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Abstract

Taking into account the actual regularity of the displacement and stress fields, we
derive the well-known Griffith-formula and the Eshelby-Cherepanov-Rice integral for the
energy release rate of an elastic body with a straight crack. It is assumed that the
constitutive relation is of power-law type (Ramberg/Osgood model).

Keywords: power-law model; fracture mechanics; derivative of the energy functional; J-
integral; Eshelby-Cherepanov-Rice integral; Griffith’s formula

AMS Subject Classification: 35J60, 74R10, 74G65

1 Introduction

We consider a body with a preexisting crack which is subjected to exterior loadings. The
Griffith-criterion [13, 1920] is a classical and commonly applied fracture criterion to decide
whether or not the crack will propagate under given forces. In Griffith’s energy approach
the crack is considered as stationary if the total potential energy in the actual configuration
is minimal compared to the energies of all admissible neighbouring configurations. Under
suitable assumptions on the crack and the applied forces, this criterion can be reformulated in
terms of the energy release rate which is related to the derivative of the potential deformation
energy with respect to the crack length. Simple formulas are needed to calculate this quantity.

In the case of linear elastic materials the energy release rate can be expressed by Griffith’s
formula, the J-integral or by stress intensity factors [15, 5, 6, 24, 18]. These formulas are
rigorously proved taking into account the regularity of weak solutions and in particular the
special singular stress behaviour of weak solutions near the crack tip. For nonlinear elastic
models similar formulas can also be formally deduced under the assumption that weak solu-
tions (displacement and stress fields) are smooth enough or that they admit an asymptotic
expansion near the crack tip like in the linear case. But in general such regularity results have
not been proved yet and it is even not clear in general whether the terms in these formally
derived formulas are well defined for weak solutions.

The goal of this paper is to deduce the well-established Griffith-formula and J-integral
for elastic materials with a constitutive relation of power-law type (Ramberg/Osgood model)
in a mathematically rigorous way from the definition of the energy release rate taking into
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account the actual regularity of weak solutions. Suitable regularity results were derived in
[2, 10, 29] and recently in [20, 19].

The paper is organised as follows: after a short description of Griffith’s energy criterion,
the Ramberg/Osgood model and the assumptions on the domain in section 2, we formulate
our main result (theorem 3.1, Griffith-formula, J-integral) in section 3. Techniques from the
linear models treated in [6, 17, 18] are adapted for the proof of our case. The paper closes
with an appendix, where we provide frequently used inequalities and a generalised Greens’
formula.

2 Formulation of the problem

2.1 Griffith-criterion and energy release rate

Let Q¢ be a body with preexisting crack Cy and assume that a loading F' is applied to €.
Griffith’s fracture criterion reads as follows [15, 22]:

The crack Cy is stationary with respect to the applied loading F' if the total potential energy
of the body in the actual configuration is minimal compared to all admissible neighbouring
configurations.

The total potential energy II(2,u, F') of an elastic body 2 C R? with respect to the displace-
ment field u : Q@ — R? and the exterior loading F = (f, ), where f is a volume force density
and h a surface force density, is given by

I(Q,u, F) = Iq(Q,u) — W(Q,u, F) + D().

Here, I.(2,u) denotes the elastic strain energy
Iel(Qvu) = / Wel(e(u)) dz
Q

with the stored strain energy density Wy which we specify later; e(u) = 3(Vu + (Vu)")
denotes the linearised strain tensor. Moreover,

W(Q,u,F):/fuda:—i—/ huds
Q I'ny

is the work of the exterior forces F' = (f, h) and
E(Q,’LL, F) = el(Q,U) - W(Q,’LL, f)

denotes the potential deformation energy. The quantity D(2) describes a dissipative energy
which in our case characterises the energy which is spent to create the new crack surface. In
the simplest case it is assumed that D(Q) is proportional to the macroscopic crack surface
[15]. We impose rather restrictive assumptions on the geometry of the crack and of possible
crack extensions. In particular we assume that the body is in a plane strain state, that the
crack is straight and that it can propagate straight on, only. Finally we assume that the crack
faces are traction free. This leads to the following condition on the domain Q = Qg:
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Figure 1: Domain Qs with crack Cs

H1 Let Ss = {z € R2: zy = 0,27 < ¢} for § > 0. Q) C R? is a bounded domain with
Lipschitz boundary and there exist 1,8y > 0 such that 9Q N S5 = {(—1,0)" } is a single
point for every |§]| < dg. We set Q5 = Q\S(; and C5 = QN S for |0] < dg. The boundary
of Qs is split as follows

00s =Cs Uy UTp,

where Cs,I'p, 'y are pairwise disjoint and denote the crack with length [ 4+ ¢, the
Dirichlet and the Neumann boundary, respectively. Moreover, I'p # 0, Tp N Cs = 0,
I'p and I'y are open and do not depend on 9, see figure 1.

