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Global regularity of the elastic fields of a power-law
model on Lipschitz domains
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Abstract

In this paper we study the global regularity of the displacement and stress fields
of a nonlinear elastic model of power-law type on nonsmooth domains. The proof of the
regularity results relies on a difference quotient technique which we adapt from the papers
by G. Savaré and C. Ebmeyer/J. Frehse to our situation. Finally, a regularity result for
the stress field of the elastc, perfect plastic Hencky model is derived.

Keywords: global regularity; power-law model; Hencky model; nonsmooth domain; differ-
ence quotient technique

AMS Subject Classification: 35J70,35B65,74B20,74G40

1 Introduction

This paper is concerned with the derivation of global regularity results on nonsmooth domains
for the displacement and stress fields of physically nonlinear, geometrically linearised elastic
models with a constitutive relation of power-law type. Furthermore, a global regularity result
for the stress fields of the elasto-plastic Hencky model is proved.

In the frame-work of deformation theory of plasticity, power-law models are frequently
applied for the description of elasto-plastic materials with low proportionality limit having
no extended yield plateau and which show strain hardening behaviour. Examples for such
materials are stainless steel alloys or aluminium alloys. The particular model we consider
here was first proposed by W. Ramberg and W.R. Osgood [39, 1943] for the description of
aluminium alloys. Let Q C R% d > 2, be a bounded domain, u : Q — R? the displacement
field, £(u) = 3(Vu + Vu') the linearised strain tensor, o € ngxnﬁl the stress field and o” =
o — étr ol the deviator of o. The constitutive relation introduced by W. Ramberg and
W.R. Osgood is defined as

e(u) = Ao + « |0D‘q_2 P, (1)
where A is the inverse of the elasticity matrix (tensor of elastic compliances), o > 0 a material
constant depending on the yield stress and ¢ — 1 =: n is the strain hardening coefficient. Since
typical values for n range from 4.45 — 7.9 for steel alloys [41] up to 20 — 45 for aluminium
alloys [47, 34] we assume that ¢ > 2. Constitutive relation (1) together with the equilibrium
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of forces and boundary conditions on 9Q = T'p UT y (equations (2)-(4) here below) form the
field equations of the Ramberg/Osgood model:

dive+ f=0 1in Q, (2)
ofi=nh on Ty, (3)
u=g onlp. (4)

Here, f,h are volume and surface force densities, respectively, and ¢ are prescribed displace-
ments on the Dirichlet boundary I'p. By 7@ we denote the exterior unit normal vector on 0f2.
This model is also known in literature as Norton/Hoff model and we refer to [41, 47, 8] for
more details.

It is well known that very high stress concentrations may occur in the vicinity of re-entrant
corners, cracks, edges and near those points, where the boundary conditions change. Such
singularities have a strong influence on both, the strength and physical life of the body and
on convergence rates of standard numerical schemes. Thus a deeper knowledge of the singular
behaviour of the stress and strain fields is important. In the literature on solid mechanics
stress singularities near a corner point S of a two dimensional domain €2 are studied by means
of ansatzes (HRR fields, see e.g. [25, 42, 55]) of the form

o(r,¢) = r%oo(p), ()

where polar coordinates (7, ¢) with respect to S are used. This ansatz leads to a fully nonlinear
eigenvalue problem for the determination of the singular exponent o and the function oo (¢p).
The worst possible singular exponent which is predicted for weak solutions by this approach
is « = —1if S is a crack tip. But unlike the case of linear elliptic equations it is to the
author’s knowledge an open problem whether the singular behaviour of weak solutions of the
Ramberg/Osgood model can be completely characterised by ansatzes of the form (5).

The field equations of the Ramberg/Osgood model are closely related to general systems of
quasilinear elliptic partial differential equations with p-structure, see e.g. [14] for a definition.
G. Savaré [44] and C. Ebmeyer and J. Frehse [15, 14] obtained independently global regularity
results for weak solutions u of such systems on nonsmooth domains and proved their results
with a difference quotient technique. Combining the geometrical assumptions from [44] (Lip-
schitz domains, non changing boundary conditions) and [15, 14] (polyhedral domains with
additional constraints near those points, where the boundary conditions change) we introduce
the notion of admissible domains on which we formulate and prove the regularity results. In
particular we obtain the following global regularity in Sobolev-Slobodeckij spaces for weak
solutions of the Ramberg/Osgood equations with mixed boundary conditions on admissible
domains (theorem 3.4):

Wa 053 (Q
ue 7 (€2), (6)

1_

o e Wi Q) nW352(Q) (7)

for every 6 > 0 with ¢ > 2 from (1) and % + % =1.

We give a short comparison of our results with results from literature. For ¢ = 2, equa-
tions (1)-(4) reduce to the field equations for linear elastic materials. The regularity of the
corresponding weak solutions is studied by numerous authors. B. Dahlberg, C. Kenig and
G. Verchota [9] proved global regularity results for the elastic fields on Lipschitz domains with



non changing boundary conditions and (6)-(7) coincide with the results from [9] for this case.
In the linear case, the regularity of the elastic fields can also be characterised near corners
and edges by means of asymptotic expansions, see e.g. [10, 23, 28, 30, 33] and the references
therein. Based on such expansions, the regularity of the displacement fields of the Lamé sys-
tem is investigated in [37] for polygons with mixed boundary conditions. Solutions which are
less regular than (6) may occur as soon as the polygon is not any more an admissible domain
in our sense. For ¢ > 2, the Ramberg/Osgood model is closely related to quasilinear elliptic
systems with p-structure and (6) coincides with the results from [44, 14] for such systems. A
comparison between the worst singularities predicted by the approach with ansatzes of the
form (5) and between (7) shows perfect agreement. But it remains an open problem whether
asymptotic expansions like (5) describe the singular behaviour of the stress fields completely
as in the linear case. Let us note that the local regularity of the displacement and stress fields
of the Ramberg/Osgood model and related models is investigated in [3, 45, 17].

In the proof of (6)-(7) we adapt the ideas from [44, 15, 14] to the Ramberg/Osgood
model and derive (6)-(7) with a difference quotient technique. The main difficulty is that the
nonlinearity in the constitutive law (1) is “anisotropic” i.e. the power-law term depends only
on oP and not on the full stress tensor o. Thus we have to work with the function spaces
introduced in [20] where this behaviour is taken into account. Moreover, it is a-priori not
clear whether the test functions used in the proofs of the regularity results in [44, 15] are still
admissible test functions in the Ramberg/Osgood case. Finally, an explicit inversion formula
for the constitutive relation (1) is unknown and therefore it is convenient to work with the
dual or stress-based formulation instead of the usual displacement-based formulation.

As an application of the regularity results for Ramberg/Osgood materials we deduce a
global regularity result for stress fields which are solutions of the Hencky model. The Hencky
model describes in the framework of deformation theory of plasticity the behaviour of linear
elastic, perfect-plastic bodies being subjected to quasi-static loadings. We show that the
corresponding stress field oy of the Hencky model satisfies

oy € W2792(Q) (8)

globally on 2 for arbitrary § > 0 (theorem 3.6). The key of the proof is a well known result by
R. Temam [50] which states that the stress fields o, of the Ramberg/Osgood model converge
strongly in L?(€2) to the stress field oz of the Hencky model for ¢ — oo. Due to the regularity
results for the Ramberg/Osgood model, namely o, € W%_‘S’Q(Q) for ¢ > 2 (see (7)), it remains

to prove that HaqHW bz is uniformly bounded for ¢ > 2.

