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1 Introdu
tionIn this paper we investigate the solvability and regularity of the velo
ity and pressure �elds ofa 
lass of 
uids with shear dependent vis
osity, where the 
onstitutive relation is of power-lawtype. The 
orresponding �eld equations are given by a quasilinear ellipti
 system of partialdi�erential equations, whi
h in
lude as a spe
ial 
ase the stationary, linear Stokes system.Besides the presentation of known results on lo
al regularity of the velo
ity �elds in appropri-ate Sobolev-Slobode
kij-spa
es, we derive some new aspe
ts 
on
erning the lo
al and globalregularity of the pressure, stress and velo
ity �elds on polygonal or polyhedral domains andin
lude the 
ase of mixed non-vanishing boundary 
onditions. In the whole paper we willfo
us our attention on higher regularity in Sobolev-Slobode
kij-spa
es.Lo
al regularity results, i.e. higher regularity on subsets 
0 �� 
, for quasilinear degeneratedellipti
 systems of p�stru
ture were derived e.g. by P. Tolksdorf, [25℄, F. de Th�elin, [8℄, andJ.-P. Raymond, [24℄. They used a di�eren
e quotient te
hnique in order to obtain a betterregularity in Sobolev spa
es of integral order. In 
ontrast to the systems they 
onsidered, theequations of our 
uid model also 
ontain a pressure term � (n > 1):div �� ��"D(u)�� 1n�1 "D(u)��r� = �f in 
;divu = 0 in 
;u = g on �D;�~n = h on �N :J. Naumann proved in [22℄ on the basis of Tolksdorf's and de Th�elin's results lo
al regularityof the velo
ity �eld u in three dimensions for this equation. We reformulate his result alsofor the two-dimensional 
ase and investigate in addition the regularity of the shear stress andpressure �eld. For this we apply te
hniques whi
h were developed by C. Ebmeyer in [11℄. Wewill also use these te
hniques to obtain higher regularity for tangential derivatives at a 
atpart of the boundary. Let us �nally note, that M. Fu
hs proves lo
al regularity results inH�older spa
es for a 
uid model, whi
h is a modi�
ation of our model, [15℄.Global regularity results will be derived for a 
lass of polyhedral domains with mixed andnon-vanishing boundary 
onditions. Here we 
ombine Ebmeyer's 
onsiderations from [11℄and [13℄. In [11℄, Ebmeyer proved global results for non-Newtonian 
ows where the equa-tions 
ontain the 
onve
tion term (u � r)u. Sin
e our model has no su
h term we 
an 
arryover the investigations from [13℄ to our problem whi
h leads to a higher regularity thanin [11℄. Again, the proofs are based on a di�eren
e quotient te
hnique to get estimates inappropriate Nikolskii-spa
es, whi
h are 
losely related by embedding theorems to the usualSobolev-Slobode
kij-spa
es.Sin
e the linear Stokes system is a spe
ial 
ase of our model, we will 
ompare the obtainedresults to those whi
h are well known for linear ellipti
 equations. This indi
ates some opti-mality of the results.The paper is organized as follows:In se
tion 2 we will shortly prove existen
e of solutions of �nite energy. This 
an be doneby well known arguments in the framework of the theory of monotone operators. We alsodes
ribe the 
onne
tion between the weak formulation and the minimization problem for the
orresponding energy fun
tional. 2



Se
tion 3 is devoted to the study of lo
al regularity of the velo
ity, pressure and stress �elds.While the regularity of the velo
ity �eld is proved in [22℄, we dedu
e the regularity of thestress and pressure �eld by applying the te
hniques from [11℄.In se
tion 4, we study the regularity properties of higher tangential derivatives of the �eldsnear a 
at part of the boundary. Thereby we admit non-vanishing Diri
hlet- or Neumann-data.In se
tion 5 we state and prove global regularity results on polyhedral domains. As alreadymentioned, these results are a 
ombination of Ebmeyer's in [11℄ and [13℄ and therefore, theproofs are also based on Ebmeyer's ideas.This paper 
loses with an appendix, where some fun
tional analyti
 tools are 
olle
ted. Theappendix 
ontains some essential inequalities, mapping properties of the divergen
e opera-tor, a solvability theorem for nonlinear saddle point problems and a simpli�ed variant ofLjusternik's Theorem whi
h des
ribes the Euler-Lagrange equations for a minimization prob-lem with 
onstraints.2 Existen
e and uniqueness results2.1 Field equations for a 
lass of shear thinning 
uidsBy equations (3)-(6) here below we des
ribe the velo
ity and pressure �elds of the steadymotion of a 
lass of in
ompressible, shear thinning 
uids, where the 
onstitutive relation isof power-law type.Let 
 � Rd ; d = 2; 3 be a bounded domain, �
 = �D [ �N . By u : 
 ! Rd we denotethe velo
ity �eld of the 
uid, "(u) := 12(ru + ruT ) is the strain rate tensor, "D(u) :="(u)� 1d tr("(u))I is the deviatori
 part of "(u) and des
ribes the shear velo
ity. Furthermore,� is the stress tensor and is de
omposed in the following way:� = ��I + T = ��I + �D; (1)where � 
an be interpreted as hydrostati
 pressure and T = �D = �� 1d tr�I is the tensor ofvis
ous stresses. Note, that this splitting of � into a pressure term and the vis
ous stresses isnot stringent for an in
ompressible 
uid, in 
ontrast to the 
ase of 
ompressible 
uids, where� stands for the thermodynami
 pressure.We assume that the 
uid satis�es the following 
onstitutive relation between the shear rate"D and the shear stress �D: �D = � ��"D(u)�� 1n�1 "D(u); (2)where � > 0 and n > 1 are some material parameters whi
h 
an be �xed by experimentaldata. One 
an interpret the 
onstitutive law as follows:Consider as a spe
ial 
ase a steady plane parallel 
ow where the velo
ity is of the form~u(~x) = (u1(x2); 0; 0), see Figure 1. In this 
ase"(~u) = "D(~u) = 0� 0 "12 0"12 0 00 0 01A ;and the 
onstitutive law redu
es to�12 = � j"12(u)j 1n�1 "12(u):3



This relation is plotted in Figure 1. The quantity �("12(u)) := � j"12(u)j 1n�1 
an be interpretedas the shear vis
osity and is of Ostwald-de Waele type. For �xed n > 1, the shear vis
osity �de
reases as the shear rate "12 in
reases and therefore this model des
ribes a shear thinning
uid. It should be mentioned, that for j"12j ! 0, the shear vis
osity � tends to in�nity andone should be 
areful when applying this 
onstitutive model to 
ows with very small shearrates j"12j. Examples for shear thinning 
uids are molten plasti
s and polymer solutions. Formore details we refer e.g. to [4℄.The problem we are interested in is the following: Find a velo
ity �eld u and a pressure �eld� su
h that for given volume and surfa
e for
es f and h and for a given surfa
e velo
ity gthere holds: div� + f = 0 in 
 equations of motion,�D � � ��"D(u)�� 1n�1 "D(u) = 0 in 
 
onstitutive law,divu = 0 in 
 in
ompressibility 
ondition,u = g on �D;�~n = h on �N :The ve
tor ~n is the exterior normal ve
tor on the boundary �N . These equations 
an beshortly written as div �� ��"D(u)�� 1n�1 "D(u)��r� = �f in 
; (3)divu = 0 in 
; (4)u = g on �D; (5)�~n = h on �N : (6)Note, that in the 
ase n = 1, this system redu
es to the well known linear Stokes system.Remark 2.1. For n > 1 the fun
tion F : Rsnf0g ! Rs : ~x ! j~xj 1n�1 ~x 
an be extended
ontinuously to ~x = 0 by setting F (0) = 0. We interpret the term in the bra
kets of equation(3) in this sense.Before we des
ribe in whi
h sense we solve these equations we have to introdu
e some appro-priate fun
tion spa
es.
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PSfrag repla
ements x2 u1(x2) x1 "12
�12 shear thinning Newtonian

shear thi
keningFigure 1: Typi
al 
onstitutive behavior for shear thinning, Newtonian and shear thi
kening
uids for a steady plane parallel 
ow ~u = (u1(x2); 0; 0)4



2.2 The spa
esThroughout the whole paper we do not distinguish in our notation between s
alars, ve
torsand tensors sin
e in general it is 
lear from the 
ontext of whi
h type a variable or fun
tionis. Moreover we use the same notation for fun
tion spa
es of s
alar valued, ve
tor valued ortensorial valued fun
tions. Only in some spe
ial 
ases we will write e.g. Lp(
;Rd ) whi
h isthe spa
e of ve
tor valued fun
tions fu = (u1; : : : ; ud) : 
! Rd ; ui 2 Lp(
); 1 6 i 6 dg.For open subsets 
 � Rd , d > 1, we introdu
e the following Sobolev-Slobode
kij-spa
es:Let s = m+ �; where m 2 N0 ; 0 6 � < 1 and 1 < p <1. The spa
e W s;p(
) is de�ned byW s;p(
) := fu 2 Lp(
) : D�u 2 Lp(
) for j�j 6 m and kukW s;p(
) <1g;see also [1, 26℄. In this de�nition we make use of the usual multi-index notation, D� denotesthe distributional derivative of order � and the norm is given bykukpW s;p(
) = Xj�j6m kD�ukpLp(
) + Xj�j6mZ
 Z
 jD�u(x)�D�u(y)jpjx� yjd+p� dxdy:Furthermore, the 
orresponding tra
e spa
es on � � �
, � open, are de�ned in the sense ofSobolev-Slobode
kij-spa
es on 
ompa
t manifolds, see [18℄. Here we need Ck;1-smoothness of�
 for the de�nition of W s;p(�), where s and k are related as follows: k 2 N0 ; jsj 6 k + 1.As a spe
ial 
ase of [18, Thm. 1.5.2.1℄ we have for s = 1 and k = 0 the following tra
etheorem:Theorem 2.1. Let 
 � Rd be a bounded domain with Lips
hitz boundary, � � �
 open and1 < p <1. Then the mapping 
��� : u! u���;whi
h is de�ned for u 2 C1(
), has a unique 
ontinuous extension denoted by the sameoperator: 
��� : W 1;p(
)!W 1� 1p ;p(�):Furthermore, the mapping 
��� is surje
tive.With this theorem the following de�nition is meaningful:De�nition 2.1. Let 
 � Rd be a bounded domain with Lips
hitz boundary and �
 = �D[�N ,where �D and �N are open and disjoint; 1 < p <1. For g 2W 1� 1p ;p(�D) we setVp(g) := fu 2W 1;p(
) : u���D = gg:We will shortly write Vp instead of Vp(0).Furthermore,~W 1� 1p ;p(�N ) := nu : u = ~u���N ; where ~u 2W 1� 1p ;p(�
) with supp ~u � �No ;whi
h is endowed with the norm kuk ~W 1� 1p ;p(�N ) := k~ukW 1� 1p ;p(�
).Remark 2.2. By the linearity and surje
tivity of the tra
e operator, there exists for everyg 2W 1� 1p ;p(�D) an element ~g 2W 1;p(
) with ~gj�D = g. Thus Vp(g) = ~g + Vp(0).5



