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Abstract

In this paper we study the global regularity of the displacement and stress fields
of a nonlinear elastic model of power-law type on nonsmooth domains. The proof of the
regularity results relies on a difference quotient technique which we adapt from the papers
by G. Savaré and C. Ebmeyer/J. Frehse to our situation. Finally, a regularity result for
the stress field of the elastc, perfect plastic Hencky model is derived.

Keywords: global regularity; power-law model; Hencky model; nonsmooth domain; differ-
ence quotient technique

AMS Subject Classification: 35J70,35B65,74B20,74G40

1 Introduction

This paper is concerned with the derivation of global regularity results on nonsmooth domains
for the displacement and stress fields of physically nonlinear, geometrically linearised elastic
models with a constitutive relation of power-law type. Furthermore, a global regularity result
for the stress fields of the elasto-plastic Hencky model is proved.

In the frame-work of deformation theory of plasticity, power-law models are frequently
applied for the description of elasto-plastic materials with low proportionality limit having
no extended yield plateau and which show strain hardening behaviour. Examples for such
materials are stainless steel alloys or aluminium alloys. The particular model we consider
here was first proposed by W. Ramberg and W.R. Osgood [39, 1943] for the description of
aluminium alloys. Let Ω ⊂ R

d, d ≥ 2, be a bounded domain, u : Ω → R
d the displacement

field, ε(u) = 1
2 (∇u + ∇u>) the linearised strain tensor, σ ∈ R

d×d
sym the stress field and σD =

σ − 1
d

trσI the deviator of σ. The constitutive relation introduced by W. Ramberg and
W.R. Osgood is defined as

ε(u) = Aσ + α
∣

∣σD
∣

∣

q−2
σD, (1)

where A is the inverse of the elasticity matrix (tensor of elastic compliances), α > 0 a material
constant depending on the yield stress and q−1 =: n is the strain hardening coefficient. Since
typical values for n range from 4.45 − 7.9 for steel alloys [41] up to 20 − 45 for aluminium
alloys [47, 34] we assume that q ≥ 2. Constitutive relation (1) together with the equilibrium
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of forces and boundary conditions on ∂Ω = ΓD ∪ ΓN (equations (2)-(4) here below) form the
field equations of the Ramberg/Osgood model:

div σ + f = 0 in Ω, (2)

σ~n = h on ΓN , (3)

u = g on ΓD. (4)

Here, f, h are volume and surface force densities, respectively, and g are prescribed displace-
ments on the Dirichlet boundary ΓD. By ~n we denote the exterior unit normal vector on ∂Ω.
This model is also known in literature as Norton/Hoff model and we refer to [41, 47, 8] for
more details.

It is well known that very high stress concentrations may occur in the vicinity of re-entrant
corners, cracks, edges and near those points, where the boundary conditions change. Such
singularities have a strong influence on both, the strength and physical life of the body and
on convergence rates of standard numerical schemes. Thus a deeper knowledge of the singular
behaviour of the stress and strain fields is important. In the literature on solid mechanics
stress singularities near a corner point S of a two dimensional domain Ω are studied by means
of ansatzes (HRR fields, see e.g. [25, 42, 55]) of the form

σ(r, ϕ) = rασ0(ϕ), (5)

where polar coordinates (r, ϕ) with respect to S are used. This ansatz leads to a fully nonlinear
eigenvalue problem for the determination of the singular exponent α and the function σ0(ϕ).
The worst possible singular exponent which is predicted for weak solutions by this approach
is α = −1

q
if S is a crack tip. But unlike the case of linear elliptic equations it is to the

author’s knowledge an open problem whether the singular behaviour of weak solutions of the
Ramberg/Osgood model can be completely characterised by ansatzes of the form (5).

The field equations of the Ramberg/Osgood model are closely related to general systems of
quasilinear elliptic partial differential equations with p-structure, see e.g. [14] for a definition.
G. Savaré [44] and C. Ebmeyer and J. Frehse [15, 14] obtained independently global regularity
results for weak solutions u of such systems on nonsmooth domains and proved their results
with a difference quotient technique. Combining the geometrical assumptions from [44] (Lip-
schitz domains, non changing boundary conditions) and [15, 14] (polyhedral domains with
additional constraints near those points, where the boundary conditions change) we introduce
the notion of admissible domains on which we formulate and prove the regularity results. In
particular we obtain the following global regularity in Sobolev-Slobodeckij spaces for weak
solutions of the Ramberg/Osgood equations with mixed boundary conditions on admissible
domains (theorem 3.4):

u ∈W
3
2
−δ, 2dp

2d−2+p (Ω), (6)

σ ∈W
1
q
−δ,q

(Ω) ∩W 1
2
−δ,2(Ω) (7)

for every δ > 0 with q ≥ 2 from (1) and 1
p

+ 1
q

= 1.
We give a short comparison of our results with results from literature. For q = 2, equa-

tions (1)-(4) reduce to the field equations for linear elastic materials. The regularity of the
corresponding weak solutions is studied by numerous authors. B. Dahlberg, C. Kenig and
G. Verchota [9] proved global regularity results for the elastic fields on Lipschitz domains with
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non changing boundary conditions and (6)-(7) coincide with the results from [9] for this case.
In the linear case, the regularity of the elastic fields can also be characterised near corners
and edges by means of asymptotic expansions, see e.g. [10, 23, 28, 30, 33] and the references
therein. Based on such expansions, the regularity of the displacement fields of the Lamé sys-
tem is investigated in [37] for polygons with mixed boundary conditions. Solutions which are
less regular than (6) may occur as soon as the polygon is not any more an admissible domain
in our sense. For q ≥ 2, the Ramberg/Osgood model is closely related to quasilinear elliptic
systems with p-structure and (6) coincides with the results from [44, 14] for such systems. A
comparison between the worst singularities predicted by the approach with ansatzes of the
form (5) and between (7) shows perfect agreement. But it remains an open problem whether
asymptotic expansions like (5) describe the singular behaviour of the stress fields completely
as in the linear case. Let us note that the local regularity of the displacement and stress fields
of the Ramberg/Osgood model and related models is investigated in [3, 45, 17].

In the proof of (6)-(7) we adapt the ideas from [44, 15, 14] to the Ramberg/Osgood
model and derive (6)-(7) with a difference quotient technique. The main difficulty is that the
nonlinearity in the constitutive law (1) is “anisotropic” i.e. the power-law term depends only
on σD and not on the full stress tensor σ. Thus we have to work with the function spaces
introduced in [20] where this behaviour is taken into account. Moreover, it is a-priori not
clear whether the test functions used in the proofs of the regularity results in [44, 15] are still
admissible test functions in the Ramberg/Osgood case. Finally, an explicit inversion formula
for the constitutive relation (1) is unknown and therefore it is convenient to work with the
dual or stress-based formulation instead of the usual displacement-based formulation.

As an application of the regularity results for Ramberg/Osgood materials we deduce a
global regularity result for stress fields which are solutions of the Hencky model. The Hencky
model describes in the framework of deformation theory of plasticity the behaviour of linear
elastic, perfect-plastic bodies being subjected to quasi-static loadings. We show that the
corresponding stress field σH of the Hencky model satisfies

σH ∈W
1
2
−δ,2(Ω) (8)

globally on Ω for arbitrary δ > 0 (theorem 3.6). The key of the proof is a well known result by
R. Temam [50] which states that the stress fields σq of the Ramberg/Osgood model converge
strongly in L2(Ω) to the stress field σH of the Hencky model for q → ∞. Due to the regularity

results for the Ramberg/Osgood model, namely σq ∈W
1
2
−δ,2(Ω) for q ≥ 2 (see (7)), it remains

to prove that ‖σq‖
W

1
2−δ,2(Ω)

is uniformly bounded for q ≥ 2.

The paper is organised as follows: After a short description of the necessary function
spaces following [20], we formulate in section 2 the weak equations of the Ramberg/Osgood
and the Hencky model. In section 3 we give a definition of admissible domains and present
and discuss the regularity results. Section 4 is devoted to the proof of the regularity results.
The paper closes with an appendix where some useful inequalities are listed.

2 Function spaces and weak formulations

In this section the necessary function spaces and the weak formulations of the Ramberg/Osgood
model and the Hencky model are introduced.
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2.1 Notation

For m×dmatrices A,B ∈ R
m×d, m, d ≥ 1, the inner product is defined by A : B = tr(A>B) =

tr(B>A) and |A| =
√
A : A denotes the corresponding Frobenius norm. R

d×d
sym is the set of

symmetric matrices; the deviatoric part AD of A ∈ R
d×d is defined by AD = A − 1

d
(trA)I,

where I is the unit matrix in R
d×d. For R > 0 and x0 ∈ R

d the set BR(x0) = {x ∈ R
d :

|x− x0| < R} is the open ball with radius R and centre x0.
If not otherwise stated, it is assumed that Ω ⊂ R

d is a bounded domain with Lipschitz
boundary ∂Ω = ΓD ∩ΓN , where ΓD and ΓN are open and disjoint and describe the Dirichlet
and Neumann boundary, respectively.

Throughout the whole paper p′ is the conjugate exponent of p, 1
p

+ 1
p′

= 1. Furthermore,

the dual pairing for elements u of a Banach space X and elements f of its dual X ′ is written
as 〈f, u〉 = 〈f, u〉X .

2.2 Function spaces

For p ∈ [1,∞), s ∈ R, s > 0, we denote by W s,p(Ω) the usual Sobolev-Slobodeckij spaces
[1, 22]. For a weak formulation of the boundary value problem for the Ramberg/Osgood
model we need function spaces which take up the structure of the constitutive law (1), where
the trace trσ of the stress tensor appears in the linear term, only, whereas the deviator σD

appears also in the nonlinear term. Appropriate spaces were first introduced and studied by
G. Geymonat and P. Suquet [20]. Let Ω ⊂ R

d be an open domain and p, r ∈ [1,∞).