The paper is organised as follows: After a short description of the necessary function
spaces following [20], we formulate in section 2 the weak equations of the Ramberg/Osgood
and the Hencky model. In section 3 we give a definition of admissible domains and present
and discuss the regularity results. Section 4 is devoted to the proof of the regularity results.
The paper closes with an appendix where some useful inequalities are listed.

2 Function spaces and weak formulations

In this section the necessary function spaces and the weak formulations of the Ramberg/Osgood
model and the Hencky model are introduced.



2.1 Notation

For m x d matrices A, B € R™*% m,d > 1, the inner product is defined by A : B = tr(A"B) =
tr(BT A) and |A| = V/A: A denotes the corresponding Frobenius norm. Rg;rg is the set of
symmetric matrices; the deviatoric part AP of A € R4*? is defined by AP = A — é(tr A,
where I is the unit matrix in R%?. For R > 0 and x¢ € R? the set Br(zo) = {x € R¢ :
|x — xo| < R} is the open ball with radius R and centre .

If not otherwise stated, it is assumed that @ C R? is a bounded domain with Lipschitz
boundary 9Q = I'p N Ty, where I'p and I'y are open and disjoint and describe the Dirichlet
and Neumann boundary, respectively.

Throughout the whole paper p’ is the conjugate exponent of p, %D + 1% = 1. Furthermore,

the dual pairing for elements u of a Banach space X and elements f of its dual X’ is written

as <f7u> = <f,U>X'

2.2 Function spaces

For p € [1,00), s € R, s > 0, we denote by W#*P(2) the usual Sobolev-Slobodeckij spaces
[1, 22]. For a weak formulation of the boundary value problem for the Ramberg/Osgood
model we need function spaces which take up the structure of the constitutive law (1), where
the trace tro of the stress tensor appears in the linear term, only, whereas the deviator o
appears also in the nonlinear term. Appropriate spaces were first introduced and studied by
G. Geymonat and P. Suquet [20]. Let  C R? be an open domain and p,r € [1, 00).

LPr(Q)={0c:Q— ngxnﬁl : 0P e LP(Q), tro € LT(Q)}, 9)
YPr(Q) ={o e LP"(Q): dive € LP(Q)}, (10)

where diveo(z) € R? and (dive(x)), = Z?Zl 8054%5). Furthermore,
UPT(Q) ={u:Q—RY: ue LP(Q), P(u) € LP(Q), tre(u) € LT(Q)}. (11)
These spaces are endowed with the following natural norms:
HUHLP»T(Q) = HO-DHLP(Q) + ||t1"‘7||Lr(Q) ) ||U||zp,r(g) = ||U||Lp,r(Q) + [|div UHLP(Q) )
ltllror @y = I1ull oy + 167 @] 1oy + ltr el gy -

The properties of these spaces are studied in detail in [20] for p,r € (1,00). Results for
the space LD(Q)) = ULL(Q) were derived in [50]. In particular, traces are well defined for
functions u from UP"(§2) with r > p > 1 and the trace operator

1

W P(oQ), ifr>p>1,
g UPT(@) - 7O (12

L' (09), ifr=p=1,
with 7‘89“ = u‘aﬂ is linear, continuous and surjective. For p > 1, ¢ = p’ = 1%’ rcoq,r

open, we need also the following trace space and its dual:
WY BP(D) = {v e L/(T) : 35 € W sP(90Q) with supps C T, 9|, = v}, (13)
~ /

woal(r) = (W) (14)

It is meaningful to speak about normal stresses for functions o € £¥9°(Q2) if ¢ > s > 1. More
precisely, it holds



Lemma 2.1. [20] Let Q C R? be a bounded domain with Lipschitz boundary, 1 < s < ¢ < 0o
and I' C 0N open. Then there exists a linear and continuous mapping

() — W)

with y10 = U|Fﬁ on T for every o € C*(Q, Rf;nf). Here, 1 is the exterior unit normal vector

on 0. vy is surjective and Green’s formula is valid for every o € 9%(Q), u € Uql’s/(Q) with

u‘ag\f =0:

/a:s(u)dx—i—/udivadxz(’yla,wdLq, =(om,u) _,_1 ., . (15)
Q Q W (D) w7 (D)

Remark 2.2. The existence of the mapping 71 and Green’s formula are proved in [20], we
show in A.3 in the appendix that - is surjective.

)

For convenience and to fix the notation, we reformulate here Korn’s and Poincaré-Friedrichs
inequality for UP"(2) and an embedding theorem for U1 ().

Lemma 2.3. Let Q C R%, d > 2, be a bounded domain with Lipschitz boundary.

Korn’s inequality: [20] Let p € (1,00). The spaces WP () and UPP(Q) have the same

elements and the norms are equivalent. That means that there ewist constants ¢ c& > 0

such that for every v € WHP(Q):

C{{ HUHWLP(Q) < HU”Up,p(Q) < 05{ HU”WLP(Q) . (16)

Poincaré/Friedrichs’ inequality: /20, 50] Let T'p C 0 be open and not empty and
r>p>1orr=p=1. We define

Ver(Q) ={v e UP"(Q) : U|FD = 0}. (17)
Then there exists a constant cif > 0 such that it holds for every v € VP"(Q):

cor M@ Loy = I0llypr(e) - (18)

If p=1r > 1, then there is a constant ch > 0 such that for every v € VPP(Q)

& IVl oy = 0 llwiage) - (19)
Remark 2.4. [50] Korn’s inequality does not hold for p = 1 and W11(Q) is a proper subspace
of ULL(Q).
Due to an idea by M. Fuchs [17] it can be shown that the spaces ¥%%(Q2) and £%9(Q) in
fact are equal for fixed ¢ > 1 and every s € (1, ¢]:

Lemma 2.5. Let Q C R be a bounded domain with Lipschitz boundary and 1 < s < q <
o00. The spaces X%(Q) and X99(Q) are equal and there exists a constant ¢ > 0, which is
indepentent of s, such that for every o € 3%5(Q)

[troll Loy < ¢llollsas ) - (20)



The proof of this lemma is postponed to the appendix, section A.4. Besides the spaces
introduced above we deal also with Nikolskii spaces. Nikolskii spaces are very useful for
proving regularity results with a difference quotient technique since their norms are based on
difference quotients. For convenience we cite here the definition of Nikolskii spaces and an
embedding theorem.

Definition 2.6 (Nikolskii space). [1, 38] Let s = m + §, where m > 0 is an integer and
0 <9< 1. For 1 < p < oo the Nikolskii spaces are defined as

N*P(Q) := {u € LP() + [|ul prsn(e) < OO}

with
|D%u(x + h) — D%u(x)[?
[y = [y + 35 sup [ - @ e
o] = n>0 JQ, Al
al=m ;g
0<|h|<n

and Q, = {z € Q: dist(z,00Q) > n}.
Lemma 2.7. [1, 38, 53, 54] Let s,p be as in definition 2.6 and let  C R? be a bounded
domain with Lipschitz boundary. The following embeddings are continuous for every e > 0:

NHEP(Q) € WSP(Q) C NoP(Q).

Lemma 2.7 is a consequence of [22, Thm. 1.4.1.3], [38, p. 381], [53, sections 1.3, 2.1.1,
2.2.9] and [54, sec. 2.3.2]. An equivalent norm is generated if the supremum in (21) is replaced
by Sup y>0,n=re;, » Where {e1,...,eq} is a basis of R? [38, 31].

eje{er,....eq}

2.3 The Ramberg/Osgood model

Let ¢ > 2, ag >0and A € R(dxd)x(dxd) he the symmetric and positive definite fourth order
tensor of elastic compliances, i.e.

