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1 Introduction

In this paper we investigate the solvability and regularity of the velocity and pressure fields of
a class of fluids with shear dependent viscosity, where the constitutive relation is of power-law
type. The corresponding field equations are given by a quasilinear elliptic system of partial
differential equations, which include as a special case the stationary, linear Stokes system.
Besides the presentation of known results on local regularity of the velocity fields in appropri-
ate Sobolev-Slobodeckij-spaces, we derive some new aspects concerning the local and global
regularity of the pressure, stress and velocity fields on polygonal or polyhedral domains and
include the case of mixed non-vanishing boundary conditions. In the whole paper we will
focus our attention on higher regularity in Sobolev-Slobodeckij-spaces.

Local regularity results, i.e. higher regularity on subsets Q' CC €2, for quasilinear degenerated
elliptic systems of p—structure were derived e.g. by P. Tolksdorf, [25], F. de Thélin, [8], and
J.-P. Raymond, [24]. They used a difference quotient technique in order to obtain a better
regularity in Sobolev spaces of integral order. In contrast to the systems they considered, the
equations of our fluid model also contain a pressure term 7 (n > 1):

div <a ‘6D(u)‘%71 5D(u)> —Vr=—f in Q,

divu =0 in Q,
U =g on I'p,
ol =nh on I'y.

J. Naumann proved in [22] on the basis of Tolksdorf’s and de Thélin’s results local regularity
of the velocity field « in three dimensions for this equation. We reformulate his result also
for the two-dimensional case and investigate in addition the regularity of the shear stress and
pressure field. For this we apply techniques which were developed by C. Ebmeyer in [11]. We
will also use these techniques to obtain higher regularity for tangential derivatives at a flat
part of the boundary. Let us finally note, that M. Fuchs proves local regularity results in
Holder spaces for a fluid model, which is a modification of our model, [15].

Global regularity results will be derived for a class of polyhedral domains with mixed and
non-vanishing boundary conditions. Here we combine Ebmeyer’s considerations from [11]
and [13]. In [11], Ebmeyer proved global results for non-Newtonian flows where the equa-
tions contain the convection term (u - V)u. Since our model has no such term we can carry
over the investigations from [13] to our problem which leads to a higher regularity than
in [11]. Again, the proofs are based on a difference quotient technique to get estimates in
appropriate Nikolskii-spaces, which are closely related by embedding theorems to the usual
Sobolev-Slobodeckij-spaces.

Since the linear Stokes system is a special case of our model, we will compare the obtained
results to those which are well known for linear elliptic equations. This indicates some opti-
mality of the results.

The paper is organized as follows:

In section 2 we will shortly prove existence of solutions of finite energy. This can be done
by well known arguments in the framework of the theory of monotone operators. We also
describe the connection between the weak formulation and the minimization problem for the
corresponding energy functional.



Section 3 is devoted to the study of local regularity of the velocity, pressure and stress fields.
While the regularity of the velocity field is proved in [22], we deduce the regularity of the
stress and pressure field by applying the techniques from [11].

In section 4, we study the regularity properties of higher tangential derivatives of the fields
near a flat part of the boundary. Thereby we admit non-vanishing Dirichlet- or Neumann-
data.

In section 5 we state and prove global regularity results on polyhedral domains. As already
mentioned, these results are a combination of Ebmeyer’s in [11] and [13] and therefore, the
proofs are also based on Ebmeyer’s ideas.

This paper closes with an appendix, where some functional analytic tools are collected. The
appendix contains some essential inequalities, mapping properties of the divergence opera-
tor, a solvability theorem for nonlinear saddle point problems and a simplified variant of
Ljusternik’s Theorem which describes the Euler-Lagrange equations for a minimization prob-
lem with constraints.

2 Existence and uniqueness results

2.1 Field equations for a class of shear thinning fluids

By equations (3)-(6) here below we describe the velocity and pressure fields of the steady
motion of a class of incompressible, shear thinning fluids, where the constitutive relation is
of power-law type.

Let © ¢ R?,d = 2,3 be a bounded domain, 90 = Tp UTy. By u : Q@ — R? we denote
the velocity field of the fluid, e(u) := 1(Vu + Vu”) is the strain rate tensor, e”(u) :=
e(u) — L tr(e(u))I is the deviatoric part of e(u) and describes the shear velocity. Furthermore,
o is the stress tensor and is decomposed in the following way:

o=-nml+T=—nl+o", (1)

where 7 can be interpreted as hydrostatic pressure and T = o” = o — %tr ol is the tensor of

viscous stresses. Note, that this splitting of o into a pressure term and the viscous stresses is
not stringent for an incompressible fluid, in contrast to the case of compressible fluids, where
7 stands for the thermodynamic pressure.

We assume that the fluid satisfies the following constitutive relation between the shear rate

eP and the shear stress o?:

1
ol = a‘eD(u)‘” €

P (u), (2)
where @ > 0 and n > 1 are some material parameters which can be fixed by experimental
data. One can interpret the constitutive law as follows:

Consider as a special case a steady plane parallel flow where the velocity is of the form
(%) = (u1(z2),0,0), see Figure 1. In this case

0 €19 0
(@) =e"(@= e 0 0],
0 0 0

and the constitutive law reduces to

1_
o192 =« |€12(u)|n ! 812(U).



This relation is plotted in Figure 1. The quantity n(e12(u)) := a/|e12(u)| 7«1 can be interpreted
as the shear viscosity and is of Ostwald-de Waele type. For fixed n > 1, the shear viscosity 7
decreases as the shear rate €15 increases and therefore this model describes a shear thinning
fluid. It should be mentioned, that for |e19| — 0, the shear viscosity 7 tends to infinity and
one should be careful when applying this constitutive model to flows with very small shear
rates |£12|. Examples for shear thinning fluids are molten plastics and polymer solutions. For
more details we refer e.g. to [4].

The problem we are interested in is the following: Find a velocity field v and a pressure field
7 such that for given volume and surface forces f and h and for a given surface velocity g
there holds:

dive+f=0 inQ equations of motion,
1
——1 . . .
ol —« ‘8D (u)| " Pw)y=0 inQ constitutive law,
divu =0 1in incompressibility condition,

u=g onlp,
oii=h onTy.

The vector 7 is the exterior normal vector on the boundary I'y. These equations can be
shortly written as

div (a ‘ED(U)‘E_l sD(u)> - Vrn=-—f in Q, (3)
divu =0 in Q, (4)

u=g on I'p, (5)

on=h on I'y. (6)

Note, that in the case n = 1, this system reduces to the well known linear Stokes system.

Remark 2.1. For n > 1 the function F' : R°\{0} — R® : & — \fﬁflf can be extended
continuously to # = 0 by setting F'(0) = 0. We interpret the term in the brackets of equation
(3) in this sense.

Before we describe in which sense we solve these equations we have to introduce some appro-
priate function spaces.

T . Newtonian
2 - shear thinning
12

shear thickening

€12

Figure 1: Typical constitutive behavior for shear thinning, Newtonian and shear thickening
fluids for a steady plane parallel flow @ = (uq(z2),0,0)



2.2 The spaces

Throughout the whole paper we do not distinguish in our notation between scalars, vectors
and tensors since in general it is clear from the context of which type a variable or function
is. Moreover we use the same notation for function spaces of scalar valued, vector valued or
tensorial valued functions. Only in some special cases we will write e.g. LP(€2,R?) which is
the space of vector valued functions {u = (ug,...,uq) : Q@ = R, u; € LP(Q),1 < i < d}.

For open subsets  C RY, d > 1, we introduce the following Sobolev-Slobodeckij-spaces:

Let s =m+ o, where m € Ny, 0 <o <1 and 1 < p < co. The space W*P(Q) is defined by

WP(Q) == {u € LP(Q) : D% € LP(Q) for |a| <m and [lullyy«pq) < oo},

see also [1, 26]. In this definition we make use of the usual multi-index notation, D* denotes
the distributional derivative of order o and the norm is given by

: Dou(e) ~ Dou(y)P
ey = 32 1Dl + 3 [ [ OOy

lal<m lal<m

Furthermore, the corresponding trace spaces on I' C 912, T open, are defined in the sense of
Sobolev-Slobodeckij-spaces on compact manifolds, see [18]. Here we need C*'-smoothness of
09 for the definition of W*P(I'), where s and k are related as follows: k € Ny, |s| <k + 1.
As a special case of [18, Thm. 1.5.2.1] we have for s = 1 and &k = 0 the following trace
theorem:

Theorem 2.1. Let Q C R? be a bounded domain with Lipschitz boundary, T C 0Q open and
1 <p < oo. Then the mapping
fy‘r tu = u‘r,

which is defined for u € C*(Q), has a unique continuous extension denoted by the same
operator:

1
Yl WhP(Q) - WD),
Furthermore, the mapping 7‘1“ 18 surjective.
With this theorem the following definition is meaningful:

Definition 2.1. Let Q C R? be a bounded domain with Lipschitz boundary and 9Q =T pUTy,
1
where T'p and T'y are open and disjoint; 1 < p < co. For g € W1_5’p(FD) we set

Volg) = {u e WH(Q): ul =g}

We will shortly write V), instead of V,(0).
Furthermore,

Wlf%’p(FN) = {u Cu= ﬁ‘FN, where @ € Wlf%’p(BQ) with suppu C m} ,

which is endowed with the norm ||u|| _, 1 = a|| , 1 .
WP (Ty) w PP (69)

Remark 2.2. By the linearity and surjectivity of the trace operator, there exists for every
1
g € W' »P(T'p) an element § € W2(Q) with glp, = ¢. Thus Vo(9) = g+ Vp(0).