Lp,r(Ω) = {σ : Ω → R
d×d
sym : σD ∈ Lp(Ω), trσ ∈ Lr(Ω)}, (9)

Σp,r(Ω) = {σ ∈ Lp,r(Ω) : div σ ∈ Lp(Ω)}, (10)

where div σ(x) ∈ R
d and (div σ(x))i =

∑d
i=1

∂σij(x)
∂xj

. Furthermore,

Up,r(Ω) = {u : Ω → R
d : u ∈ Lp(Ω), εD(u) ∈ Lp(Ω), tr ε(u) ∈ Lr(Ω)}. (11)

These spaces are endowed with the following natural norms:

‖σ‖Lp,r(Ω) =
∥

∥σD
∥

∥

Lp(Ω)
+ ‖trσ‖Lr(Ω) , ‖σ‖Σp,r(Ω) = ‖σ‖Lp,r(Ω) + ‖div σ‖Lp(Ω) ,

‖u‖Up,r(Ω) = ‖u‖Lp(Ω) +
∥

∥εD(u)
∥

∥

Lp(Ω)
+ ‖tr ε(u)‖Lr(Ω) .

The properties of these spaces are studied in detail in [20] for p, r ∈ (1,∞). Results for
the space LD(Ω) ≡ U 1,1(Ω) were derived in [50]. In particular, traces are well defined for
functions u from U p,r(Ω) with r ≥ p ≥ 1 and the trace operator

γ
∣

∣

∂Ω
: Up,r(Ω) →

{

W 1− 1
p
,p(∂Ω), if r ≥ p > 1,

L1(∂Ω), if r = p = 1,
(12)

with γ
∣

∣

∂Ω
u = u

∣

∣

∂Ω
is linear, continuous and surjective. For p > 1, q = p′ = p

p−1 , Γ ⊂ ∂Ω, Γ
open, we need also the following trace space and its dual:

W̃ 1− 1
p
,p(Γ) = {v ∈ Lp(Γ) : ∃ṽ ∈W 1− 1

p
,p(∂Ω) with supp ṽ ⊂ Γ, ṽ

∣

∣

Γ
= v}, (13)

W
− 1

q
,q
(Γ) =

(

W̃
1− 1

p
,p
(Γ)
)′
. (14)

It is meaningful to speak about normal stresses for functions σ ∈ Σq,s(Ω) if q ≥ s > 1. More
precisely, it holds
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Lemma 2.1. [20] Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary, 1 < s ≤ q <∞

and Γ ⊂ ∂Ω open. Then there exists a linear and continuous mapping

γ1 : Σq,s(Ω) →W− 1
q
,q(Γ)

with γ1σ = σ
∣

∣

Γ
~n on Γ for every σ ∈ C∞(Ω,Rd×d

sym). Here, ~n is the exterior unit normal vector

on ∂Ω. γ1 is surjective and Green’s formula is valid for every σ ∈ Σq,s(Ω), u ∈ U q′,s′(Ω) with
u
∣

∣

∂Ω\Γ
= 0:

∫

Ω
σ : ε(u) dx+

∫

Ω
udiv σ dx = 〈γ1σ, u〉

W̃
1− 1

q′
,q′

(Γ)
= 〈σ~n, u〉

W̃
1− 1

q′
,q′

(Γ)
. (15)

Remark 2.2. The existence of the mapping γ1 and Green’s formula are proved in [20], we
show in A.3 in the appendix that γ1 is surjective.

For convenience and to fix the notation, we reformulate here Korn’s and Poincaré-Friedrichs’
inequality for U p,r(Ω) and an embedding theorem for U 1,1(Ω).

Lemma 2.3. Let Ω ⊂ R
d, d ≥ 2, be a bounded domain with Lipschitz boundary.

Korn’s inequality: [20] Let p ∈ (1,∞). The spaces W 1,p(Ω) and Up,p(Ω) have the same
elements and the norms are equivalent. That means that there exist constants cK1 , c

K
2 > 0

such that for every v ∈W 1,p(Ω):

cK1 ‖v‖W 1,p(Ω) ≤ ‖v‖Up,p(Ω) ≤ cK2 ‖v‖W 1,p(Ω) . (16)

Poincaré/Friedrichs’ inequality: [20, 50] Let ΓD ⊂ ∂Ω be open and not empty and
r ≥ p > 1 or r = p = 1. We define

V p,r(Ω) = {v ∈ Up,r(Ω) : v
∣

∣

ΓD
= 0}. (17)

Then there exists a constant cPFp,r > 0 such that it holds for every v ∈ V p,r(Ω):

cPFp,r ‖ε(v)‖Lp,r(Ω) ≥ ‖v‖Up,r(Ω) . (18)

If p = r > 1, then there is a constant cPFp > 0 such that for every v ∈ V p,p(Ω)

cPFp ‖∇v‖Lp(Ω) ≥ ‖v‖W 1,p(Ω) . (19)

Remark 2.4. [50] Korn’s inequality does not hold for p = 1 and W 1,1(Ω) is a proper subspace
of U1,1(Ω).

Due to an idea by M. Fuchs [17] it can be shown that the spaces Σq,s(Ω) and Σq,q(Ω) in
fact are equal for fixed q > 1 and every s ∈ (1, q]:

Lemma 2.5. Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary and 1 < s ≤ q <

∞. The spaces Σq,s(Ω) and Σq,q(Ω) are equal and there exists a constant c > 0, which is
indepentent of s, such that for every σ ∈ Σq,s(Ω)

‖trσ‖Lq(Ω) ≤ c ‖σ‖Σq,s(Ω) . (20)
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The proof of this lemma is postponed to the appendix, section A.4. Besides the spaces
introduced above we deal also with Nikolskii spaces. Nikolskii spaces are very useful for
proving regularity results with a difference quotient technique since their norms are based on
difference quotients. For convenience we cite here the definition of Nikolskii spaces and an
embedding theorem.

Definition 2.6 (Nikolskii space). [1, 38] Let s = m + δ, where m ≥ 0 is an integer and
0 < δ < 1. For 1 < p <∞ the Nikolskii spaces are defined as

N s,p(Ω) :=
{

u ∈ Lp(Ω) : ‖u‖N s,p(Ω) <∞
}

with

‖u‖pN s,p(Ω) = ‖u‖p
Lp(Ω) +

∑

|α|=m

sup
η>0
h∈R

d

0<|h|<η

∫

Ωη

|Dαu(x+ h) −Dαu(x)|p

|h|δp
dx (21)

and Ωη = {x ∈ Ω : dist(x, ∂Ω) > η}.
Lemma 2.7. [1, 38, 53, 54] Let s, p be as in definition 2.6 and let Ω ⊂ R

d be a bounded
domain with Lipschitz boundary. The following embeddings are continuous for every ε > 0:

N s+ε,p(Ω) ⊂W s,p(Ω) ⊂ N s,p(Ω).

Lemma 2.7 is a consequence of [22, Thm. 1.4.1.3], [38, p. 381], [53, sections 1.3, 2.1.1,
2.2.9] and [54, sec. 2.3.2]. An equivalent norm is generated if the supremum in (21) is replaced
by sup η>0,h=ηej ,

ej∈{e1,...,ed}

, where {e1, . . . , ed} is a basis of R
d [38, 31].

2.3 The Ramberg/Osgood model

Let q ≥ 2, αq > 0 and A ∈ R
(d×d)×(d×d) be the symmetric and positive definite fourth order

tensor of elastic compliances, i.e.

Aijkl = Aklij = Ajikl and (Aτ) : τ ≥ cA |τ |2 for every τ ∈ R
d×d
sym . (22)

Here, (Aτ)ij =
∑d

k,l=1Aijklτkl. The complementary energy density reads for the Ram-
berg/Osgood model

Wc,q(τ) =
1

2
(Aτ) : τ +

αq
q

∣

∣τD
∣

∣

q
, τ ∈ R

d×d
sym. (23)

Note that constitutive relation (1) can be rewritten as ε = DWc,q(σ) with (DWc,q(σ))ij =
∂Wc,q(σ)
∂σij

. For q ≥ 2, p = q′ = q
q−1 , f ∈ Lq(Ω), h ∈ W

− 1
q
,q
(ΓN ), the set of admissible stress

fields is defined by

K(f, h, q) = {τ ∈ Lq,2(Ω) :

∫

Ω
τ : ε(v) dx =

∫

Ω
fv dx+ 〈h, v〉

W̃
1− 1

p ,p
(ΓN )

∀v ∈ V p,2(Ω)}. (24)

Since f ∈ Lq(Ω), it holds

τ ∈ K(f, h, q) ⇔ τ ∈ Σq,2(Ω), div τ + f = 0 in Ω, τ~n = h in W− 1
q
,q(ΓN ). (25)
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If ΓD 6= ∅ or if ΓD = ∅ and the solvability condition
∫

Ω fr dx + 〈h, r〉 = 0, r ∈ R = {r :
Ω → R

d : r(x) = a + Bx, a ∈ R
d, B ∈ R

d×d, B + B> = 0}, is satisfied, then K(f, h, q) is
not empty. Let finally g0 ∈ Up,2(Ω). The weak formulation of the Ramberg/Osgood model
(1)-(4) is given by

(Wq) Find σq ∈ K(f, h, q) and ũq ∈ V p,2(Ω) such that it holds for every τ ∈ Lq,2(Ω)

∫

Ω
(DWc,q(σq) − ε(g0)) : τ dx =

∫

Ω
τ : ε(ũq) dx. (26)

Let uq = ũq + g0. The pair (σq, uq) are the stress and displacement fields we are looking for.
In addition we consider the following minimisation problem

(Mq) Find σq ∈ K(f, h, q) such that for every τ ∈ K(f, h, q)

Ic,q(σq) ≤ Ic,q(τ) =

∫

Ω
Wc,q(τ) dx−

∫

Ω
ε(g0) : τ dx. (27)

The following existence theorem is due to standard arguments for minimisation problems with
constraints, see e.g. [56, Prop. 43.1, 38.15] and [50, 3]

Theorem 2.8. Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary, q ≥ 2, p =

q′ = q
q−1 , f ∈ Lq(Ω), h ∈ W− 1

q
,q(ΓN ), g0 ∈ Up,2(Ω) and assume that K(f, h, q) 6= ∅. Then

problems (Wq) and (Mq) are equivalent and solvable. Moreover, σq ∈ Σq,2(Ω) is unique since
Wc,q is strictly convex, and uq is unique if ΓD 6= ∅. If ∂Ω = ΓN , then uq is unique up to
elements from R.