Aiikt = Arij = Ajirg and (A1) 17 > Ar|? for every T € R¥Xd (22)

sym *

Here, (A7);; = ZZ,Z:I Aijrimi. The complementary energy density reads for the Ram-
berg/Osgood model

Y, reryd (23)

sym*

1
Weq(r) = (A7) s 7+ % |~P

Note that constitutive relation (1) can be rewritten as ¢ = DW, (o) with (DW, 4(0))i; =
q

%"_’_(0). For ¢q > 2, p=4q4 = 1 feLiQ),he W_%’Q(FN), the set of admissible stress

fields is defined by

K(f,h,q) = {r € L¥*(Q) : / Yo € VP2(Q)}. (24)

QT ce(v)de = /va dz + <h,v>W17

1
»P(Ty)

Since f € L9(Q2), it holds

reK(f,hq) & 1eXPQ), divr+ f=0in Q77 = h in W o(Ty). (25)



If 'p # 0 or if 'p = @ and the solvability condition [, frdz + (h,7) =0, r € R = {r:
Q- RY: r(z) =a+ Br,a € RY B e R B+ BT =0}, is satisfied, then K(f,h,q) is
not empty. Let finally go € UP?(2). The weak formulation of the Ramberg/Osgood model
(1)-(4) is given by

(W,) Find o, € K(f,h,q) and @, € VP2(Q) such that it holds for every T € L%2(Q)

/ (DWoy(g) — (o)) : 7da = / - e(iy) da. (26)
Q

Q

Let uq = 14 + go. The pair (o4, uq) are the stress and displacement fields we are looking for.
In addition we consider the following minimisation problem

(My) Find o € K(f,h,q) such that for every T € K(f,h,q)

Iog(oq) < Iey(r) = /QWW(T) dr — /Qe(go) :7dx. (27)

The following existence theorem is due to standard arguments for minimisation problems with
constraints, see e.g. [56, Prop. 43.1, 38.15] and [50, 3]

Theorem 2.8. Let Q@ C R? be a bounded domain with Lipschitz boundary, q > 2, p =
1

q = qiil, fe L), he W v4Ty), go € UP2(Q) and assume that K(f,h,q) # 0. Then

problems (W) and (M) are equivalent and solvable. Moreover, o, € X92(2) is unique since

Weq is strictly convex, and uq is unique if I'p # 0. If 0Q = T'y, then ug is unique up to

elements from R.

2.4 The Hencky model

The Hencky model in its strong form reads as follows for a bounded domain Q C R? with
Lipschitz boundary 9Q = T'p UT y, see e.g. [12, 8, 24]:

Find a displacement field u : Q — R and a stress field o : Q — ngxrff such that (2)-(4)
are satisfied and in addition

e(u(z)) = eafx) +ep(x) in Q, (28)

g = Ao in €, (29)

F(o(x)) <0 in , (30)
F(r) = ‘TD‘2 - Uf/ for T € ngxn‘f, (31)
(0—7):iep >0 for every T € Rgl;g with F(7) < 0. (32)

The constant o, > 0 denotes the yield stress and F the von Mises yield function. Minimisation
problems and weak formulations of the field equations of the Hencky model are extensively
studied in literature, see e.g. [50, 2, 3, 27, 49, 18] and the references cited therein. It is shown
under suitable assumptions on the given data f, g, h that the primal and dual minimisation
problems and the corresponding weak formulations are solvable in the spaces %(Q2) = {0 €
L*(Q) : dive € L4Q),0P € L>®(Q)} for the stress field o and in U(Q) = {u € BD(Q) :
divu € L%(Q)} for the displacement field u. Here, BD(Q) is the space of vector fields of



bounded deformation and is introduced in [32, 48, 49]. Furthermore it is proved in [2, 50] that
the stress o minimises the complementary energy. We take this complementary minimisation
problem as a starting point. Let

M = {r e L}(Q,R¥%) . |’7’D(ﬂj‘)| <oy a.e. in Q} (33)

Sym

be the set of all stress fields which are admissible according to flow rule (30). For f € L2(Q),
h e W_%’Q(FN) and go € W12(Q), the minimisation problem reads:

(MH) Find og € K(f,h,2) N M such that for every T € K(f,h,2) N M

I(om) < Iu(7),
where
Iy(r) = / 1(AT) crdx — / e(go) : Tdux. (34)
Q2 Q
The existence theorem here below is a consequence of [56, Thm. 46.A].

Theorem 2.9. Let QIC R?, d > 2, be a bounded domain with Lipschitz boundary. Let further
ferL*Q), he W2XTy) and go € WH2(Q) and assume that K(f, h,2) N M # (0. Then
there exists a unique stress field o € K(f, h,2) N M which solves (MH).

3 Regularity results

In order to get higher global regularity of weak solutions, more assumptions on the geometry
and the smoothness of the right hand sides are necessary.

3.1 Admissible domains

First we give an abstract definition of what we call admissible domain. In the subsequent
lemma 3.3 we then describe examples in 2D and 3D. The definition depends on the type of
the boundary conditions.

Definition 3.1 (Cone). A set K C R? is a cone with vertex in xo € RY if there exists
a simply connected, open and nonempty set C C dB1(0) = {x € R? : |z| = 1} such that
K = {z e RN\{zo} : (z —x0)/|z — 0| € C}.

Definition 3.2 (Admissible domain). Let 2 C R? be a bounded domain with 9 =
TpUTy where I'p and I'y are open (possibly empty) and disjoint.

1. Case, TpNTy =0: Qis an admissible domain if it has a Lipschitz boundary.

2. Case, 'p NIy # 0: Q is an admissible domain if it has a Lipschitz boundary and if in
addition there exists a finite number of open balls Bg,(z;) with radius R; and centre
T; € Tp NTx and a finite number of cones K; C R? with vertex in 0 such that
I'pNI'y C U‘jleBRj (5). Furthermore, for every j there exist nonempty Lipschitz
domains Q,, Q) C By, (z;) with Q7, N Q) =0 and

B, (z;)\Q = Q, U, TpnBg,(z;) COQY), TnNBg,(z;) C Yy, (35)
((BRj (2)\Q%) + le) Ny =10, (36)
Q) +K5) N (BRj (%)\Q_Q =0, (37)



I'p

I'n

Figure 1: Examples for admissible domains

see also figure 1 (left, the index j is omitted). Here, the notation Q + K = {y € R¢ :
y=x+h,x € Q,heK} is used.

The next lemma describes some examples of admissible domains for d = 2,3. The proof
of this lemma is technical and is given in [26].

Lemma 3.3. 1. Let Q C R? be a Lipschitz-polygon. Q is admissible if and only if the

interior opening angle at those points, where I'p and Ty intersect, is strictly less than
m: £(I'p,I'ny) < .

2. Let Q C R? be a Lipschitz-polyhedron where at most three faces intersect in the neigh-
bourhood of those points, where the type of the boundary conditions changes. Assume in
addition that the interior opening angle between the Dirichlet and Neumann boundary
is strictly less than w. Then Q is an admissible domain, see figure 1 (right) for an
example.