Important tools in the proof of existence of solutions are Korn’s inequality and a generalized
version of Poincaré-Friedrichs’ inequality:

Theorem 2.2 (Korn’s inequality). [16] Let Q C R? be a bounded domain with Lipschitz
boundary. For 1 < p < oo we have the following estimate: There exist c1,ca > 0 such that for
all w € WP(Q,R?)

&1 [ullynogay < Nl gy + (162 )| ooy + 60 @) oy < €2 lrullyrsgey -

Thus, the expression ||[ull, := [[ull 1»q) + HED(U)HLP(Q) +[[tre(u) |l o) defines an equivalent
norm in WU'P(Q). Furthermore, the spaces W'P(Q,R%) and U'P(Q,RY) := {u € LP(Q,RY) :
[[|ulll, < oo} are equal.

Theorem 2.3 (Poincaré-Friedrichs’ inequality). Let Q C R? be a bounded domain with
Lipschitz boundary and 1 < p < o0.

1. If V.Cc W'P(Q) is a closed, convex subset with the property
u € V,Vu=0 = u=0.
Then there exists a constant ¢ > 0 such that for every u € V:

||u||LP(Q) <c ||vu||Lp(Q) .

2. [16] If V C WLP(Q,RY) is a closed, convex subset with the property
u€eV, Hg(u)HLP(Q) =0 = u=0,
then there exists a constant ¢ > 0 such that for every v € V:
HUHWLp(Q) Sc H‘S(U)HLP(Q) :

We will prove the regularity results by estimating difference quotients of weak solutions.
Suitable spaces, where the norms take into account difference quotients in an explicit way,
are the Nikolskii-spaces.

Definition 2.2 (Nikolskii-space). [1] Let s = m + o where m > 0 is an integer and
0<o<l1. Forl1<p<oo

No2(@) = {u € L)+ ullyenga) < 0} (7)
where Dz + h) - Dou(a))”
Yu(x +h) — D%(x
ey = Nl + X s [ e @
jaj=m 120
heR
0<|h|<n

and Q, = {z € Q: dist(z, 0Q) > n}.

The relation between Nikolskii-spaces and Sobolev-Slobodeckij-spaces is described in the next
lemma:



Lemma 2.1. [1] Let s,p be as in Definition 2.2. The following embeddings are continuous:
for every e >0 : NFTEP(Q) € WHP(Q) C N5P(Q).

In the definition of Nikolskii-spaces we have to take into account difference quotients with
respect to every direction h € R%. Tt is also possible to define a space, where the difference
quotients are formed with respect to a fixed basis of R?, only. If © is a bounded Lipschitzian
domain, then these two definitions coincide. More precisely:

Let &1,...,&q be a basis of R? with [£;| = 1. For s, p as in Definition 2.2 we define

NP(Q) := {u € LP() : Nai(u) < oc for 1 <i<dand |a] =m},
ol goniay = ey + 3 Nas(w),
1<i<d

la|=m

where

1

D~ h&;) — D@ P »

Na,i(u) := sup </ Dlule + %C)rp u(@)) dx) " ford < <d.
h>0 \JQ,

Lemma 2.2. Let Q C R? be a bounded domain with Lipschitz-boundary and &1, ..., &g C RY
a normed basis of R®. Then

NEP(Q) = N*P(Q)

and the norms are equivalent. The constants in the equivalence relation of the norms depend
on the choice of the basis.

Proof. Since Q is a bounded Lipschitzian domain, functions from A*?(Q) and N'*?(Q) can be
extended to R? with preservation of the norm, [23, Thm. 1, Thm. 2, pp. 381]. Furthermore,
N#P(R?) = N*P(R?) and the norms are equivalent, [20]. O

2.3 Existence results

We are now able to describe in which sense we want to solve equations (3)-(6).

Definition 2.3 (Weak Solution). Let Q C R? be a bounded domain with Lipschitz boundary,
0Q = TpUTy where Tp and Ty are disjoint open sets. Let further be n > 1, p = n + 1

1
and g =p' =1+ % We assume that the given data satisfy f € V], g € Wlfa’q(FD) and

he (W' o)y,
A pair (ug,m) € Vy(g) x LP(Q) is a weak solution of the nonlinear field equations (3)-(6) if
for every v € V,4(0), r € LP(2):

/Qa ‘SD(UU)‘q_Q eP(ug) : P (v) da — /Qﬂ'divv dz = /va dz + /FN hv ds, (9)

/ rdivugdz = 0. (10)
Q

The integrals on the right hand side are to be understood in the sense of the dual pairing
~ 1 ~ 1
between Vg, V, and (W'=aUTy)), W' ™a9(Ty), respectively.



The weak formulation can formally be obtained by multiplying the field equations (3)-(6)
with v and integration by parts.

The weak formulation has the structure of a nonlinear saddlepoint problem. To make this
more evident we introduce the following forms for p, g, n as in Definition 2.3:

a()) . WHQ) x WH(Q) - R: a(u,v) = /Qoz ‘8D(U)‘q_2 eP ) : P (v)dz, (11)
bo) s IPQ) XV, = R: b(m,v) = —/ r divo dz. (12)
Q

The next lemmata collect some properties of the forms a and b which we will need in the
sequel.

Lemma 2.3. Let p,q,n be as in Definition 2.3. For (u,v) € WH9(Q)x W19(Q) the expression
a(u,v) is well defined and by Hélder’s inequality the following estimate holds: There ezists a
constant ¢ > 0 such that for every (u,v) € WH4(Q) x Wha(Q) :

Ja(u, v)| < afle?(u H o 1€ )| o0y < e lullfiagqy 1ol - (13)

Thus we can associate to every fixed u € W19(Q) a unique operator A(u) € (WH9(Q)) =
W, '?(Q) such that for every u,v € W'(Q):

(AL 0wy (@) o) = @ 0)-
Consider now the mapping
A WH(Q) = W, P(Q) 0w A(uw).
The properties of this nonlinear operator are described in the next lemma.

Lemma 2.4. Let p,q,n be as in Definition 2.35.
A Wh(Q) — Wofl’p(Q) is a continuous operator. There exists ¢ > 0 such that for every
u,v € WHi(Q):

(A() = A 4= 9) gy 0y sy > © L ClE(@),e0)(0) do (14

where we have set for e1,e9 € R¥*4:

G(&‘l,ag) = {(61 + ‘82|)q_2 |51 - 82|2 Zf (61,62) ;ﬁ (0’0)’

0 else.

Thus, A is a monotone operator on W9(Q). Note, that (A(u) — A(v),u —v) = 0 if and only
if e(u) = e(v).

Remark 2.3. The above defined function G is continuous on R4*? x Ré*d,

Proof. The continuity of A is a direct consequence of the continuity of the operator W7(Q) —

LYQ): u — ‘5D(u)‘q72 eP(u), which follows with the help of [29, Prop. 26.6] where the
continuity for a class of Nemickij-operators is shown.



Inequality (14) can be derived by a pointwise application of the following inequality, see also
Lemma A.1:
For every 1 < ¢ < 2, s € N exists ¢ > 0 such that for every z,y € R® with (z,y) # (0,0) :

(2 2z —[y|" %y) - (z —y) > c(|z| + [y)I72 |z — y[*.
]

Obviously, the form b(-,-) : LP(Q) x V; — R is a continuous bilinear form, i.e. there exists a
constant ¢ > 0 such that for all 7 € LP(€Q2) and u € V there holds:

b(m, u)| < ¢ ||7THLP(Q) HUHWL'J(Q) :

Thus we can associate in a unique way the following linear and continuous operators with

b(-,-):

B:LP(Q) = V,, 7 B(r) = —/ mdiv (-) dz, (15)
Q

B*:V, = L1(Q), u = —divu. (16)
B and B* are connected via the relation

(B*(u), 7)) ((1r (). 1 () = —/ rdivudz = (B(r),u)vyv,) forevery u € Vg, me LP(Q).
Q

For 1 < ¢,p < 00,q = p' the spaces V, and LP(Q) are reflexive, thus the operators B and B*

are adjoint. In appendix B, the mapping properties of the operators B and B* are investi-

gated in detail.

We now reformulate equations (9)-(10) in terms of the the operators A, B, B*:
~ 1
Let I'p C 09 be open, p, ¢,n as in Definition 2.3. Let further f € V, h € (W' 9T ), g €

Wl_%’q(FD). By Theorem 2.1 and remark 2.2 we have V,(g) = go+V,(0), where gg € Wha(Q)
with go|r, = g.
We define ) )

A:Vy =V, u— Au) = A(go + u).

Furthermore, we can associate to f and h an element F' € Vq' in a unique way. With these
notations, the weak formulation (9)-(10) is equivalent to the following problem:
Find (u,7) € V, x LP(Q) such that

A(u)+ Bn=F in V), (17)
B*u =divgy in L1(Q). (18)
There holds: (ug, ) is a solution of (9)-(10) if and only if (@, 7) = (ug — go, 7) is a solution
of (17)-(18).
We are now ready to state the main theorem of this section:

Theorem 2.4 (Existence and uniqueness of weak solutions). Let Q2 C R? be a bounded
domain with Lipschitz boundary, 02 = T'pUT N, where T'p and I'y are open and disjoint. Let

~ 1
further bemn >1,p=n+1,q=p =1+ L. We assume that f € V,, h € (W'™a9(Tn)), g €
1
W' o9(Dp).