Important tools in the proof of existen
e of solutions are Korn's inequality and a generalizedversion of Poin
ar�e-Friedri
hs' inequality:Theorem 2.2 (Korn's inequality). [16℄ Let 
 � Rd be a bounded domain with Lips
hitzboundary. For 1 < p <1 we have the following estimate: There exist 
1; 
2 > 0 su
h that forall u 2W 1;p(
;Rd )
1 kukW 1;p(
) 6 kukLp(
) + 

"D(u)

Lp(
) + ktr "(u)kLp(
) 6 
2 kukW 1;p(
) :Thus, the expression kjujkp := kukLp(
)+ 

"D(u)

Lp(
)+ ktr "(u)kLp(
) de�nes an equivalentnorm in W 1;p(
). Furthermore, the spa
es W 1;p(
;Rd) and U1;p(
;Rd ) := fu 2 Lp(
;Rd) :kjujkp <1g are equal.Theorem 2.3 (Poin
ar�e-Friedri
hs' inequality). Let 
 � Rd be a bounded domain withLips
hitz boundary and 1 < p <1.1. If V �W 1;p(
) is a 
losed, 
onvex subset with the propertyu 2 V;ru = 0 =) u = 0:Then there exists a 
onstant 
 > 0 su
h that for every u 2 V :kukLp(
) 6 
 krukLp(
) :2. [16℄ If V �W 1;p(
;Rd ) is a 
losed, 
onvex subset with the propertyu 2 V; k"(u)kLp(
) = 0 =) u = 0;then there exists a 
onstant 
 > 0 su
h that for every u 2 V :kukW 1;p(
) 6 
 k"(u)kLp(
) :We will prove the regularity results by estimating di�eren
e quotients of weak solutions.Suitable spa
es, where the norms take into a

ount di�eren
e quotients in an expli
it way,are the Nikolskii-spa
es.De�nition 2.2 (Nikolskii-spa
e). [1℄ Let s = m + � where m > 0 is an integer and0 < � < 1. For 1 6 p <1N s;p(
) := nu 2 Lp(
) : kukN s;p(
) <1o ; (7)where kukpN s;p(
) = kukpLp(
) + Xj�j=m sup�>0h2Rd0<jhj<� Z
� jD�u(x+ h)�D�u(x)jpjhj�p dx (8)and 
� = fx 2 
 : dist(x; �
) > �g.The relation between Nikolskii-spa
es and Sobolev-Slobode
kij-spa
es is des
ribed in the nextlemma: 6



Lemma 2.1. [1℄ Let s; p be as in De�nition 2.2. The following embeddings are 
ontinuous:for every " > 0 : N s+";p(
) �W s;p(
) � N s;p(
):In the de�nition of Nikolskii-spa
es we have to take into a

ount di�eren
e quotients withrespe
t to every dire
tion h 2 Rd . It is also possible to de�ne a spa
e, where the di�eren
equotients are formed with respe
t to a �xed basis of Rd , only. If 
 is a bounded Lips
hitziandomain, then these two de�nitions 
oin
ide. More pre
isely:Let �1; : : : ; �d be a basis of Rd with j�ij = 1. For s; p as in De�nition 2.2 we de�ne~N s;p(
) := fu 2 Lp(
) : N�;i(u) <1 for 1 6 i 6 d and j�j = mg ;kuk ~N s;p(
) := kukLp(
) + X16i6dj�j=mN�;i(u);where N�;i(u) := suph>0�Z
h jD�u(x+ h�i)�D�u(x))jph�p dx� 1p for 1 6 i 6 d:Lemma 2.2. Let 
 � Rd be a bounded domain with Lips
hitz-boundary and �1; : : : ; �d � Rda normed basis of Rd . Then N s;p(
) = ~N s;p(
)and the norms are equivalent. The 
onstants in the equivalen
e relation of the norms dependon the 
hoi
e of the basis.Proof. Sin
e 
 is a bounded Lips
hitzian domain, fun
tions from N s;p(
) and ~N s;p(
) 
an beextended to Rd with preservation of the norm, [23, Thm. 1, Thm. 2, pp. 381℄. Furthermore,~N s;p(Rd) = N s;p(Rd) and the norms are equivalent, [20℄. �2.3 Existen
e resultsWe are now able to des
ribe in whi
h sense we want to solve equations (3)-(6).De�nition 2.3 (Weak Solution). Let 
 � Rd be a bounded domain with Lips
hitz boundary,�
 = �D [ �N where �D and �N are disjoint open sets. Let further be n > 1; p = n + 1and q = p0 = 1 + 1n . We assume that the given data satisfy f 2 V 0q , g 2 W 1� 1q ;q(�D) andh 2 ( ~W 1� 1q ;q(�N ))0.A pair (u0; �) 2 Vq(g) � Lp(
) is a weak solution of the nonlinear �eld equations (3)-(6) iffor every v 2 Vq(0), r 2 Lp(
):Z
 � ��"D(u0)��q�2 "D(u0) : "D(v) dx� Z
 �div v dx = Z
 fv dx+ Z�N hv ds; (9)Z
 r divu0 dx = 0: (10)The integrals on the right hand side are to be understood in the sense of the dual pairingbetween Vq, V 0q and ( ~W 1� 1q ;q(�N ))0, ~W 1� 1q ;q(�N ), respe
tively.7



The weak formulation 
an formally be obtained by multiplying the �eld equations (3)-(6)with v and integration by parts.The weak formulation has the stru
ture of a nonlinear saddlepoint problem. To make thismore evident we introdu
e the following forms for p; q; n as in De�nition 2.3:a(�; �) : W 1;q(
)�W 1;q(
)! R : a(u; v) = Z
 � ��"D(u)��q�2 "D(u) : "D(v) dx; (11)b(�; �) : Lp(
)� Vq ! R : b(�; v) = �Z
 � div v dx: (12)The next lemmata 
olle
t some properties of the forms a and b whi
h we will need in thesequel.Lemma 2.3. Let p; q; n be as in De�nition 2.3. For (u; v) 2W 1;q(
)�W 1;q(
) the expressiona(u; v) is well de�ned and by H�older's inequality the following estimate holds: There exists a
onstant 
 > 0 su
h that for every (u; v) 2W 1;q(
)�W 1;q(
) :ja(u; v)j 6 �

"D(u)

q�1Lq(
) 

"D(v)

Lq(
) 6 
 kukq�1W 1;q(
) kvkW 1;q(
) : (13)Thus we 
an asso
iate to every �xed u 2 W 1;q(
) a unique operator A(u) 2 (W 1;q(
))0 =W�1;p0 (
) su
h that for every u; v 2W 1;q(
):hA(u); vi(W�1;p0 (
);W 1;q(
)) = a(u; v):Consider now the mappingA : W 1;q(
)!W�1;p0 (
) : u 7! A(u):The properties of this nonlinear operator are des
ribed in the next lemma.Lemma 2.4. Let p; q; n be as in De�nition 2.3.A : W 1;q(
) ! W�1;p0 (
) is a 
ontinuous operator. There exists 
 > 0 su
h that for everyu; v 2W 1;q(
):hA(u)�A(v); u � vi(W�1;p0 (
);W 1;q(
)) > 
Z
G("(u)(x); "(v)(x)) dx; (14)where we have set for "1; "2 2 Rd�d :G("1; "2) = ((j"1j+ j"2j)q�2 j"1 � "2j2 if ("1; "2) 6= (0; 0);0 else.Thus, A is a monotone operator on W 1;q(
). Note, that hA(u)�A(v); u� vi = 0 if and onlyif "(u) = "(v).Remark 2.3. The above de�ned fun
tion G is 
ontinuous on Rd�d � Rd�d .Proof. The 
ontinuity of A is a dire
t 
onsequen
e of the 
ontinuity of the operatorW 1;q(
)!Lq(
): u 7! ��"D(u)��q�2 "D(u), whi
h follows with the help of [29, Prop. 26.6℄ where the
ontinuity for a 
lass of Nemi
kij-operators is shown.8



Inequality (14) 
an be derived by a pointwise appli
ation of the following inequality, see alsoLemma A.1:For every 1 < q < 2; s 2 N exists 
 > 0 su
h that for every x; y 2 Rs with (x; y) 6= (0; 0) :(jxjq�2 x� jyjq�2 y) � (x� y) > 
(jxj+ jyj)q�2 jx� yj2 : �Obviously, the form b(�; �) : Lp(
)� Vq ! R is a 
ontinuous bilinear form, i.e. there exists a
onstant 
 > 0 su
h that for all � 2 Lp(
) and u 2 Vq there holds:jb(�; u)j 6 
 k�kLp(
) kukW 1;q(
) :Thus we 
an asso
iate in a unique way the following linear and 
ontinuous operators withb(�; �): B : Lp(
)! V 0q ; � 7! B(�) = �Z
 �div (�) dx; (15)B� : Vq ! Lq(
); u 7! �divu: (16)B and B� are 
onne
ted via the relationhB�(u); �i((Lp(
))0;Lp(
)) = �Z
 �div udx = hB(�); ui(V 0q ;Vq) for every u 2 Vq; � 2 Lp(
):For 1 < q; p <1; q = p0 the spa
es Vq and Lp(
) are re
exive, thus the operators B and B�are adjoint. In appendix B, the mapping properties of the operators B and B� are investi-gated in detail.We now reformulate equations (9)-(10) in terms of the the operators A;B;B�:Let �D � �
 be open, p; q; n as in De�nition 2.3. Let further f 2 V 0q ; h 2 ( ~W 1� 1q ;q(�N ))0; g 2W 1� 1q ;q(�D). By Theorem 2.1 and remark 2.2 we have Vq(g) = g0+Vq(0), where g0 2W 1;q(
)with g0j�D = g.We de�ne ~A : Vq ! V 0q : u 7! ~A(u) := A(g0 + u):Furthermore, we 
an asso
iate to f and h an element F 2 V 0q in a unique way. With thesenotations, the weak formulation (9)-(10) is equivalent to the following problem:Find (~u; �) 2 Vq � Lp(
) su
h that~A(~u) +B� = F in V 0q ; (17)B�~u = div g0 in Lq(
): (18)There holds: (u0; �) is a solution of (9)-(10) if and only if (~u; �) = (u0 � g0; �) is a solutionof (17)-(18).We are now ready to state the main theorem of this se
tion:Theorem 2.4 (Existen
e and uniqueness of weak solutions). Let 
 � Rd be a boundeddomain with Lips
hitz boundary, �
 = �D[�N , where �D and �N are open and disjoint. Letfurther be n > 1; p = n+ 1; q = p0 = 1 + 1n . We assume that f 2 V 0q ; h 2 ( ~W 1� 1q ;q(�N ))0; g 2W 1� 1q ;q(�D). 9



