 = 12 minfR0;dist(�
00; �
)g, Æ < h0 and 
0Æ = fx 2 
0 :dist(x; �
0) > Æg. For any h 2 Rd with 0 < jhj < h0 we get from equation (9) in thedistributional sense: 4hr� = 4hf +4hdiv �D; (28)where 4hu = u(x+ h)� u(x). Next, we estimate the right hand side of this equation in theW�1;p(
0)-norm:k4hfkW�1;p(
0) = sup 2W 1;q0 (
0)k kW1;q(
0)=1 ����Z
04hf dx����= sup 2W 1;q0 (
0)k kW1;q(
0)=1 ����Z
0+h f(x) (x� h) dx� Z
0 f(x) (x) dx����= sup 2W 1;q0 (
0)k kW1;q(
0)=1 ����Z
0[
0+h f(x)(4�h (x)) dx����6 kfkLp(
0[
0+h) sup 2W 1;q0 (
0)k kW1;q(
0)=1 k4�h kLq(
0[
0+h) : (29)Here we have set 
0+h = fx 2 Rd : x = y+h; y 2 
0g � 
. We an extend  2W 1;q0 (
0) to 2W 1;q(Rd) by setting  (x) = 0 for x =2 
0. By [17, Lemma 7.23℄, we then get for arbitrary 2W 1;q0 (
0): k4h kLq(
0[
0+h) 6 jhj kr kLq(Rd) = jhj kr kLq(
0) ; (30)and therefore k4hfkW�1;p(
0) 6 jhj kfkLp(
) : (31)14



Furthermore, sine �D 2 N q�1; �q�1lo (
) � N q�1;plo (
),4hdiv�DW�1;p(
0) = supv2C10 (
0)kvkW1;q(
0)=1 ����Z
04h�D : rv dx����6 4h�DLp(
0) supv2C10 (
0)kvkW1;q(
0)=1 krvkLq(
0)6 jhjq�1 �DN q�1;p(
00) :(32)Equation (28) and inequalities (31), (32) show that there is a onstant  > 0 suh that forevery h 2 Rd with 0 < jhj < h0 r� 4h�jhjq�1�W�1;p(
0) 6 : (33)In addition, there exists  > 0, suh that for every h 2 Rd with 0 < jhj < h0 4h�jhjq�1W�1;p(
0) 6  (34)By Ne�as' Lemma, see Lemma B.2, we onlude 4h�jhjq�1Lp(
0) 6  (35)and therefore supÆ>00<jhj<Æ Z
0Æ ���� 4h�jhjq�1 ����p dx 6  <1: (36)Thus, � 2 N q�1;p(
0) and the theorem is proved.Note, that if we assume f 2 L �q�1 (
), we an derive for the pressure by the same argumentsas above the regularity � 2W q�1�Æ; �q�1lo (
), whih oinides with the regularity of �D. �4 Higher tangential regularity at plane parts of the boundaryOne an also prove a higher regularity for derivatives whih are tangential to a plane part ofthe Dirihlet- or Neumann-boundary.Theorem 4.1. Let 
 � Rd be a bounded domain with Lipshitz boundary, n > 1, p =n+ 1; q = p0 = 1 + 1n and f 2 Lp(
). We assume that the boundary onditions are given inthe following speial form: �~n = H~n on �N ;where H 2W 1;p(
;Rd�d ) and H = HT . Furthermoreu���D = g���D on �Dfor a given g 2W 3;q(
). 15



Choose ~
 � 
 in suh a way that S := int(� ~
\�
) is an open subset of a hyper-plane L. Wefurther require that there exists an open set U � �
 with S � U � L and that the boundaryonditions do not hange on U , see Figure 2.Then there holds for every ~t whih is tangential to L:�~tru 2 Lq(~
):Here, �~t denotes the derivative towards ~t.PSfrag replaements L P
0
00~

Figure 2: An example for the domain in Theorem 4.1Proof. The proof is a modi�ation of Naumann's proof in [22℄ for interior regularity and usesa di�erene quotient tehnique. We distinguish two ases aording to the di�erent boundaryonditions.Let ~
 � 
 be a domain as desribed in Theorem 4.1 and P 2 S = int(� ~
 \ �
). Choose0 < R0 in suh a way that 
0 := (BR0(P )\
) � ~
 and 
00 := (B2R0(P )\
) � ~
, see Figure 2.1. Case, Neumann-onditions on � ~
 \ �
:Due to the speial struture of the Neumann data, equation (9) of the weak formulation isequivalent toZ
 � ��"D(u)��q�2 "D(u) : "D(v) dx� Z
 �div v dx = Z
(f + divH)v dx+ Z
H : "(v) dx: (37)Let (u; �) 2 Vq(g) � Lp(
) be a weak solution. Choose ' 2 C10 (B2R0(P )) with '��BR0 (P ) = 1,~t tangential to � ~
\ �
 with ��~t�� = 1 and h0 := 12 minfR0;dist(�
00; � ~
n�
)g. Then for h 2 Rwith 0 < jhj < h0, the funtion�(x) = '2(x) �u(x+ h~t )� u(x)� = '2(x)4hu(x)as well as the funtion ~�(x) := �(x�h~t ) are admissible test funtions in Vq(0). After inserting� and ~� into the weak formulation, hanging the variables of ~� and subtrating the resultingequations, we obtainZ
00 �4h ���"D(u)��q�2 "D(u)� : "D(�) dx = Z
004h� div � dx+ Z
004h (f + divH) � dx+ Z
004hH : "(�) dx: (38)In order to simplify the notation, we de�ne G(") := � j"jq�2 ". Note, that"D('2(4hu)) = ((4hu)
r'2)Dsym + '2"D(4hu); tr "('24hu) = r'2 � 4hu;16