2.4 The Hencky model

The Hencky model in its strong form reads as follows for a bounded domain Ω ⊂ R
d with

Lipschitz boundary ∂Ω = ΓD ∪ ΓN , see e.g. [12, 8, 24]:
Find a displacement field u : Ω → R

d and a stress field σ : Ω → R
d×d
sym such that (2)-(4)

are satisfied and in addition

ε(u(x)) = εel(x) + εpl(x) in Ω, (28)

εel = Aσ in Ω, (29)

F(σ(x)) ≤ 0 in Ω, (30)

F(τ) =
∣

∣τD
∣

∣

2 − σ2
y for τ ∈ R

d×d
sym, (31)

(σ − τ) : εpl ≥ 0 for every τ ∈ R
d×d
sym with F(τ) ≤ 0. (32)

The constant σy > 0 denotes the yield stress and F the von Mises yield function. Minimisation
problems and weak formulations of the field equations of the Hencky model are extensively
studied in literature, see e.g. [50, 2, 3, 27, 49, 18] and the references cited therein. It is shown
under suitable assumptions on the given data f, g, h that the primal and dual minimisation
problems and the corresponding weak formulations are solvable in the spaces Σ(Ω) = {σ ∈
L2(Ω) : div σ ∈ Ld(Ω), σD ∈ L∞(Ω)} for the stress field σ and in U(Ω) = {u ∈ BD(Ω) :
div u ∈ L2(Ω)} for the displacement field u. Here, BD(Ω) is the space of vector fields of
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bounded deformation and is introduced in [32, 48, 49]. Furthermore it is proved in [2, 50] that
the stress σ minimises the complementary energy. We take this complementary minimisation
problem as a starting point. Let

M = {τ ∈ L2(Ω,Rd×d
sym) :

∣

∣τD(x)
∣

∣ ≤ σy a.e. in Ω} (33)

be the set of all stress fields which are admissible according to flow rule (30). For f ∈ L2(Ω),

h ∈W− 1
2
,2(ΓN ) and g0 ∈W 1,2(Ω), the minimisation problem reads:

(MH) Find σH ∈ K(f, h, 2) ∩M such that for every τ ∈ K(f, h, 2) ∩M
IH(σH) ≤ IH(τ),

where

IH(τ) =

∫

Ω

1

2
(Aτ) : τ dx−

∫

Ω
ε(g0) : τ dx. (34)

The existence theorem here below is a consequence of [56, Thm. 46.A].

Theorem 2.9. Let Ω ⊂ R
d, d ≥ 2, be a bounded domain with Lipschitz boundary. Let further

f ∈ L2(Ω), h ∈ W− 1
2
,2(ΓN ) and g0 ∈ W 1,2(Ω) and assume that K(f, h, 2) ∩ M 6= ∅. Then

there exists a unique stress field σH ∈ K(f, h, 2) ∩M which solves (MH).

3 Regularity results

In order to get higher global regularity of weak solutions, more assumptions on the geometry
and the smoothness of the right hand sides are necessary.

3.1 Admissible domains

First we give an abstract definition of what we call admissible domain. In the subsequent
lemma 3.3 we then describe examples in 2D and 3D. The definition depends on the type of
the boundary conditions.

Definition 3.1 (Cone). A set K ⊂ R
d is a cone with vertex in x0 ∈ R

d if there exists
a simply connected, open and nonempty set C ⊂ ∂B1(0) = {x ∈ R

d : |x| = 1} such that
K = {x ∈ R

d\{x0} : (x− x0)/|x− x0| ∈ C}.
Definition 3.2 (Admissible domain). Let Ω ⊂ R

d be a bounded domain with ∂Ω =
ΓD ∪ ΓN where ΓD and ΓN are open (possibly empty) and disjoint.

1. Case, ΓD ∩ ΓN = ∅: Ω is an admissible domain if it has a Lipschitz boundary.

2. Case, ΓD ∩ ΓN 6= ∅: Ω is an admissible domain if it has a Lipschitz boundary and if in
addition there exists a finite number of open balls BRj

(xj) with radius Rj and centre

xj ∈ ΓD ∩ ΓN and a finite number of cones Kj ⊂ R
d with vertex in 0 such that

ΓD ∩ ΓN ⊂ ∪Jj=1BRj
(xj). Furthermore, for every j there exist nonempty Lipschitz

domains Ωj
D, Ωj

N ⊂ BRj
(xj) with Ωj

D ∩ Ωj
N = ∅ and

BRj
(xj)\Ω = Ωj

D ∪ Ωj
N , ΓD ∩BRj

(xj) ⊂ ∂Ωj
D, ΓN ∩BRj

(xj) ⊂ ∂Ωj
N , (35)

(

(

BRj
(xj)\Ωj

N

)

+ Kj

)

∩ Ωj
N = ∅, (36)

(Ωj
D + Kj) ∩

(

BRj
(xj)\Ωj

D

)

= ∅, (37)
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Figure 1: Examples for admissible domains

see also figure 1 (left, the index j is omitted). Here, the notation Ω + K = {y ∈ R
d :

y = x+ h, x ∈ Ω, h ∈ K} is used.

The next lemma describes some examples of admissible domains for d = 2, 3. The proof
of this lemma is technical and is given in [26].

Lemma 3.3. 1. Let Ω ⊂ R
2 be a Lipschitz-polygon. Ω is admissible if and only if the

interior opening angle at those points, where ΓD and ΓN intersect, is strictly less than
π: ](ΓD,ΓN ) < π.

2. Let Ω ⊂ R
3 be a Lipschitz-polyhedron where at most three faces intersect in the neigh-

bourhood of those points, where the type of the boundary conditions changes. Assume in
addition that the interior opening angle between the Dirichlet and Neumann boundary
is strictly less than π. Then Ω is an admissible domain, see figure 1 (right) for an
example.

3.2 Regularity of weak solutions of the Ramberg/Osgood model

Besides the assumptions on the domain Ω we have to impose also further assumptions on the

smoothness of the given data f, g, h. Let h ∈ W− 1
q
,q(ΓN ). Due to lemma 2.1 there exists an

element H ∈ Σq,q(Ω) with H~n = h in W− 1
q
,q(ΓN ) and it holds due to Green’s formula

〈h, v〉
W̃

1
p ,p

(ΓN )
= 〈H~n, v〉

W̃
1
p ,p

(ΓN )
=

∫

Ω
H : ε(v) dx +

∫

Ω
v divH dx (38)

for every v ∈ V p,p(Ω) with 1
q
+ 1
p

= 1 and V p,p(Ω) from (17). We will formulate the assumptions
on h via H. In particular we assume:

(Dq) Let Ω̂ ⊃⊃ Ω be an arbitrary domain, q ≥ 2, p = q ′ ∈ (1, 2], f ∈ Lq(Ω), g ∈ W 2,p(Ω̂)
with ∇g ∈ L∞(Ω̂) and H ∈W 1,q(Ω̂,Rd×d

sym) ∩ L∞(Ω̂,Rd×d
sym).

Theorem 3.4. Let Ω ⊂ R
d, d ≥ 2, be an admissible domain according to definition 3.2. Let

q ≥ 2, p = q′ ∈ (1, 2] and assume (Dq). Let further (uq, σq) ∈ Up,2(Ω)×K(f,H~n, q) be a weak

solution of the Ramberg/Osgood model (26) with uq
∣

∣

ΓD
= g
∣

∣

ΓD
and σq~n = H~n in W

− 1
q
,q
(ΓN ).

Note that σq ∈ Σq,q(Ω) due to (25) and lemma 2.5. It holds for every δ > 0, ε > 0:

uq ∈ N
3
2
,

2dp
2d−2+p

−ε
(Ω) ∩W

3
2
−δ, 2dp

2d−2+p (Ω), (39)

σq,div uq ∈ N 1
2
,2(Ω) ∩N

1
q
,q(Ω). (40)

It is p ≤ 2dp
2d−2+p ≤ 2.
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The proof of theorem 3.4 relies on a difference quotient technique and is postponed to section
4.

Corollary 3.5. Let the assumptions be the same as in theorem 3.4 with d = 2. The standard
embedding theorems for Sobolev-Slobodeckij spaces yield for every δ > 0:

u ∈ C0, 1
q
−δ(Ω).

Note that the Ramberg/Osgood model reduces for q = 2 to the equations of linear elas-
ticity. If ∂Ω = ΓD or ∂Ω = ΓN then theorem 3.4 reproduces the results by B. Dahlberg,
C. Kenig and G. Verchota [9] for weak solutions of the equations of linear elasticity on Lip-
schitz domains. Moreover, it is well known that the behaviour of the displacement field u near
a corner point S can be completely characterised by means of asymptotic expansions, see e.g.
the books [28, 10, 36, 30]. Assume that Ω ⊂ R

2 is a polygon, p = 2 and that the material is
isotropic. A careful study of the corresponding asymptotic expansions is carried out in [37]

and shows that in this case u ∈W
3
2
,2(Ω) if and only if Ω is an admissible polygon. This shows

(up to δ) good correlation with theorem 3.4 and indicates that the geometric assumptions
cannot be weakened.