We call €y actual configuration with crack Cjy. Note that the domains (5 satisfy the cone
condition, [23]. The dissipative energy D(2) takes now the form

D(Qs) = 2v(1 +9),

where the fracture toughness v depends on the material. With the above assumptions and
notations, Griffith’s fracture criterion can be reformulated as follows:

A crack Cy in a domain Qg is stationary for a given loading F = (f,h), if the potential
deformation energy, which would be released at a crack extension, is less than the energy
which is needed to create the new surface.

In other words, if for § > 0
E(QO7UO7F) - E(Q(57u57F) S D(Qé) - D(QO) = 2757

where ug and ug are the corresponding displacement fields, then the crack Cj is stationary.
This motivates the following definition:

Definition 2.1 (Energy release rate). For 6 > 0 let us be the displacement field corresponding
to Qs and F' = (f,h). The energy release rate, shortly ERR, for the domain Qy with crack
Cy and exterior forces F' = (f, h) is defined as

ERR(Q, F) = Jim +(B(Qo, uo, F) ~ B(,us, F) (1)
5>0
dE(Qs,us, F)
— - (B D)) @

The question now is whether (1) is well defined and whether there exist simple formulas
to calculate the energy release rate. Up to now we did not specify the underlying material



model. It is shown for linear elastic materials, i.e. W(e) = $Ce : &, where C denotes the

fourth order, symmetric and positive definite elasticity tensor, that the energy release rate
is well defined and can be expressed through Griffith’s formula, the J-integral or via stress
intensity factors, [6, 18, 24]. In this paper we focus on energy densities W which correspond
to power-law hardening models.

2.2 Notation

The following notation is used for m x d-matrices 6,7 € R™*¢

m d
0:7=te(r 0)=tr(0T7)=>_ > Oimj, [0]=v0:0.

i=1 j=1

For P € R% and R > 0, the set Br(P) = {z € R? : |z — P| < R} denotes the open ball
with centre P and radius R. Let us note that we do not distinguish in our notation between
scalars, vectors etc. In some special cases we write e.g. LP(Q, R™) for vector valued functions
u : ) — R™ being p-integrable.

2.3 The Ramberg/Osgood model

We consider a physically nonlinear elastic material model, where the constitutive relation is
given by a power-law like relation ship. In the frame-work of deformation theory of plasticity
such models are frequently applied for the description of elastic-plastic materials with low
proportionality limit and which show strain hardening behaviour. Examples for such materials
are stainless steel alloys or aluminium alloys. The particular model we consider here was first
proposed by W. Ramberg and W.R. Osgood [26] and reads as follows for Q C R?:

Find a displacement field u : Q@ — R? and a stress tensor field o : Q — Riyxn% such that it
holds for given volume and surface force densities f and h and for a given displacement g on
I'p:

dive+f=0 inQ, (3)

e(u) — Ao — « ‘JD‘q_z o? =0 inQ, 4)

on=h onlIy, (5)

u=g onlp. (6)

Here, 0P = 0 — %tr ol is the deviatoric part of o, ¢ > 2 the strain hardening coefficient,

a > 0 a material parameter depending on the yield stress, 77 the exterior unit normal vector
and A the inverse of the elasticity matrix (tensor of elastic compliances). It is assumed that
A is symmetric and positive definite, i.e.

2
Aijit = Awig = Ajin and Y Agroijon = (Ao) s o > calol’. (7)
ik, =1

We assume here that ¢ > 2 since typical values for ¢ range from 5 — 8 for austenitic steel
alloys [27] and 20 — 45 for aluminium alloys [25, 30]. The model is known in literature also
as Norton/Hoff model and we refer to [27, 30, 4] for more details on physical aspects.