here we have used that divu = 0; a 
 b 2 Rd�d denotes the tensor produt of the vetorsa; b 2 Rd with (a
 b)ij = aibj; Asym is the symmetri part of tensor A. Equation (38) an betransformed intoZ
00 '2(4hG("D(u))) : "D(4hu) dx = �Z
004h(G("D(u)) +H) : (4hu
r'2)sym dx+ Z
00(4h�)2'r' � 4hudx+ Z
00 '24h(f + divH)4hudx+ Z
00 '24hH : 4h"D(u) dx (39)= I1 + � � � + I4:The integrals on the right hand side an be estimated as follows: We set Vq(
00) := fu 2W 1;q(
00) : u���
00n�
 = 0g. ThenI3 6 k'4h(f + divH)k(Vq(
00))0 k'4hukW 1;q(
00)and by arguments, whih are similar to those in (29), we obtaink'4h(f + divH)k(Vq(
00))0 6  jhj ;where the onstant  is independent of h. The same onsiderations an be arried out for I1and I2, whih leads to I1 + I2 + I3 6  jhj k'4hukW 1;q(
00)with a onstant  whih is independent of h. Using the produt rule, Poinar�e-Friedrihsinequality and Korn's inequality, see Theorems 2.2 and 2.3, and the fat, that tr "(u) = 0, weget: k'4hukW 1;q(
00) 6 �jhj+ '4h"D(u)Lq(
00)� :Furthermore, by H�older's inequality and sine H 2W 1;p(
), we haveI4 6 k'4hHkLp(
00) '4h"D(u)Lq(
00) 6  jhj kHkW 1;p(
) '4h"D(u)Lq(
00) :Equality (39) and the above estimates yieldZ
00 '2 �4hG("D(u))� : 4h"D(u) dx 6  jhj2 +  jhj '4h"D(u)Lq(
00) : (40)From now on, the proof follows exatly the arguments in [22℄, one only has to estimate the lefthand side of (40) from below: By H�older's inequality we get for Mh := fx 2 
00 : "(u(x)) =
17



"(u(x+ h)) = 0g and s = q(q�2)2 < 0:'4h"D(u)Lq(
00) = �Z
00nMh ���"D(u(x))�� + ��"D(u(x+ h))����s���"D(u(x))�� + ��"D(u(x+ h))���s ��'4h"D(u)��q dx� 1q6 ��"D(u(�))�� + ��"D(u(�+ h))�� (2�q)2Lq(
00)�Z
00 '2 ��4h"D(u)��2 ���"D(u(x))�� + ��"D(u(x+ h))���q�2 dx�126 1�Z
00 '2 ��4h"D(u)��2 ���"D(u(x))�� + ��"D(u(x+ h))���q�2 dx� 12(58)6 2�Z
00 '24h(G("D(u))) : 4h"D(u) dx� 12(40);(63)6 3 jhj+ 3 jhj 12 '4h"D(u) 12Lq(
00) ; (41)where the onstants i are independent of h. Sine inequality (41) is true for every 0 < jhj <h0, and sine '��
0 = 1 and tr "(u) = 0, it followssup0<jhj<h0 4h"(u)h Lq(
0) 6  <1; (42)and thus �~t "(u) 2 Lq(
0). Finally we obtain with Korn's inequality that �~tru 2 Lq(
0).2. Case, Dirihlet-onditions on � ~
 \ �
: Let (u; �) 2 Vq(g) � Lp(
) be a weak solution.As before we hoose ' 2 C10 (B2R0(P )) with '��BR0 (P ) = 1 and ~t tangential to � ~
 \ �
 with��~t�� = 1. Let h0 := 12 minfR0;dist(�
00; � ~
n�
)g and g 2 W 3;q(
) with u���D = g���D . Forh 2 R with 0 < jhj < h0, the funtions�(x) := '2((u(x+ h~t )� g(x+ h~t ))� (u(x)� g(x))) = '2(x)4h(u� g)(x)and ~�(x) = �(x�h~t ) are admissible test funtions inW 1;q0 (
). After inserting these funtionsinto the weak formulation (9), we obtain by some alulationsZ
00 '24hG("D(u)) : 4h"D(u) dx = �Z
004hG("D(u)) : �4h(u� g)
r'2�Dsym dx+ Z
00 '24hG("D(u)) : 4h"D(g) dx� Z
00 '24h�4hdiv g dx+ Z
004h�(4h(u� g)) � r'2 dx+ Z
00 '24hf4h(u� g) dx= I1 + � � � + I5:18