1. Assume that mesT'p > 0. If T'p = 909, we further assume that the Dirichlet-data g
satisfies the following solvability condition:

there azists go € W"(Q) such that golaa = g and / div go dz = 0. (19)
Q

Then there ezists a pair (u,m) € Vy(g) x LP(Q) which is solution of the weak problem
(9)-(10). w is unique, ™ is unique if U'p # 0Q. If 'p = 0Q then © is unique up to a
constant. The solvability condition (19) is necessary and sufficient.

2. Assume that T'p = (. In this case we have a pure Neumann problem and V, = W19(Q).
We assume further that the data f,h satisfy the following solvability condition:
For every v € ker(e) C Wh9(Q)
o) wg tr@wtao T b agy wi-da gy = O (20)
Then there exists a pair (u,7) € W9(Q) x LP(Q) which solves the weak formulation.

Furthermore, u is unique up to the addition of elements in ker(e), m is unique. The
solvability condition (20) is necessary and sufficient.

Note, that ker(e) is the finite dimensional space of rigid motions.

1
Remark 2.4. Condition (19) is equivalent to: ¢ € W' ¢7(9Q) with [0 97ds = 0. Note,
that this condition is well known in the case n = 1, i.e. in the case of the Stokes system with
pure Dirichlet conditions.

Proof. We first prove the theorem for the case mesI'p > 0. Here we make use of formulation
(17)-(18). In the proof we apply Lemma 2.4 and Theorem B.1 where we collected some
properties of the operators A, B, B* and Lemma C.1 on the solvability of nonlinear saddlepoint
problems.

By Lemma 2.4, A : V, — V, is continuous and strongly monotone, B : LP(Q) — V| is
continuous and linear, B* : V;, — L1(Q) is the adjoint of B and by Theorem B.1, Im B* and
therefore also Im B are closed. Furthermore, it follows by Theorem B.1 and the solvability
condition that divgy € Im B*. In order to apply Lemma C.1 to our equation we only have
to verify the coercitivity of A on M := {v € V, : B*v = divgp}.

Let (un)nen C M with [[uglyy14(g) — 00 as n — co. Then

(A(un)un) = alle” () |70, -

By Lemma 2.3, there exists ¢ > 0 such that for every u € M:
oy < e (l1e”00) | agqy + Idiverl o))
=c (H‘SD(U)HLQ(Q) + HdngOHLq(Q))

and therefore [[uy||yy1.4(q) — oo if and only if HsD(un q) — 0° Thus

Mo

(A(un), un) e” (un) || 740

1P (n)ll o) + 1div goll £o(qy

c — 00 as n — 00,

=
||Un||W1,q(Q)

10



which shows the coercitivity of A on M. The first part of the theorem follows by Lemma C.1.

Now let ', = (). To prove the assertions for that case we also would like to apply Lemma
C.1. Since we cannot prove the coercitivity of A on ker B* C W9(Q) we have to split our
problem. We decompose W!9(Q) into two closed subspaces and solve the problem only on
one of these subspaces. In a second step we show that the solution we found there is already
a solution for the whole problem.

Since kere € W'4(Q) is a finite dimensional subspace there exists a closed subspace V C
Wh4(Q) such that

Wh(Q) = ker(e) @V,

see [2, Satz 7.16]. Again by Lemma 2.4, A : V — V' is continuous and strongly monotone.
Furthermore we can prove as before with Lemma 2.3 the coercitivity of A on ker B*N V.
Consider now the following problem: Find (u,7) € V x LP(2) such that for all v € V,r €
LP(Q):

<AU, v)(V’,V) + <B7T7 v)(V’,V) = <f7 /U> + <h7 U)a (21)
(B*u,7)(La),zr(0)) = 0 (22)

Before we can apply Lemma C.1 to this problem we have to check that Im B is closed in V' for
B: LP(Q) — V', or, what is equivalent, Im B* is closed in L?(Q) for B*: V — L1(Q).
By the splitting of W14(Q) = ker ¢ ® V' we have the following representation for v € W4(Q):
u = r + v, where r € kere and v € V are uniquely determined. Consider now B*u =
B*r+ B*v = —divr — divwv. Direct calculations show that for r € ker € there holds divr = 0.
Thus, B*u = B*v and therefore by Theorem B.1: B*(V) = L1(Q).
Lemma C.1 now implies that (21)-(22) has a solution (u,7) € V x LP(Q2). Moreover, equations
(21)-(22) are true not only for v € V but also for arbitrary r € kere. This is due to the
solvability conditions on the data f and h, see equation (20). Thus (u,7) is a solution of
problem (9)-(10).
The uniqueness properties follow by considerations which are similar to those in the proof of
Lemma C.1. O

2.4 A minimization problem

In this section we show that one can also associate a minimization problem with constraint
to (3)-(6) and describe how this minimization problem is related to the weak formulation.

Forn>1lg=1+L ueWh(Q), fe (WHQ), he (W %Ty)) and g € W' 29(I'p)

n’

I(u) :=/Qnof1 ‘ED(U)‘Q dx—/ﬂfudx—/FN hu ds (23)

Mg :={u e Vy(g) : divu =0}.

Definition 2.4 (Minimization Problem). Let Q C R? be a bounded domain with Lipschitz
boundary, 0Q = Tp UTy, where T'p and T are disjoint open sets. Let furthern > 1, p =
ntlg=p =1+1 feWQ), he (W (Ty)) andge W' +*(Tp).

The minimization problem is the following:

Find u € My such that I(u) < I(v) for all v € M,. (24)

we set

and

11



Theorem 2.5 (Existence of minimizers). Let Q C R? be a bounded domain with Lipschitz
boundary, 00 = I'p ULy, where I'p and T'x are disjoint open sets. Let further n > 1, p =
n+l,g=p =141 feWQ), he (Wlfé’q(FN))’ and g € Wlf%’q(FD). In the case
Tp = 0 we further require that solvability condition (20) is satisfied, in the case T'p = 0Q we
require that condition (19) is fulfilled.

Then there ezists a solution u € Mgy of problem (24). In the case I'p # 0, u is unique and if
T'p =0, then u is unique up to the addition of elements from ker(e).

Proof. The assertion follows by a standard argument for the minimization of functionals,
see [30, Prop. 38.15]. To apply this Proposition we have to verify that M, Cc W4(Q) is
convex and closed and that I is continuous, convex and coercive on My, i.e. for any sequence
{vk, k € N} € My with [Jvg|[yy1.4() — 00 as k — oo there holds I(vy) — oo as k — oc.

The continuity and convexity of I follow by considerations which are similar to those of
Lemma 2.4. Theorem B.1 and the solvability condition for the case I'p = 02 guarantee that
M, # 0.

If T'p # 0, the coercitivity of I follows by the same arguments as in the first part of the proof
of Theorem 2.4 which yields the assertion.

In the case I'p = 0, we have M = {u € W™4(Q) : divu = 0}. Note, that kere C M is a
finite dimensional subspace and therefore we can split M = kere @ V, where V. C M is a
closed subspace. The restriction of I to V is coercive and therefore there exists a solution
for problem (24) with M replaced by V. By the solvability condition this solution is also a
minimizer of the whole problem. O

The next theorem shows that equations (9)-(10) describe the weak Euler-Lagrange equations
for the minimization problem (24). The pressure m appears as a Lagrange-parameter.

Theorem 2.6. Let Q C R% be a bounded domain with Lipschitz boundary, Q0 = Tp U Tx,
where T'p and T'x are disjoint open sets. Let further ben > 1,p=n+1,q=p =1+ %,

feWhiQ), he (Wlfé’q(FN))' and g € Wlf%’q(FD). We assume that ug € My C Vy4(g)
is a solution of the minimization problem (24).
Then there exists a function = € LP(Q) such that the pair (ug, ™) satisfies equations (9)-(10).

Proof. The proof consists in applying a variant of Ljusternik’s Theorem, Theorem D.1, to the
minimization problem. In our case, we have to verify the following conditions:

a.) I:V,(g) — R is Fréchet-differentiable,

b.) the constraint operator div : V,(g) — L9(€2) has a closed image.
The Gateaux-differentiability of I can be proved with arguments which are similar to those
in [6, Appendix A.8] and we get as Gateaux-derivative:

DI :Vy(g) = V! :u — DI(u)[-] = / o [P (w)|" 2P (u) : P () da.
Q
The continuity of the Gateaux-derivative DI : Vy(g9) — V, : u — DI(u) with respect to u
follows by Lemma 2.4. Therefore, I is Fréchet-differentiable and a.) is proved.
The properties of the div-operator are discussed in Theorem B.1. Now, Theorem D.1 yields
the assertion. O
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3 Interior regularity of weak solutions

Before we state and prove higher interior regularity results for the velocity, stress and pressure
fields, we recall the definitions of o and oP:

- 1
ol =« ‘6D(u)‘q ? eP(u), where e (u) = e(u) — Etr(e(u))[,
o=—nl+oP.
Note, that e”(u) = e(u) since tre(u) = divu = 0.