1. Assume that mes�D > 0. If �D = �
, we further assume that the Diri
hlet-data gsatis�es the following solvability 
ondition:there axists g0 2W 1;q(
) su
h that g0j�
 = g and Z
 div g0 dx = 0: (19)Then there exists a pair (u; �) 2 Vq(g) � Lp(
) whi
h is solution of the weak problem(9)-(10). u is unique, � is unique if �D 6= �
. If �D = �
 then � is unique up to a
onstant. The solvability 
ondition (19) is ne
essary and suÆ
ient.2. Assume that �D = ;. In this 
ase we have a pure Neumann problem and Vq =W 1;q(
).We assume further that the data f; h satisfy the following solvability 
ondition:For every v 2 ker(") �W 1;q(
)hf; vi(W�1;p0 (
);W 1;q(
)) + hh; vi((W 1� 1q ;q(�
))0 ;W 1� 1q ;q(�
)) = 0: (20)Then there exists a pair (u; �) 2 W 1;q(
) � Lp(
) whi
h solves the weak formulation.Furthermore, u is unique up to the addition of elements in ker("), � is unique. Thesolvability 
ondition (20) is ne
essary and suÆ
ient.Note, that ker(") is the �nite dimensional spa
e of rigid motions.Remark 2.4. Condition (19) is equivalent to: g 2 W 1� 1q ;q(�
) with R�
 g~n ds = 0. Note,that this 
ondition is well known in the 
ase n = 1, i.e. in the 
ase of the Stokes system withpure Diri
hlet 
onditions.Proof. We �rst prove the theorem for the 
ase mes �D > 0. Here we make use of formulation(17)-(18). In the proof we apply Lemma 2.4 and Theorem B.1 where we 
olle
ted someproperties of the operators A;B;B� and Lemma C.1 on the solvability of nonlinear saddlepointproblems.By Lemma 2.4, ~A : Vq ! V 0q is 
ontinuous and strongly monotone, B : Lp(
) ! V 0q is
ontinuous and linear, B� : Vq ! Lq(
) is the adjoint of B and by Theorem B.1, Im B� andtherefore also Im B are 
losed. Furthermore, it follows by Theorem B.1 and the solvability
ondition that div g0 2 Im B�. In order to apply Lemma C.1 to our equation we only haveto verify the 
oer
itivity of ~A on M := fv 2 Vq : B�v = div g0g.Let (un)n2N �M with kunkW 1;q(
) !1 as n!1. Thenh ~A(un); uni = � 

"D(un)

qLq(
) :By Lemma 2.3, there exists 
 > 0 su
h that for every u 2M :kukW 1;q(
) 6 
�

"D(u)

Lq(
) + kdivukLq(
)�= 
�

"D(u)

Lq(
) + kdiv g0kLq(
)�and therefore kunkW 1;q(
) !1 if and only if 

"D(un)

Lq(
) !1. Thush ~A(un); unikunkW 1;q(
) > ~
 

"D(un)

qLq(
)k"D(un)kLq(
) + kdiv g0kLq(
) !1 as n!1;10



whi
h shows the 
oer
itivity of ~A on M . The �rst part of the theorem follows by Lemma C.1.Now let �D = ;. To prove the assertions for that 
ase we also would like to apply LemmaC.1. Sin
e we 
annot prove the 
oer
itivity of A on kerB� � W 1;q(
) we have to split ourproblem. We de
ompose W 1;q(
) into two 
losed subspa
es and solve the problem only onone of these subspa
es. In a se
ond step we show that the solution we found there is alreadya solution for the whole problem.Sin
e ker " � W 1;q(
) is a �nite dimensional subspa
e there exists a 
losed subspa
e V �W 1;q(
) su
h that W 1;q(
) = ker(")� V;see [2, Satz 7.16℄. Again by Lemma 2.4, A : V ! V 0 is 
ontinuous and strongly monotone.Furthermore we 
an prove as before with Lemma 2.3 the 
oer
itivity of A on kerB� \ V .Consider now the following problem: Find (u; �) 2 V � Lp(
) su
h that for all v 2 V; r 2Lp(
): hAu; vi(V 0;V ) + hB�; vi(V 0;V ) = hf; vi+ hh; vi; (21)hB�u; ri(Lq(
);Lp(
)) = 0: (22)Before we 
an apply Lemma C.1 to this problem we have to 
he
k that Im B is 
losed in V 0 forB : Lp(
)! V 0, or, what is equivalent, Im B� is 
losed in Lq(
) for B� : V ! Lq(
).By the splitting of W 1;q(
) = ker "�V we have the following representation for u 2W 1;q(
):u = r + v, where r 2 ker " and v 2 V are uniquely determined. Consider now B�u =B�r+B�v = �div r� div v. Dire
t 
al
ulations show that for r 2 ker " there holds div r = 0.Thus, B�u = B�v and therefore by Theorem B.1: B�(V ) = Lq(
).Lemma C.1 now implies that (21)-(22) has a solution (u; �) 2 V �Lp(
). Moreover, equations(21)-(22) are true not only for v 2 V but also for arbitrary r 2 ker ". This is due to thesolvability 
onditions on the data f and h, see equation (20). Thus (u; �) is a solution ofproblem (9)-(10).The uniqueness properties follow by 
onsiderations whi
h are similar to those in the proof ofLemma C.1. �2.4 A minimization problemIn this se
tion we show that one 
an also asso
iate a minimization problem with 
onstraintto (3)-(6) and des
ribe how this minimization problem is related to the weak formulation.For n > 1; q = 1 + 1n , u 2 W 1;q(
), f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2 W 1� 1q ;q(�D)we set I(u) := Z
 �nn+ 1 ��"D(u)��q dx� Z
 fudx� Z�N huds (23)and Mg := fu 2 Vq(g) : divu = 0g :De�nition 2.4 (Minimization Problem). Let 
 � Rd be a bounded domain with Lips
hitzboundary, �
 = �D [ �N , where �D and �N are disjoint open sets. Let further n > 1; p =n+ 1; q = p0 = 1 + 1n , f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2W 1� 1q ;q(�D).The minimization problem is the following:Find u 2Mg su
h that I(u) 6 I(v) for all v 2Mg. (24)11



Theorem 2.5 (Existen
e of minimizers). Let 
 � Rd be a bounded domain with Lips
hitzboundary, �
 = �D [ �N , where �D and �N are disjoint open sets. Let further n > 1; p =n+ 1; q = p0 = 1 + 1n , f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2 W 1� 1q ;q(�D). In the 
ase�D = ; we further require that solvability 
ondition (20) is satis�ed, in the 
ase �D = �
 werequire that 
ondition (19) is ful�lled.Then there exists a solution u 2Mg of problem (24). In the 
ase �D 6= ;, u is unique and if�D = ;, then u is unique up to the addition of elements from ker(").Proof. The assertion follows by a standard argument for the minimization of fun
tionals,see [30, Prop. 38.15℄. To apply this Proposition we have to verify that Mg � W 1;q(
) is
onvex and 
losed and that I is 
ontinuous, 
onvex and 
oer
ive onMg, i.e. for any sequen
efvk; k 2 Ng �Mg with kvkkW 1;q(
) !1 as k !1 there holds I(vk)!1 as k !1.The 
ontinuity and 
onvexity of I follow by 
onsiderations whi
h are similar to those ofLemma 2.4. Theorem B.1 and the solvability 
ondition for the 
ase �D = �
 guarantee thatMg 6= ;.If �D 6= ;, the 
oer
itivity of I follows by the same arguments as in the �rst part of the proofof Theorem 2.4 whi
h yields the assertion.In the 
ase �D = ;, we have M = fu 2 W 1;q(
) : divu = 0g. Note, that ker " � M is a�nite dimensional subspa
e and therefore we 
an split M = ker " � V , where V � M is a
losed subspa
e. The restri
tion of I to V is 
oer
ive and therefore there exists a solutionfor problem (24) with M repla
ed by V . By the solvability 
ondition this solution is also aminimizer of the whole problem. �The next theorem shows that equations (9)-(10) des
ribe the weak Euler-Lagrange equationsfor the minimization problem (24). The pressure � appears as a Lagrange-parameter.Theorem 2.6. Let 
 � Rd be a bounded domain with Lips
hitz boundary, �
 = �D [ �N ,where �D and �N are disjoint open sets. Let further be n > 1; p = n + 1; q = p0 = 1 + 1n ,f 2 (W 1;q(
))0, h 2 (W 1� 1q ;q(�N ))0 and g 2W 1� 1q ;q(�D). We assume that u0 2Mg � Vq(g)is a solution of the minimization problem (24).Then there exists a fun
tion � 2 Lp(
) su
h that the pair (u0; �) satis�es equations (9)-(10).Proof. The proof 
onsists in applying a variant of Ljusternik's Theorem, Theorem D.1, to theminimization problem. In our 
ase, we have to verify the following 
onditions:a.) I : Vq(g)! R is Fr�e
het-di�erentiable,b.) the 
onstraint operator div : Vq(g)! Lq(
) has a 
losed image.The Gâteaux-di�erentiability of I 
an be proved with arguments whi
h are similar to thosein [6, Appendix A.8℄ and we get as Gâteaux-derivative:DI : Vq(g)! V 0q : u! DI(u)[ � ℄ = Z
 � ��"D(u)��q�2 "D(u) : "D(�) dx:The 
ontinuity of the Gâteaux-derivative DI : Vq(g) ! V 0q : u ! DI(u) with respe
t to ufollows by Lemma 2.4. Therefore, I is Fr�e
het-di�erentiable and a.) is proved.The properties of the div -operator are dis
ussed in Theorem B.1. Now, Theorem D.1 yieldsthe assertion. �12