In continuum mechanics, ansatzes of the form (5) are applied to study the behaviour
of displacement and stress fields of nonlinear power-law materials. First investigations for
Ramberg/Osgood materials in this direction were done by J. W. Hutchinson [25] and J. R. Rice
/G. F. Rosengren [42] for plane stress and plane strain states of infinite bodies with a straight
crack. Based on the assumption that the displacement and stress fields have an asymptotic
structure like in the linear case, they derived a strongly nonlinear eigenvalue problem from
which they calculated the dominant terms in the asymptotic expansion. In particular they
obtained in the two dimensional case the following leading terms near a crack tip S:

u(r, ϕ) = r
1
q v0(ϕ) + ureg, σ(r, ϕ) = r

− 1
q τ0(ϕ) + σreg. (41)

Here, v0, τ0 are eigenfunctions of an appropriate eigenvalue problem, see e.g. [55], and ureg, σreg

are more regular functions. The terms r
1
q v0(ϕ) and r−

1
q τ0(ϕ) are called HRR-fields. Expan-

sion (41) fits well with our regularity theorem since it holds in two dimensions [43, p. 44]

rαṽ(ϕ) ∈ N
3
2
,

4p
2+p

−δ
(Ω) for every δ > 0 ⇔ α ≥ q−1,

rβτ̃(ϕ) ∈ N
1
q
,q
(Ω) ⇔ β ≥ −q−1.

To our knowledge, however, it remains an open problem whether the behaviour of weak
solutions of power-law models can be completely characterised near corners by asymptotic
expansions like in the linear case. For results on asymptotic expansions of weak solutions of
scalar equations of p-structure we refer to [52, 6, 11, 35] and the references therein.

3.3 Global stress regularity for the Hencky model

Before we formulate the regularity theorem for the Hencky model we have to introduce a
further condition on the given force densities f and h [50, p. 262]:

(SL) Safe load condition
There exists a stress field τ ∈ K(f, h, 2) ∩M and a number δ0 > 0 such that

∣

∣τD(x)
∣

∣ ≤ σy − δ0 for a.e. x ∈ Ω.

10



Theorem 3.6. Let Ω ⊂ R
d, d = 2, 3, be an admissible domain and assume that ΓD 6= ∅.

Let furthermore Ω̂ ⊃⊃ Ω be an arbitrary domain and f ∈ L∞(Ω), g0 ∈ W 2,2(Ω̂), H ∈
W 1,∞(Ω̂,Rd×d

sym) with
∣

∣HD
∣

∣ ≤ σy a.e. in Ω̂. As in the previous section we describe here the
Neumann datum h in the form h = H~n on ΓN . Finally, the safe load condition (SL) shall
be satisfied.
Let σH ∈ K(f,H~n, 2) ∩M be a solution of the minimisation problem (MH) for the Hencky
model. Then it holds for every δ > 0

σH ∈W
1
2
−δ,2(Ω). (42)

This theorem will be proved in the next section.

Remark 3.7. In order to simplify the arguments we assume in theorem 3.6 that ΓD 6= ∅. This
implies that the displacement fields of the Ramberg/Osgood model are uniquely determined.

The local regularity of the stress field σH was investigated by M. Fuchs, G.A. Seregin
[18] and by A. Bensoussan, J. Frehse [3, 4]. Under suitable assumptions on the volume force
density f , the regularity

σH ∈W 1,2
loc (Ω) (43)

is proved. To our knowledge there are no global regularity results reported in literature and
attempts to prove (43) globally for smooth domains failed, see the discussions in [46] and [16].

4 Proof of regularity theorems 3.4 and 3.6

The regularity theorem 3.4 for the Ramberg/Osgood model is proved with a difference quo-
tient technique where we adapt arguments from [14, 44]. The main idea is to insert difference
quotients of weak solutions as test functions into the weak formulation and to exploit the
convexity of the complementary energy density Wc,q. Differences across the boundary ∂Ω
have to be considered. This makes it necessary to extend weak solutions across the boundary
in such a way that differences of the extended functions are still admissible test functions.
Due to the geometrical assumptions on Ω it is possible to find such extensions.

In order to prove the result on the Hencky stress σH we approximate σH by stress fields
{σq, q ≥ 2} of the Ramberg/Osgood model. Since σq ∈ W

1
2
−δ,2(Ω) for every q ≥ 2 (see

theorem 3.4), it remains to derive the uniform estimate

‖σq‖
W

1
2−δ,2(Ω)

≤ cδ (44)

for every q ≥ 2, δ > 0, where cδ is independent of q. Since the proof of (40) and of (44) are
nearly identical, we give a detailed proof of (44) with right hand sides f, g0, h as in theorem 3.6
and indicate necessary changes for obtaining theorem 3.4 also for the more general assumption
(Dq).

The proof is split into three parts. First, we cite a result by R. Temam [50] and A. Ben-
soussan/J. Frehse [3] which describes uniform estimates and convergence results for the elastic
fields of the Ramberg/Osgood model. Second, we prove the uniform estimate (44) and finally,
we derive the remaining assertions of theorem 3.4 on the displacement field uq.

11



Step 1: Approximation of the Hencky stress

Let σy > 0, A ∈ R
(d×d)×(d×d)
sym and assume that the data f , g0, h = H~n is given according to

theorem 3.6. For q ≥ 2 and p = q′ we assume that (uq, σq) ∈ Up,2(Ω) × Σq,2(Ω) is a solution

of the Ramberg/Osgood model (Wq) with αq = σ1−q
y .

Lemma 4.1. [5, 50] Under the same assumptions as in theorem 3.6 it holds: the sequence
{σq, q ≥ 2}, where σq ∈ Σq,2(Ω) is a solution of (Wq) with αq = σ1−q

y , converges strongly in
L2(Ω) to the solution σH of (MH):

‖σq − σH‖L2(Ω) → 0 for q → ∞. (45)

Moreover there exists a constant c > 0 such that for every q ≥ 2 and p = q ′ ∈ (1, 2]

‖σq‖L2(Ω) ≤ c,
1

q

∥

∥

∥

∥

σD

σy

∥

∥

∥

∥

q

Lq(Ω)

≤ c, (46)

σ1−q
y

∥

∥σDq
∥

∥

q

Lq(Ω)
≤ c, (47)

|Ω|−
1
q ‖ε(uq)‖L1(Ω) ≤ ‖ε(uq)‖Lp(Ω) ≤ c. (48)

Since ΓD 6= ∅ we obtain from (48) by Poincaré/Friedrichs’ inequality for U 1,1(Ω), see (18):

‖uq‖L1(Ω) + ‖ε(uq)‖L1(Ω) ≤ c. (49)

Remark 4.2. Estimates (46) and (47) are proved in [5, Theorem 10.8, Proposition 10.10]
for the case of vanishing Dirichlet conditions, i.e. for g0 = 0. The case g0 6= 0 can be
treated in the same way with some simple modifications. We remark that the safe load
condition (SL) enters in the proof of (47). Estimate (48) follows via the constitutive relation

ε(uq) = Aσq+
1

σ
q−1
y

∣

∣σDq
∣

∣

q−2
σDq from estimates (46), (47) and inequality (96). The convergence

result (45) is shown in [50, Theorem III.1.2].

Step 2: Proof of the results for the stress fields

Lemma 4.3. 1. Let the assumptions of theorem 3.6 be satisfied. For every ε, δ > 0 there
exists a constant cε,δ ≥ 0 such that for every q ≥ d+ ε and every solution σq of (Mq)

‖σq‖
N

1
2−δ,2(Ω)

≤ cε,δ. (50)

Together with the convergence result of lemma 4.1 this estimate implies (42).

2. Let the assumptions of theorem 3.4 be satisfied. Then σq ∈ N 1
2
,2(Ω) and σDq ∈ N

1
q
,q(Ω).

Proof of lemma 4.3, part 1. We apply a difference quotient technique to deduce estimates
for the stress fields in Nikolskii norms. For the derivation of these estimates the domain Ω
is covered by a finite number of balls and the estimates are proved for each of these balls
separately.

Let Ω ⊂ R
d be an admissible domain. In particular, Ω is a Lipschitz domain and satisfies

therefore the uniform interior and exterior cone condition [22]. It follows together with part
2. of definition 3.2 that there exists a finite number of balls BRj

(xj) and cones Kj with

vertices in 0 such that Ω ⊂ ∪Jj=1BRj
(xj) and each of the pairs (BRj

(xj),Kj) satisfies one of
the following four cases:

12



1. BRj
(xj) ⊂ Ω.

2.
(

BRj
(xj) ∩ ∂Ω

)

⊂ ΓD and for every x ∈ BRj
(xj)∩ΓD it holds ((x+Kj)∩BRj

(xj))∩Ω =
∅.

3.
(

BRj
(xj) ∩ ∂Ω

)

⊂ ΓN and for every x ∈ BRj
(xj)∩Ω it holds ((x+Kj)∩BRj

(xj)) ⊂ Ω.

4. xj ∈ ΓD∩ΓN and the pair (BRj
(xj),Kj) satisfies (35)-(37) of definition 3.2 with suitable

domains Ωj
D and Ωj

N .

Note that there exists a constant θ > 0 such that the balls BRj−θ(xj) still cover Ω. We prove
now for every ε, δ > 0 that there exists a constant cε,δ > 0 such that it holds for every q ≥ d+ε

‖σq‖
N

1−δ
2 ,2(Ω∩BRj−θ(xj))

≤ cε,δ. (51)

We consider the fourth case in detail, the remaining cases can be treated similarly. In order
to simplify the notation we omit the index j in the following.