3.2 Regularity of weak solutions of the Ramberg/Osgood model

Besides the assumptions on the domain 2 we have to impose also further assumptions on the
1
smoothness of the given data f,g,h. Let h € W~ a¢%(I'y). Due to lemma 2.1 there exists an
1
element H € $%9(Q) with Hii = h in W~ «(T'y) and it holds due to Green’s formula

. :/H:E(v)d:c+/vdidea: (38)
“(TwN) Q Q

for every v € VPP(Q) with %—F % = 1 and VPP(Q) from (17). We will formulate the assumptions
on h via H. In particular we assume:

(Dg) Let Q DD Q be an arbitrary domain, ¢ > 2, p = ¢’ € (1,2], f € L), g € W2P(Q)

with Vg € L>®(Q) and H € W9(Q, RE4) N L=(Q, REXD).

sym sym

WEPTy) <Hn’U>W

==

Theorem 3.4. Let Q C R%, d > 2, be an admissible domain according to definition 3.2. Let
q>2,p=q €(1,2] and assume (D). Let further (uq,0,) € UP?(Q) x K(f, Hfi,q) be a weak

solution of the Ramberg/Osgood model (26) with uq|rD = g‘rD and o4t = H7i in W_%’q(FN).
Note that o4 € £99(Q) due to (25) and lemma 2.5. It holds for every § > 0,e > 0:
: 2d; : 2d;
ug € N2 o5 5(Q) n W 0ot (), (39)
og div g € N32(Q) NN I(Q). (40)

. 2dp
Itisp < Sd—21p <2




The proof of theorem 3.4 relies on a difference quotient technique and is postponed to section
4.

Corollary 3.5. Let the assumptions be the same as in theorem 3.4 with d = 2. The standard
embedding theorems for Sobolev-Slobodeckij spaces yield for every é > 0:

ue Q).

Note that the Ramberg/Osgood model reduces for ¢ = 2 to the equations of linear elas-
ticity. If 0Q = I'p or 9 = T'y then theorem 3.4 reproduces the results by B. Dahlberg,
C. Kenig and G. Verchota [9] for weak solutions of the equations of linear elasticity on Lip-
schitz domains. Moreover, it is well known that the behaviour of the displacement field u« near
a corner point S can be completely characterised by means of asymptotic expansions, see e.g.
the books [28, 10, 36, 30]. Assume that 2 C R? is a polygon, p = 2 and that the material is
isotropic. A careful study of the corresponding asymptotic expansions is carried out in [37]
and shows that in this case u € W%2(Q) if and only if Q is an admissible polygon. This shows
(up to d) good correlation with theorem 3.4 and indicates that the geometric assumptions
cannot be weakened.

In continuum mechanics, ansatzes of the form (5) are applied to study the behaviour
of displacement and stress fields of nonlinear power-law materials. First investigations for
Ramberg/Osgood materials in this direction were done by J. W. Hutchinson [25] and J. R. Rice
/G. F. Rosengren [42] for plane stress and plane strain states of infinite bodies with a straight
crack. Based on the assumption that the displacement and stress fields have an asymptotic
structure like in the linear case, they derived a strongly nonlinear eigenvalue problem from
which they calculated the dominant terms in the asymptotic expansion. In particular they
obtained in the two dimensional case the following leading terms near a crack tip S:

1 _1
u(r, o) =71900(9) + Uregs (1) =7 170() + Oreg- (41)

Here, vg, 79 are eigenfunctions of an appropriate eigenvalue problem, see e.g. [55], and tyeg, Oreg

are more regular functions. The terms révo(gp) and r_%To(go) are called HRR-fields. Expan-
sion (41) fits well with our regularity theorem since it holds in two dimensions [43, p. 44]

3 4
r5(p) € NI O(Q) forevery >0 & a>q L,

Bro) eNTIQ) & B> —q L

To our knowledge, however, it remains an open problem whether the behaviour of weak
solutions of power-law models can be completely characterised near corners by asymptotic
expansions like in the linear case. For results on asymptotic expansions of weak solutions of
scalar equations of p-structure we refer to [52, 6, 11, 35] and the references therein.

3.3 Global stress regularity for the Hencky model

Before we formulate the regularity theorem for the Hencky model we have to introduce a
further condition on the given force densities f and h [50, p. 262]:

(SL) Safe load condition
There exists a stress field 7 € IC(f, h,2) N M and a number dg > 0 such that

‘TD(:L‘M <oy—19y forae x€Q.
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Theorem 3.6. Let @ C R?, d = 2,3, be an admissible domain and assume that T'p # (.
Let furthermore Q D> Q be an arbitrary domain and f € L®(Q), go € W>2(Q), H €
Wl’OO(Q,Rgzj,g) with |HD| < oy a.e. in Q. As in the previous section we describe here the
Neumann datum h in the form h = Hii on I'y. Finally, the safe load condition (SL) shall
be satisfied.

Let oy € K(f, Hf,2) N M be a solution of the minimisation problem (MH) for the Hencky

model. Then it holds for every § > 0
oy € W2 92(Q). (42)

This theorem will be proved in the next section.

Remark 3.7. In order to simplify the arguments we assume in theorem 3.6 that I'p # (). This
implies that the displacement fields of the Ramberg/Osgood model are uniquely determined.

The local regularity of the stress field oy was investigated by M. Fuchs, G.A. Seregin
[18] and by A. Bensoussan, J. Frehse [3, 4]. Under suitable assumptions on the volume force
density f, the regularity

o € WhAQ) (43)

loc

is proved. To our knowledge there are no global regularity results reported in literature and
attempts to prove (43) globally for smooth domains failed, see the discussions in [46] and [16].

4 Proof of regularity theorems 3.4 and 3.6

The regularity theorem 3.4 for the Ramberg/Osgood model is proved with a difference quo-
tient technique where we adapt arguments from [14, 44]. The main idea is to insert difference
quotients of weak solutions as test functions into the weak formulation and to exploit the
convexity of the complementary energy density W, ,. Differences across the boundary 0f}
have to be considered. This makes it necessary to extend weak solutions across the boundary
in such a way that differences of the extended functions are still admissible test functions.
Due to the geometrical assumptions on 2 it is possible to find such extensions.

In order to prove the result on the Hencky stress oy we approximate oy by stress fields
{04, ¢ > 2} of the Ramberg/Osgood model. Since o, € W%_M(Q) for every ¢ > 2 (see
theorem 3.4), it remains to derive the uniform estimate

loaly, 52y < €5 (44)
for every ¢ > 2, 6 > 0, where ¢; is independent of g. Since the proof of (40) and of (44) are
nearly identical, we give a detailed proof of (44) with right hand sides f, go, h as in theorem 3.6
and indicate necessary changes for obtaining theorem 3.4 also for the more general assumption
(D).

The proof is split into three parts. First, we cite a result by R. Temam [50] and A. Ben-
soussan/J. Frehse [3] which describes uniform estimates and convergence results for the elastic
fields of the Ramberg/Osgood model. Second, we prove the uniform estimate (44) and finally,
we derive the remaining assertions of theorem 3.4 on the displacement field u,.

11



Step 1: Approximation of the Hencky stress

Let 0y >0, A € Régﬁf‘)x(d”) and assume that the data f, go, h = H7 is given according to

theorem 3.6. For ¢ > 2 and p = ¢/ we assume that (ug,0,) € UP2(Q) x £92() is a solution
of the Ramberg/Osgood model (W) with a = U;_q.