3 Interior regularity of weak solutionsBefore we state and prove higher interior regularity results for the velo
ity, stress and pressure�elds, we re
all the de�nitions of � and �D:�D = � ��"D(u)��q�2 "D(u); where "D(u) = "(u)� 1d tr("(u))I;� = ��I + �D:Note, that "D(u) = "(u) sin
e tr "(u) = divu = 0.Theorem 3.1 (Interior regularity). Let n > 1; p = n+ 1; q = p0 = 1 + 1n and f 2 Lp(
).For a weak solution (u; �) 2W 1;q(
)� Lp(
) there holds for every Æ > 0; � > 0:u 2W 2;�lo
 (
); �D 2W q�1�Æ; �q�1lo
 (
); � 2W q�1�Æ;plo
 (
); (25)where � = (2� � if d = 2;3q1+q if d = 3: (26)Note, that 1 6 q 6 � 6 2 and p 6 �q�1 . Furthermore, � 2W q�1�Æ; �q�1lo
 (
) if f 2 L �q�1 (
).Remark 3.1. If we 
hoose n = 1, then p = q = 2 and equations (9)-(10) redu
e to the linearStokes system. By Theorem 3.1 we get u 2 W 2;2��lo
 (
) whi
h is (up to �) exa
tly the wellknown result for linear ellipti
 equations, see e.g. [28℄.For d = 3 and n!1 the regularity of u is de
reasing as n grows: 3q1+q = 3n+32n+1 & 32 .Remark 3.2. In the 
ase d = 2 the result 
oin
ides with a result for the p�Lapla
ian:Let 
 � R2 be a 
onvex domain, 1 < q 6 2; p = q0, f 2 Lp(
) and assume that u 2W 1;q0 (
)satis�es Z
 jrujq�2rurv dx = Z
 fv dx for every v 2W 1;q0 (
);then u 2W 2;2(
), [3℄.Proof (of Theorem 3.1). The result for the velo
ity �eld u was proved by Naumann in [22℄for the three dimensional 
ase. In a �rst step, he applied a di�eren
e quotient te
hnique,whi
h is based on Tolksdorf's ideas, [25℄, in order to prove u 2 W 2;qlo
 (
). He used essentiallythe monotoni
ity properties of the nonlinear di�erential operator, see also Lemma 2.4. Thearguments of the �rst step are independent of the dimension of the domain 
. In a se
ondstep he derived with the help of embedding theorems for Sobolev-Slobode
kij-spa
es the bet-ter result u 2W 2;�lo
 (
), � as in (26). Sin
e the dimension of 
 plays a role in the embeddingtheorems, the quantity � in (26) depends on d. We remark, that � = dqd+q�2 if d > 3.Regularity of �D:For the proof of the regularity of �D = � ��"D(u)��q�2 "D(u) we follow the ideas in [11℄. Let 
0 �� 
00 �� 
 be open subsets of 
 with smooth boundaries, h0 := minfdist(
0; �
00); dist(
00; �
)g.Let further be � = (2� � if d = 2;3q1+q if d = 3:13



Sin
e u 2W 2;�lo
 (
) we have "(u) 2W 1;�lo
 (
) and therefore for h 2 Rd with 0 < jhj < h0:Z
0 ���D(x+ h)� �D(x)�� �q�1 dx (61)6 
Z
0 ��"D(u(x+ h)) � "D(u(x))��� dx[17;Lemma 7.23℄6 
 jhj� 

r"D(u)

�L� (
00) :Thus, with 
0Æ = fx 2 
0 : dist(x; �
0) > ÆgsupÆ>00<jhj<Æ Z
0Æ �����D(x+ h)� �D(x)jhjq�1 ���� �q�1 dx <1 (27)and therefore �D 2 N q�1; �q�1 (
0), see also De�nition 2.2. Now, the assertion follows withLemma 2.1.Regularity of �:We follow again the ideas from [11℄.Let P 2 
 and 
hoose R0 > 0 su
h that with 
0 := BR0(P ), 
00 := B2R0(P ) there holds
0 �� 
00 �� 
. Let further h0 = 12 minfR0;dist(�
00; �
)g, Æ < h0 and 
0Æ = fx 2 
0 :dist(x; �
0) > Æg. For any h 2 Rd with 0 < jhj < h0 we get from equation (9) in thedistributional sense: 4hr� = 4hf +4hdiv �D; (28)where 4hu = u(x+ h)� u(x). Next, we estimate the right hand side of this equation in theW�1;p(
0)-norm:k4hfkW�1;p(
0) = sup 2W 1;q0 (
0)k kW1;q(
0)=1 ����Z
04hf dx����= sup 2W 1;q0 (
0)k kW1;q(
0)=1 ����Z
0+h f(x) (x� h) dx� Z
0 f(x) (x) dx����= sup 2W 1;q0 (
0)k kW1;q(
0)=1 ����Z
0[
0+h f(x)(4�h (x)) dx����6 kfkLp(
0[
0+h) sup 2W 1;q0 (
0)k kW1;q(
0)=1 k4�h kLq(
0[
0+h) : (29)Here we have set 
0+h = fx 2 Rd : x = y+h; y 2 
0g � 
. We 
an extend  2W 1;q0 (
0) to 2W 1;q(Rd) by setting  (x) = 0 for x =2 
0. By [17, Lemma 7.23℄, we then get for arbitrary 2W 1;q0 (
0): k4h kLq(
0[
0+h) 6 jhj kr kLq(Rd) = jhj kr kLq(
0) ; (30)and therefore k4hfkW�1;p(
0) 6 jhj kfkLp(
) : (31)14



Furthermore, sin
e �D 2 N q�1; �q�1lo
 (
) � N q�1;plo
 (
),

4hdiv�D

W�1;p(
0) = supv2C10 (
0)kvkW1;q(
0)=1 ����Z
04h�D : rv dx����6 

4h�D

Lp(
0) supv2C10 (
0)kvkW1;q(
0)=1 krvkLq(
0)6 jhjq�1 

�D

N q�1;p(
00) :(32)Equation (28) and inequalities (31), (32) show that there is a 
onstant 
 > 0 su
h that forevery h 2 Rd with 0 < jhj < h0 



r� 4h�jhjq�1�



W�1;p(
0) 6 
: (33)In addition, there exists 
 > 0, su
h that for every h 2 Rd with 0 < jhj < h0



 4h�jhjq�1



W�1;p(
0) 6 
 (34)By Ne�
as' Lemma, see Lemma B.2, we 
on
lude



 4h�jhjq�1



Lp(
0) 6 
 (35)and therefore supÆ>00<jhj<Æ Z
0Æ ���� 4h�jhjq�1 ����p dx 6 
 <1: (36)Thus, � 2 N q�1;p(
0) and the theorem is proved.Note, that if we assume f 2 L �q�1 (
), we 
an derive for the pressure by the same argumentsas above the regularity � 2W q�1�Æ; �q�1lo
 (
), whi
h 
oin
ides with the regularity of �D. �4 Higher tangential regularity at plane parts of the boundaryOne 
an also prove a higher regularity for derivatives whi
h are tangential to a plane part ofthe Diri
hlet- or Neumann-boundary.Theorem 4.1. Let 
 � Rd be a bounded domain with Lips
hitz boundary, n > 1, p =n+ 1; q = p0 = 1 + 1n and f 2 Lp(
). We assume that the boundary 
onditions are given inthe following spe
ial form: �~n = H~n on �N ;where H 2W 1;p(
;Rd�d ) and H = HT . Furthermoreu���D = g���D on �Dfor a given g 2W 3;q(
). 15



Choose ~
 � 
 in su
h a way that S := int(� ~
\�
) is an open subset of a hyper-plane L. Wefurther require that there exists an open set U � �
 with S � U � L and that the boundary
onditions do not 
hange on U , see Figure 2.Then there holds for every ~t whi
h is tangential to L:�~tru 2 Lq(~
):Here, �~t denotes the derivative towards ~t.PSfrag repla
ements L P
0
00~

Figure 2: An example for the domain in Theorem 4.1Proof. The proof is a modi�
ation of Naumann's proof in [22℄ for interior regularity and usesa di�eren
e quotient te
hnique. We distinguish two 
ases a

ording to the di�erent boundary
onditions.Let ~
 � 
 be a domain as des
ribed in Theorem 4.1 and P 2 S = int(� ~
 \ �
). Choose0 < R0 in su
h a way that 
0 := (BR0(P )\
) � ~
 and 
00 := (B2R0(P )\
) � ~
, see Figure 2.1. Case, Neumann-
onditions on � ~
 \ �
:Due to the spe
ial stru
ture of the Neumann data, equation (9) of the weak formulation isequivalent toZ
 � ��"D(u)��q�2 "D(u) : "D(v) dx� Z
 �div v dx = Z
(f + divH)v dx+ Z
H : "(v) dx: (37)Let (u; �) 2 Vq(g) � Lp(
) be a weak solution. Choose ' 2 C10 (B2R0(P )) with '��BR0 (P ) = 1,~t tangential to � ~
\ �
 with ��~t�� = 1 and h0 := 12 minfR0;dist(�
00; � ~
n�
)g. Then for h 2 Rwith 0 < jhj < h0, the fun
tion�(x) = '2(x) �u(x+ h~t )� u(x)� = '2(x)4hu(x)as well as the fun
tion ~�(x) := �(x�h~t ) are admissible test fun
tions in Vq(0). After inserting� and ~� into the weak formulation, 
hanging the variables of ~� and subtra
ting the resultingequations, we obtainZ
00 �4h ���"D(u)��q�2 "D(u)� : "D(�) dx = Z
004h� div � dx+ Z
004h (f + divH) � dx+ Z
004hH : "(�) dx: (38)In order to simplify the notation, we de�ne G(") := � j"jq�2 ". Note, that"D('2(4hu)) = ((4hu)
r'2)Dsym + '2"D(4hu); tr "('24hu) = r'2 � 4hu;16



here we have used that divu = 0; a 
 b 2 Rd�d denotes the tensor produ
t of the ve
torsa; b 2 Rd with (a
 b)ij = aibj; Asym is the symmetri
 part of tensor A. Equation (38) 
an betransformed intoZ
00 '2(4hG("D(u))) : "D(4hu) dx = �Z
004h(G("D(u)) +H) : (4hu
r'2)sym dx+ Z
00(4h�)2'r' � 4hudx+ Z
00 '24h(f + divH)4hudx+ Z
00 '24hH : 4h"D(u) dx (39)= I1 + � � � + I4:The integrals on the right hand side 
an be estimated as follows: We set Vq(
00) := fu 2W 1;q(
00) : u���
00n�
 = 0g. ThenI3 6 k'4h(f + divH)k(Vq(
00))0 k'4hukW 1;q(
00)and by arguments, whi
h are similar to those in (29), we obtaink'4h(f + divH)k(Vq(
00))0 6 
 jhj ;where the 
onstant 
 is independent of h. The same 
onsiderations 
an be 
arried out for I1and I2, whi
h leads to I1 + I2 + I3 6 
 jhj k'4hukW 1;q(
00)with a 
onstant 
 whi
h is independent of h. Using the produ
t rule, Poin
ar�e-Friedri
hsinequality and Korn's inequality, see Theorems 2.2 and 2.3, and the fa
t, that tr "(u) = 0, weget: k'4hukW 1;q(
00) 6 
�jhj+ 

'4h"D(u)