The integrals I1; I4; I5 an be estimated similar to the orresponding integrals in the Neumannase. For I2 and I3 we use the fat, that g 2W 3;q(
) in order to obtainI2 6 4hG("D(u))(Vq(
00))0 '4h"D(g)Vq(
00) 6  jhj2 G("D(u))Lp(
) r"D(g)W 1;q(
)and I3 6  jhj2 k�kLp(
) krdiv (g)kW 1;q(
) :This shows, that inequality (40) also holds in the ase of Dirihlet onditions and we anproeed analogous to the ase of Neumann onditions. �
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5 Global regularity of weak solutionsGlobal regularity for systems of nonlinear ellipti PDE on a lass of polyhedral domains inthe setting of Nikolskii- and Sobolev-Slobodekii-spaes was �rst studied by C. Ebmeyer andJ. Frehse in [10, 12, 13℄. Later, they extended these results to the stationary Navier-Stokesequation,where they also study uids with shear thinning visosities, [14, 11℄. Sine theequation in our paper is a simpli�ed version of the Navier-Stokes equation (no onvetionterm), the results from [11℄ an be applied also to this equation and an be improved by usingthe ideas from [13℄. This will be desribed in this setion in detail.5.1 Geometrial assumptionsIn order to prove global regularity results, one needs some assumptions on the geometry.These assumptions arise mainly for tehnial reasons in the proof of global regularity, whereone has to onstrut speial extensions of the solutions aross the boundary of the domain.Let us note that at least in the two dimensional ase, the assumptions are optimal in om-parison to those whih one needs to prove similar results for linear ellipti equations.In 2D we onsider bounded Lipshitzian polygons, where the only restrition on the geometryis that if there are hanging boundary onditions in a point P 2 �
, then the interior openingangle of the domain at P is less than �.In the three-dimensional ase we onsider Lipshitzian polyhedrons where we require that atmost three faes ome together at points on the boundary where the boundary onditionshange and that the interior angle between neighbored faes with di�erent boundary ondi-tions is less than �. At verties, where the boundary onditions do not hange, there is norestrition on the number of faes or the geometry.More preisely we have the following assumptions on the geometry, see also [13℄:Two-dimensional ase: 
 � R2 is a bounded Lipshitzian polygon with �
 = �D \ �N ,�D;�N open and disjoint, where �D and �N denote the Dirihlet- and Neumann-boundary,respetively. We further assume, that �
 has the following struture:�
 = k[i=1�i;where �i are open subsets of straight lines, �i \ �j = ; for i 6= j and �i � �D or �i � �N .If �i\�j 6= ; and �i � �D, �j � �N , then ℄(�i;�j) < � (here we onsider the interior angle).Three-dimensional ase: 
 � R3 is a bounded Lipshitzian polyhedron with �
 = �D \ �N ,�D;�N open and disjoint. Furthermore �
 = [ki=1�i, where �i \ �j = ; for i 6= j and�i � �D or �i � �N . We assume that every �i is an open subset of a suitable plane andhas a polygonal Lipshitzian boundary. If �i1 � �D and �i2 � �N and �i1 \ �i2 6= ;, then℄(�i1 ;�i2) < �, where we onsider the interior opening angle. Finally, if �i1 � �D and�i2 � �N , then �i1 \ �i2 \ �i3 \ �i4 = ; for all i3 6= i4 and i3; i4 =2 fi1; i2g.
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5.2 Global regularityTheorem 5.1 (Global Regularity). Let 
 � Rd , d = 2; 3, be a polyhedral domain whihsatis�es the geometrial assumptions introdued in setion 5.1. Let further be n > 1; p =n+ 1; q = 1 + 1n ; f 2 Lp(
) and s = 2d2d�2+q > 1.We assume that the Dirihlet-data is given by a funtion g 2W 2;sq(
̂) with rg 2 L1(
̂) forsome domain 
̂ �� 
 and u���D = g���D :Furthermore, we assume that the Neumann-data is of the following form: There exists afuntion H 2W 1;p(
;Rd�d ) \ L1(
;Rd�d); H = HT , suh that�~n = H~n on �N :Then for a weak solution (u; �) 2W 1;q(
)� Lp(
) there holds for every Æ > 0:u 2W 32�Æ;qs(
);�D 2W q�12 �Æ;ps(
);� 2W q�12 �Æ;p(
);� 2W q�12 �Æ;ps(
) if f 2 Lps(
):Here, �D = � ��"D(u)��q�2 "D(u).Remark 5.1. If d < p and H 2 W 1;p(
), then the embedding theorems state that H 2L1(
). Furthermore, one an hoose any funtion g 2 W 2;d(
̂) in order to desribe theDirihlet-data.Remark 5.2. If we hoose n = 1 in the previous theorem, i.e. the equations redue to thelinear Stokes-system, then Theorem 5.1 predits u 2 W 32�Æ;2(
). This result is well known(up to Æ) from linear theory.Proof. The proof is divided into several steps. First we over 
 with a �nite number of sub-domains whih an be onsidered as model problems. For eah subdomain we then prove theresult separately. Here we use the di�erene quotient tehnique developed by Ebmeyer/Frehsein [13, 10, 14℄. We hoose for eah subdomain a suitable basis of Rd and show that u is on-tained in one of the \tilde"-Nikolskii-spaes introdued in setion 2.2. Here, the geometrialassumptions on the domain play a ruial role sine, e.g. in the ase of pure Dirihlet ondi-tions, we have to de�ne extensions of u aross the boundary suh that funtions of the type'2(x)(u(x+ h)� u(x)) are admissible test funtions.We make use of the following notation: For P 2 Rd and R > 0 we set BR(P ) := fx 2 Rd :jx� P j < Rg.1. Case: P 2 �
 and pure Dirihlet onditions in a neighborhood of P :Let 
̂ be the domain desribed in Theorem 5.1. Choose P 2 �
 suh that there exists aneighborhood U(P ) � 
̂ with the following properties:1. �
 \ U(P ) � �D and2. if P =2 �i then �i \ U(P ) = ;: 21
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�D �DFigure 3: Example for the notation in Case 1The seond ondition implies that there is is at most one vertex in 
 \ U(P ).Sine 
 is a bounded Lipshitzian domain, the uniform one property holds, [28℄. Thereforewe an �nd a normed basis e1; : : : ; ed of Rd and numbers R000 > R00 > R0 > 0 with the propertythat BR000(P ) � U(P ) and that the oneC := (x 2 Rd : x = h0 dXi=1 �iei; �i > 0; dXi=1 �i 6 1) with h0 := (R000 �R00)=2satis�es for every x0 2 �
 \BR000(P ):(x0 + C) \ 
 = ;;see also Figure 3.Choose ' 2 C10 (BR00(P )) with '��BR0 (P ) = 1. For a weak solution u 2 W 1;q(
) we de�ne thefollowing extension (and use the same symbol for the extended funtion):u(x) = (u(x) if x 2 
;g(x) if x 2 (
̂n
) \BR000(P ):Note, that the extended funtion is an element of W 1;q(
 [BR000(P )).For 1 6 i 6 d, 0 < h < h0 and x 2 
 let�i(x) := '2(x) ((u� g)(x+ hei)� (u� g)(x)) = '2(x)4ih(u� g)(x):The funtions �i are elements of W 1;q(
) with �i���
 = 0. To see the seond assertion, let bex 2 �
\BR000(P ) � �D. Then x+hei 2 BR000(P )n
 and therefore u(x+hei)�g(x+hei) = 0as well as u(x) � g(x) = 0 due to the de�nition of the extension of u and to the Dirihlet-onditions on �
 \ BR000(P ). On the remaining part of �
, ' vanishes. Thus, for 1 6 i 6 dand 0 < h < h0 the funtions �i are admissible test funtions for the weak formulation.Inserting �i into the weak formulation (9) yields after some simple alulations where we use
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that divu = tr"(u) = 0:Z
 '2G("D(u)) : 4ih"D(u)dx = Z
 '2G("D(u)) : 4ih"D(g) dx� Z
G("D(u)) : �4ih(u� g) 
r'2�Dsym dx� Z
 '2�4ihdiv g dx+ Z
 �4ih(u� g) � r'2 dx+ Z
 '2f4ih(u� g) dx: (43)For shortness we have set G(") = � j"jq�2 ". By inequality (60) we obtain with a onstant > 0 whih is independent of h:Z
 '2� ��"D(u)�� + ��"D(u(x+ hei))�� �q�2 ��4ih"D(u)��2 dx(60)6 �Z
 '2G("D(u)) : 4ih"D(u) dx+ Z
 '24ih ���"D(u)��q� dx(43)= �Z
 '2G("D(u)) : 4ih"D(g) dx+ Z
G("D(u)) : �4ih(u� g)
r'2�Dsym dx+ Z
 '2�4ihdiv g dx� Z
 �4ih(u� g) � r'2 dx� Z
 '2f4ih(u� g) dx+ Z
 '24ih ���"D(u)��q� dx (44)=: I1 + : : :+ I6:Next, we estimate the integrals I1; : : : ; I6. By H�older's inequality and the fat that u � g 2W 1;q(
 [BR000(P )):jI5j 6 k'fkLp(
) '4ih(u� g)Lq(
) 6 h k'fkLp(
) kr(u� g)kLq(
[BR000 (P )) :Note, that u = g on BR000(P )n
 and therefore kr(u� g)kLq(
[BR000 (P )) = kr(u� g)kLq(
).Similarly jI2j 6 hG("D(u))Lp(
) kr(u� g)kLq(
) ;jI4j 6 h k�kLp(
) kr(u� g)kLq(
) :Furthermore, sine g 2W 2;qs(
̂):jI1j 6 hG("D(u))Lp(
) r"D(g)Lq(
[BR000 (P )) ;jI3j 6 h k�kLp(
) krdiv gkLq(
[BR000 (P )) :In all these estimates, the onstant  is independent of h. In order to estimate I6, we use therelation 4ih(fg) = (4ihf)g + f(x+ hei)4ihg:I6 = Z
4ih �'2 ��"D(u)��q� dx� Z
(4ih'2) ��"D(u(x+ hei))��q dx =: I61 + I62:23