Theorem 3.1 (Interior regularity). Letn > 1,p=n+1,q=p' =1+ % and f € LP(Q).
For a weak solution (u,m) € Wh9(Q) x LP(Q) there holds for every 6 > 0, € > 0:

2,7 q—1-6,. 5 —1-4,
u € Wloc (Q)’ UD € Wloc ! (Q)’ e Wl%c p(Q)’ (25)
where
2—¢ ifd=2,
T = { 3 Lo (26)

18,1 ' .
Note, that 1 < g<7<2andp < qz—l. Furthermore, m € W, =) if f € L=1(Q).

loc

Remark 3.1. If we choose n = 1, then p = ¢ = 2 and equations (9)-(10) reduce to the linear
Stokes system. By Theorem 3.1 we get u € W2>"¢(Q) which is (up to €) exactly the well

loc
known result for linear elliptic equations, see e.g. [28].

- ‘ : : . 3¢ _ 3n43~_ 3
For d = 3 and n — oo the regularity of u is decreasing as n grows: Tig = 2nti AVED

Remark 3.2. In the case d = 2 the result coincides with a result for the p—Laplacian:
Let © C R? be a convex domain, 1 < ¢ <2, p=¢’, f € L’(Q) and assume that u € W (Q)
satisfies

/ Vul" 2 VuVodz = / fudz  for every v € W, (Q),
Q Q
then u € W22(Q), [3].

Proof (of Theorem 3.1). The result for the velocity field u was proved by Naumann in [22]
for the three dimensional case. In a first step, he applied a difference quotient technique,
which is based on Tolksdorf’s ideas, [25], in order to prove u € Wli’cq(Q) He used essentially
the monotonicity properties of the nonlinear differential operator, see also Lemma 2.4. The
arguments of the first step are independent of the dimension of the domain . In a second
step he derived with the help of embedding theorems for Sobolev-Slobodeckij-spaces the bet-
ter result u € VVE)CT(Q), 7 as in (26). Since the dimension of Q plays a role in the embedding

theorems, the quantity 7 in (26) depends on d. We remark, that 7 = d—l—(f]q—Q ifd > 3.

Regularity of oP:

For the proof of the regularity of 0" = a e (u) ‘qu eP(u) we follow the ideas in [11]. Let Q' C
C Q" cC Q2 be open subsets of Q with smooth boundaries, hy := min{dist(Q’, 9Q"), dist(", 902)}.

Let further be
{2—6 if d =2,
T =

3 .
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Since u € VVI?)’CT(Q) we have e(u) € VVI})’CT(Q) and therefore for h € R with 0 < |h| < hg:

(61)

0P (@ +h) — oP(2)|7 dz < e P (u(w + b)) — P (u(z))|” dz

o o
[17,Lemma 7.23] . .
< c|hl HV&D(U)‘ Lr@n) -
Thus, with Qf = {z € Q' : dist(z,0Q') > §}
D D P
sup / 7 (x-l—h)i o (@) dz < o0 (27)
q—1
>0 Jay |h|

0<|h|<§

and therefore o € Nq_l’q%l(Q’), see also Definition 2.2. Now, the assertion follows with
Lemma 2.1.

Regularity of 7:

We follow again the ideas from [11].

Let P € Q and choose R' > 0 such that with Q' := Bp/(P), Q" := Byor/(P) there holds
Q' cc Q" cc Q. Let further by = 1 min{R', dist(9Q",00)}, § < hy and Qf = {z € Q' :
dist(z,09') > 6}. For any h € R? with 0 < |h| < hg we get from equation (9) in the
distributional sense:

ARV = Apf 4+ Apdive?, (28)

where Apu = u(x + h) — u(z). Next, we estimate the right hand side of this equation in the
W~ LP(Q')-norm:

||Ahf|‘w—1,p(9') = sup Apfyde
pew, 1) 1/
Hd’”wl,q(n/):l
= s [ f@e-nde- [ f@ia) s
vewy (@) 12 +h &
H‘l’”wl,q(n/):l
= s [ @)@t da
vewy () 1S+
H‘l’”wl,q(n/):l
< HfHLP(Q’UQ’Jrh) sup HA*thLQ(Q’uQHFh) . (29)
VEW; ! (Q)

||¢le,q(nl):1

Here we have set ' +h={z € R : 2 =y+h, y € @'} C Q. We can extend ¢ € Wy (Q') to
¢ € WH(R?) by setting ¢(z) = 0 for z ¢ Q. By [17, Lemma 7.23], we then get for arbitrary
b€ Wy I(Q):
1AW oo sny < VL I99 0 agaay = 14199l (30)
and therefore
AR w10y < BTNl Loq) - (31)

14



1,-I-
Furthermore, since o e,/\/'q ‘?—1( ) C N‘lq l,p( ),

loc oc

Apdive?||. = sup NApo? : Vodz
il = s | [
||U||W1,q(9/):1
-1
< HAhUD‘ Lr(Q) sup HVUHLq(Q’) < |hf? Ho-DHNq—l,p(QII) .
vECE (V)

”valx'J(Q’):l

(32)

Equation (28) and inequalities (31), (32) show that there is a constant ¢ > 0 such that for

every h € R? with 0 < |h| < hy
A
(G, e
B Ly sy

In addition, there exists ¢ > 0, such that for every h € R? with 0 < |h| < hg

A
H e <c (34)
|h‘ wW=Lp(Q)
By Necas’ Lemma, see Lemma B.2, we conclude
A
H T <c (35)
A" ey
and therefore A »
sup / hzrl dz < ¢ < 0. (36)
5>0 Jor [|h]?

0<|h|<d

Thus, 7 € N9 1P(Q) and the theorem is proved.
Note, that if we assume f € L-1(Q), we can derive for the pressure by the same arguments

—1-9, . . . . .
as above the regularity = € W'lic 9=1(Q), which coincides with the regularity of o”. O

4 Higher tangential regularity at plane parts of the boundary

One can also prove a higher regularity for derivatives which are tangential to a plane part of
the Dirichlet- or Neumann-boundary.

Theorem 4.1. Let Q C R? be a bounded domain with Lipschitz boundary, n > 1, p =
n+l,g=p =1+ % and f € LP(Q). We assume that the boundary conditions are given in
the following special form:

on=Hn only,

where H € WIP(Q,R™4) and H = HT. Furthermore

’U,‘FD :g‘FD onT'p

for a given g € W39(Q).
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Choose Q C Q in such a way that S := int(aflﬂaQ) s an open subset of a hyper-plane L. We
further require that there exists an open set U C 0 with S C U C L and that the boundary
conditions do not change on U, see Figure 2.

Then there holds for every t which is tangential to L:

O:Vu € LI(Q).
Here, Oy denotes the derivative towards t.

L

Figure 2: An example for the domain in Theorem 4.1

Proof. The proof is a modification of Naumann’s proof in [22] for interior regularity and uses
a difference quotient technique. We distinguish two cases according to the different boundary

conditions. .
Let Q C Q be a domain as described in Theorem 4.1 and P € § = int(9Q2 N 09). Choose
0 < R’ in such a way that Q' := (Bg/(P)NQ) C Qand Q" := (Bor (P)NQ) C Q, see Figure 2.

1. Case, Neumann-conditions on 9Q N 9
Due to the special structure of the Neumann data, equation (9) of the weak formulation is
equivalent to

/QagD(u)\q28D(u):eD(v)dx—/Qﬂdivvdxz/Q(f+divH)vdx+/QH:e(v)dx. (37)

Let (u,m) € V(g) x LP(Q2) be a weak solution. Choose ¢ € C§°(Byr (P)) with (p‘BR/ P = 1,
t tangential to 9Q N IQ with || = 1 and hg := 3 min{R', dist(9Q", 9Q\0Q)}. Then for h € R
with 0 < |h| < hg, the function

E(x) = ¢ (2) (u(z + ht) — u(z)) = ¢*(x) Apu(z)

as well as the function £(z) := &(x — ht) are admissible test functions in V;(0). After inserting
¢ and ¢ into the weak formulation, changing the variables of ¢ and subtracting the resulting
equations, we obtain

/ al\p, (‘8D(U)‘q_2 ED(U)> ceP (&) dx = Apmdivédz
" QII

+ [ Ap(f+divE)Edz+ | ARH () da. (38)
QN QII

In order to simplify the notation, we define G(e) := a|e|? ?&. Note, that

eP (@ (Apu) = (Apu) @ V<p2)£,m + %P (Apu), tre(p?Apu) = Vo2 - Au,
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here we have used that divu = 0; a ® b € R¥? denotes the tensor product of the vectors
a,b € R? with (a ® b)ij = a;bj; Asym is the symmetric part of tensor A. Equation (38) can be
transformed into

/” wQ(AhG(ED(u))) : ED(Ahu) dz = — o Ah(G(ED(u)) +H): (Apu® V(pQ)sym dz

-I-/ (Apm)2¢pV e - Apudz -I-/ O? Ap(f +div H)Apudz

1

+ / PAGH : ApeP (u) dz (39)
=L+ +14
The integrals on the right hand side can be estimated as follows: We set V,(Q") := {u €
wha(Q"y “‘am\an = 0}. Then

I3 < |l An(f + div H) ||y, (@myy leAnullyia
and by arguments, which are similar to those in (29), we obtain
leAn(f + div H) ||y, oy < clh],

where the constant ¢ is independent of A. The same considerations can be carried out for Iy
and Iy, which leads to
I+ I + I3 < c|h o Anullyra g

with a constant ¢ which is independent of h. Using the product rule, Poincaré-Friedrichs
inequality and Korn’s inequality, see Theorems 2.2 and 2.3, and the fact, that tre(u) = 0, we
get:

il < (1h]+[|0ne? @) o)