Let BR(x0) be a ball with centre x0 ∈ ∂Ω, K a cone with vertex in 0 and ΩD,ΩN ⊂ BR(x0)
domains such that (35)-(37) of definition 3.2 hold, see also figure 1. Let the data f, g0 and
H satisfy assumptions of theorem 3.6. Furthermore, let (uq, σq) ∈ Up,2(Ω) × Σq,2(Ω) be a
solution of (Wq), i.e. σq ∈ K(f,H~n, q), uq

∣

∣

ΓD
= g0

∣

∣

ΓD
and it holds for every τ ∈ Lq,2(Ω)

∫

Ω
(DWc,q(σq) − ε(g0)) : τ dx =

∫

Ω
τ : ε(uq − g0) dx. (52)

Note that σq ∈ Σq,q(Ω) due to lemma 2.5. We define the following extensions of uq and σq to
Br(x0):

σ̃q(x) =

{

σq(x) for x ∈ Ω,

H(x) for x ∈ BR(x0)\Ω.
(53)

ûq(x) =

{

uq(x) for x ∈ Ω,

g0(x) for x ∈ ΩD.
(54)

It follows from σq ∈ Σq,q(Ω) and the assumptions on H that σ̃q ∈ Lq(Ω∪BR(x0)). Moreover,
calculating div σ̃q in the distributional sense and taking into account that σ~n = H~n on ΓN
yields

div σ̃q ∈ Lq(Ω ∪BR(x0)\ΩD).

Thus, σ̃q ∈ Σq,q(Ω∪BR(x0)\ΩD). Similar arguments show that ûq ∈ Up,2(Ω∪BR(x0)\ΩN ) ⊂
U1,1(Ω ∪BR(x0)\ΩN ). Moreover, ûq − g0 = 0 on ΓD. By the extension theorem for elements
from U1,1 [50, Rem. II.1.3] there exists a function ũq ∈ U1,1(Ω∪BR(x0)) with ũq

∣

∣

Ω∪\ΩN
= ûq

and

‖ũq‖U1,1(Ω∪BR(x0)) ≤ cE ‖ûq‖U1,1(Ω∪BR(x0)\ΩN ) . (55)

The constant cE is independent of q and ûq. Let ϕ ∈ C∞
0 (BR(x0)) be a cut-off function with

ϕ
∣

∣

BR−θ(x0)
= 1. For x ∈ Ω and h ∈ K with 0 < |h| < h0 = 1

3 dist(suppϕ, ∂BR(x0)) we define

τq(x) = ϕ2
(

(σ̃q(x) −H(x)) − (σ̃q(x− h) −H(x− h))
)

≡ ϕ2(x)4h(σ̃q(x) −H(x)). (56)
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Here we use the notation 4hg(x) = g(x)−g(x−h) for backward differences. The geometrical
assumption (37) implies for h ∈ K with |h| < h0 and x ∈ BR−h0(x0)

x− h ∈ ΩD ⇒ x ∈ ΩD + h ⇒ x /∈ BR(x0)\ΩD.

Thus, if x ∈ Ω ∩ BR(x0), then x − h ∈ BR(x0)\ΩD and, since σ̃q and H are elements of
Σq,q(Ω∪BR(x0)\ΩD), the function τq is an element of Σq,q(Ω). Moreover, it follows from (36)
that

x ∈ ΓN ∩BR−h0(x0) ⇒ x− h ∈ ΩN

for every h ∈ K with |h| < h0. Therefore, τq~n = 0 on ΓN since either ϕ(x) = 0 if x ∈
ΓN\BR−h0(x0) or (σ̃q(x)−H(x))~n = 0 and σ̃q(x− h)−H(x− h) = 0 if x ∈ ΓN ∩BR−h0(x0).

Inserting τq into the weak formulation (52) and applying Green’s formula (15) yields

∫

Ω
ϕ2DWc,q(σ̃q) : 4hσ̃q dx =

∫

Ω
ϕ2DWc,q(σ̃q) : 4hH dx+

∫

Ω
ε(ũq) : τq dx

=

∫

Ω
ϕ2DWc,q(σ̃q) : 4hH dx+

∫

Ω
ε(g0) : τq dx+

∫

Ω
(g0 − ũq) : div τq dx. (57)

Note that the boundary terms vanish since (ũq − g0)
∣

∣

ΓD
= 0 and τq~n = 0 on ΓN . Inequalities

(22) and (94) with A = σ̃q(x− h), B = σ̃q(x) and cq = 2−1−2q imply

αqcq

∫

Ω
ϕ2
(
∣

∣σ̃Dq (x)
∣

∣+
∣

∣σ̃Dq (x− h)
∣

∣

)q−2
∣

∣

∣
4hσ̃Dq

∣

∣

∣

2
dx+

cA

2

∫

Ω
ϕ2
∣

∣

∣
4hσ̃q

∣

∣

∣

2
dx

≤
∫

Ω
ϕ2 (Wc,q(σ̃q(x− h)) −Wc,q(σ̃q(x)) −DWc,q(σ̃q(x)) : (σ̃q(x− h) − σ̃q(x))) dx

(57)
=

∫

Ω
ϕ2
(

−4hWc,q(σ̃q)
)

dx+

∫

Ω
ϕ2DWc,q(σ̃q) : 4hH dx

+

∫

Ω
ε(g0) : τq dx+

∫

Ω
ϕ2(g0 − ũq) div(4h(σ̃q −H)) dx

+

∫

Ω
(4h(σ̃q −H)) :

(

(g0 − ũq) ⊗∇ϕ2
)

dx

= I1 + . . .+ I5. (58)

Here, a ⊗ b ∈ R
d×d denotes the tensor product of a, b ∈ R

d with (a ⊗ b)ij = aibj. Our next
task is to derive the following estimate:

There exists for every ε, δ > 0 a constant c(ε, δ), which is independent of q,
such that it holds for every q ≥ d+ ε and h ∈ K with |h| < h0

I1 + . . .+ I5 ≤ c(ε, δ) |h|1−δ . (59)

Estimation of I1

By the product rule for differences, 4h(f(x)g(x)) = g(x)4hf(x)+f(x−h)4hg(x), we obtain

I1 = −
∫

Ω
4h
(

ϕ2Wc,q(σ̃q)
)

dx+

∫

Ω

(

4hϕ2
)

Wc,q(σ̃q(x− h)) dx

= I11 + I12. (60)
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For I12 we get, since ϕ ∈ C∞
0 (BR(x0)),

|I12| ≤ |h|
∥

∥∇ϕ2
∥

∥

L∞(BR(x0))
‖Wc,q(σ̃q)‖L1(Ω̂)

= |h|
∥

∥∇ϕ2
∥

∥

L∞(BR(x0))

(

‖Wc,q(σq)‖L1(Ω) + ‖Wc,q(H)‖
L1(Ω̂\Ω)

)

.

Due to lemma 4.1, the term ‖Wc,q(σq)‖L1(Ω) is bounded independently of q. Since αq = σ1−q
y

and
∣

∣HD
∣

∣ ≤ σy, the term ‖Wc,q(H)‖
L1(Ω̂\Ω) is bounded independently of q, as well. Thus

there exists a constant c12, which is independent of h and q, such that

|I12| ≤ c12 |h| .

Let ΩR = BR(x0)∩Ω. The term I11 can be estimated as follows after a change of coordinates
and taking into account that (suppϕ) ± h ⊂ BR(x0)

I11 = −
∫

Ω
4h
(

ϕ2Wc,q(σ̃q)
)

dx = −
∫

ΩR\ΩR−h
ϕ2Wc,q(σq) dx+

∫

ΩR−h\ΩR

ϕ2Wc,q(σ̃q) dx.

Note that σ̃q = H for x ∈ ΩR − h\ΩR. Due to the assumptions on H, we have

∣

∣ϕ2(x)Wc,q(H(x))
∣

∣ ≤ c(ϕ,H),

where the constant c(ϕ,H) is independent of q, x and h. Moreover, |ΩR − h\ΩR| ≤ c |h| and
c is independent of h. Thus, there exists a constant ĉ1 which is independent of h and q such
that

I1 = I11 + I12 ≤ ĉ1 |h| −
∫

ΩR\ΩR−h
ϕ2Wc,q(σq) dx. (61)

Estimation of I2

Due to the assumptions on H we get again with the product rule and Hölder’s inequality

I2 =

∫

Ω
ϕ2DWc,q(σq) : 4hH dx

≤ ‖DWc,q(σq)‖Lp(Ω)

(

∥

∥

∥
4h(ϕ2H)

∥

∥

∥

Lq(Ω)
+
∥

∥

∥
H(· − h)4hϕ2

∥

∥

∥

Lq(Ω)

)

. (62)

Lemma 7.23 in [21] implies for the terms in the second factor

∥

∥

∥
4h(ϕ2H)

∥

∥

∥

Lq(Ω)
≤ |h|

∥

∥∇(ϕ2H)
∥

∥

Lq(Ω̂)
≤ |h| |Ω|

1
q

∥

∥ϕ2H
∥

∥

W 1,∞(Ω̂)
,

∥

∥

∥
H(· − h)4hϕ2

∥

∥

∥

Lq(Ω)
≤ c(ϕ) |h| ‖H‖

Lq(Ω̂) ,

and c(ϕ) is independent of h and q. Together with DWc,q(σq) = ε(uq) and lemma 4.1, we
obtain for (62)

|I2| ≤ c2 |h|
and the constant c2 is independent of h and q.
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Estimation of I3

Again by the product rule for differences

I3 =

∫

Ω
ϕ2ε(g0) : 4h(σ̃q −H) dx

=

∫

ΩR

4h
(

ϕ2ε(g0) : (σ̃q −H)
)

dx−
∫

ΩR

(

4h(ϕ2ε(g0))
)

: (σ̃q −H)
∣

∣

x−h
dx

= I31 + I32. (63)