Lq(
00)� :Furthermore, by H�older's inequality and sin
e H 2W 1;p(
), we haveI4 6 k'4hHkLp(
00) 

'4h"D(u)

Lq(
00) 6 
 jhj kHkW 1;p(
) 

'4h"D(u)

Lq(
00) :Equality (39) and the above estimates yieldZ
00 '2 �4hG("D(u))� : 4h"D(u) dx 6 
 jhj2 + 
 jhj 

'4h"D(u)

Lq(
00) : (40)From now on, the proof follows exa
tly the arguments in [22℄, one only has to estimate the lefthand side of (40) from below: By H�older's inequality we get for Mh := fx 2 
00 : "(u(x)) =
17



"(u(x+ h)) = 0g and s = q(q�2)2 < 0:

'4h"D(u)

Lq(
00) = �Z
00nMh ���"D(u(x))�� + ��"D(u(x+ h))����s���"D(u(x))�� + ��"D(u(x+ h))���s ��'4h"D(u)��q dx� 1q6 

��"D(u(�))�� + ��"D(u(�+ h))��

 (2�q)2Lq(
00)�Z
00 '2 ��4h"D(u)��2 ���"D(u(x))�� + ��"D(u(x+ h))���q�2 dx�126 
1�Z
00 '2 ��4h"D(u)��2 ���"D(u(x))�� + ��"D(u(x+ h))���q�2 dx� 12(58)6 
2�Z
00 '24h(G("D(u))) : 4h"D(u) dx� 12(40);(63)6 
3 jhj+ 
3 jhj 12 

'4h"D(u)

 12Lq(
00) ; (41)where the 
onstants 
i are independent of h. Sin
e inequality (41) is true for every 0 < jhj <h0, and sin
e '��
0 = 1 and tr "(u) = 0, it followssup0<jhj<h0 



4h"(u)h 



Lq(
0) 6 
 <1; (42)and thus �~t "(u) 2 Lq(
0). Finally we obtain with Korn's inequality that �~tru 2 Lq(
0).2. Case, Diri
hlet-
onditions on � ~
 \ �
: Let (u; �) 2 Vq(g) � Lp(
) be a weak solution.As before we 
hoose ' 2 C10 (B2R0(P )) with '��BR0 (P ) = 1 and ~t tangential to � ~
 \ �
 with��~t�� = 1. Let h0 := 12 minfR0;dist(�
00; � ~
n�
)g and g 2 W 3;q(
) with u���D = g���D . Forh 2 R with 0 < jhj < h0, the fun
tions�(x) := '2((u(x+ h~t )� g(x+ h~t ))� (u(x)� g(x))) = '2(x)4h(u� g)(x)and ~�(x) = �(x�h~t ) are admissible test fun
tions inW 1;q0 (
). After inserting these fun
tionsinto the weak formulation (9), we obtain by some 
al
ulationsZ
00 '24hG("D(u)) : 4h"D(u) dx = �Z
004hG("D(u)) : �4h(u� g)
r'2�Dsym dx+ Z
00 '24hG("D(u)) : 4h"D(g) dx� Z
00 '24h�4hdiv g dx+ Z
004h�(4h(u� g)) � r'2 dx+ Z
00 '24hf4h(u� g) dx= I1 + � � � + I5:18



The integrals I1; I4; I5 
an be estimated similar to the 
orresponding integrals in the Neumann
ase. For I2 and I3 we use the fa
t, that g 2W 3;q(
) in order to obtainI2 6 


4hG("D(u))

(Vq(
00))0 

'4h"D(g)

Vq(
00) 6 
 jhj2 

G("D(u))

Lp(
) 

r"D(g)

W 1;q(
)and I3 6 
 jhj2 k�kLp(
) krdiv (g)kW 1;q(
) :This shows, that inequality (40) also holds in the 
ase of Diri
hlet 
onditions and we 
anpro
eed analogous to the 
ase of Neumann 
onditions. �
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5 Global regularity of weak solutionsGlobal regularity for systems of nonlinear ellipti
 PDE on a 
lass of polyhedral domains inthe setting of Nikolskii- and Sobolev-Slobode
kii-spa
es was �rst studied by C. Ebmeyer andJ. Frehse in [10, 12, 13℄. Later, they extended these results to the stationary Navier-Stokesequation,where they also study 
uids with shear thinning vis
osities, [14, 11℄. Sin
e theequation in our paper is a simpli�ed version of the Navier-Stokes equation (no 
onve
tionterm), the results from [11℄ 
an be applied also to this equation and 
an be improved by usingthe ideas from [13℄. This will be des
ribed in this se
tion in detail.5.1 Geometri
al assumptionsIn order to prove global regularity results, one needs some assumptions on the geometry.These assumptions arise mainly for te
hni
al reasons in the proof of global regularity, whereone has to 
onstru
t spe
ial extensions of the solutions a
ross the boundary of the domain.Let us note that at least in the two dimensional 
ase, the assumptions are optimal in 
om-parison to those whi
h one needs to prove similar results for linear ellipti
 equations.In 2D we 
onsider bounded Lips
hitzian polygons, where the only restri
tion on the geometryis that if there are 
hanging boundary 
onditions in a point P 2 �
, then the interior openingangle of the domain at P is less than �.In the three-dimensional 
ase we 
onsider Lips
hitzian polyhedrons where we require that atmost three fa
es 
ome together at points on the boundary where the boundary 
onditions
hange and that the interior angle between neighbored fa
es with di�erent boundary 
ondi-tions is less than �. At verti
es, where the boundary 
onditions do not 
hange, there is norestri
tion on the number of fa
es or the geometry.More pre
isely we have the following assumptions on the geometry, see also [13℄:Two-dimensional 
ase: 
 � R2 is a bounded Lips
hitzian polygon with �
 = �D \ �N ,�D;�N open and disjoint, where �D and �N denote the Diri
hlet- and Neumann-boundary,respe
tively. We further assume, that �
 has the following stru
ture:�
 = k[i=1�i;where �i are open subsets of straight lines, �i \ �j = ; for i 6= j and �i � �D or �i � �N .If �i\�j 6= ; and �i � �D, �j � �N , then ℄(�i;�j) < � (here we 
onsider the interior angle).Three-dimensional 
ase: 
 � R3 is a bounded Lips
hitzian polyhedron with �
 = �D \ �N ,�D;�N open and disjoint. Furthermore �
 = [ki=1�i, where �i \ �j = ; for i 6= j and�i � �D or �i � �N . We assume that every �i is an open subset of a suitable plane andhas a polygonal Lips
hitzian boundary. If �i1 � �D and �i2 � �N and �i1 \ �i2 6= ;, then℄(�i1 ;�i2) < �, where we 
onsider the interior opening angle. Finally, if �i1 � �D and�i2 � �N , then �i1 \ �i2 \ �i3 \ �i4 = ; for all i3 6= i4 and i3; i4 =2 fi1; i2g.
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5.2 Global regularityTheorem 5.1 (Global Regularity). Let 
 � Rd , d = 2; 3, be a polyhedral domain whi
hsatis�es the geometri
al assumptions introdu
ed in se
tion 5.1. Let further be n > 1; p =n+ 1; q = 1 + 1n ; f 2 Lp(
) and s = 2d2d�2+q > 1.We assume that the Diri
hlet-data is given by a fun
tion g 2W 2;sq(
̂) with rg 2 L1(
̂) forsome domain 
̂ �� 
 and u���D = g���D :Furthermore, we assume that the Neumann-data is of the following form: There exists afun
tion H 2W 1;p(
;Rd�d ) \ L1(
;Rd�d); H = HT , su
h that�~n = H~n on �N :Then for a weak solution (u; �) 2W 1;q(
)� Lp(
) there holds for every Æ > 0:u 2W 32�Æ;qs(
);�D 2W q�12 �Æ;ps(
);� 2W q�12 �Æ;p(
);� 2W q�12 �Æ;ps(
) if f 2 Lps(
):Here, �D = � ��"D(u)��q�2 "D(u).Remark 5.1. If d < p and H 2 W 1;p(
), then the embedding theorems state that H 2L1(
). Furthermore, one 
an 
hoose any fun
tion g 2 W 2;d(
̂) in order to des
ribe theDiri
hlet-data.Remark 5.2. If we 
hoose n = 1 in the previous theorem, i.e. the equations redu
e to thelinear Stokes-system, then Theorem 5.1 predi
ts u 2 W 32�Æ;2(
). This result is well known(up to Æ) from linear theory.Proof. The proof is divided into several steps. First we 
over 
 with a �nite number of sub-domains whi
h 
an be 
onsidered as model problems. For ea
h subdomain we then prove theresult separately. Here we use the di�eren
e quotient te
hnique developed by Ebmeyer/Frehsein [13, 10, 14℄. We 
hoose for ea
h subdomain a suitable basis of Rd and show that u is 
on-tained in one of the \tilde"-Nikolskii-spa
es introdu
ed in se
tion 2.2. Here, the geometri
alassumptions on the domain play a 
ru
ial role sin
e, e.g. in the 
ase of pure Diri
hlet 
ondi-tions, we have to de�ne extensions of u a
ross the boundary su
h that fun
tions of the type'2(x)(u(x+ h)� u(x)) are admissible test fun
tions.We make use of the following notation: For P 2 Rd and R > 0 we set BR(P ) := fx 2 Rd :jx� P j < Rg.1. Case: P 2 �
 and pure Diri
hlet 
onditions in a neighborhood of P :Let 
̂ be the domain des
ribed in Theorem 5.1. Choose P 2 �
 su
h that there exists aneighborhood U(P ) � 
̂ with the following properties:1. �
 \ U(P ) � �D and2. if P =2 �i then �i \ U(P ) = ;: 21