Furthermore, by Holder’s inequality and since H € WP(Q), we have

I < Ml A H | oo

|22 ()| oy < € B gy [[925” (@)] oy

Equality (39) and the above estimates yield
/// ¥’ (AhG(sD(u))) : AhsD(u) dz < ¢ \h|2 + c|h| H(pAhsD(u)HLq(Q,,) ) (40)

From now on, the proof follows exactly the arguments in [22], one only has to estimate the left
hand side of (40) from below: By Holder’s inequality we get for My, := {z € Q" : e(u(z)) =
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—2
e(u(x + h)) =0} and s = % < 0:

lotne® @) oy = ([ (Pt + [P ute + m)))
(‘SD(u(a:))‘ + ‘SD(U(ZE + h))‘)s ‘@AhsD(u)‘q da:)a

(2

< e @D + [P (- + M)l

)

B
q(QH)

1
2

</” ‘702 ‘Ath(u)‘Q (‘8D(’LL(1,‘))‘ + ‘SD(U((E + h))‘)Q72 d33>

1
2

<e (/ 2 | 2P (W) (|2 (@) + | (uo + h))" dx)

(58)

<o ([ PGP W) e o)

10),(63) . o ph
< aalhl+es b2 [loAne” (W) 7o

. (41)

where the constants ¢; are independent of h. Since inequality (41) is true for every 0 < |h| <
hg, and since ¢|,, =1 and tre(u) = 0, it follows

Ape(u)

h

sup
0<|h|<ho

< e < oo, (42)
La(Y)

and thus dpe(u) € L9(Y'). Finally we obtain with Korn’s inequality that 9;Vu € LI(Q').

2. Case, Dirichlet-conditions on 9Q N Q: Let (u,m) € V,(g) x LP(Q) be a weak solution.
As before we choose ¢ € C3° (B (P)) with (p‘BR/ (F) = 1 and # tangential to 9Q N 9N with
£ = 1. Let ho := 3 min{R,dist(992",00\09)} and g € W>(Q) with For
h € R with 0 < |h| < hg, the functions

E() = 9*((u(z + ht) = g(z + ht)) = (u(z) = g(2))) = ¢*(2)An(u — g)(2)

and £(z) = £(z — hi) are admissible test functions in Wol’q(Q). After inserting these functions
into the weak formulation (9), we obtain by some calculations

= g‘rD'

/” PANGEP (W) : ApeP (W) dz = — [ AGEP (W) : (Dnlu—9) ® VD)2 da

Q' sym
+ /” (pQAhG(sD(u)) : AheD(g) dz
—/ O ApmApdiv g dz

+ Apm(Dp(u— g)) - V2 dz
Q//

+ [ P g)ds
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The integrals Iy, 14, I5 can be estimated similar to the corresponding integrals in the Neumann
case. For I and I3 we use the fact, that g € W39(Q) in order to obtain

I < c|| ARG

(u))H(Vq(QH))/ (pAhED(g)qu(QN) < C ‘h|2 HG(ED(U))HLP(Q) HVED(Q)HV[/I,q(Q)

and
I < e B2 7l ooy 198V (9)yy1.0cey -

This shows, that inequality (40) also holds in the case of Dirichlet conditions and we can
proceed analogous to the case of Neumann conditions. O
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5 Global regularity of weak solutions

Global regularity for systems of nonlinear elliptic PDE on a class of polyhedral domains in
the setting of Nikolskii- and Sobolev-Slobodeckii-spaces was first studied by C. Ebmeyer and
J. Frehse in [10, 12, 13]. Later, they extended these results to the stationary Navier-Stokes
equation,where they also study fluids with shear thinning viscosities, [14, 11]. Since the
equation in our paper is a simplified version of the Navier-Stokes equation (no convection
term), the results from [11] can be applied also to this equation and can be improved by using
the ideas from [13]. This will be described in this section in detail.

5.1 Geometrical assumptions

In order to prove global regularity results, one needs some assumptions on the geometry.
These assumptions arise mainly for technical reasons in the proof of global regularity, where
one has to construct special extensions of the solutions across the boundary of the domain.
Let us note that at least in the two dimensional case, the assumptions are optimal in com-
parison to those which one needs to prove similar results for linear elliptic equations.

In 2D we consider bounded Lipschitzian polygons, where the only restriction on the geometry
is that if there are changing boundary conditions in a point P € 9€), then the interior opening
angle of the domain at P is less than .

In the three-dimensional case we consider Lipschitzian polyhedrons where we require that at
most three faces come together at points on the boundary where the boundary conditions
change and that the interior angle between neighbored faces with different boundary condi-
tions is less than 7. At vertices, where the boundary conditions do not change, there is no
restriction on the number of faces or the geometry.

More precisely we have the following assumptions on the geometry, see also [13]:

Two-dimensional case: © C R? is a bounded Lipschitzian polygon with 9Q = I'p N Ty,

I'p,['ny open and disjoint, where I'p and I'y denote the Dirichlet- and Neumann-boundary,
respectively. We further assume, that 92 has the following structure:

k
00 =JT;,
=1

wlﬁreﬂ are open subsets of straight lines, I'; NT'; = () for i # j and T'; C I'p or T'; C Ty
II;NTj#0andT; C I'p,I'; C 'y, then £(I';,T';) < 7 (here we consider the interior angle).

Three-dimensional case: Q C R3 is a bounded Lipschitzian polyhedron with 9Q = T'p N Ty,
I'p,T'n open and disjoint. Furthermore 02 = UleF_i, where I'; NT; = @ for 7 # j and
It c'porI; € I'y. We assume that every I'; is an open subset of a suitable plane and
has a polygonal Lipschitzian boundary. If T';; C Tp and T, C Ty and T;; N Ty, # 0, then
£(Iy,,T,) < m, where we consider the interior opening angle. Finally, if I';, C I'p and
I';, C 'y, then F_ilﬂr_mﬂr_mﬂr_m = () for all i3 # 144 and 13, iy ¢ {’il,ig}.
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5.2 Global regularity
Theorem 5.1 (Global Regularity). Let Q C R?, d = 2,3, be a polyhedral domain which

satisfies the geometrical assumptions introduced in section 5.1. Let further be n > 1,p =
n—i—l,q:l—i—%,feLp(Q) ands—2d 51 = L.
We assume that the Dirichlet-data is given by a function g € W254(2) with Vg € L°°( ) for
some domain € DD 2 and

U‘FD = Q‘FD'
Furthermore, we assume that the Neumann-data is of the following form: There ezists a
function H € WhP(Q,R¥™>4) N L°(Q, R, H = HT, such that

on = Hn on I'y.
Then for a weak solution (u,m) € W14(Q) x LP(Q) there holds for every § > 0:

u € Wa0as(Q),
oD e w'T s (Q),

TeWw's —0P(Q),

m e W T0Ps(Q) if f € LPS(Q).

Here, 0" = o |eP (u) ‘q72 el (u).

Remark 5.1. If d < p and H € W'P(Q), then the embedding theorems state that H €
L>®(£2). Furthermore, one can choose any function g € W2%(Q) in order to describe the
Dirichlet-data.

Remark 5.2. If we choose n = 1 in the previous theorem, i.e. the equations reduce to the
linear Stokes-system, then Theorem 5.1 predicts u € W2_52(Q). This result is well known
(up to §) from linear theory.

Proof. The proof is divided into several steps. First we cover €2 with a finite number of sub-
domains which can be considered as model problems. For each subdomain we then prove the
result separately. Here we use the difference quotient technique developed by Ebmeyer/Frehse
in [13, 10, 14]. We choose for each subdomain a suitable basis of R? and show that u is con-
tained in one of the “tilde”-Nikolskii-spaces introduced in section 2.2. Here, the geometrical
assumptions on the domain play a crucial role since, e.g. in the case of pure Dirichlet condi-
tions, we have to define extensions of u across the boundary such that functions of the type
©*(z)(u(z + h) — u(z)) are admissible test functions.

We make use of the following notation: For P € RY and R > 0 we set Br(P) := {z € R? :
x — P| < R}.

1. Case: P € 09 and pure Dirichlet conditions in a neighborhood of P:

Let € be the domain described in Theorem 5.1. Choose P € 9 such that there exists a
neighborhood U (P) C € with the following properties:

1. 90N U(P) C T'p and
2. if P ¢ T; then T; NU(P) = .
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Figure 3: Example for the notation in Case 1

The second condition implies that there is is at most one vertex in Q N U(P).

Since  is a bounded Lipschitzian domain, the uniform cone property holds, [28]. Therefore
we can find a normed basis e, ..., eg of R? and numbers R” > R" > R’ > 0 with the property
that Bpw(P) C U(P) and that the cone

d
C:= {azGRd: x:hUZ)\iei, )\¢>O,ZA1<1} with hg := (R” — R")/2

i=1 i=1
satisfies for every zg € 92 N Brw (P):
(zo+C)NQ =10,

see also Figure 3.
Choose ¢ € C3°(Bg(P)) with (p‘BR/ P = 1. For a weak solution u € W19(Q) we define the

following extension (and use the same symbol for the extended function):

() = {u(w) ifz € Q,
~g(z) ifz e (Q\Q) N Bpn(P).

Note, that the extended function is an element of W14(Q U Brw (P)).
For1 <i<d,0<h<hyand z € Q let

&i(2) 1= ¢?(2) ((u = g)(z + hes) = (u = g)(x)) = ¢*(2) A (u — g) ().