By Hölder’s inequality and lemma 7.23 in [21] we obtain

|I32| ≤
∥

∥

∥
4h(ϕ2ε(g0))

∥

∥

∥

L2(BR(x0))
‖σ̃q −H‖L2(BR(x0))

≤ |h|
∥

∥∇(ϕ2ε(g0))
∥

∥

L2(BR(x0))

(

‖σq‖L2(Ω) + ‖H‖L2(Ω)

)

≤ c32 |h| (64)

and the constant c32 is independent of q and h due to lemma 4.1 and the assumptions on g0

and H. For I31 we obtain after a change of coordinates

I31 =

∫

ΩR\ΩR−h
ϕ2ε(g0) : (σq −H) dx−

∫

ΩR−h\ΩR

ϕ2ε(g0) : (σ̃q −H) dx. (65)

Since (ΩR−h\ΩR) ⊂ ΩN and since σ̃q−H = 0 on ΩN , the second term vanishes. Furthermore,
due to the assumptions on H, it holds together with |ΩR\ΩR − h| ≤ c |h| that

|I31| ≤
∫

ΩR\ΩR−h
ϕ2 |ε(g0)| |σq| dx+ ĉ31 |h| (66)

and ĉ31 does not depend on h and q. Young’s inequality finally implies for every δ > 0

|I31| ≤
δ2

2
‖ϕ |ε(g0)|‖2

L2(ΩR\ΩR−h) +
δ−2

2

∫

ΩR\ΩR−h
ϕ2 |σq|2 dx+ ĉ31 |h|

≤
(δ2

2
+ 1
)

c31 |h| +
δ−2

2

∫

ΩR\ΩR−h
ϕ2 |σq|2 dx. (67)

The constant c31 is independent of h and q. Combining (61), (64) and (67) we get

I1 + |I3| ≤
(

ĉ1 +
(δ2

2
+ 1
)

c31 + c32
)

|h| +
∫

ΩR\ΩR−h
ϕ2

(

δ−2

2
|σq|2 −Wc,q(σq)

)

dx. (68)

Choosing δ−2 = cA with cA from (22) yields

δ−2

2
|σq(x)|2 −Wc,q(σq(x)) ≤ 0

for every x ∈ Ω and thus
I1 + |I3| ≤ c1 |h|

for a constant c1 which is independent of h and q. The estimates of I4 and I5 are based on
the following lemma due to L. Paris [40], see also [50], where difference quotients of functions
from U1,1(Rd) with compact support are estimated by the corresponding strain tensor:
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Lemma 4.4. [40, 50] Let ω ⊂ R
d be a compact set. For every s ∈ [1, d

d−1 ) and every δ ∈ (0, 1]

there exists a constant c = c(ω, s, δ) ≥ 0 such that it holds for every h ∈ R
d and u ∈ U 1,1(Rd)

with suppu ⊂ ω
‖u(x+ h) − u(x)‖Ls(Rd) ≤ c |h|1−δ ‖u‖U1,1(Rd) .

Remark 4.5. It follows by Hölder’s inequality that c(ω, s1, δ) ≤ (2 |ω|)
s2−s1
s1s2 c(ω, s2, δ) for s1 ≤

s2.

Estimation of I4

We define the following function for x ∈ R
d:

F (x) =

{

−(f + divH) for x ∈ ΩR = Ω ∩BR(x0),

0 else.

It holds F (x) = div(σ̃q(x)−H(x)) for x ∈ BR(x0)\ΩD. Moreover, (36) implies that x−h /∈ ΩR

for h ∈ K, x ∈ ΩN and thus 4hF (x) = 0 for x ∈ ΩN , h ∈ K. Furthermore, g0 − ũq = 0 in
ΩD. Therefore, the domain Ω in the definition of I4 can be replaced by BR(x0) and we get
by the product rule for differences:

I4 =

∫

BR(x0)
ϕ2(g0 − ũq)4hF (x) dx

=

∫

BR(x0)
4h
(

ϕ2(g0 − ũq)F
)

dx

−
∫

BR(x0)

(

4h(ϕ2(g0 − ũq))
)

F (x− h) dx. (69)

The first term vanishes since suppϕ ⊂
(

BR(x0) ∩ (BR(x0) − h)
)

for |h| < h0. It follows by
Hölder’s inequality

|I4| ≤
∥

∥

∥
4h(ϕ2(g0 − ũq))

∥

∥

∥

Lp(BR(x0))
‖F‖Lq(BR(x0)) . (70)

Due to the assumptions on f and H, the factor ‖F‖Lq(BR(x0))
is uniformly bounded with

respect to q. Applying lemma 4.4 to the first factor in (70) yields for every ε, δ ∈ (0, 1) and
q ≥ d+ ε (thus p < d

d−1)

∥

∥

∥
4h(ϕ2(g0 − ũq))

∥

∥

∥

Lp(BR(x0))
≤ c(BR(x0), p, δ) |h|1−δ

∥

∥ϕ2(g0 − ũq)
∥

∥

U1,1(BR(x0))
.

The definition of ũq and inequalities (55) and (49) imply that
∥

∥ϕ2(g0 − ũq)
∥

∥

U1,1(BR(x0))
is

uniformly bounded with respect to q. Moreover, the constant c(BR(x0), p, δ) is bounded
independently of p = q′ for fixed δ, ε ∈ (0, 1) and arbitrary p ∈ (1, d−ε

d−ε−1 ], see remark 4.5.
Therefore, there exists for every ε, δ ∈ (0, 1) a constant c4(ε, δ) which is independent of
q ≥ d+ ε and h such that

|I4| ≤ c4(ε, δ) |h|1−δ .
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Estimation of I5

As before, the domain Ω in I5 may be replaced by BR(x0). Applying the product rule for
differences leads to

I5 =

∫

BR(x0)
4h
(

(σ̃q −H) : (g0 − ũq) ⊗∇ϕ2
)

dx (71)

−
∫

BR(x0)
(σ̃q −H)

∣

∣

x−h
: 4h

(

(g0 − ũq) ⊗∇ϕ2
)

dx. (72)

The first term on the right hand side vanishes. For δ, ε ∈ (0, 1) and q ≥ d+ ε it follows from
Hölder’s inequality and lemma 4.4

|I5| ≤ ‖σ̃q −H‖Ld+ε(BR(x0))

d
∑

j=1

∥

∥

∥
4h
(

(∂jϕ
2)(g0 − ũq)

)

∥

∥

∥

L(d+ε)′(BR(x0))

≤ |h|1−δ c(BR(x0), (d + ε)′, δ) ‖σ̃q −H‖
Ld+ε(BR(x0))

d
∑

j=1

∥

∥(∂jϕ
2)(g0 − ũq)

∥

∥

U1,1(BR(x0))
.

The last factor can be estimated in the same way as the corresponding factor in I4 and it
remains to show that ‖σq‖Ld+ε(Ω) is bounded independently of q ≥ d+ ε for fixed ε > 0. For
the trace trσq we get from lemma 2.5 that

‖trσq‖Ld+ε(Ω) ≤ c(ε)
(

‖trσq‖L2(Ω) +
∥

∥σDq
∥

∥

Ld+ε(Ω)
+ ‖div σq‖Ld+ε(Ω)

)

. (73)

Moreover, by Hölder’s inequality and (47) of lemma 4.1,

∥

∥σDq
∥

∥

Ld+ε(Ω)
≤ |Ω|

q−(d+ε)
q(d+ε)

∥

∥σDq
∥

∥

Lq(Ω)
≤ c0(ε) (74)

and c0(ε) is independent of q ≥ d+ ε. Inequalities (73), (74) and div σq + f = 0 finally imply
that there exists a constant c(ε), which is independent of q ≥ d+ ε, such that

‖σq‖Ld+ε(Ω) ≤ ‖trσq‖Ld+ε(Ω) +
∥

∥σDq
∥

∥

Ld+ε(Ω)
≤ c(ε). (75)

We obtain finally from the previous estimates that for every ε, δ ∈ (0, 1) there exists a constant
c5(ε, δ), which is independent of h and q ≥ d+ ε, such that

|I5| ≤ c5(ε, δ) |h|1−δ .
Collecting the estimates for I1, . . . , I5 shows that there exists for every ε, δ ∈ (0, 1) a constant
c(ε, δ) > 0 such that for every q ≥ d+ ε and h ∈ K with |h| < h0

I1 + . . .+ I5 ≤ c(ε, δ) |h|1−δ . (76)

This proves (59). Since ϕ = 1 on BR−θ(x0), inequality (76) implies together with (58) that

‖σq‖
N

1−δ
2 ,2(BR−θ(x0)∩Ω)

≤ c(ε, δ). (77)

Since the balls {BRj−θ(xj), 1 ≤ j ≤ J} are an open covering of Ω, we deduce from (77) the
uniform global estimate (50) in lemma 4.3:

‖σq‖
N

1−δ
2 ,2(Ω)

≤ cε,δ (78)

and cε,δ is independent of q ≥ d + ε. This finishes the proof of lemma 4.3, part 1, and of
theorem 3.6.
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Proof of lemma 4.3, part 2. Assume now that q ≥ 2 and that the functions f, q and H
satisfy the weaker assumption (Dq) from page 9. Let σ̃q be defined as in (53) and choose
ũq ∈W 1,p(BR(x0)) with ũq

∣

∣

BR(x0)\ΩN
= ûq with ûq from (54). Inequality (58) can be deduced

analogously to the previous part. We now have to show that there exists a constant cq such
that for every h ∈ K, |h| < h0,

I1 + . . .+ I5 ≤ cq |h| (79)

and cq is independent of h but may depend on q. The terms I1, I2 and I32 may be treated
analogously to (60)–(64). For the term I31 from (63) we obtain analogously to (65)-(66)

|I31| ≤
∫

ΩR\ΩR−h
ϕ2
(∣

∣εD(g0)
∣

∣

∣

∣σDq
∣

∣+ |tr ε(g0)| |trσq|
)

dx+ ĉ31 |h| . (80)

Young’s inequality implies for every δ1, δ2 > 0

|I31| ≤ ĉ31 |h| +
∫

ΩR\ΩR−h
ϕ2

(

δp1
p

∣

∣εD(g0)
∣

∣

p
+
δ22
2
|tr ε(g0)|2

)

dx (81)

+

∫

ΩR\ΩR−h
ϕ2

(

δ−q1

q

∣

∣σDq
∣

∣

q
+
δ−2
2

2
|trσq|2

)

dx. (82)

Due to (22)-(23), δ1 and δ2 may be chosen in such a way that

(

δ−q1

q

∣

∣σDq
∣

∣

q
+
δ−2
2

2
|trσq|2

)

−Wc,q(σq) ≤ 0.