PSfrag repla
ements P


̂ R000

C CC
�D �DFigure 3: Example for the notation in Case 1The se
ond 
ondition implies that there is is at most one vertex in 
 \ U(P ).Sin
e 
 is a bounded Lips
hitzian domain, the uniform 
one property holds, [28℄. Thereforewe 
an �nd a normed basis e1; : : : ; ed of Rd and numbers R000 > R00 > R0 > 0 with the propertythat BR000(P ) � U(P ) and that the 
oneC := (x 2 Rd : x = h0 dXi=1 �iei; �i > 0; dXi=1 �i 6 1) with h0 := (R000 �R00)=2satis�es for every x0 2 �
 \BR000(P ):(x0 + C) \ 
 = ;;see also Figure 3.Choose ' 2 C10 (BR00(P )) with '��BR0 (P ) = 1. For a weak solution u 2 W 1;q(
) we de�ne thefollowing extension (and use the same symbol for the extended fun
tion):u(x) = (u(x) if x 2 
;g(x) if x 2 (
̂n
) \BR000(P ):Note, that the extended fun
tion is an element of W 1;q(
 [BR000(P )).For 1 6 i 6 d, 0 < h < h0 and x 2 
 let�i(x) := '2(x) ((u� g)(x+ hei)� (u� g)(x)) = '2(x)4ih(u� g)(x):The fun
tions �i are elements of W 1;q(
) with �i���
 = 0. To see the se
ond assertion, let bex 2 �
\BR000(P ) � �D. Then x+hei 2 BR000(P )n
 and therefore u(x+hei)�g(x+hei) = 0as well as u(x) � g(x) = 0 due to the de�nition of the extension of u and to the Diri
hlet-
onditions on �
 \ BR000(P ). On the remaining part of �
, ' vanishes. Thus, for 1 6 i 6 dand 0 < h < h0 the fun
tions �i are admissible test fun
tions for the weak formulation.Inserting �i into the weak formulation (9) yields after some simple 
al
ulations where we use
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that divu = tr"(u) = 0:Z
 '2G("D(u)) : 4ih"D(u)dx = Z
 '2G("D(u)) : 4ih"D(g) dx� Z
G("D(u)) : �4ih(u� g) 
r'2�Dsym dx� Z
 '2�4ihdiv g dx+ Z
 �4ih(u� g) � r'2 dx+ Z
 '2f4ih(u� g) dx: (43)For shortness we have set G(") = � j"jq�2 ". By inequality (60) we obtain with a 
onstant
 > 0 whi
h is independent of h:
Z
 '2� ��"D(u)�� + ��"D(u(x+ hei))�� �q�2 ��4ih"D(u)��2 dx(60)6 �Z
 '2G("D(u)) : 4ih"D(u) dx+ Z
 '24ih ���"D(u)��q� dx(43)= �Z
 '2G("D(u)) : 4ih"D(g) dx+ Z
G("D(u)) : �4ih(u� g)
r'2�Dsym dx+ Z
 '2�4ihdiv g dx� Z
 �4ih(u� g) � r'2 dx� Z
 '2f4ih(u� g) dx+ Z
 '24ih ���"D(u)��q� dx (44)=: I1 + : : :+ I6:Next, we estimate the integrals I1; : : : ; I6. By H�older's inequality and the fa
t that u � g 2W 1;q(
 [BR000(P )):jI5j 6 k'fkLp(
) 

'4ih(u� g)

Lq(
) 6 
h k'fkLp(
) kr(u� g)kLq(
[BR000 (P )) :Note, that u = g on BR000(P )n
 and therefore kr(u� g)kLq(
[BR000 (P )) = kr(u� g)kLq(
).Similarly jI2j 6 
h

G("D(u))

Lp(
) kr(u� g)kLq(
) ;jI4j 6 
h k�kLp(
) kr(u� g)kLq(
) :Furthermore, sin
e g 2W 2;qs(
̂):jI1j 6 
h

G("D(u))

Lp(
) 

r"D(g)

Lq(
[BR000 (P )) ;jI3j 6 
h k�kLp(
) krdiv gkLq(
[BR000 (P )) :In all these estimates, the 
onstant 
 is independent of h. In order to estimate I6, we use therelation 4ih(fg) = (4ihf)g + f(x+ hei)4ihg:I6 = Z
4ih �'2 ��"D(u)��q� dx� Z
(4ih'2) ��"D(u(x+ hei))��q dx =: I61 + I62:23



As before, jI62j 6 
h

"D(u)

qLq(
) 

r'2

L1(
) :Taking into a

ount the properties of the extension of u and the properties of supp' weobtain after a 
hange of variables:I61 = Z
+hei '2 ��"D(u)��q dx� Z
 '2 ��"D(u)��q dx = Z(
+hein
)\BR000 (P ) '2 ��"D(g)��q dx;where 
 + hei = fx 2 Rd : x = y + hei; y 2 
g. Due to the assumptions in Theorem 5.1 wehave "D(g) 2 L1(
̂) and thereforeI61 6 


'2 ��"D(g)��q


L1((
+hein
)\BR000 (P ))mes ((
 + hein
) \BR000(p)) 6 
h;where 
 is independent of h. Colle
ting all these estimates, we get with a 
onstant 
 whi
h isindependent of h:Z
 '2 ���"D(u(x))�� + ��"D(u(x+ hei)���q�2 ��4ih"D(u(x))��2 dx 6 
h: (45)Applying inequality (59) to the left hand side of equation (45) leads toZ
 '2 �����"D(u(x+ hei))�� q2 � ��"D(u(x))�� q2 ���2 dx 6 
h;where 
 is independent of h. Sin
e '(x) = 1 for x 2 BR0(P ) we obtain for all 1 6 i 6 d:sup0<h<h0 




4ih ��"D(u)�� q2h 12 




L2(
\BR0 (P )) 6 
 <1 (46)and therefore by Lemma 2.2 j"(u)j q2 2 N 12 ;2(
 \BR0(P )):Here we have used tr "(u) = div u = 0.The embedding theorem of Nikolskii-spa
es in Sobolev-Slobode
kii-spa
es, see Lemma 2.1,yields 8 Æ > 0 : j"(u)j q2 2W 12�Æ;2(
 \BR0(P ))and �nally by standard embedding theorems,"(u) 2 L dqd�1�Æ(
 \BR0(P )) for all Æ > 0: (47)In the next step we prove the regularity result for a weak solution u and pro
eed analogousto [13℄. As abbreviation we de�ne 
0 := 
 \BR0(P ).By standard embedding theorems the spa
e W 1;q(
) is 
ontinuously embedded in the spa
eL dqd�1 (
). Therefore, relation (47) and Korn's inequality, see Theorem 2.2, lead to u 2W 1; dqd�1�Æ(
0) for all Æ > 0. For arbitrary Æ > 0 let � := 2dq2d�2+q � Æ = qs � Æ withs from Theorem 5.1. For 1 < q < 2 we have 1 < � < 2 (if Æ is small enough) and24



� < dqd�1 and therefore u 2 W 1;�(
0). Furthermore the same is true for the extended fun
-tion: u 2 W 1;�(
0 [ (BR000(P )n
)). Thus for 0 < h < h0, 1 6 i 6 d and Mh = fx 2 
0 :"D(u(x+ hei)) = "D(u(x)) = 0g:Z
0 ���h� 124ihru���� dx 6 
Z
0 ���h� 124ih"(u)���� dx+ 
Z
0 ���h� 124ihu���� dx6 
Z
0nMh ���"D(u(x+ hei))��+ ��"D(u(x))�����2 (q�2)���"D(u(x+ hei))��+ ��"D(u(x))����2 (q�2) ���h� 124ih"D(u)���� dx+ 
h�2 kuk�W 1;�(
0)= I5 + 
h�2 kuk�W 1;�(
0) :Here we have used div u = 0; u 2 W 1;�(
0) and Korn's inequality, see Theorem 2.2. ByH�older's inequality we further getjI5j 6 

���"D(u(�+ hei))��+ ��"D(u)���

 22��L�(2�q)2�� (
0) Z
nMh ���"D(u(x+ hei))�� + ��"D(u(x))���q�2 ���h� 124ih"D(u)���2 dx!�2 : (48)By equation (45), the se
ond term is bounded independently of h, furthermore, �(2�q)2�� < dqd�1and thus the �rst term is bounded independently of h as well, see also (47). We �nally obtainthat there exists a 
onstant 
 > 0 su
h that for all 0 < h < h0:Z
0 ���h� 124ihru���� dx 6 
 (49)and therefore for every �; ~� > 0:u 2 N 32 ;�(
0) �W 32��;qs�Æ(
0) �W 32�~�;qs(
0):Here we have applied Lemma 2.1 for the �rst in
lusion and the embedding theorems forSobolev-Slobode
kii spa
es for the se
ond one. The regularity results for �D 
an be derivedin the same way as in the proof of Theorem 3.1. For the 
ase f 2 Lp(
), the regularity of �
an be shown as in the proof of Theorem 3.1. If f 2 Lps(
) � Lp(
), then one 
an prove in a�rst step � 2W q�12 �Æ;p(
0). This spa
e is embedded in Lps(
) and therefore one 
an a
hievein a se
ond step by applying the same arguments as in the proof of Theorem 3.1 the higherregularity � 2W q�12 �Æ;ps(
0).2. Case: P 2 �
 and pure Neumann 
onditions in a neighborhood of P :Choose P 2 �
 su
h that there exists a neighborhood U(P ) with the following properties:1. �
 \ U(P ) � �N and2. if P =2 �i then �i \ U(P ) = ;: 25



Sin
e 
 is a bounded Lips
hitzian domain, the uniform 
one property holds, [28℄. Thereforewe 
an 
hoose a basis e1; : : : ed of Rd with jeij = 1 and numbers R000 > R00 > R0 > 0 in su
h away that BR000(P ) � U(P ) and that the 
oneC := (x 2 Rd : x = h0 dXi=1 �iei; �i > 0; dXi=1 �i 6 1) with h0 := (R000 �R00)=2satis�es for every x0 2 
 \BR000(P ): x0 + C � 
:Now let ' 2 C10 (BR00(P )) with 'jBR0 (P ) = 1. For 1 6 i 6 d and 0 < h < h0 we de�ne�i(x) = '2(x) (u(x+ hei)� u(x)) = '2(x)4ihu(x); x 2 
:Note, that �i is well de�ned and that no extension of u a
ross the boundaries is needed forthe de�nition. Furthermore, �i 2W 1;q(
) and �ij�D = 0, whi
h shows that �i is an admissibletest fun
tion.Due to the spe
ial stru
ture of the Neumann data, the weak formulation (9) is equivalent to:8v 2 Vq(0) : Z
G("D(u)) : "D(v) dx = Z
 �div v dx+ Z
 v(f + divH) dx+ Z
H : "(v) dx;where H is des
ribed in Theorem 5.1. We now 
hoose v = �i and pro
eed similar to the 
aseof pure Diri
hlet-
onditions: Inserting �i into the weak formulation and using inequality (60)we get:
Z
nMh '2 ���"D(u(x + h))j+ ��"D(u(x))���q�2 ��4ih"D(u)��2 dx6 Z
 '2 �4ih ��"D(u(x))��q� dx+ Z
G("D(u)) : �4ihu
r'2�Dsym dx� Z
 �r'2(x)4ihu(x)dx � Z
 '2(f + divH)4ihudx� Z
H : "('24hu) dx=: I1 + I2 + I3 + I4 + I5: (50)The integrals I2; I3; I4 
an be treated as in the Diri
hlet problem:jI2j+ jI3j+ jI4j 6 
h;where 
 > 0 is independent of h. By the produ
t rule for �nite di�eren
esI1 = Z
4ih �'2 ��"D(u)��q� dx� Z
 ��"D(u(x+ hei))��q4ih'2 dx = I11 + I12: (51)As before jI12j 6 
h kr'k1 