The functions &; are elements of W19(Q) with fi‘ag = 0. To see the second assertion, let be
z € 0NN Brn(P) C T'p. Then x+ he; € Brm (P)\Q and therefore u(x + he;) — g(z + he;) =0
as well as u(z) — g(z) = 0 due to the definition of the extension of u and to the Dirichlet-
conditions on 9Q N Brw(P). On the remaining part of 9, ¢ vanishes. Thus, for 1 <i < d
and 0 < h < hg the functions &; are admissible test functions for the weak formulation.

Inserting &; into the weak formulation (9) yields after some simple calculations where we use
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that divu = tre(u) = 0:

/ 902G(6D(u)) : AZ&D(u)de = / 902G(6D(u)) : AZ&D(Q) dz
Q Q
— / GEP () : (A (u—g)® V(pQ)slm dz — / O’ Al div g dx
Q 0
-I-/ﬂwAﬂu—g)-V(deas-F/S)(prAﬁl(u—g)dx. (43)

For shortness we have set G(¢) = a|¢|7?e. By inequality (60) we obtain with a constant
¢ > 0 which is independent of h:

c/Q<p2( ‘ED(U)‘ + ‘ED(U(x-i-hei))‘ )q72 ‘AZ&D(U)‘Q dzx

(60) 4
2 —/Q(,DQG(SD(U)) : AZ@D(u)dx-l-/

o (,DQAZ (‘5D(u)‘q) dz

2 - [ PG ) s aje () ds
—i—/ G(eP(u)) : (A} (u— g) ®V<p2)sDym dx—l—/ P?w Al div g dx
Q Q
—/wﬂé(u—g)-vﬁdw—/ 0> f Oy (u — g) de
Q Q
+/ P2 (\SD(U)\‘]) do (44)
Q
= Il+...+I6.

Next, we estimate the integrals Iy,..., Is. By Holder’s inequality and the fact that u — g €
Wl’q(Q U B (P)):

1151 < of ooy 025 = )| 1oy < e ll0f oy 19 = Dl aaum g () -

Note, that v = g on Bgw(P)\Q and therefore ||V (u — g)HLq(QUBRm(P)) = ||V(u— g)HLq(Q).
Similarly

L] < ch || GP ()] iy 1Vt = ) ey -
Ll < ch ] ooy 19 (u = )l ey -

Furthermore, since g € W25(():

| < |GEP @D ooy 1957 @ 1oam o py)
I3 < ch H7T||Lp(Q) HVdngHLQ(QUBRm(P)) :

In all these estimates, the constant c is independent of h. In order to estimate Ig, we use the
relation A} (fg) = (A} f)g + f(z + he;) A} g

o= [ 80 (e ]") an = [ (8 |eP e + he)|" o = Ty + T
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As before,
Ig2| < ch HSD(U)HQLq(Q) HVWQHLOO(Q) :

Taking into account the properties of the extension of u and the properties of suppy we
obtain after a change of variables:

= [ P e [ 2l = | F Rl
Q+he; (9] (Q+he;\Q)NBgm (P)

where Q + he; = {z € R : =y + he;, y € Q}. Due to the assumptions in Theorem 5.1 we
have e (g) € L*°(2) and therefore

I < H(pQ B mes ((Q + he\Q2) N B (p)) < ch,

q
(g) ‘ H L ((Q+he;\Q)NBgm (P))

where c is independent of h. Collecting all these estimates, we get with a constant ¢ which is
independent of h:

/Q<P2 (JeP (w(@))| + |eP (u(z + hei)\)q_2 \AZ&D(u(:p))\Q dz < ch. (45)

Applying inequality (59) to the left hand side of equation (45) leads to

2
dz < ch,

aq
2

aq
| ¢ [|eute + e[ = |eP (o)
where ¢ is independent of h. Since p(z) =1 for z € Br/(P) we obtain for all 1 <i < d:

N |eP ()2

B3

sup
0<h<ho

<c< oo (46)
L2(QNBg/ (P))

and therefore by Lemma 2.2
le(u)|? € N22(Q N B (P)).

Here we have used tre(u) = divu = 0.
The embedding theorem of Nikolskii-spaces in Sobolev-Slobodeckii-spaces, see Lemma 2.1,
yields

Vé>0: |e(w)|® € W22(Q N Bp(P))

and finally by standard embedding theorems,
e(u) € LET9(Q N By (P)) for all § > 0. (47)

In the next step we prove the regularity result for a weak solution u and proceed analogous
to [13]. As abbreviation we define Q' := QN B/ (P).

By standard embedding theorems the space W9(Q) is continuously embedded in the space
L%(Q). Therefore, relation (47) and Korn’s inequality, see Theorem 2.2, lead to u €
Wl’ffqlf‘;(ﬁ’) for all § > 0. For arbitrary § > 0 let 0 = 2% —§ = gs — § with

2d—2+q
s from Theorem 5.1. For 1 < ¢ < 2 we have 1 < o < 2 (if 0 18 small enough) and
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o< % and therefore u € W (Q). Furthermore the same is true for the extended func-
tion: u € WHo(Q' U (Bgn(P)\Q)). Thus for 0 < h < hg, 1 <i < dand My = {z € Q' :
e (i + hei)) = P (u(z)) = 0}:

Js

_L i |°
h 2Ahu‘ dz
U !

h_%AZVU‘U dz < c/ h_%AZE(u)‘U dx—i—c/

gc/ (‘SD(U(J?-I-hei))‘ + ‘5D(u(a:))‘)7%(q72)
M,

(‘ED(U(QJ + he;))| + ‘ED(U(:E))D%((]_Q) ‘h*%AﬁleD(u) e
+ o [l
=I5+ Ch% ||UH$V110(Q’) .

Here we have used divu = 0,u € W' (Q') and Korn’s inequality, see Theorem 2.2. By
Holder’s inequality we further get

_2
161 < [| (e + hea)] + [P @] o

()

g
2

</ (‘ED(U(QJ + he;))| + ‘ED(U(:E))D(F2 ‘hf%AﬁleD(u)‘Q dx) . (48)
O\ M,

By equation (45), the second term is bounded independently of h, furthermore, 0(22:0‘1) < %

and thus the first term is bounded independently of h as well, see also (47). We finally obtain
that there exists a constant ¢ > 0 such that for all 0 < h < hyg:

J,

ueNE7(@) C W) € whTRe (),

hiéAZVU‘U dzr <c (49)

and therefore for every e,€ > 0:

Here we have applied Lemma 2.1 for the first inclusion and the embedding theorems for
Sobolev-Slobodeckii spaces for the second one. The regularity results for 0” can be derived
in the same way as in the proof of Theorem 3.1. For the case f € LP(Q), the regularity of 7
can be shown as in the proof of Theorem 3.1. If f € LP*(Q2) C LP(£2), then one can prove in a
first step 7 € W%f‘s’p(ﬁ'). This space is embedded in LP*(€2) and therefore one can achieve
in a second step by applying the same arguments as in the proof of Theorem 3.1 the higher
regularity = € W%f‘s’ps(ﬁ’).

2. Case: P € 09 and pure Neumann conditions in a neighborhood of P:
Choose P € 02 such that there exists a neighborhood U(P) with the following properties:

1. 90N U(P) C Ty and
2. if P ¢ T; then T; NU(P) = .
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Since 2 is a bounded Lipschitzian domain, the uniform cone property holds, [28]. Therefore
we can choose a basis ey, . ..eq of R¢ with |e;] = 1 and numbers R” > R” > R' > 0 in such a
way that B (P) C U(P) and that the cone

d
C = {x ERT: z=hoY Nei, Ai>0,) A< 1} with hg := (R" — R")/2
i=1 i=1
satisfies for every zq € QN Brm (P):
o+ C C Q.
Now let ¢ € C§°(Brr(P)) with ¢[p_,(py =1. For 1 <i<dand 0 <h < hg we define
€i(2) = 9*(x) (ulz + he) —u(x)) = p*(2) Aju(z), =€

Note, that & is well defined and that no extension of u across the boundaries is needed for
the definition. Furthermore, & € W4(Q) and &|r,, = 0, which shows that &; is an admissible
test function.