Taking into account that ∇g0 ∈ L∞(Ω), we finally get together with (61)

I1 + |I3| ≤ c1 |h|

and c1 is independent of h but may depend on q. The term I4 can be estimated similar to
the first part: applying lemma 7.23 from [21] to the first factor of the last term in (69) shows
that

|I4| ≤ |h|
∥

∥∇(ϕ2(g0 − ũq))
∥

∥

Lp(BR(x0))
‖F‖Lq(BR(x0)) .

The term I5 can be treated in the same way as I4 and (79) is proved. Combining (79) with
(58) we get finally, since ϕ

∣

∣

BR−θ(x0)
= 1,

∫

Ω∩BR−θ(x0)

(

∣

∣

∣
4hσ̃Dq

∣

∣

∣

q

+
∣

∣

∣
4hσ̃q

∣

∣

∣

2
)

dx ≤ cq |h| (83)

for every h ∈ K with |h| < h0. The constant cq is independent of h but may depend on q.
Arguing as subsequent to (76) yields

σDq ∈ N
1
q
,q
(Ω), σq ∈ N 1

2
,2(Ω).

This finishes the proof of lemma 4.3.

Our next task is to prove the following lemma on trσq:
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Lemma 4.6. Under the assumptions of theorem 3.4 it holds trσq ∈ N
1
q
,q
(Ω).

Proof. The proof relies on an argument from [13] which uses Nečas’ lemma ([7], see also
lemma A.1 in the appendix). Note that trσq ∈ Lq(Ω) due to lemma 2.5. We use here the
same notation as in the proof of lemma 4.3, in particular, σ̃q is the function defined in (53).
Our goal is to show that

∫

ΩR−θ

∣

∣

∣
4h tr σ̃q

∣

∣

∣

q

dx ≤ cq |h| .

For that purpose we derive uniform estimates of 4h tr σ̃q and ∇4h tr σ̃q in W−1,q-norms and
apply Nečas’ lemma. Let

F (x) =











f(x) x ∈ ΩR,

−divH(x) x ∈ ΩN ,

0 else.

It holds
div σ̃q(x) + F (x) = 0 for a.e. x ∈ BR(x0)\ΩD.

Moreover, it holds for every h ∈ K with |h| < h0 and for every x ∈ Ω ∩BR−θ = ΩR−θ

div σ̃q(x− h) + F (x− h) = 0. (84)

Thus div4hσ̃q+4hF = 0 a.e. in ΩR−θ. Multiplying (84) with v ∈ C∞
0 (ΩR−θ) we get therefore

after applying Green’s formula:

1

d

∫

ΩR−θ

(

4h tr σ̃qI
)

: ε(v) dx =

∫

ΩR−θ

(4hF )v dx−
∫

ΩR−θ

(4hσ̃Dq ) : ε(v) dx. (85)

By ∇(4h tr σ̃q) we denote the distributional derivative of 4h tr σ̃q on ΩR−θ. It holds

∥

∥

∥
∇(4h tr σ̃q)

∥

∥

∥

W−1,q(ΩR−θ)
= sup

v∈C∞

0 (ΩR−θ ,R
d)

‖v‖
W1,p(Ω)=1

∫

ΩR−θ

(

4h tr σ̃q

)

div v dx

(85)
= d sup

v∈C∞

0 (ΩR−θ)
‖v‖

W1,p(Ω)
=1

∫

ΩR−θ

(4hF )v dx−
∫

ΩR−θ

(4hσ̃Dq ) : ε(v) dx. (86)

We prove now that the right hand side is bounded by c |h|
1
q with a constant c which is

independent of h. It holds for every v ∈ C∞
0 (ΩR−θ) and every h ∈ K, |h| < h0, that

∫

ΩR−θ

(4hF )v dx =

∫

BR(x0)
4h(Fv) dx−

∫

BR(x0)
F (x− h)4hv dx. (87)

Since suppv ⊂ ΩR−θ ⊂ BR(x0) ∩ (BR(x0) − h)), the first term vanishes. Moreover, v ∈
C∞

0 (ΩR−θ) implies together with lemma 7.23 from [21]
∣

∣

∣

∣

∫

ΩR−θ
(4hF )v dx

∣

∣

∣

∣

≤
∫

BR(x0)
|F (x− h)|

∣

∣

∣
4hv

∣

∣

∣
dx ≤ |h| ‖F‖Lq(BR(x0)) ‖v‖W 1,p(ΩR−θ) (88)

and therefore
∥

∥

∥
4hF

∥

∥

∥

W−1,q(ΩR−θ)
≤ |h| ‖F‖Lq(BR(x0))

.
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Hölder’s inequality yields for the second term in (86)
∣

∣

∣

∣

∣

∫

ΩR−θ

ε(v) : 4hσ̃Dq dx

∣

∣

∣

∣

∣

≤
∥

∥

∥
4hσ̃Dq

∥

∥

∥

Lq(ΩR−θ)
‖ε(v)‖Lp(ΩR−θ)

(83)

≤ cK2 cq |h|
1
q ‖v‖W 1,p(ΩR−θ) , (89)

where cK2 is the constant in Korn’s inequality (16), and cq is independent of h. Inserting these
estimates into (85) results in

∥

∥

∥
∇(4h tr σ̃q)

∥

∥

∥

W−1,q(ΩR−θ)
≤ |h|

1
q d(‖F‖Lq(R(x0)) + cK2 cq). (90)

Furthermore one gets analogously to (88)
∥

∥

∥
4h tr σ̃q

∥

∥

∥

W−1,q(ΩR−θ)
≤ |h| ‖tr σ̃q‖Lq(BR(x0)) . (91)

Nečas’ lemma A.1 applied to (90) and (91) finally implies
∥

∥4h tr σ̃q
∥

∥

Lq(ΩR−θ)
≤ c |h|

1
q , and

the constant c is independent of h. Thus, trσq ∈ N
1
q
,q
(ΩR−θ).

Step 3: Regularity of the displacement field uq

Lemma 4.7. Let the assumptions of theorem 3.4 be satisfied. Then div uq ∈ N
1
q
,q(Ω) ∩

N 1
2
,2(Ω) and uq ∈ N

3
2
,

2dp
2d−2+p

−ε(Ω) for every ε > 0.

Proof. Note first that div uq = tr ε(uq) = tr(Aσq) in Ω and therefore div uq has at least the
same smoothness as σq.

Let be Ω′ ⊂⊂ Ω and h ∈ R
d with 0 < |h| < dist(Ω′, ∂Ω). For ε > 0 we set r = 2dp

2d−2+p − ε.

The constitutive law ε(uq) = Aσq + αq
∣

∣σDq
∣

∣

q−2
σDq implies that there exists a constant c > 0

depending on r, but not on Ω′ and h, such that
∫

Ω′

|4hε(uq)|r dx ≤ c

(
∫

Ω′

|4hσq|r +
∣

∣

∣
4h

(

∣

∣σDq
∣

∣

q−2
σDq

)
∣

∣

∣

r

dx

)

.

Hölder’s inequality applied to the first term and inequality (95) applied to the second term
yields

‖4hε(uq)‖rLr(Ω′) ≤ c

(

‖4hσq‖rL2(Ω′)+

∫

Ω′

(

(
∣

∣σDq (x+ h)
∣

∣ +
∣

∣σDq
∣

∣

)q−2 ∣
∣4hσ

D
q

∣

∣

)r

dx

)

.

Again by Hölder’s inequality we get for the last term

∫

Ω′

(

(∣

∣σDq (x+ h)
∣

∣+
∣

∣σDq (x)
∣

∣

)q−2 ∣
∣4hσ

D
q

∣

∣

)r

dx

≤
(
∫

Ω′

(
∣

∣σDq (x+ h)
∣

∣ +
∣

∣σDq
∣

∣

)

(q−2)r
2−r dx

)
2−r
2

×
(
∫

Ω′

(∣

∣σDq (x+ h)
∣

∣ +
∣

∣σDq
∣

∣

)q−2 ∣
∣4hσ

D
q

∣

∣

2
dx

)
r
2

.
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From σq ∈ N
1
q
,q(Ω) ⊂ L

qd
d−1

−ε(Ω) and r(q−2)
2−r < dq

d−1 it follows that the first factor is finite and
can be estimated independently of h and Ω′. Inequalities (58) and (79) now imply that there
exists a constant c > 0 such that

∫

Ω′

|4hε(uq)|r dx ≤ c |h| r
2 (92)

for every Ω′ ⊂⊂ Ω and h ∈ R
d with |h| < dist(Ω′, ∂Ω). This yields ε(uq) ∈ N 1

2
,r(Ω). Since

W 1,p(Ω) is continuously embedded in Lr(Ω), Korn’s inequality applied to (92) shows that

∇uq ∈ N 1
2
,r(Ω) as well and thus uq ∈ N 3

2
,r(Ω). This finishes the proof of theorem 3.4.