Lemma 4.1. [5, 50] Under the same assumptions as in theorem 3.6 it holds: the sequence
{04, ¢ > 2}, where o4 € 92(Q) is a solution of (W) with ag = Ué_q, converges strongly in
L?(2) to the solution o of (MH):

log — UH||L2(Q) — 0 for g — oc. (45)

Moreover there exists a constant ¢ > 0 such that for every ¢ > 2 and p = ¢’ € (1,2]

1 O'D q
HU H S ) | S ¢, (46)
qllL2(Q) q| oy La@)
- q
o, HUIIDHLQ(Q) <¢ (47)
_1
12077 le(ug)ll 10 < gl ey < (48)

Since T'p # 0 we obtain from (48) by Poincaré/Friedrichs’ inequality for UL(Q), see (18):

letgll gy + e (g 1y < e (49)

Remark 4.2. Estimates (46) and (47) are proved in [5, Theorem 10.8, Proposition 10.10]
for the case of vanishing Dirichlet conditions, i.e. for gg = 0. The case gg # 0 can be
treated in the same way with some simple modifications. We remark that the safe load
condition (SL) enters in the proof of (47). Estimate (48) follows via the constitutive relation
e(uq) = Aaq—l—gql_l ‘05 |q_2 a(? from estimates (46), (47) and inequality (96). The convergence

result (45) is shown in [50, Theorem III.1.2].

Step 2: Proof of the results for the stress fields

Lemma 4.3. 1. Let the assumptions of theorem 3.6 be satisfied. For every e,d > 0 there
exists a constant c. s > 0 such that for every q > d + € and every solution o, of (M)

loall g 52y < Ceo: (50)
Together with the convergence result of lemma 4.1 this estimate implies (42).

2. Let the assumptions of theorem 3.4 be satisfied. Then o4 € N%Q(Q) and 05) € /\/%’q(Q).

Proof of lemma 4.3, part 1. We apply a difference quotient technique to deduce estimates
for the stress fields in Nikolskii norms. For the derivation of these estimates the domain §2
is covered by a finite number of balls and the estimates are proved for each of these balls
separately.

Let Q C R? be an admissible domain. In particular,  is a Lipschitz domain and satisfies
therefore the uniform interior and exterior cone condition [22]. It follows together with part
2. of definition 3.2 that there exists a finite number of balls Bg,(z;) and cones K; with
vertices in 0 such that Q C U‘jjleRj (w;) and each of the pairs (Bg,(;),K;) satisfies one of
the following four cases:

12



1. BR]. (.73]) c Q.

[\)

) (BR]. (z;) N9Q) C T'p and for every z € Bg,(z;)NCp it holds ((z+K;)NBg,(2;))NQ =
0.

@

(Bg, (z;) N9Q) C 'y and for every z € Bg,(z;) NQ it holds ((z + K;) N Bg, (x;)) C Q.

=~

z; € TpNTy and the pair (Bg, (;), K;) satisfies (35)-(37) of definition 3.2 with suitable
domains Qg and Qg\,

Note that there exists a constant § > 0 such that the balls Bg, ¢(z;) still cover Q. We prove
now for every €,6 > 0 that there exists a constant c. 5 > 0 such that it holds for every ¢ > d+e¢

HaqHN%a,z(mBRﬂ(%)) < Ces. (51)
We consider the fourth case in detail, the remaining cases can be treated similarly. In order
to simplify the notation we omit the index j in the following.

Let Br(xo) be a ball with centre xy € 99, K a cone with vertex in 0 and Qp, Qn C Br(zo)
domains such that (35)-(37) of definition 3.2 hold, see also figure 1. Let the data f,go and
H satisfy assumptions of theorem 3.6. Furthermore, let (ug,0,) € UP2(2) x £92(Q) be a

solution of (W), i.e. o4 € K(f, Hfi,q), u‘l‘FD = go‘FD and it holds for every 7 € L9?(Q)

/ (DWeq4(oq) —€(go)) : Tda = / T :e(ug — go) da. (52)
Q Q
Note that o, € £29(Q2) due to lemma 2.5. We define the following extensions of u, and o4 to
BT(:L’())Z
fi Q
Folz) = oq(x) for x € Q, (53)
H(z) for x € Br(xo)\Q2.
fi Q
i1y (z) = ug(z) for x € Q, (54)
go(x) for x € Qp.

It follows from o, € ¥%9(2) and the assumptions on H that 6, € LI(QU Br(x()). Moreover,
calculating divo, in the distributional sense and taking into account that o7 = Hii on I' i
yields

divé, € LI(QU B(w0)\Op).

Thus, 6, € 299(QU Bg(z0)\Qp). Similar arguments show that i, € UP*(QU Br(z0)\Qn) C
UbL(Q U Br(20)\Qn). Moreover, iy, — go = 0 on I'p. By the extension theorem for elements
from U! [50, Rem. I1.1.3] there exists a function 4, € UM (QU Bg(x¢)) with ﬂq‘ﬂu\ﬁ = 1,

and
gl @) = B ltallyri@upg@onany) - (55)

The constant cg is independent of ¢ and @,. Let ¢ € C§°(Br(zo)) be a cut-off function with

90|BR_9(ro) =1. For z € Q and h € K with 0 < |h| < ho = % dist(supp ¢, dBr(zo)) we define

14(x) = 9*((64(x) — H(w)) = (Gq(x — h) — H(z — h))) = ¢*(2)A"(G4(z) — H()).  (56)
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Here we use the notation A"g(x) = g(z) — g(x —h) for backward differences. The geometrical
assumption (37) implies for h € K with |h| < hg and © € Br_p,(x0)

r—heQp = 2€Qp+h =x¢ Br(ro)\Qp.

Thus, if z € QN Br(xg), then  — h € Br(xo)\Qp and, since 6, and H are elements of
¥%49(QU Br(20)\Qp), the function 7, is an element of X%9(Q2). Moreover, it follows from (36)
that

mEFNﬂBR_hO(xO) = x—hem

for every h € K with |h| < hg. Therefore, 7,771 = 0 on I'y since either ¢(z) = 0 if z €
I'N\BRr—ho(x0) or (64(x) — H(x))7 =0 and 64(x —h) —H(z —h) =0if 2 € I'y N Bp_p,(20).
Inserting 7, into the weak formulation (52) and applying Green’s formula (15) yields

/ @ DW, (5,) : ANeyda = / ©*DW, ,(5,) : AMH dx + / e(ty) : Ty dx
Q Q Q

= / @?*DW,(6,) : A"H da + /
Q

e(go) : Tgdz + / (g0 — g) : div Ty de. (57)
Q Q

Note that the boundary terms vanish since (@, — go) ‘F b= 0 and 7477 = 0 on I' ;. Inequalities
(22) and (94) with A = 64(z — h), B = 64(x) and ¢, = 271727 imply
2(|=D ~D 9-2 | Ah=D|? A 2| ahz |2
QqCq QSD (‘Jq ()| + |Uq (z—h)|) ‘A o ‘ dﬂi—i-? QQD ‘A O'q‘ dz
< [ Vel = 1) = Weg(64(e)) = DWeg(5(2) : 3yl = ) = (@) da

D /Qcp2 <_Ath,q(5q)) do+ /Q 902DWc7q(&q) t AMH do

+ [ et mydo+ [ G — ) (86, — H)
+ /Q(Ah(aq —H)) : ((g0 — tig) ® Vg?) dz
=L+...+1Is. (58)

Here, a ® b € R*? denotes the tensor product of a,b € R¢ with (a ®b)ij = a;bj. Our next
task is to derive the following estimate:

There exists for every €, > 0 a constant c(e, d), which is independent of ¢,
such that it holds for every ¢ > d + € and h € K with |h| < hg

Li4... 415 < c(e,8) |n]'°. (59)

Estimation of I;

By the product rule for differences, A (f(z)g(z)) = g(x) AP f(x)+ f(x —h)Arg(z), we obtain

I =-— /Q AM(@PW, o (5,)) dz + /Q (A"*)Weq(3q(x — b)) da

= Iy + Lo. (60)
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For 112 we get, since ¢ € C5°(Br(zo)),

[T12] < [h] HVSOQHLOO(BR(IO)) ”Wc’q(&q)”Ll(Q)
= IV | LB paey (Weal@a)l L) + Wea(H) 1 eng) )-

Due to lemma 4.1, the term ||Wc7q(aq)||L1(Q) is bounded independently of ¢. Since ay = O‘;_q

and |HP| < oy, the term HWc,q(H)HLl(Q\Q) is bounded independently of ¢, as well. Thus
there exists a constant c1o, which is independent of A and ¢, such that

|I12| < c12|h].