"D(u)

qLq(
) :26



By a 
hange of variables I11 = �Z
n(
+hei) '2 ��"D(u)��q dx;where 
 + hei = fx 2 Rd : x = y + hei; y 2 
g. For I5 we use again the produ
t rule andthe fa
t that divu = 0:I5 = �Z
H : �4ihu
r'2�sym dx+ Z
4ih �'2H� : "D(u(x+ hei)) dx� Z
4ih �'2H : "D(u)� dx= I51 + I52 + I53: (52)By the usual arguments jI51j 6 
h kHkLp(
) krukLq(
) ;jI52j 6 
h kHkW 1;p(
) 

"D(u)

Lq(
) :Furthermore by H�older's and Young's inequality and sin
e H 2 L1(
) we get for all Æ > 0:jI53j = �����Z
n
+hei '2H : "D(u) dx�����6 Æ�1 


' 2pH


Lp(
n
+hei) Æ 


' 2q "D(u)


Lq(
n
+hei)6 
0Æ�p Z
n
+hei '2 jHjp dx+ 
0Æq Z
n
+hei '2 ��"D(u)��q dx6 
0Æ�p 

'2 jHjp

L1(
) j
n(
 + hei)j+ 
0Æq Z
n(
+hei) '2 ��"D(u)��q dx6 Æ�p
1h+ 
0Æq Z
n(
+hei) '2 ��"D(u)��q dx: (53)Here, 
0; 
1 are independent of h. We now 
hoose Æ = 
� 1q0 and obtainI11 + I53 6 
1� 1q1 h+ 0 = 
h; (54)where 
 is independent of h. Colle
ting all estimates yields: There exists 
 > 0 su
h that forall 0 < h < h0:Z
nMh '2 ���"D(u(x+ hei))��+ ��"D(u(x))���q�2 ��4ih"D(u(x))��2 dx 6 
h:The remaining part of the proof for the Neumann-boundary is 
ompletely analogous to the
onsiderations in the Diri
hlet-
ase, see (45) and below.3. Case: P 2 �
 and mixed 
onditions in a neighborhood of P :We remind that d denotes the dimension of the domain 
. We 
onsider a vertex P 2 �
 anda neighborhood U(P ) with the following properties:27



1. There exist i1 < : : : < id su
h that P 2 �ij for 1 6 j 6 d; and �i1 � �D;�id � �N .2. If P =2 �i then �i \ U(P ) = ;.As in the 
ase of pure Diri
hlet or pure Neumann 
onditions, we have to �nd a suitable basisof Rd for whi
h we 
an prove an estimate like in (49).If d = 2 
hoose e1 k �i1 � �D and e2 k �i2 � �N with the following orientation: There existsR > 0, su
h that P + he1 =2 
 for every 0 < h < R and P + he2 2 �N for 0 < h < R.In the three dimensional 
ase we assume P 2 �i1 \ �i2 \ �i3 where �i1 � �D and �i3 � �N .Choose e1 k �i1 \ �i2 , e2 k �i2 \ �i3 and e3 k �i3 \ �i1 and assume that the ve
tors ei areoriented in su
h a way that for a suitable R > 0 there holds:1. Case: Let �i2 � �D. Then for all 0 < h < R: P + he1 2 �i1 \ �i2 anda) If ℄(�i1 ;�i2) < � =) P + he2 =2 �i2 \ �i3 ; P + he3 =2 �i3 \ �i1 .b) If ℄(�i1 ;�i2) > � =) P + he2 2 �i2 \ �i3 ; P + he3 2 �i3 \ �i1 .2. Case: Let �i2 � �N . Then for all 0 < h < R: P + he2 =2 �i2 \ �i3 anda) If ℄(�i2 ;�i3) < � =) P + he1 2 �i1 \ �i2 ; P + he3 2 �i3 \ �i1 .b) If ℄(�i2 ;�i3) > � =) P + he1 =2 �i1 \ �i2 ; P + he3 =2 �i3 \ �i1 .Due to the geometri
 assumptions des
ribed in se
tion 5.1, it is always possible to �nd su
ha basis. It follows that every ei satis�es either (P1) or (P2), where(P1) For every x0 2 �
 \BR=2(P ) there holds: x0 + hei 2 
 for 0 < h < R2 .(P2) For every x0 2 �
 \BR=2(P ) there holds: x0 + hei =2 
 for 0 < h < R2 .Note, that in the threedimensional 
ase, (P1) is satis�ed in 
ase 1 for e1 and in 
ase 2 for e1and e3; (P2) is satis�ed in 
ase 1 for e2 and e3 and in 
ase 2 for e2.Now 
hoose R000 = 12R;R00 = 13R;R0 = R6 , h0 = R6 , ' 2 C10 (BR00(P )) with 'jBR0 (P ) = 1and assume that (u; �) 2 W 1;q(
) � Lp(
) is a weak solution. For 1 6 i 6 d we de�ne thefollowing test fun
tions:Assume that ei satis�es (P1). Then�i(x) := '2(x) (u(x+ hei)� u(x)) = '2(x)4ihu(x) for x 2 
:Note, that �i 2W 1;q(
) with �ij�D = 0, and therefore �i is an admissible test fun
tion. Notealso, that we do not need any extension of u a
ross the boundary in this 
ase.If ei satis�es (P2), let beMi := fx 2 Rd : x = x0 + hei; 0 6 h < h0; x0 2 �
 \BR000(P )g n
:We de�ne the following extension of u on 
 [Mi a
ross the boundary (�
 \ �Mi) whi
h isa subset of �D: u(x) := (u(x) if x 2 
;g(x) if x 2Mi:The extended fun
tion is an element of W 1;q(
 [Mi). We set�i(x) := '2(x) ((u(x+ hei)� g(x + hei))� (u(x)� g(x))) = '2(x)4ih(u� g)(x) for x 2 
:28



There holds �i 2W 1;q(
) with �ij�D = 0, and therefore �i is an admissible test fun
tion.We now pro
eed analogous to the 
ases of pure Diri
hlet or pure Neumann 
onditions on�
 \ U(P ): Inserting the test fun
tion into the weak formulation (9) results either in (50) ifei satis�es (P1) or in (44) if ei satis�es (P2). By the same arguments as subsequent to (50)and (44), respe
tively, we �nally obtain that u 2 N 32 ;s(
 \ BR0(P )), where s is the numberin Theorem 5.1, and that the 
orresponding results for �D and � hold also.To prove the global regularity result in Theorem 5.1 we 
over 
 with a �nite number ofopen balls Bl, where for every l, 
 \ Bl �ts in one of the above 
ases or is 
ompletely 
on-tained in 
. The regularity results now are valid not only for ea
h 
 \ Bl but also for thewhole domain 
. �
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A Some essential inequalitiesWe 
olle
t some basi
 inequalities whi
h all deal with the following fun
tion: Let 1 < q,F : Rs ! R : x! jxjq :F is 
ontinuously di�erentiable withDF (x) = (q jxjq�2 x if x 6= 0;0 else. (55)Moreover D2F (x) = q(q � 2) jxjq�4 x 
 x + q jxjq�2 I if x 6= 0: Here, a 
 b 2 Rd�d denotesthe tensor produ
t of the ve
tors a; b 2 Rd with (a
 b)ij = aibj .Lemma A.1. Let F be the fun
tion from above, 1 < q < 1. Then there exists a 
onstant
 > 0 su
h that8x 2 Rsnf0g : ��D2F (x)�� 6 
 jxjq�2 ; (56)8x 2 Rsnf0g;8� 2 Rs : �D2F (x)�� � � > 
 jxjq�2 j�j2 ; (57)8x; y 2 Rs ; (x; y) 6= (0; 0) : �jxjq�2 x� jyjq�2 y� � (x� y) > 
 (jxj+ jyj)q�2 jx� yj2 ; (58)8x; y 2 Rs ; 0 < � : jjxj� � jyj�j 6 
 (jxj+ jyj)��1 jx� yj ; (59)and there exist 
onstants 
1; 
2 > 0 su
h that for all x; y 2 Rs ; (x; y) 6= (0; 0) :jyjq � jxjq > 
1 jxjq�2 x � (y � x) + 
2 (jxj+ jyj)q�2 jy � xj2 : (60)For 1 < q 6 2 there exists 
 > 0 su
h that for all x; y 2 Rs :���jxjq�2 x� jyjq�2 y��� 6 
 jx� yjq�1 : (61)For 2 6 q there exists 
 > 0 su
h that for all x; y 2 Rs :���jxjq�2 x� jyjq�2 y��� 6 
 (jxj+ jyj)q�2 jx� yj : (62)Note, that 
; 
1; 
2 may depend on q; �; s.For n 2 N, ai 2 R with ai > 0, 1 6 i 6 n, we have [19℄: nXi=1 ai!� 6 n��1 nXi=1 a�i ! if � > 1; (63) nXi=1 ai!� > n��1 nXi=1 a�i ! if 0 6 � 6 1: (64)Proof. Inequalities (56), (57) follow by dire
t 
al
ulations. Inequalities (58) and (62) 
an befound in [25, Lemma 2.3℄ in a more general setting. Inequality (61) is proved in [11, formula(4.29) and below℄. Inequality (60) is based on Clarkson's inequality and 
an be found in30



[9, 21℄. Finally we prove inequality (59).1. Case, � > 1: Let x; y 2 Rs with jxj > jyj > 0. Thenjxj� � jyj� = � Z 10 jy + t(x� y)j��2 (y + t(x� y))(x� y)dt6 � Z 10 j(1� t) jyj+ t jxjj��1 dt jx� yj6 � Z 120 (1� t)��1dt+ Z 112 t��1dt! (jxj+ jyj)��1 jx� yj= (2� 21��) (jxj+ jyj)��1 jx� yj :2. Case, 0 < � < 1: Let x; y 2 Rs with jxj > jyj > 0. Then0 6 (jxj� � jyj�) (jxj+ jyj) 6 jxj�+1 � jyj�+1 1: 
ase6 
 (jxj+ jyj)� jx� yj : �Note, that for 1 < q < 2 the fun
tion x ! jxjq�2 x 
an be 
ontinuously extended to x = 0by 0.B Properties of the div operatorIn this se
tion we 
olle
t and prove some properties of the div operator whi
h are diÆ
ultto �nd in literature. The main tools for the proof of the main theorem are Peetre's Lemma,Ne�
as' Lemma and an embedding theorem for Lp into Sobolev-spa
es of negative order. Theproof of the main theorem follows exa
tly the ideas of the proof of Theorem 3 in [16℄, butthere only Lips
hitz domains with �D = �
 are 
onsidered.Throughout the whole se
tion we assume:
 � Rd is a bounded domain with Lips
hitz-boundary, �
 = �D [�N , where �D and �N areopen and disjoint. We �rst 
ite some essential lemmata:Lemma B.1 (Peetre's Lemma). [7℄ Let E0; E1; E2 be Bana
h spa
es, let A1 and A2 betwo 
ontinuous linear mappings, respe
tively from E0 to E1 and from E0 to E2, withi) A2 is a 
ompa
t mapping;ii) there exists a 
onstant 
 > 0 su
h that:kvkE0 6 
 �kA1vkE1 + kA2vkE2� for all v 2 E0: (65)Theni) kerA1 has �nite dimension and Im A1 is 
losed;ii) there exists a 
onstant 
0 > 0 su
h that:infw2kerA1 kv + wkE0 6 
0 kA1vkE1 :For 1 < p <1 we de�ne the following norm for � 2 Lp(
;R) with q = p0 = pp�1 :jk�kjp : = k�kW�1;p(
;R) + kr�kW�1;p(
;Rd)= supv2W 1;q0 (
;R)kvkW1;q(
)=1 ����Z
 �v dx����+ supw2W 1;q0 (
;Rd)kwkW1;q(
)=1 ����Z
 �divw dx����31