A Inequalities and proofs for section 2

A.1 Nečas’ lemma

For 1 < p <∞, the following expression defines a norm for u ∈ Lp(Ω,R) with q = p′:

|‖u‖|p = ‖u‖(W 1,q
0 (Ω))′ + ‖∇u‖(W 1,q

0 (Ω))′

= sup
v∈W 1,q

0 (Ω,R),
‖v‖

W1,q(Ω)=1

∣

∣

∣

∣

∫

Ω
uv dx

∣

∣

∣

∣

+ sup
w∈W 1,q

0 (Ω,Rd),
‖w‖

W1,q (Ω)=1

∣

∣

∣

∣

∫

Ω
udivw dx

∣

∣

∣

∣

.

Lemma A.1 (Nečas). [7] Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary and

1 < p < ∞. Then |‖·‖|p is a norm on Lp(Ω) which is equivalent to the usual norm ‖·‖Lp(Ω)

on Lp(Ω).

A.2 Some inequalities

Lemma A.2. Let n ∈ N. For A,B ∈ R
n with |B| ≥ |A| and t ∈ [0, 1

4 ] it holds [51, formula
(2.20)]:

4 |B + t(A−B)| ≥ |A| + |B| . (93)

Let q ≥ 2. It holds for every A,B ∈ R
n

1

q
|A|q − 1

q
|B|q − |B|q−2B : (A−B) ≥ 2−1−2q (|A| + |B|)q−2 |A−B|2 . (94)

∣

∣

∣
|A|q−2A− |B|q−2B

∣

∣

∣
≤ c (|A| + |B|)q−2 |A−B| . (95)

For n ∈ N, ai ∈ R with ai ≥ 0 for 1 ≤ i ≤ n, we have [29]:

(

n
∑

i=1

ai

)α

≤ nα−1

(

n
∑

i=1

aαi

)

if α ≥ 1, (96)

(

n
∑

i=1

ai

)α

≥ nα−1

(

n
∑

i=1

aαi

)

if 0 ≤ α ≤ 1. (97)
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Proof of (94). Let A,B ∈ R
n and γ(t) = B + t(A−B) for t ∈ R. Taylor’s expansion yields

1

q
|A|q − 1

q
|B|q − |B|q−2B : (A−B) =

∫ 1

0
(1 − t)

d2

dt2

(

1

q
|γ(t)|q

)

dt

≥
∫ 1

0
(1 − t) |γ(t)|q−2 |A−B|2 dt. (98)

Assume first that |B| ≥ |A|. By (93) we obtain

(98) ≥ 42−q

∫ 1
4

0
(1 − t) dt(|A| + |B|)q−2 |A−B|2 .

If |A| > |B|, then a change of coordinates leads to

(98) =

∫ 1

0
s |A+ s(B −A)|q−2 |A−B|2 ds

(93)

≥ 42−q

∫ 1
4

0
sds(|A| + |B|)q−2 |A−B|2 .

Proof of (95). Again by Taylor’s formula:

∣

∣

∣
|A|q−2A− |B|q−2B

∣

∣

∣
≤
∫ 1

0

∣

∣

∣

∣

d

dt

(

|B + t(A−B)|q−2 (B + t(A−B))
)

∣

∣

∣

∣

dt

≤
∫ 1

0
(q − 1) |B + t(A−B)|q−2 |A−B| dt.

A.3 Proof of the surjectivity of γ1 in lemma 2.1

The surjectivity of the mapping γ1 in lemma 2.1 is proved by solving a boundary value
problem. Let Γ ⊂ ∂Ω be open and not empty. In order to avoid solvability conditions, which
would be necessary in the case Γ = ∂Ω, an additional boundary is introduced, where Dirichlet
conditions are prescribed. Since Σq,q(Ω) ⊂ Σq,s(Ω) for s ≤ q, it suffices to consider the case
s = q in the sequel. Choose x0 ∈ Ω and ε > 0 small enough such that B2ε(x0) ⊂⊂ Ω. The
domain Ω̃ = Ω\Bε(x0) is a bounded domain with Lipschitz boundary ∂Ω̃ = ∂Ω ∪ ∂Bε(x0).

Let h ∈W− 1
q
,q(Γ) and consider the following boundary value problem:

Find u ∈ V (Ω̃) = {u : Ω̃ → R
d : u ∈ W 1,q′(Ω̃), u

∣

∣

∂Ω\Γ
= 0, u

∣

∣

∂Bε(x0)
= 0} such that for

every v ∈ V (Ω̃)
∫

Ω̃
|ε(u)|q′−2 ε(u) : ε(v) dx = 〈h, v〉

W̃
1− 1

q′
,q′

(Γ)
. (99)

Due to the main theorem on monotone operators this problem has a weak solution u ∈ V (Ω̃).
Let η ∈ C∞

0 (Rd) with suppη ⊂ B2ε(x0), 0 ≤ η ≤ 1 and η ≡ 1 on B 3
2
ε(x0). Direct calculations

show that the function

σ(x) =

{

(1 − η) |ε(u(x))|q′−2 ε(u(x)) x ∈ Ω̃,

0 x ∈ Bε(x0)

is an element of Σq,q(Ω) and satisfies σ~n = h in W− 1
q
,q(Γ).
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A.4 Proof of lemma 2.5

Let 1 < s ≤ q. We have to show that Σq,s(Ω) = Σq,q(Ω) and that estimate (20) is valid. Since
s ≤ q, it follows with Hölder’s inequality, that Σq,q(Ω) is continuously embedded in Σq,s(Ω).
For the inverse relation it remains to prove that it holds for every σ ∈ Σq,s(Ω): trσ ∈ Lq(Ω)
and (20) is satisfied. For the proof of (20) we use a trick by M.Fuchs, [17], which is based on
Bogovskĭı’s theorem [19, Theorem 3.1]:

Let p ∈ (1,∞). For every f ∈ Lp(Ω), there exists an element v ∈W 1,p
0 (Ω,Rd) with

div v = f − 1

|Ω|

∫

Ω
f dx and ‖∇v‖Lp(Ω) ≤ cB ‖f‖Lp(Ω) ,

and cB > 0 is a constant, which is independent of f and v.
For ψ ∈ C∞

0 (Ω), we denote by vψ ∈ W 1,p
0 (Ω) the function which is given by Bogovskĭı’s

theorem with p = q′ = q
q−1 , i.e.

div vψ = ψ − 1

|Ω|

∫

Ω
ψ dx and ‖∇vψ‖Lp(Ω) ≤ cB ‖ψ‖Lp(Ω) . (100)

Note that vψ ∈ Up,s
′

0 (Ω) since vψ ∈ W 1,p
0 (Ω) and tr ε(vψ) = div vψ ∈ C∞(Ω). It follows for

σ ∈ Σq,s(Ω) by Green’s formula (15):

1

d

∫

Ω
trσ tr(ε(vψ)) dx = −

∫

Ω
σD : εD(vψ) dx−

∫

Ω
vψ div σ dx. (101)

Using (100) we obtain for every ψ ∈ C∞
0 (Ω):

1

d

∫

Ω
ψ trσ dx = −

∫

Ω
σD : εD(vψ) dx−

∫

Ω
vψ div σ dx+

1

d |Ω|

∫

Ω
ψ dx

∫

Ω
trσ dx.

By Hölder’s and Poincaré/Friedrichs’ inequality

1

d

∣

∣

∣

∣

∫

Ω
ψ trσ dx

∣

∣

∣

∣

≤
∥

∥σD
∥

∥

Lq(Ω)

∥

∥εD(vψ)
∥

∥

Lp(Ω)

+ ‖vψ‖Lp(Ω) ‖div σ‖Lq(Ω) + d−1 |Ω|
1
q
+ 1

s′
−1 ‖ψ‖Lp(Ω) ‖trσ‖Ls(Ω)

≤ ‖σ‖Σq,s(Ω)

(

(1 + cPFp,p ) ‖ε(vψ)‖
Lp(Ω) + c1(Ω) ‖ψ‖Lp(Ω)

)

with c1(Ω) = d−1 |Ω|−1+ 1
q
+ 1

s′ . Korn’s inequality (16), Poincaré/Friedrichs’ inequality (19)
and estimate (100) imply

‖ε(vψ)‖
Lp(Ω) ≤ cK2 c

PF
p ‖∇vψ‖Lp(Ω) ≤ cK2 c

PF
p cB ‖ψ‖Lp(Ω) .

Thus, we obtain finally

‖trσ‖Lq(Ω) = sup
ψ∈C∞

0 (Ω)
‖ψ‖Lp(Ω)=1

∣

∣

∣

∣

∫

Ω
ψ trσ dx

∣

∣

∣

∣

≤ d
(

(1 + cPFp,p )cK2 c
PF
p cB + c1(Ω)

)

‖σ‖Σq,s(Ω)

which finishes the proof of lemma 2.5.
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coupled problem between the Lamé system and the plate equation, I: Regularity of the
solution. Ann. della Scuola Normale Sup. di Pisa 19 (1992), 327–361.

[38] Nikol’skii, S. M. Approximation of functions of several variables and imbedding theo-
rems. Springer-Verlag, 1975.

[39] Osgood, W. R., and Ramberg, W. Description of stress-strain curves by three
parameters. NACA Technical Note 902, National Bureau of Standards, Washington,
1943.
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déformation. Trav. Semin. d’Anal. convexe 6, Expose No.12 (1976).

[41] Rasmussen, K. J. R. Full-range stress-strain curves for stainless steel alloys. Research
Report R811, University of Sydney, Department of Civil Engineering, November 2001.

[42] Rice, J. R., and Rosengren, G. F. Plane strain deformation near a crack tip in a
power-law hardening material. J. Mech. Phys. Solids 16 (1968), 1–12.

[43] Runst, T., and Sickel, W. Sobolev spaces of fractional order, Nemytskij operators
and nonlinear partial differential equations. de Gruyter, Berlin; New York, 1996.

27
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