Due to the special structure of the Neumann data, the weak formulation (9) is equivalent to:

VvEVq(O):/QG(eD(u)) :ED(v)dx:/deivvdm—i-/

v(f—i—divH)dx—i—/H:e(v)dx,
Q Q

where H is described in Theorem 5.1. We now choose v = ¢; and proceed similar to the case

of pure Dirichlet-conditions: Inserting &; into the weak formulation and using inequality (60)
we get:

e[ (Pl + m)|+ @) A ) do
a\M,
< /ngQ( ﬁl‘sD(u(m))‘q) dx—i—/QG(eD(u)) :( Zu@V(pQ)gm dz
—/WV(pQ(ZE) }Zu(fp)dw—/ O (f +div H)Abudz
Q Q

- /QH s e(@? Apu) dx
=L+ L+ I3+ 1+ Is. (50)
The integrals I, Is, I can be treated as in the Dirichlet problem:
[ Io| + T3] + |I4] < ch,

where ¢ > 0 is independent of h. By the product rule for finite differences

f= [ 80 (¢ EP@l") do = [ |Pute + he))|" Bl do = I + T (51)

As before
[ T2 < ch ||Vl HgD(u)Hqu(Q) :
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By a change of variables

111=—/ @2‘€D(U)‘q dz,
Q\(Q+he;)

where Q + he; = {x € R : © =y + he;, y € Q}. For I5 we use again the product rule and
the fact that divu = 0:

Iy = —/ H:( ZU®V<,02)Sym dw-l—/ AL (p*H) : el (u(x + he;)) da
Q Q
—/ Ab (p*H : ED(U)) dz
Q
= I51 + Is0 + I53. (52)
By the usual arguments

| 151
| 152

ch | H| ooy Vel ooy -

<
| < ch | Hllypraoy ||

(u) HL'J(Q) :

Furthermore by Holder’s and Young’s inequality and since H € L% () we get for all § > 0:

/ ©?H : eP(u) dz
O\Q+he;

sl

53| =

12
<o ||prH

LP(Q\Q+he; La(Q\Q+he;)

< 605_”/ ©? | HP dz + 005‘1/ ©? ‘5D(u)‘q dz
O\Q+he; O\Q-+he;

< ol 2 [HP || e g 19N + )] + 605‘1/ & [eP (w)|" da
O\(Q+he;)
<0 Perh 4+ 005‘1/ ©? ‘6D(u)‘q dz. (53)
O\ (Q+he;)

_1
Here, cg, ¢ are independent of h. We now choose 0 = ¢, * and obtain

11
Iii+Is3 < ¢y “h+0=ch, (54)

where ¢ is independent of h. Collecting all estimates yields: There exists ¢ > 0 such that for
all 0 < h < hy:

/ 02 (|2 (ule + hea))| + |2 (u(@))])™ | Abe? (u())* dz < ch.
Q\ M,

The remaining part of the proof for the Neumann-boundary is completely analogous to the
considerations in the Dirichlet-case, see (45) and below.

3. Case: P € 0f2 and mixed conditions in a neighborhood of P:
We remind that d denotes the dimension of the domain €. We consider a vertex P € 92 and
a neighborhood U(P) with the following properties:

27



1. There exist 7; < ... < i4 such that P € I‘_ijfor 1<j<d,and Iy, CI'p, I, CI'y.
2. If P¢T; then T, NU(P) = 0.

As in the case of pure Dirichlet or pure Neumann conditions, we have to find a suitable basis
of R? for which we can prove an estimate like in (49).

If d =2 choose e; || I';, C I'p and ey || I';, C 'y with the following orientation: There exists
R > 0, such that P + hey ¢§forevery0<h<RandP+h62 ey for0< h<R.

In the three dimensional case we assume P € F_“ N F_ZQ N I‘_l:,, where I';, C I'p and I';, C I'y.
Choose e; || Ty, NTy,, €3 || T;, N Ty, and e3 || Ty, N Ty, and assume that the vectors e; are
oriented in such a way that for a suitable R > 0 there holds:

1. Case: Let I';, C I'p. Then for all 0 < h < R: P+ he; € T;, NT;, and
a) If&(ril,rm)<7T:P+h62¢Fi2ﬂr_i3,P+h63¢fi3ﬂF_il.
b) If&(ril,rh)>7T:>P+h€26Fi2ﬂF_i3,P+h63Gfi3ﬂr_i1.

2. Case: Let I';, CTy. Then for all 0 < h < R: P+ hey ¢ T;, N Ty, and
a) If&(ri2,ri3)<ﬂ':P+h61 ErilﬂF_Q,P—i-hengiSﬂF_il.
b) IfK(FiQ,Fi?))>7T:>P+h€1¢Fi1ﬂr_12,P+h63¢fi3ﬂF_il.

Due to the geometric assumptions described in section 5.1, it is always possible to find such
a basis. It follows that every e; satisfies either (P1) or (P2), where

(P1) For every zg € 02N Bg/o(P) there holds:  zq + he; € Qfor 0 <h<Z
(P2) For every zg € 02N Bg/y(P) there holds:  x¢ + he; ¢ Q for 0 < h < £

Note, that in the threedimensional case, (P1) is satisfied in case 1 for e; and in case 2 for e;
and es; (P2) is satisfied in case 1 for e5 and e3 and in case 2 for es.

Now choose R” = R, R" = iR, R = % hy = £, ¢ € C5°(Bg(P)) with ¢[g_,(p) = 1
and assume that (u,m) € Wh4(Q) x LP(Q) is a weak solution. For 1 < i < d we define the
following test functions:

Assume that e; satisfies (P1). Then

&i(2) := *(2) (u(z + he;) — u(@)) = p*(x) Aju(z) for z € Q.

Note, that & € Wh4(Q2) with &|r, = 0, and therefore ¢; is an admissible test function. Note
also, that we do not need any extension of u across the boundary in this case.
If e; satisfies (P2), let be

M; = {33 ERd s x=x9+ he;,0 < h<hy,zg € aQﬂBRm(P)}\ﬁ.

We define the following extension of u on 2 U M; across the boundary (992 N dM;) which is
a subset of I'p:

g(z) ifz e M,.
The extended function is an element of W19(Q U M;). We set

&i(2) = ¢*(2) ((ulz + hei) — g(z + hey)) = (u(z) — g(2))) = ¢*(2) A} (u — g)(z) for z € Q.

u(z) = {u(az) it x € Q,
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There holds ¢ € W4(Q) with &|r, = 0, and therefore ¢; is an admissible test function.

We now proceed analogous to the cases of pure Dirichlet or pure Neumann conditions on
QN U(P): Inserting the test function into the weak formulation (9) results either in (50) if
e; satisfies (P1) or in (44) if e; satisfies (P2). By the same arguments as subsequent to (50)
and (44), respectively, we finally obtain that u € N%’S(Q N B/ (P)), where s is the number
in Theorem 5.1, and that the corresponding results for o and 7 hold also.

To prove the global regularity result in Theorem 5.1 we cover Q with a finite number of
open balls B;, where for every [, 2 N B, fits in one of the above cases or is completely con-
tained in Q. The regularity results now are valid not only for each 2 N B; but also for the
whole domain §2. O
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A Some essential inequalities

We collect some basic inequalities which all deal with the following function: Let 1 < ¢,
F:R -R:z—|z]7.

F' is continuously differentiable with

qlz|" %z ifz #0,

55
0 else. (55)

DF(z) = {
Moreover D2F(z) = q(q — 2) |2/ 2 @ 2 + q|z|" %1 if 2 # 0. Here, a @ b € R denotes
the tensor product of the vectors a,b € R? with (a ® b);; = a;b;.

Lemma A.1. Let F be the function from above, 1 < q < co. Then there exists a constant
c > 0 such that

Vo € RE\{0} : |D?F(z)| < c|z|??, (56)
vz € R\{0},V¢ € R : (D*F(2)¢) - € > ela|"™? ¢, (57)
Vo,y € R (z,) # (0,00 (|2l 22— [y 2y) - (o~ ) > c(le] + gD |z -y, (58)
Vr,y €R,0 < a ol =yl < e (lal +[y)* 7 o =yl (59)
and there exist constants cy,co > 0 such that for all z,y € R®, (z,y) # (0,0) :
|7 =[] > e1|2|" - (y — @) + eo (Ja| +1y) ™ ly — 2. (60)
For 1 < q <2 there exists ¢ > 0 such that for all z,y € R® :
Il 2z = [y"Py| < el —y " (61)
For 2 < q there exists ¢ > 0 such that for all z,y € RS :
o172 = Iyl 2y < e (] + o))" 2w -y (62)

Note, that c,c1,co may depend on q, a, S.
Forn €N, a; € R with a; >0, 1 <i < n, we have [19]:

(i ai) <! (271: af‘) if a > 1, (63)

i=1 i=1
n @ n

(Z ai) > no! (Z a?) if0<a<l. (64)
im1 i—1

Proof. Inequalities (56), (57) follow by direct calculations. Inequalities (58) and (62) can be
found in [25, Lemma 2.3] in a more general setting. Inequality (61) is proved in [11, formula
(4.29) and below]. Inequality (60) is based on Clarkson’s inequality and can be found in
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[9, 21]. Finally we prove inequality (59).
1. Case, a > 1: Let z,y € R® with |z| > |y| > 0. Then

1
2] — [y]* = “/0 i — )" (y + Ha — )z — y)dt

N

1
a/ (=)l + t|2l|*  dt |z —
0

L 1
o (/2 (1—t)*de —i—ﬁ ta_ldt> (|lz| + \y|)0‘_1 z -y
0 1

2
= (227 (Jz| + [y)* " o — gl
2. Case, 0 < a < 1: Let z,y € R® with |z| > |y| > 0. Then

N

ca

0< « «a < a+1 a+1 1.<se «a
< (2% = [yl%) (=] + [yl) < [="7 = [yl < cllzl+ YD) lz -yl
[l

Note, that for 1 < ¢ < 2 the function z — |x\q_2x can be continuously extended to x = 0
by 0.

B Properties of the div operator

In this section we collect and prove some properties of the div operator which are difficult
to find in literature. The main tools for the proof of the main theorem are Peetre’s Lemma,
Necas’ Lemma and an embedding theorem for LP into Sobolev-spaces of negative order. The
proof of the main theorem follows exactly the ideas of the proof of Theorem 3 in [16], but
there only Lipschitz domains with I'p = 92 are considered.