As before, jI62j 6 h"D(u)qLq(
) r'2L1(
) :Taking into aount the properties of the extension of u and the properties of supp' weobtain after a hange of variables:I61 = Z
+hei '2 ��"D(u)��q dx� Z
 '2 ��"D(u)��q dx = Z(
+hein
)\BR000 (P ) '2 ��"D(g)��q dx;where 
 + hei = fx 2 Rd : x = y + hei; y 2 
g. Due to the assumptions in Theorem 5.1 wehave "D(g) 2 L1(
̂) and thereforeI61 6 '2 ��"D(g)��qL1((
+hein
)\BR000 (P ))mes ((
 + hein
) \BR000(p)) 6 h;where  is independent of h. Colleting all these estimates, we get with a onstant  whih isindependent of h:Z
 '2 ���"D(u(x))�� + ��"D(u(x+ hei)���q�2 ��4ih"D(u(x))��2 dx 6 h: (45)Applying inequality (59) to the left hand side of equation (45) leads toZ
 '2 �����"D(u(x+ hei))�� q2 � ��"D(u(x))�� q2 ���2 dx 6 h;where  is independent of h. Sine '(x) = 1 for x 2 BR0(P ) we obtain for all 1 6 i 6 d:sup0<h<h0 4ih ��"D(u)�� q2h 12 L2(
\BR0 (P )) 6  <1 (46)and therefore by Lemma 2.2 j"(u)j q2 2 N 12 ;2(
 \BR0(P )):Here we have used tr "(u) = div u = 0.The embedding theorem of Nikolskii-spaes in Sobolev-Slobodekii-spaes, see Lemma 2.1,yields 8 Æ > 0 : j"(u)j q2 2W 12�Æ;2(
 \BR0(P ))and �nally by standard embedding theorems,"(u) 2 L dqd�1�Æ(
 \BR0(P )) for all Æ > 0: (47)In the next step we prove the regularity result for a weak solution u and proeed analogousto [13℄. As abbreviation we de�ne 
0 := 
 \BR0(P ).By standard embedding theorems the spae W 1;q(
) is ontinuously embedded in the spaeL dqd�1 (
). Therefore, relation (47) and Korn's inequality, see Theorem 2.2, lead to u 2W 1; dqd�1�Æ(
0) for all Æ > 0. For arbitrary Æ > 0 let � := 2dq2d�2+q � Æ = qs � Æ withs from Theorem 5.1. For 1 < q < 2 we have 1 < � < 2 (if Æ is small enough) and24



� < dqd�1 and therefore u 2 W 1;�(
0). Furthermore the same is true for the extended fun-tion: u 2 W 1;�(
0 [ (BR000(P )n
)). Thus for 0 < h < h0, 1 6 i 6 d and Mh = fx 2 
0 :"D(u(x+ hei)) = "D(u(x)) = 0g:Z
0 ���h� 124ihru���� dx 6 Z
0 ���h� 124ih"(u)���� dx+ Z
0 ���h� 124ihu���� dx6 Z
0nMh ���"D(u(x+ hei))��+ ��"D(u(x))�����2 (q�2)���"D(u(x+ hei))��+ ��"D(u(x))����2 (q�2) ���h� 124ih"D(u)���� dx+ h�2 kuk�W 1;�(
0)= I5 + h�2 kuk�W 1;�(
0) :Here we have used div u = 0; u 2 W 1;�(
0) and Korn's inequality, see Theorem 2.2. ByH�older's inequality we further getjI5j 6 ���"D(u(�+ hei))��+ ��"D(u)��� 22��L�(2�q)2�� (
0) Z
nMh ���"D(u(x+ hei))�� + ��"D(u(x))���q�2 ���h� 124ih"D(u)���2 dx!�2 : (48)By equation (45), the seond term is bounded independently of h, furthermore, �(2�q)2�� < dqd�1and thus the �rst term is bounded independently of h as well, see also (47). We �nally obtainthat there exists a onstant  > 0 suh that for all 0 < h < h0:Z
0 ���h� 124ihru���� dx 6  (49)and therefore for every �; ~� > 0:u 2 N 32 ;�(
0) �W 32��;qs�Æ(
0) �W 32�~�;qs(
0):Here we have applied Lemma 2.1 for the �rst inlusion and the embedding theorems forSobolev-Slobodekii spaes for the seond one. The regularity results for �D an be derivedin the same way as in the proof of Theorem 3.1. For the ase f 2 Lp(
), the regularity of �an be shown as in the proof of Theorem 3.1. If f 2 Lps(
) � Lp(
), then one an prove in a�rst step � 2W q�12 �Æ;p(
0). This spae is embedded in Lps(
) and therefore one an ahievein a seond step by applying the same arguments as in the proof of Theorem 3.1 the higherregularity � 2W q�12 �Æ;ps(
0).2. Case: P 2 �
 and pure Neumann onditions in a neighborhood of P :Choose P 2 �
 suh that there exists a neighborhood U(P ) with the following properties:1. �
 \ U(P ) � �N and2. if P =2 �i then �i \ U(P ) = ;: 25