Lemma B.2 (Ne�
as' Lemma). [5℄ Let 
 � Rd be a bounded domain with Lips
hitz-boundary. Then jk�kjp is a norm on Lp(
) whi
h is equivalent to the usual norm on Lp(
).Lemma B.3. Let 
 � Rd be a bounded domain with Lips
hitz-boundary, 1 < p <1; q = p0.Then the embedding Lp(
)!W�1;p(
) = (W 1;q0 (
))0 is 
ompa
t.Proof. The adjoint operator to id1 : Lp(
) ! W�1;p(
) is given by id2 : W 1;q0 (
) ! Lq(
).The Sobolev-embedding theorems state that the embedding W 1;q0 (
) ! Lq(
) is 
ompa
t.By S
hauder's Theorem [27, Satz III.4.4, p.111℄ this is also true for the adjoint operator. �We are now ready to state the main theorem of this se
tion:Theorem B.1 (Properties of the div operator). Let 
 � Rd be a bounded domain withLips
hitz-boundary, 1 < p < 1 and q = p0 = pp�1 . Let further �D � �
 be open andVq := fu 2W 1;q(
;Rd) : uj�D = 0g. Consider the mapping div : Vq ! Lq(
); u 7! divu.1. The adjoint operator of div is given by the operator B : Lp(
)! V 0q : � 7! R
 �div (�) dx.If �D = �
, then B(�) = �r� in the distributional sense.2. The image of div is 
losed in Lq(
). More exa
tly,Im (div ) = �r 2 Lq(
) : Z
 r dx = 0� if �D = �
;Im (div ) = Lq(
) else.3. There exists 
 > 0 su
h that for all � 2 Lp(
): k�kLp(
)=R 6 
 kr�kW�1;p(
) :4. The kernel of B (= adjoint operator of div ) has the following stru
ture:ker(B) = f 
onstant fun
tions g if �D = �
;ker(B) = f0g else.Proof. The �rst assertion follows by dire
t 
al
ulations. By the 
losed image theorem [27,p.143℄ the following is true: Im (div ) is 
losed if and only if Im (B) is 
losed. Therefore weprove that Im (B) is 
losed. For this we apply Peetre's Lemma to E0 = Lp(
), E1 = V 0q ,E2 = W�1;p(
), A1 : Lp(
) ! V 0q ; � ! A1(�) = B(�) and A2 : Lp(
) ! W�1;p(
); � ! �.The 
ompa
tness of A2 follows by Lemma B.3 and we only have to verify inequality (65).For every � 2 Lp(
) there holds r� 2W�1;p(
) withkr�kW�1;p(
) = supv2W 1;q0 (
)kvkW1;q(
)=1 ����Z
 �div v dx����6 supv2VqkvkW1;q(
)=1 ����Z
 �div v dx���� = kB(�)kV 0q :Thus k�kLp(
) Lemma B.26 
(k�kW�1;p(
) + kr�kW�1;p(
)) 6 
(kB(�)kV 0q + k�kW�1;p(
)):32



Therefore we 
an apply Peetre's Lemma and get the se
ond and third assertion. To get theexa
t des
ription of Im (div ) we �rst 
al
ulate ker(B):For an arbitrary Diri
hlet boundary we get from B(�) = 0 by testing with fun
tions inC10 (
) that r� = 0 in the distributional sense and therefore (
 is 
onne
ted) � = 
onst:If mes(�
n�D) 6= 0 we may further 
on
lude by testing with ' 2 Vq: 0 = R
 �div'dx =� R
 div'dx = �� R�
n�D '~nds and therefore � = 0 in 
. This leads to assertion 4. Theremaining part of the se
ond assertion follows by the following equality (theorem of the 
losedimage [27, p.143℄)Im (div ) = �r 2 Lq(
) : Z
 �r dx = 0 for all � 2 Lp(
) with B(�) = 0� : �C An abstra
t theorem on nonlinear saddle point problemsLet V;W be re
exive, separable Bana
h spa
es, V 0;W 0 their duals. Consider the followingoperators A : V ! V 0 
ontinuous and monotone,B :W ! V 0 linear and 
ontinuous,B� : V !W 0 adjoint operator to B:We want to solve the following problem: For given f 2 V 0; g 2 W 0 �nd (u; �) 2 V �W forwhi
h A(u) +B� = f; (66)B�u = g: (67)Lemma C.1. Let V;W be re
exive, separable Bana
h spa
es, A : V ! V 0 
ontinuous andmonotone, B : W ! V 0 linear and 
ontinuous and B� : V ! W 0 the adjoint operator of B.Let further be f 2 V 0; g 2 Im B� �W 0. Ifa) A is 
oer
ive on Mg := fv 2 V : B�v = gg, i.e. if fun; n 2 Ng �Mg with kunk ! 1as n!1, then hAun;unikunkV !1,b) Im (B) is 
losed in V 0,then there exists a pair (u; �) 2 V �W whi
h solves (66)-(67). Moreover, if A is stronglymonotone, then u is unique and � is unique up to the addition of elements from kerB.Proof. Existen
e: In a �rst step we prove the lemma with g = 0:Let f 2 V 0. We set V0 := kerB�. Sin
e V0 � V , the 
onverse relation holds for the duals andthus f 2 V 00 . We now solve the following problem:Find u 2 V0 su
h that Au = f is satis�ed in V 00 , that means: Find u 2 V0 su
h that8 v 2 V0 : hAu� f; vi(V 00 ;V0) = 0:By the main theorem on monotone operators [29℄ this equation has a solution u 2 V0 = kerB�.Next we solve the following equation in W : Find � 2 W su
h that B� = f �Au in V 0, thatmeans: Find � 2W su
h that8 v 2 V : h�; vi(V 0;V ) = hf �Au; vi(V 0;V ): (68)33



Note, that u 2 V0 � V and therefore, by the mapping properties of A, Au 2 V 0 and not onlyin V 00 . Obviously problem (68) has a solution if and only if f � Au 2 Im (B). Sin
e Im B is
losed, we have the following 
hara
terization of Im B, [27℄:Im (B) = �v 2 V 0 : hv; wi(V 0;V ) = 0 for all w 2 kerB�	 :Sin
e f � Au 2 V 0 and sin
e for any w 2 kerB� = V0 we have hf � Au;wi(V 00 ;V0) = 0 we
on
lude that f�Au 2 Im (B). Thus, the pair (u; �) solves the equations (66)-(67) with g = 0.Now let f 2 V 0 and g 2 Im B� be arbitrary. Sin
e B� is linear, there exists u0 2 V su
hthat Mg = u0 + kerB�. For w 2 V we set G(w) := A(u0 + w). Then problem (66)-(67) isequivalent to the following: Find w 2 V; � 2W su
h thatG(w) +B� = f; (69)B�w = 0: (70)From the assumptions on operator A we dedu
e that G is 
ontinuous, (strongly) monotoneand 
oer
ive on kerB�. Thus, we 
an apply the results from the �rst step to (69)-(70).Uniqueness: Assume now that A is strongly monotone and that (u1; �1); (u2; �2) 2 V �Ware solutions of (66)-(67) with the same right hand side f . Then u1 � u2 2 V and we getfrom equations (66),(67):hAu1; u1 � u2i+ hB�1; u1 � u2i = hf; u1 � u2i; (71)hAu2; u1 � u2i+ hB�2; u1 � u2i = hf; u1 � u2i; (72)hB�u1; �1 � �2i = hg; �1 � �2i; (73)hB�u2; �1 � �2i = hg; �1 � �2i: (74)Subtra
ting (71) and (72) resp. (73) and (74) and using that B� is the adjoint of B we obtainhAu1 �Au2; u1 � u2i = 0and by the strong monotoni
ity of A: u1 � u2 = 0.Now we assume that (u; �1); (u; �2) are two solutions of (66)-(67) with the same right handsides. Testing the equations with an arbitrary v 2 V we obtain:hAu; vi + hB�1; vi = hf; vi;hAu; vi + hB�2; vi = hf; vi:Subtra
ting these equations we get for every v 2 V : hB(�1 � �2); vi(V 0;V ) = 0 and therefore�1 � �2 2 kerB. �D Variant of Ljusternik's TheoremIn this se
tion we give a simpli�ed variant of Ljusternik's Theorem, see e.g. [30, Thm. 43.D,Prop. 43.19℄. 34



Theorem D.1. Let X;Y be real Bana
h spa
es. We assume, that(1) F : U(u0) � X ! R is Fr�e
het-di�erentiable with Fr�e
het-derivative DF ,(2) G : U(u0) � X ! Y is of the form G(u) = G0u + f , where G0 : X ! Y is linearand 
ontinuous and f 2 Y .(3) Im (G0) is 
losed in Y .If u0 is a lo
al Minimizer of F under the 
onstraint u0 2 M := fu 2 X : G(u) = 0g, thenthere exists � 2 Y 0 for whi
hhDF (u0); ki(X0 ;X) � h�;G0(k)i(Y 0;Y ) = 0 for every k 2 X:If Im (G0) = Y , then � is unique.Proof. To prove the assertion we apply [30, Prop. 43.1℄ to our problem. Therefore, we haveto show that the following is true for u0:8 k 2 X : if G0(k) = 0 then hDF (u0); ki(X0 ;X) = 0:Let k 2 kerG0. For t 2 R we set 
k(t) := u0 + tk. Obviously 
k(t) 2 M for all t 2 Rand 
0k(0) = k. Now let f(t) := F (
k(t)). u0 is a lo
al minimum of F j
k , and thereforehDF (u0); ki(X0;X) = f 0(0) = 0. [30, Prop. 43.1℄ yields the assertion. �Referen
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