Let Qr = Br(xo) N Q. The term I1; can be estimated as follows after a change of coordinates
and taking into account that (supp¢) +h C Br(xg)

I = —/ AM(0*We 4(54)) dz = —/ O* W, 4(0y) dz +/ ©* W, (64) d.
Q Q

rR\Qr—h Qr—h\Qgr

Note that 6, = H for € Qr — h\Qg. Due to the assumptions on H, we have
|0*(2)Weq(H(2))| < e(p, H),

where the constant ¢(p, H) is independent of ¢, z and h. Moreover, |2z — h\Qg| < c¢|h| and
c is independent of h. Thus, there exists a constant ¢; which is independent of h and ¢ such
that

L=1In1+1L<¢ ‘h’ - / QOQWc,q(O'q) dz. (61)
Qr\Qr—h

Estimation of I,

Due to the assumptions on H we get again with the product rule and Hoélder’s inequality

I = / @?DW, 4(0,) : AMH dz
Q

< IDWeslonlme (|81, 0 + [HC- 0088, ). @

Lemma 7.23 in [21] implies for the terms in the second factor

1
[aM @), 0 < PHIT@ B ey < 11197 167 H ey

(- h)Ahs02HLq(Q) < () (Bl 1]l i

and c(yp) is independent of h and g. Together with DW,,(0q) = €(uqy) and lemma 4.1, we
obtain for (62)
[Io| < ca|h|

and the constant cs is independent of h and gq.
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Estimation of I3

Again by the product rule for differences
I3 = / ©*e(g0) : A6, — H)dx
Q

N / Ah(9025(90) 1 (64— H)) dz _/ (Ah(SD25(90))) 2 (0q = H)|m—h dz
Qr Qr

= I31 + I39. (63)

By Hélder’s inequality and lemma 7.23 in [21] we obtain

1l < A" etan)) |, )

< |h| HV(<702€(90))HL2(BR(900)) (HJIIHL?(Q) + ||H||L2(Q))
§ C392 ‘h’ (64)

) llog = H”LQ(BR(IO))

and the constant c3o is independent of g and A due to lemma 4.1 and the assumptions on gg
and H. For I3; we obtain after a change of coordinates

b= [ )il H)de- [ Pelgn) i Gy - H)de (69)
QR\QR—/’L QR_h\QR

Since (Qr—h\Qr) C Qy and since 6,—H = 0 on Qy, the second term vanishes. Furthermore,
due to the assumptions on H, it holds together with |Qr\Qr — k| < c|h| that

I < / o P I o] ot (66)
R R—

and ¢31 does not depend on h and ¢. Young’s inequality finally implies for every § > 0

52 9 52 9
I31] < — — 2 d C31 |h
< G Ieletliaanann + g [, &l il
52 672 9 9
< (T +Dest|hl+ - / ©* |og|” da. (67)
R\Q2R—h

The constant cg; is independent of h and g. Combining (61), (64) and (67) we get
. 5 o (072 2
I+ |Is| < (é1+ (7 + 1)esr +es2) |h] + 0 | —|og|* = Wey(oy) | dz.  (68)
2 Qr\Qr—h 2

Choosing 672 = ¢ with ¢4 from (22) yields

5—2
——log(2)|”

; ~ Wegloy(@) <0

for every x € Q) and thus
Iy + T3] < c1|h)

for a constant ¢; which is independent of h and g. The estimates of I4 and I5 are based on
the following lemma due to L. Paris [40], see also [50], where difference quotients of functions
from U (R?) with compact support are estimated by the corresponding strain tensor:
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Lemma 4.4. [40, 50] Let w C R? be a compact set. For every s € [1, 7% and every § € (0,1]

there exists a constant ¢ = c(w, s,8) > 0 such that it holds for every h € RY and u € UVH(RY)
with suppu C w
1-46
[uz +h) = u(@) s gay < A7 lullp gy -

Remark 4.5. Tt follows by Holder’s inequality that c(w, s1,d) < (2|w]) oy c(w, s9,0) for 81 <
S92.

Estimation of I,

We define the following function for 2 € R%:

— ivH) f Qpr=0QONAB
Fla) = (f+divH) forz € Qp N Bgr(xo),
0 else.

It holds F(z) = div(64(z)— H(x)) for z € Br(x)\Qp. Moreover, (36) implies that z—h ¢ Qg
for h € K, x € Qn and thus A"F(z) = 0 for € Qn, h € K. Furthermore, go — iy = 0 in
Qp. Therefore, the domain €2 in the definition of I, can be replaced by Bgr(xg) and we get
by the product rule for differences:

I, = /BR(:co) ©*(g0 — ) A"F(z) dw
= / A (o (g0 — ug) F) da
Br(zo)
[ (- ) - ), 9
Br(zo)

The first term vanishes since supp ¢ C (Bgr(zo) N (Br(zo) — h)) for |h| < hg. It follows by
Holder’s inequality

L] < || 2" (¢ (90 — o))

Fll porse o - 70
Lo (Baen) I F 1l a(B (x0)) (70)

Due to the assumptions on f and H, the factor ||F[| 4, s, i uniformly bounded with
respect to g. Applying lemma 4.4 to the first factor in (70) yields for every €, € (0,1) and
q>d+e (thus p < 745)

| 2™ (90 — )|

1-6 2 ~
L (B (xo)) < e(Br(z0),p,9) |h]| HSO (90 — uq)HUlvl(BR(:co)) .

The definition of 4, and inequalities (55) and (49) imply that ||¢*(go _ﬂq)HUl’l(BR(xo)) is
uniformly bounded with respect to g. Moreover, the constant ¢(Bgr(xo),p,d) is bounded
independently of p = ¢ for fixed d,e € (0,1) and arbitrary p € (1, %], see remark 4.5.
Therefore, there exists for every ¢,6 € (0,1) a constant c4(e,d) which is independent of
q > d+ e and h such that

1] < ca(e,0) [0
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Estimation of I5

As before, the domain Q in I5 may be replaced by Br(zg). Applying the product rule for
differences leads to

Is = / A" (64— H) : (g0 — lig) ® V?) da (71)
Br(wo)

— /B ( )(5q — H)|m_h C AP ((90 —lUg) ® V<p2) dz. (72)

The first term on the right hand side vanishes. For §,¢ € (0,1) and g > d + ¢ it follows from
Holder’s inequality and lemma 4.4

d
151 < 180 = Hl s sygann D [ A" (@520 =) |y
j=1

d
< |h[* e(Br(wo), (d + €)'.8) 15, — Hl paseqneny) 10590 — 00) |11 o -
j=1

The last factor can be estimated in the same way as the corresponding factor in I, and it
remains to show that ||og|| Li+e(q) is bounded independently of g > d + € for fixed € > 0. For
the trace tr o, we get from lemma 2.5 that

[[tr UqHLd+€(Q) < c(e) (Htr Uq”L2(Q) + HUqDHLdJre(Q) + [|div UqHLd+e(Q)) . (73)

Moreover, by Hélder’s inequality and (47) of lemma 4.1,

g—(d+e)
D LT || LD
log HLdJre(Q) < |Q @I [|og HLq(Q) < co(e) (74)
and co(e) is independent of ¢ > d + €. Inequalities (73), (74) and divo, + f = 0 finally imply

that there exists a constant c(e), which is independent of ¢ > d + ¢, such that
D
HUqHLd+e(Q) < |[tr Uq”LdJre(Q) + Haq HLd+e(Q) < ¢(e). (75)

We obtain finally from the previous estimates that for every €, € (0, 1) there exists a constant
¢5(€,9), which is independent of h and ¢ > d + €, such that

15| < es(e, ) |B' .