Sine 
 is a bounded Lipshitzian domain, the uniform one property holds, [28℄. Thereforewe an hoose a basis e1; : : : ed of Rd with jeij = 1 and numbers R000 > R00 > R0 > 0 in suh away that BR000(P ) � U(P ) and that the oneC := (x 2 Rd : x = h0 dXi=1 �iei; �i > 0; dXi=1 �i 6 1) with h0 := (R000 �R00)=2satis�es for every x0 2 
 \BR000(P ): x0 + C � 
:Now let ' 2 C10 (BR00(P )) with 'jBR0 (P ) = 1. For 1 6 i 6 d and 0 < h < h0 we de�ne�i(x) = '2(x) (u(x+ hei)� u(x)) = '2(x)4ihu(x); x 2 
:Note, that �i is well de�ned and that no extension of u aross the boundaries is needed forthe de�nition. Furthermore, �i 2W 1;q(
) and �ij�D = 0, whih shows that �i is an admissibletest funtion.Due to the speial struture of the Neumann data, the weak formulation (9) is equivalent to:8v 2 Vq(0) : Z
G("D(u)) : "D(v) dx = Z
 �div v dx+ Z
 v(f + divH) dx+ Z
H : "(v) dx;where H is desribed in Theorem 5.1. We now hoose v = �i and proeed similar to the aseof pure Dirihlet-onditions: Inserting �i into the weak formulation and using inequality (60)we get:Z
nMh '2 ���"D(u(x + h))j+ ��"D(u(x))���q�2 ��4ih"D(u)��2 dx6 Z
 '2 �4ih ��"D(u(x))��q� dx+ Z
G("D(u)) : �4ihu
r'2�Dsym dx� Z
 �r'2(x)4ihu(x)dx � Z
 '2(f + divH)4ihudx� Z
H : "('24hu) dx=: I1 + I2 + I3 + I4 + I5: (50)The integrals I2; I3; I4 an be treated as in the Dirihlet problem:jI2j+ jI3j+ jI4j 6 h;where  > 0 is independent of h. By the produt rule for �nite di�erenesI1 = Z
4ih �'2 ��"D(u)��q� dx� Z
 ��"D(u(x+ hei))��q4ih'2 dx = I11 + I12: (51)As before jI12j 6 h kr'k1 "D(u)qLq(
) :26



By a hange of variables I11 = �Z
n(
+hei) '2 ��"D(u)��q dx;where 
 + hei = fx 2 Rd : x = y + hei; y 2 
g. For I5 we use again the produt rule andthe fat that divu = 0:I5 = �Z
H : �4ihu
r'2�sym dx+ Z
4ih �'2H� : "D(u(x+ hei)) dx� Z
4ih �'2H : "D(u)� dx= I51 + I52 + I53: (52)By the usual arguments jI51j 6 h kHkLp(
) krukLq(
) ;jI52j 6 h kHkW 1;p(
) "D(u)Lq(
) :Furthermore by H�older's and Young's inequality and sine H 2 L1(
) we get for all Æ > 0:jI53j = �����Z
n
+hei '2H : "D(u) dx�����6 Æ�1 ' 2pHLp(
n
+hei) Æ ' 2q "D(u)Lq(
n
+hei)6 0Æ�p Z
n
+hei '2 jHjp dx+ 0Æq Z
n
+hei '2 ��"D(u)��q dx6 0Æ�p '2 jHjpL1(
) j
n(
 + hei)j+ 0Æq Z
n(
+hei) '2 ��"D(u)��q dx6 Æ�p1h+ 0Æq Z
n(
+hei) '2 ��"D(u)��q dx: (53)Here, 0; 1 are independent of h. We now hoose Æ = � 1q0 and obtainI11 + I53 6 1� 1q1 h+ 0 = h; (54)where  is independent of h. Colleting all estimates yields: There exists  > 0 suh that forall 0 < h < h0:Z
nMh '2 ���"D(u(x+ hei))��+ ��"D(u(x))���q�2 ��4ih"D(u(x))��2 dx 6 h:The remaining part of the proof for the Neumann-boundary is ompletely analogous to theonsiderations in the Dirihlet-ase, see (45) and below.3. Case: P 2 �
 and mixed onditions in a neighborhood of P :We remind that d denotes the dimension of the domain 
. We onsider a vertex P 2 �
 anda neighborhood U(P ) with the following properties:27