Throughout the whole section we assume:

Q C R? is a bounded domain with Lipschitz-boundary, Q2 = T'p ULy, where I'p and I'y are
open and disjoint. We first cite some essential lemmata:

Lemma B.1 (Peetre’s Lemma). [7] Let Ey, E1, E5 be Banach spaces, let Ay and A be
two continuous linear mappings, respectively from Ey to E1 and from Egy to Ey, with

i) As is a compact mapping;

i1) there exists a constant ¢ > 0 such that:

v, <c (HAwHEI + ||A21)HE2) for all v € Ey. (65)

Then
i) ker Ay has finite dimension and Tm Ay is closed;

ii) there exists a constant co > 0 such that:

inf o+ wllp, < collrolp,

weker Ay
For 1 < p < oc we define the following norm for 7 € LP(Q,R) with ¢ =p' = z%
Nl s = N7l -rory + 1V lw-100Q ra)
= sup / modz| + sup / ndivw dz
veW, 1(Q,R) /0 weW, !(Q,RY) 149
||'UHW1,Q(Q):1 Hwle,Q(Q):l
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Lemma B.2 (Neéas’ Lemma). [5] Let Q C R? be a bounded domain with Lipschitz-
boundary. Then |[-|||,, is @ norm on LP(2) which is equivalent to the usual norm on LP(£2).

Lemma B.3. Let Q C RY be a bounded domain with Lipschitz-boundary, 1 < p < co,q =7p'.
Then the embedding LP(2) — W~ 1P(Q) = (Wol’q(Q))’ is compact.

Proof. The adjoint operator to id; : LP(2) — W~=1P(Q) is given by ids : WOI’Q(Q) — L1(Q).
The Sobolev-embedding theorems state that the embedding Wol’q(Q) — L9(R) is compact.
By Schauder’s Theorem [27, Satz 111.4.4, p.111] this is also true for the adjoint operator. O

We are now ready to state the main theorem of this section:

Theorem B.1 (Properties of the div operator). Let Q C R? be a bounded domain with

Lipschitz-boundary, 1 < p < oc and ¢ = p' = z%' Let further Tp C 9 be open and

V= {u e WH(Q,R?) : ur, = 0}. Consider the mapping div : V; — L4(Q), u — divu.
1. The adjoint operator of div is given by the operator B : LP(Q) — Vj : 7+ Jo mdiv (-) da.
If T'p = 09, then B(w) = —Vr in the distributional sense.

2. The image of div is closed in L1(Y). More ezactly,

Im(div)z{rELq(Q): /rdxz()} if Tp = 09,
Q
Im (div) = L9(Q) else.

3. There exists ¢ > 0 such that for all m € LP(Q): ||| 1oy m < IVl -10(q) -
4. The kernel of B (= adjoint operator of div ) has the following structure:

ker(B) = { constant functions } if T'p = 042,
ker(B) = {0} else.

Proof. The first assertion follows by direct calculations. By the closed image theorem [27,
p.143] the following is true: Im (div) is closed if and only if Im (B) is closed. Therefore we
prove that Im (B) is closed. For this we apply Peetre’s Lemma to Ey = LP(Q), By = V|,
By =W 1P(Q), Ay : LP(Q) — V], m = Ai(r) = B(r) and Ay : LP(Q) = W 1P(Q), m — 7.
The compactness of Ay follows by Lemma B.3 and we only have to verify inequality (65).
For every 7 € LP(f) there holds Vzr € W~ 17(Q) with

HVWHW—Lp(Q) = sup / wdivo dz
veWy(Q) /9
||UHW1sQ(Q):1

< sup /WdiV’U dz| = [|B(n)|ly -
veVy Q a4

||”le,q(n):1

Thus

Lemma B.2

Iy < el oy + 1Vl voey) < By + el 1o(y)-
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Therefore we can apply Peetre’s Lemma and get the second and third assertion. To get the
exact description of Im (div ) we first calculate ker(B):

For an arbitrary Dirichlet boundary we get from B(w) = 0 by testing with functions in
Cg°(2) that Vo = 0 in the distributional sense and therefore (€2 is connected) m = const.
If mes(9Q\I'p) # 0 we may further conclude by testing with ¢ € V: 0 = [, ndivedz =
T [odivedr = —wf(m\FD pn ds and therefore 7 = 0 in Q. This leads to assertion 4. The
remaining part of the second assertion follows by the following equality (theorem of the closed
image [27, p.143])

Im (div) = {’I“ € LYQ) : / ardx =0 for all 7 € LP(Q) with B(w) = 0} .
Q

C An abstract theorem on nonlinear saddle point problems

Let V,W be reflexive, separable Banach spaces, V', W' their duals. Consider the following
operators

A:V = V' continuous and monotone,
B:W — V' linear and continuous,
B*:V — W' adjoint operator to B.

We want to solve the following problem: For given f € V', g € W' find (u,7) € V x W for
which

A(u) + Br = f, (66)
B*u =g. (67)

Lemma C.1. Let V,W be reflexive, separable Banach spaces, A : V. — V' continuous and
monotone, B : W — V' linear and continuous and B* : V. — W' the adjoint operator of B.
Let further be f € V', g € Im B* c W'. If

a) A is coercive on My :={v €V : B*v = g}, i.e. if {un,n € N} C My with |[u,| — oo

Al ,un
as n — 0o, then {Aun un) — 00,
llunly

b) Im(B) is closed in V',
then there exists a pair (u,7) € V. x W which solves (66)-(67). Moreover, if A is strongly
monotone, then u is unique and w is unique up to the addition of elements from ker B.

Proof. Existence: In a first step we prove the lemma with g = 0:

Let f € V'. We set Vj := ker B*. Since Vj C V, the converse relation holds for the duals and
thus f € V. We now solve the following problem:

Find u € Vj such that Au = f is satisfied in V{, that means: Find u € V; such that

VoeVo: (Au— fo)w v =0.

By the main theorem on monotone operators [29] this equation has a solution u € Vjy = ker B*.
Next we solve the following equation in W: Find © € W such that Br = f — Au in V', that
means: Find 7 € W such that

YoeV: <7T7IU>(V’,V) = <f — AU,’U)(V/’V). (68)
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Note, that v € Vj C V and therefore, by the mapping properties of A, Au € V' and not only
in V. Obviously problem (68) has a solution if and only if f — Au € Im (B). Since Im B is
closed, we have the following characterization of Im B, [27]:

Im(B)={veV': (v,w)yy)=0 forallw e kerB*}.

Since f — Au € V' and since for any w € ker B* = V; we have (f — A“aw>(V0’,Vo) =0 we
conclude that f— Au € Im (B). Thus, the pair (u, ) solves the equations (66)-(67) with g = 0.

Now let f € V' and g € Im B* be arbitrary. Since B* is linear, there exists uy € V such
that M, = ug + ker B*. For w € V we set G(w) := A(up + w). Then problem (66)-(67) is
equivalent to the following: Find w € V,m € W such that

G(w) + Br = f, (69)
B*w = 0. (70)

From the assumptions on operator A we deduce that G is continuous, (strongly) monotone
and coercive on ker B*. Thus, we can apply the results from the first step to (69)-(70).

Uniqueness: Assume now that A is strongly monotone and that (uy, ), (ug,m) € V. x W
are solutions of (66)-(67) with the same right hand side f. Then u; —ug € V and we get
from equations (66),(67):

(Auy,uy —u9) + (Bmy,up — ug) = (f,ug — ug), (71)
(Aug,uy — ug) + (Bmo,ur — ug) = (f,ug — us), (72)
(B*uy,m — mo) = (g, m — Ta), (73)
(B*ug,m — ma) = (g, m — ma). (74)

Subtracting (71) and (72) resp. (73) and (74) and using that B* is the adjoint of B we obtain
<AU1 — AuQ,ul — U2> =0

and by the strong monotonicity of A: u; —uy = 0.
Now we assume that (u,my), (u,72) are two solutions of (66)-(67) with the same right hand
sides. Testing the equations with an arbitrary v € V we obtain:

(Au,v) + (Bmy,v) = (f,v),
(Au,v) + (Bma,v) = (f,v).

Subtracting these equations we get for every v € V : (B(m — m2),v) v+ vy = 0 and therefore
7 — 7o € ker B. O

D Variant of Ljusternik’s Theorem

In this section we give a simplified variant of Ljusternik’s Theorem, see e.g. [30, Thm. 43.D,
Prop. 43.19].
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Theorem D.1. Let X,Y be real Banach spaces. We assume, that
(1) F :U(ug) C X — R is Fréchet-differentiable with Fréchet-derivative DF,
(2) G:U(up) CX =Y is of the form G(u) = Gou + f, where Gy : X — Y s linear
and continuous and f €Y.
(8) TIm(Gy) is closed inY .
If ug is a local Minimizer of F under the constraint ug € M = {u € X : G(u) = 0}, then
there exists m € Y' for which

(DF(ug), k)(x,x) — (7, Go(k))v',yy =0 for every k € X.
If Im (Gy) =Y, then 7 is unique.

Proof. To prove the assertion we apply [30, Prop. 43.1] to our problem. Therefore, we have
to show that the following is true for ug:

VkeX: if Go(k) = 0 then <DF(U0),]€>(X/’X) =0.

Let k € kerGyg. For t € R we set ¢x(t) := ug + tk. Obviously c¢x(t) € M for all t € R
and ¢, (0) = k. Now let f(t) := F(ck(t)). wo is a local minimum of F|., and therefore
(DF(ug), k)(x',x) = f'(0) = 0. [30, Prop. 43.1] yields the assertion. O
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