Collecting the estimates for I, ..., I5 shows that there exists for every €,d € (0,1) a constant
c(€,9) > 0 such that for every ¢ > d + € and h € K with |h| < hg
Li4... 415 < c(e,8) |n]'°. (76)

This proves (59). Since ¢ = 1 on Br_g(x0), inequality (76) implies together with (58) that
< c(€,9). (77)

loaly 225 ey

Since the balls {Bg,_g(x;),1 < j < J} are an open covering of €2, we deduce from (77) the
uniform global estimate (50) in lemma 4.3:

I3l 158 0 < e (78)

and c s is independent of ¢ > d + e. This finishes the proof of lemma 4.3, part 1, and of
theorem 3.6. O
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Proof of lemma 4.3, part 2. Assume now that ¢ > 2 and that the functions f,q and H
satisfy the weaker assumption (D) from page 9. Let 7, be defined as in (53) and choose
g € WHP(Bg()) with aq|BR(ro)\ﬁN = Uq with 14 from (54). Inequality (58) can be deduced
analogously to the previous part. We now have to show that there exists a constant ¢, such
that for every h € K, |h| < hy,

Il+...—|-I5§Cq|h| (79)

and ¢, is independent of h but may depend on ¢q. The terms Iy, I and I3 may be treated
analogously to (60)—(64). For the term I3; from (63) we obtain analogously to (65)-(66)

|51 g/ ©* ([P (90)| |of | + [tre(go)| [trog|) da + és1|h] . (80)
Qr\Qr—h

Young’s inequality implies for every é1,d2 > 0

A o7 52
El<enll+ [ @ (—1 <2 (go) [ + 2 \trs(go)!2> da (81)
Qr\Qr—h p 2
57 552
+/ ©? [ 21— ‘Jﬂq + 2 |tro,?* | da. (82)
Qr\Qr—h q 2

Due to (22)-(23), d; and J2 may be chosen in such a way that

51_q\Dq IEY <0
7%‘ +7\raq| — Wegq(og) <0.

Taking into account that Vgg € L*°(Q2), we finally get together with (61)
I + [I3] < e |h|

and ¢ is independent of h but may depend on g. The term I, can be estimated similar to
the first part: applying lemma 7.23 from [21] to the first factor of the last term in (69) shows
that

1L4] < 1B [ V(200 ~ F))| oy I1F o(ngeo) -

The term I5 can be treated in the same way as I, and (79) is proved. Combining (79) with
(58) we get finally, since cp‘ Br

_o(wo) —

/QnB (x0) <‘Ah5‘?‘q + ‘Ah‘}qr) da < cqlh| (83)
R—6(z

for every h € IC with |h| < hg. The constant ¢, is independent of h but may depend on g.
Arguing as subsequent to (76) yields

Jf) € /\/'%’q(Q), o4 € N%2(Q)
This finishes the proof of lemma 4.3. ]

Our next task is to prove the following lemma on tro,:
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Lemma 4.6. Under the assumptions of theorem 3.4 it holds tro, € ./\/%’q(ﬂ).

Proof. The proof relies on an argument from [13] which uses Necas’ lemma ([7], see also
lemma A.1l in the appendix). Note that tro? € L?(Q2) due to lemma 2.5. We use here the
same notation as in the proof of lemma 4.3, in particular, 6, is the function defined in (53).
Our goal is to show that

-

For that purpose we derive uniform estimates of A" tr o4 and VAP tr 04 in W—b4-norms and
apply Necas’ lemma. Let

Altrs ‘q dz < ¢, |h
q = Cq |-

f(z) r € Qg,
F(z) = —divH(z) x € Qy,
0 else.

It holds
divay(z) + F(z) =0 for a.e. x € BR($O)\§D‘

Moreover, it holds for every h € K with |h| < hg and for every z € QN Br_g = Qr_yg
divag(x —h) + F(x — h) = 0. (84)

Thus div A"6,+A"F = 0 a.e. in Qg_g. Multiplying (84) with v € C5°(Qg_g) we get therefore
after applying Green’s formula:

1

L / (A" tr6,1) : =(v) de = / (AP )y dz — / (AP c(v)dr.  (85)
d Qr—o Qr—o Qr—o
By V(A" tré,) we denote the distributional derivative of A" tré, on Qp_g. It holds

HV(Ah tr 6q)H = sup / (Ah tr 5'q) divodz
W=La(Qr-0)  pecge(Qp_g,RY) J QR0
”v”WLP(Q):]'

4 sup / (AFYw de — / (Ah&f) ce(v)dz. (86)
) /Qpr_o

vECF (QRr—0 Qr_g
||v||wl,p(gz):1

We prove now that the right hand side is bounded by c|h\é with a constant ¢ which is
independent of h. It holds for every v € C5°(Q2g—_g) and every h € K, |h| < hg, that

/ (A"FYvde = / AMFv)dx — / F(x — h)AM da. (87)
Qr-o Br(wo) Br(wo)

Since suppv C Qr_yp C Br(zo) N (Br(zo) — h)), the first term vanishes. Moreover, v €
C5°(Q2p—p) implies together with lemma 7.23 from [21]

/ (A"F)vdz
Qp—0

and therefore

g/B ( )|F(x—h)‘Ahv‘ de < [0 |1 Fll g 10 lwin, ) (38)
R\Z0

|ame| < P o o

W-L4(Qp_g
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Holder’s inequality yields for the second term in (86)

||5(U)”LP(QR,9)

/ e(v) : Ah(rf dz
QRrg

< |Jats?|
T llLa(Qp_p)

(83) 1
< eq M5 [ollwrogayy) - (39)

where cé{ is the constant in Korn’s inequality (16), and ¢, is independent of h. Inserting these
estimates into (85) results in

1
[vares,)| < A1 AV oy + ) (90)

W-La(Qgr_

Furthermore one gets analogously to (88)

ho ~ ~
HA traqu—l,q(QRie) < |h| Htraq”Lq(BR(ﬂﬂo))' (91)

Necas’ lemma A.1 applied to (90) and (91) finally implies HAh tr 5qHLq( ) < c|h|% , and

QRr—g

1
the constant c is independent of h. Thus, tro, € N9 (Qr_). O

Step 3: Regularity of the displacement field v,

Lemma 4.7. Let the assumptions of theorem 3.4 be satisfied. Then divu, € ./\/%’q(ﬂ) N
1o 3 _2dp _
N24(Q) and uqg € N22d=252"5(Q) for every e > 0.

Proof. Note first that divu, = tre(uq) = tr(Aoy) in Q and therefore divug has at least the
same smoothness as oy.