1. There exist i1 < : : : < id suh that P 2 �ij for 1 6 j 6 d; and �i1 � �D;�id � �N .2. If P =2 �i then �i \ U(P ) = ;.As in the ase of pure Dirihlet or pure Neumann onditions, we have to �nd a suitable basisof Rd for whih we an prove an estimate like in (49).If d = 2 hoose e1 k �i1 � �D and e2 k �i2 � �N with the following orientation: There existsR > 0, suh that P + he1 =2 
 for every 0 < h < R and P + he2 2 �N for 0 < h < R.In the three dimensional ase we assume P 2 �i1 \ �i2 \ �i3 where �i1 � �D and �i3 � �N .Choose e1 k �i1 \ �i2 , e2 k �i2 \ �i3 and e3 k �i3 \ �i1 and assume that the vetors ei areoriented in suh a way that for a suitable R > 0 there holds:1. Case: Let �i2 � �D. Then for all 0 < h < R: P + he1 2 �i1 \ �i2 anda) If ℄(�i1 ;�i2) < � =) P + he2 =2 �i2 \ �i3 ; P + he3 =2 �i3 \ �i1 .b) If ℄(�i1 ;�i2) > � =) P + he2 2 �i2 \ �i3 ; P + he3 2 �i3 \ �i1 .2. Case: Let �i2 � �N . Then for all 0 < h < R: P + he2 =2 �i2 \ �i3 anda) If ℄(�i2 ;�i3) < � =) P + he1 2 �i1 \ �i2 ; P + he3 2 �i3 \ �i1 .b) If ℄(�i2 ;�i3) > � =) P + he1 =2 �i1 \ �i2 ; P + he3 =2 �i3 \ �i1 .Due to the geometri assumptions desribed in setion 5.1, it is always possible to �nd suha basis. It follows that every ei satis�es either (P1) or (P2), where(P1) For every x0 2 �
 \BR=2(P ) there holds: x0 + hei 2 
 for 0 < h < R2 .(P2) For every x0 2 �
 \BR=2(P ) there holds: x0 + hei =2 
 for 0 < h < R2 .Note, that in the threedimensional ase, (P1) is satis�ed in ase 1 for e1 and in ase 2 for e1and e3; (P2) is satis�ed in ase 1 for e2 and e3 and in ase 2 for e2.Now hoose R000 = 12R;R00 = 13R;R0 = R6 , h0 = R6 , ' 2 C10 (BR00(P )) with 'jBR0 (P ) = 1and assume that (u; �) 2 W 1;q(
) � Lp(
) is a weak solution. For 1 6 i 6 d we de�ne thefollowing test funtions:Assume that ei satis�es (P1). Then�i(x) := '2(x) (u(x+ hei)� u(x)) = '2(x)4ihu(x) for x 2 
:Note, that �i 2W 1;q(
) with �ij�D = 0, and therefore �i is an admissible test funtion. Notealso, that we do not need any extension of u aross the boundary in this ase.If ei satis�es (P2), let beMi := fx 2 Rd : x = x0 + hei; 0 6 h < h0; x0 2 �
 \BR000(P )g n
:We de�ne the following extension of u on 
 [Mi aross the boundary (�
 \ �Mi) whih isa subset of �D: u(x) := (u(x) if x 2 
;g(x) if x 2Mi:The extended funtion is an element of W 1;q(
 [Mi). We set�i(x) := '2(x) ((u(x+ hei)� g(x + hei))� (u(x)� g(x))) = '2(x)4ih(u� g)(x) for x 2 
:28



There holds �i 2W 1;q(
) with �ij�D = 0, and therefore �i is an admissible test funtion.We now proeed analogous to the ases of pure Dirihlet or pure Neumann onditions on�
 \ U(P ): Inserting the test funtion into the weak formulation (9) results either in (50) ifei satis�es (P1) or in (44) if ei satis�es (P2). By the same arguments as subsequent to (50)and (44), respetively, we �nally obtain that u 2 N 32 ;s(
 \ BR0(P )), where s is the numberin Theorem 5.1, and that the orresponding results for �D and � hold also.To prove the global regularity result in Theorem 5.1 we over 
 with a �nite number ofopen balls Bl, where for every l, 
 \ Bl �ts in one of the above ases or is ompletely on-tained in 
. The regularity results now are valid not only for eah 
 \ Bl but also for thewhole domain 
. �
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A Some essential inequalitiesWe ollet some basi inequalities whih all deal with the following funtion: Let 1 < q,F : Rs ! R : x! jxjq :F is ontinuously di�erentiable withDF (x) = (q jxjq�2 x if x 6= 0;0 else. (55)Moreover D2F (x) = q(q � 2) jxjq�4 x 
 x + q jxjq�2 I if x 6= 0: Here, a 
 b 2 Rd�d denotesthe tensor produt of the vetors a; b 2 Rd with (a
 b)ij = aibj .Lemma A.1. Let F be the funtion from above, 1 < q < 1. Then there exists a onstant > 0 suh that8x 2 Rsnf0g : ��D2F (x)�� 6  jxjq�2 ; (56)8x 2 Rsnf0g;8� 2 Rs : �D2F (x)�� � � >  jxjq�2 j�j2 ; (57)8x; y 2 Rs ; (x; y) 6= (0; 0) : �jxjq�2 x� jyjq�2 y� � (x� y) >  (jxj+ jyj)q�2 jx� yj2 ; (58)8x; y 2 Rs ; 0 < � : jjxj� � jyj�j 6  (jxj+ jyj)��1 jx� yj ; (59)and there exist onstants 1; 2 > 0 suh that for all x; y 2 Rs ; (x; y) 6= (0; 0) :jyjq � jxjq > 1 jxjq�2 x � (y � x) + 2 (jxj+ jyj)q�2 jy � xj2 : (60)For 1 < q 6 2 there exists  > 0 suh that for all x; y 2 Rs :���jxjq�2 x� jyjq�2 y��� 6  jx� yjq�1 : (61)For 2 6 q there exists  > 0 suh that for all x; y 2 Rs :���jxjq�2 x� jyjq�2 y��� 6  (jxj+ jyj)q�2 jx� yj : (62)Note, that ; 1; 2 may depend on q; �; s.For n 2 N, ai 2 R with ai > 0, 1 6 i 6 n, we have [19℄: nXi=1 ai!� 6 n��1 nXi=1 a�i ! if � > 1; (63) nXi=1 ai!� > n��1 nXi=1 a�i ! if 0 6 � 6 1: (64)Proof. Inequalities (56), (57) follow by diret alulations. Inequalities (58) and (62) an befound in [25, Lemma 2.3℄ in a more general setting. Inequality (61) is proved in [11, formula(4.29) and below℄. Inequality (60) is based on Clarkson's inequality and an be found in30



[9, 21℄. Finally we prove inequality (59).1. Case, � > 1: Let x; y 2 Rs with jxj > jyj > 0. Thenjxj� � jyj� = � Z 10 jy + t(x� y)j��2 (y + t(x� y))(x� y)dt6 � Z 10 j(1� t) jyj+ t jxjj��1 dt jx� yj6 � Z 120 (1� t)��1dt+ Z 112 t��1dt! (jxj+ jyj)��1 jx� yj= (2� 21��) (jxj+ jyj)��1 jx� yj :2. Case, 0 < � < 1: Let x; y 2 Rs with jxj > jyj > 0. Then0 6 (jxj� � jyj�) (jxj+ jyj) 6 jxj�+1 � jyj�+1 1: ase6  (jxj+ jyj)� jx� yj : �Note, that for 1 < q < 2 the funtion x ! jxjq�2 x an be ontinuously extended to x = 0by 0.B Properties of the div operatorIn this setion we ollet and prove some properties of the div operator whih are diÆultto �nd in literature. The main tools for the proof of the main theorem are Peetre's Lemma,Ne�as' Lemma and an embedding theorem for Lp into Sobolev-spaes of negative order. Theproof of the main theorem follows exatly the ideas of the proof of Theorem 3 in [16℄, butthere only Lipshitz domains with �D = �
 are onsidered.Throughout the whole setion we assume:
 � Rd is a bounded domain with Lipshitz-boundary, �
 = �D [�N , where �D and �N areopen and disjoint. We �rst ite some essential lemmata:Lemma B.1 (Peetre's Lemma). [7℄ Let E0; E1; E2 be Banah spaes, let A1 and A2 betwo ontinuous linear mappings, respetively from E0 to E1 and from E0 to E2, withi) A2 is a ompat mapping;ii) there exists a onstant  > 0 suh that:kvkE0 6  �kA1vkE1 + kA2vkE2� for all v 2 E0: (65)Theni) kerA1 has �nite dimension and Im A1 is losed;ii) there exists a onstant 0 > 0 suh that:infw2kerA1 kv + wkE0 6 0 kA1vkE1 :For 1 < p <1 we de�ne the following norm for � 2 Lp(
;R) with q = p0 = pp�1 :jk�kjp : = k�kW�1;p(
;R) + kr�kW�1;p(
;Rd)= supv2W 1;q0 (
;R)kvkW1;q(
)=1 ����Z
 �v dx����+ supw2W 1;q0 (
;Rd)kwkW1;q(
)=1 ����Z
 �divw dx����31



Lemma B.2 (Ne�as' Lemma). [5℄ Let 
 � Rd be a bounded domain with Lipshitz-boundary. Then jk�kjp is a norm on Lp(
) whih is equivalent to the usual norm on Lp(
).Lemma B.3. Let 
 � Rd be a bounded domain with Lipshitz-boundary, 1 < p <1; q = p0.Then the embedding Lp(
)!W�1;p(
) = (W 1;q0 (
))0 is ompat.Proof. The adjoint operator to id1 : Lp(
) ! W�1;p(
) is given by id2 : W 1;q0 (
) ! Lq(
).The Sobolev-embedding theorems state that the embedding W 1;q0 (
) ! Lq(
) is ompat.By Shauder's Theorem [27, Satz III.4.4, p.111℄ this is also true for the adjoint operator. �We are now ready to state the main theorem of this setion:Theorem B.1 (Properties of the div operator). Let 
 � Rd be a bounded domain withLipshitz-boundary, 1 < p < 1 and q = p0 = pp�1 . Let further �D � �
 be open andVq := fu 2W 1;q(
;Rd) : uj�D = 0g. Consider the mapping div : Vq ! Lq(
); u 7! divu.1. The adjoint operator of div is given by the operator B : Lp(
)! V 0q : � 7! R
 �div (�) dx.If �D = �
, then B(�) = �r� in the distributional sense.2. The image of div is losed in Lq(
). More exatly,Im (div ) = �r 2 Lq(
) : Z
 r dx = 0� if �D = �
;Im (div ) = Lq(
) else.3. There exists  > 0 suh that for all � 2 Lp(
): k�kLp(
)=R 6  kr�kW�1;p(
) :4. The kernel of B (= adjoint operator of div ) has the following struture:ker(B) = f onstant funtions g if �D = �
;ker(B) = f0g else.Proof. The �rst assertion follows by diret alulations. By the losed image theorem [27,p.143℄ the following is true: Im (div ) is losed if and only if Im (B) is losed. Therefore weprove that Im (B) is losed. For this we apply Peetre's Lemma to E0 = Lp(
), E1 = V 0q ,E2 = W�1;p(
), A1 : Lp(
) ! V 0q ; � ! A1(�) = B(�) and A2 : Lp(
) ! W�1;p(
); � ! �.The ompatness of A2 follows by Lemma B.3 and we only have to verify inequality (65).For every � 2 Lp(
) there holds r� 2W�1;p(
) withkr�kW�1;p(
) = supv2W 1;q0 (
)kvkW1;q(
)=1 ����Z
 �div v dx����6 supv2VqkvkW1;q(
)=1 ����Z
 �div v dx���� = kB(�)kV 0q :Thus k�kLp(
) Lemma B.26 (k�kW�1;p(
) + kr�kW�1;p(
)) 6 (kB(�)kV 0q + k�kW�1;p(
)):32



Therefore we an apply Peetre's Lemma and get the seond and third assertion. To get theexat desription of Im (div ) we �rst alulate ker(B):For an arbitrary Dirihlet boundary we get from B(�) = 0 by testing with funtions inC10 (
) that r� = 0 in the distributional sense and therefore (
 is onneted) � = onst:If mes(�
n�D) 6= 0 we may further onlude by testing with ' 2 Vq: 0 = R
 �div'dx =� R
 div'dx = �� R�
n�D '~nds and therefore � = 0 in 
. This leads to assertion 4. Theremaining part of the seond assertion follows by the following equality (theorem of the losedimage [27, p.143℄)Im (div ) = �r 2 Lq(
) : Z
 �r dx = 0 for all � 2 Lp(
) with B(�) = 0� : �C An abstrat theorem on nonlinear saddle point problemsLet V;W be reexive, separable Banah spaes, V 0;W 0 their duals. Consider the followingoperators A : V ! V 0 ontinuous and monotone,B :W ! V 0 linear and ontinuous,B� : V !W 0 adjoint operator to B:We want to solve the following problem: For given f 2 V 0; g 2 W 0 �nd (u; �) 2 V �W forwhih A(u) +B� = f; (66)B�u = g: (67)Lemma C.1. Let V;W be reexive, separable Banah spaes, A : V ! V 0 ontinuous andmonotone, B : W ! V 0 linear and ontinuous and B� : V ! W 0 the adjoint operator of B.Let further be f 2 V 0; g 2 Im B� �W 0. Ifa) A is oerive on Mg := fv 2 V : B�v = gg, i.e. if fun; n 2 Ng �Mg with kunk ! 1as n!1, then hAun;unikunkV !1,b) Im (B) is losed in V 0,then there exists a pair (u; �) 2 V �W whih solves (66)-(67). Moreover, if A is stronglymonotone, then u is unique and � is unique up to the addition of elements from kerB.Proof. Existene: In a �rst step we prove the lemma with g = 0:Let f 2 V 0. We set V0 := kerB�. Sine V0 � V , the onverse relation holds for the duals andthus f 2 V 00 . We now solve the following problem:Find u 2 V0 suh that Au = f is satis�ed in V 00 , that means: Find u 2 V0 suh that8 v 2 V0 : hAu� f; vi(V 00 ;V0) = 0:By the main theorem on monotone operators [29℄ this equation has a solution u 2 V0 = kerB�.Next we solve the following equation in W : Find � 2 W suh that B� = f �Au in V 0, thatmeans: Find � 2W suh that8 v 2 V : h�; vi(V 0;V ) = hf �Au; vi(V 0;V ): (68)33