Let be Q' cC Q and h € RY with 0 < |h| < dist(9,09). For € > 0 we set r =
71 ey

_2dp
2d—2tp &

The constitutive law e(uq) = Aoq + aq |0, implies that there exists a constant ¢ > 0

depending on 7, but not on €’ and h, such that

/Q/ |Ape(ug)|" dz < e </Q/ |Apog|” + ‘Ah (|an‘q_2 af)‘ da:> .

Holder’s inequality applied to the first term and inequality (95) applied to the second term
yields

I8neuly ) < (1m0l + | (o8 w4102 [ 2402]) a2 ).

Again by Holder’s inequality we get for the last term

/Q, (ol @+ m)] +]oP @) |2n0?]) da

< ([ (otasm] +1of) = as) °

x (/Q (|02 @+ m)| + [o2]) " | ApoP)? d:r)g .
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d
From o, € N%’q(Q) C LTT74(Q) and % < 8 it follows that the first factor is finite and
can be estimated independently of h and . Inequalities (58) and (79) now imply that there
exists a constant ¢ > 0 such that

[ 18t do < clnlf (92)
Q/

for every Q' CC Q and h € R? with |h| < dist(©,09). This yields (u,) € N’%’”(Q) Since
W1P(Q) is continuously embedded in L"(£2), Korn’s inequality applied to (92) shows that
Vug € /\/%T(Q) as well and thus u, € N%T(Q) This finishes the proof of theorem 3.4. O

A Inequalities and proofs for section 2

A.1 Necas’ lemma

For 1 < p < oo, the following expression defines a norm for u € LP(2,R) with ¢ = p':

|HU|Hp = HUH(WOl’q(Q))’ + HV“H(W&"Z(Q))’

= sup / wdz| + sup / udivwdx| .
veWy ?(Q,R), 1/Q weW, 1(Q,RY), 1/Q
”U”Wl,q(g)):l ”wllwl,q(g))zl

Lemma A.1 (Neéas). [7] Let Q@ C R? be a bounded domain with Lipschitz boundary and
1 <p <oo. Then |||, is @ norm on LP(Q) which is equivalent to the usual norm ||-|| »
on LP(9)).

A.2 Some inequalities

Lemma A.2. Let n € N. For A,B € R" with |B| > |A| and t € [0, ;] it holds [51, formula
(2.20)):

4|B+t(A—B)| > |A| +|B|. (93)

Let ¢ > 2. It holds for every A, B € R"
CIAI = 2 |BY = BB (A= B) 2 24l + B A B (94
1412 A~ [BI"? B| < c(|A| + |B))* |4 - B]. (95)

Forn € N, a; € R with a; >0 for 1 <i <n, we have [29]:
(Z ai) < npolt <Z af‘) ifa>1, (96)
i=1 i=1
(Z ai) > ot (Z a?) if0<a<l. (97)
i=1 i=1
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Proof of (94). Let A, B € R" and v(t) = B+ t(A — B) for t € R. Taylor’s expansion yields
1 1 ! d? (1
~|AY->|B|"-|B|"*B:(A-B :/ 1—t—<— t ‘1> dt
qll qll | B ( ) 0( )2 qlv()l

1
> [a-ohor2a- B a (98)
0

Assume first that |B| > |A|. By (93) we obtain

1

wazfﬂ/ﬂr%mmm+ww*meBﬁ
0

If |A| > |B|, then a change of coordinates leads to

1

1 9 5 . (93) 1 5
(98) :/ s|A+s(B—A)T2[A— B> ds > 42—q/ sds(|A] + |B)T2|A - BJ.
0 0
Proof of (95). Again by Taylor’s formula:

1
lap2a-B2s| < |
0

G (1B+a- B @+ oa-5))|a

1
g/ (q—1)|B+tA—B)*2|A— B| dt.
0

A.3 Proof of the surjectivity of v; in lemma 2.1

The surjectivity of the mapping 1 in lemma 2.1 is proved by solving a boundary value
problem. Let I' C 02 be open and not empty. In order to avoid solvability conditions, which
would be necessary in the case I' = 0{2, an additional boundary is introduced, where Dirichlet
conditions are prescribed. Since £%9(Q2) C X%%(Q) for s < ¢, it suffices to consider the case
s = ¢ in the sequel. Choose xg € Q and € > 0 small enough such that Ba.(z9) CC Q. The
domain Q = Q\B,(z) is a bounded domain with Lipschitz boundary 9Q = 9Q U 0B (z).
Let h € W_%’q(l“) and consider the following boundary value problem:

FinduecV(Q) ={u:Q—R: ueWhi(

every v € V(Q)

), u‘aQ\f =0, U‘E)Be(:co) = 0} such that for

f le(u)|? 2 e(u) : e(v)dz = (hv) 1 . . (99)
Q w

@ (D)

Due to the main theorem on monotone operators this problem has a weak solution u € V().
Let n € C5°(R?) with suppn C Bac(z0), 0 <n<1landn=1on B%E(azo). Direct calculations
show that the function

o(z) = (1 =) |e(u@)|? 2 e(u(z)) =z €,
0 x € Be(zo)

is an element of X%%(Q2) and satisfies o7i = h in W_%’q(l“).
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A.4 Proof of lemma 2.5

Let 1 < s < q. We have to show that 3%%(Q) = 3%9((2) and that estimate (20) is valid. Since
s < g, it follows with Hoélder’s inequality, that 3%%(Q) is continuously embedded in ¥7°(Q2).
For the inverse relation it remains to prove that it holds for every o € ¥%%(Q): tro € L1(Q)
and (20) is satisfied. For the proof of (20) we use a trick by M.Fuchs, [17], which is based on
Bogovskii’s theorem [19, Theorem 3.1]:

Let p € (1,00). For every f € LP(S2), there exists an element v € WOI”’(Q,Rd) with

_ 1
dive = f — @/Qfda: and |Vl o) < e | fll e -

and cg > 0 is a constant, which is independent of f and v.
For v € C3°(£2), we denote by v, € VVO1 P(Q) the function which is given by Bogovskil’s
theorem with p = ¢/ = qiLl’ ie.

. 1
divoy =0 = /Q bde and [ Voull g < s ¥l - (100)

Note that v, € Ug’SI(Q) since vy, € WyP(Q) and tre(vy) = divey € C°(Q). Tt follows for
o € X9%(Q) by Green’s formula (15):

1
—/tratr(e(vw))dw = —/ oP &P (vy)da — / vy divo de. (101)
d Jo Q Q

Using (100) we obtain for every ¢ € C5°(£2):

1 1
—/?,[)tl“O‘d:E:—/UD1€D(’Uw)d:E—/"deiV(TdZL'—|——/1,/)d33‘/t1“0‘d$.
d Jo Q Q d19] Jo Q

By Hélder’s and Poincaré/Friedrichs’ inequality

1
p ‘/sztradx

S HUDHLq(Q) HED(%)HLP(Q)

141
+ ||Uw||Lp(Q) ||diVU||Lq(Q) +dt |Q|q+sl ' ||7/J||LP(Q) ||t1"(7||LS(Q)

< Nolsseqey (L4 D) o)l + 1) 1] ooy

1 1
with ¢ (Q) = d~1|Q|7""at¥. Korn’s inequality (16), Poincaré/Friedrichs’ inequality (19)
and estimate (100) imply

K PF K PF
leCwi)llmay < K ET 1Vl oy < b en [l oy -

/1[)trad:n
Q

which finishes the proof of lemma 2.5.

Thus, we obtain finally

lerollue = sup <d((1+eEE) K e en + 1) o]l
YeCE(Q)

||¢||LP(Q):1
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