Note, that u 2 V0 � V and therefore, by the mapping properties of A, Au 2 V 0 and not onlyin V 00 . Obviously problem (68) has a solution if and only if f � Au 2 Im (B). Sine Im B islosed, we have the following haraterization of Im B, [27℄:Im (B) = �v 2 V 0 : hv; wi(V 0;V ) = 0 for all w 2 kerB�	 :Sine f � Au 2 V 0 and sine for any w 2 kerB� = V0 we have hf � Au;wi(V 00 ;V0) = 0 weonlude that f�Au 2 Im (B). Thus, the pair (u; �) solves the equations (66)-(67) with g = 0.Now let f 2 V 0 and g 2 Im B� be arbitrary. Sine B� is linear, there exists u0 2 V suhthat Mg = u0 + kerB�. For w 2 V we set G(w) := A(u0 + w). Then problem (66)-(67) isequivalent to the following: Find w 2 V; � 2W suh thatG(w) +B� = f; (69)B�w = 0: (70)From the assumptions on operator A we dedue that G is ontinuous, (strongly) monotoneand oerive on kerB�. Thus, we an apply the results from the �rst step to (69)-(70).Uniqueness: Assume now that A is strongly monotone and that (u1; �1); (u2; �2) 2 V �Ware solutions of (66)-(67) with the same right hand side f . Then u1 � u2 2 V and we getfrom equations (66),(67):hAu1; u1 � u2i+ hB�1; u1 � u2i = hf; u1 � u2i; (71)hAu2; u1 � u2i+ hB�2; u1 � u2i = hf; u1 � u2i; (72)hB�u1; �1 � �2i = hg; �1 � �2i; (73)hB�u2; �1 � �2i = hg; �1 � �2i: (74)Subtrating (71) and (72) resp. (73) and (74) and using that B� is the adjoint of B we obtainhAu1 �Au2; u1 � u2i = 0and by the strong monotoniity of A: u1 � u2 = 0.Now we assume that (u; �1); (u; �2) are two solutions of (66)-(67) with the same right handsides. Testing the equations with an arbitrary v 2 V we obtain:hAu; vi + hB�1; vi = hf; vi;hAu; vi + hB�2; vi = hf; vi:Subtrating these equations we get for every v 2 V : hB(�1 � �2); vi(V 0;V ) = 0 and therefore�1 � �2 2 kerB. �D Variant of Ljusternik's TheoremIn this setion we give a simpli�ed variant of Ljusternik's Theorem, see e.g. [30, Thm. 43.D,Prop. 43.19℄. 34



Theorem D.1. Let X;Y be real Banah spaes. We assume, that(1) F : U(u0) � X ! R is Fr�ehet-di�erentiable with Fr�ehet-derivative DF ,(2) G : U(u0) � X ! Y is of the form G(u) = G0u + f , where G0 : X ! Y is linearand ontinuous and f 2 Y .(3) Im (G0) is losed in Y .If u0 is a loal Minimizer of F under the onstraint u0 2 M := fu 2 X : G(u) = 0g, thenthere exists � 2 Y 0 for whihhDF (u0); ki(X0 ;X) � h�;G0(k)i(Y 0;Y ) = 0 for every k 2 X:If Im (G0) = Y , then � is unique.Proof. To prove the assertion we apply [30, Prop. 43.1℄ to our problem. Therefore, we haveto show that the following is true for u0:8 k 2 X : if G0(k) = 0 then hDF (u0); ki(X0 ;X) = 0:Let k 2 kerG0. For t 2 R we set k(t) := u0 + tk. Obviously k(t) 2 M for all t 2 Rand 0k(0) = k. Now let f(t) := F (k(t)). u0 is a loal minimum of F jk , and thereforehDF (u0); ki(X0;X) = f 0(0) = 0. [30, Prop. 43.1℄ yields the assertion. �Referenes[1℄ Adams, R. A. Sobolev Spaes, vol. 65 of Pure and Applied Mathematis. AademiPress, In.,, Boston, 1992.[2℄ Alt, H. Lineare Funktionalanalysis, 3. ed. Springer Verlag, Berlin, Heidelberg, 1999.[3℄ Barrett, J. W., and Liu, W. B. A remark on the regularity of the solutions ofthe p-Laplaian and its appliation to their �nite element approximation. Journal ofMathematial Analysis and Appliations 178, 2 (1993), 470{487.[4℄ B�ohme, G. Non-Newtonian uid mehanis, vol. 31 of North-Holland Series in AppliedMathematis and Mehanis. North-Holland, Amsterdam, 1987.[5℄ Carroll, R., Duff, G., Friberg, J., Gobert, J., Grisvard, P., Neas, J., andSeeley, R. Equations aux deriv�ees partielles. (S�eminaire de math�ematiques sup�erieures.19.) Montr�eal: Les Presses de l'Universit�e de Montr�eal, 1966.[6℄ Chabrowski, J. Variational methods for potential operator equations: with appliationsto nonlinear ellipti equations. de Gruyter Studies in Mathematis. 24, Berlin, 1997.[7℄ Dautray, R., and Lions, J.-L. Mathematial analysis and numerial methods forsienes and tehnology, vol. 3 Spetral theory and appliations. Springer-Verlag, BerlinHeidelberg, 1990.[8℄ de Th�elin, F. Loal regularity properties for the solutions of a nonlinear partial dif-ferential equation. Nonlinear Analysis, Theory, Methods & Appliations 8, 8 (1982),839{844. 35
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