The complementary energy density corresponding to constitutive relation (4) is given by
1 «a
We(o) = §(AU) 1o+ g ‘0D|q (8)

for o € ngxn% and fixed ¢ > 2 and the constitutive equation (4) can be rewritten as e(u) =

DW,(o) with DW,(0);; = agﬁgr). The complementary energy density W, is strictly convex
and the corresponding stored strain energy density Wy is defined as the conjugate function

of W, in the sense of convex analysis [35, 7]:

Ve e RYZ Wale) = sup (7:e—We(r)). (9)

Sym 2%2
X
TERSym

To the author’s knowledge an explicit formula for W, is unknown.

Lemma 2.2. There exist constants co,...,cqs > 0 such that for every e € ]ngxn%
—co+eiftrel? 4 e |€D‘p < Wele) < esltrel? + ¢4 |ED‘p (10)
where L + X =1 and q > 2 is the exponent from (4). Moreover, Wy, is strictly convex,

continuously differentiable and it holds
Wele) + We(o)=0:e & DWy(e) =0 & ¢ = DW,(0). (11)

Remark 2.3. Estimate (10) follows by the same arguments as in [32, Chapter III, lemma 1.2],
see also [20]. The remaining assertions follow from classical theorems in convex analysis and
in particular from [35, Prop. 51.5].

As can be seen from estimate (10), the density W has different growth properties with
respect to tre and e”. Therefore, function spaces are needed which take into account this
behaviour. Appropriate spaces were first introduced and studied by G. Geymonat and P. Su-
quet, [12].

2.4 Function spaces and weak formulations
For s > 0, p € (1,00), we denote by W*P(€2) the usual Sobolev-Slobodeckij spaces [1, 14].

Let Q € R% d > 2, be a domain and r, s € (1, 00).

L™Q)={o:Q— R‘Si;rff coP e L"), tro € L(Q)},

Y3(Q)={oc e L"(Q): dive € L"(Q)},
U(Q)={u:Q—RY: uwe L"(Q),eP(u) e L"(Q), tre(u) € LS (Q)}.

These spaces are endowed with the following natural norms:

?|

v T ol llollsrs@) = lolliprs@) + Idivellprq)

L™ () + ”trg(u)”Ls(Q)

loll sy = llo

[ellgrrs ) = Il o) + (€7 (w)]

and are reflexive and separable Banach-spaces [12]. Moreover, Korn’s and Poincaré/Friedrichs’
inequalities hold under suitable assumptions on 7, s:



Lemma 2.4. [12] Let Q C R? be a bounded domain which satisfies the cone condition.

Korn’s inequality: Letr € (1,00). The spaces U™"(Q) and W (Q) have the same elements
and the norms ||-llyy1.r ) and [|*lyrrq) are equivalent. That means that there exist

constants ci<, ek > 0 such that for every u € W17 (1)
et Nullwrog) < lull ey + le@) ey < 6 lullprre) - (12)

Poincaré/Friedrichs’ inequality: Let 1 <r < s < oo. If V C U"*(Q) is a closed subspace
with the property u € V,e(u) =0 = u = 0, then there exists a constant P >0 such
that for every u € V

el oy = Il ooy - (13)

Remark 2.5. Korn’s inequality is proved e.g. in [12] for bounded domains with Lipschitz
boundaries. Taking into account that bounded domains which satisfy the cone condition can
be written as the union of a finite number of Lipschitz domains, Korn’s inequality can be
carried over to that case, too. The proof of (13) is given in [12] for Lipschitz domains and is
based on a Sobolev embedding theorem. Since this theorem is also valid for domains satisfying
the cone property [23], the proof in [12] covers also the situation in lemma 2.4.

Finally we have the following relation between ¥*(€2) and X" ():

Lemma 2.6. Let Q C R? be a bounded domain which satisfies the cone condition, 1 < s <
r < 0o. The spaces ¥"*(Q2) and X" () are equal and the corresponding norms are equivalent.

Remark 2.7. This lemma is based on Bogovskii’s theorem [11, Theorem 3.1] and an idea by
M. Fuchs [10] and is proved in [19, 20] for bounded Lipschitz domains. Since Bogovskii’s
theorem is also valid for bounded domains satisfying the cone condition, the proof from [19]
applies directly to the situation in lemma 2.6.

It is convenient to work with both weak formulations, the displacement based formulation
P;s and the stress based formulation Qs here below. We define

Qs =QsN{zcR?: 29 >0}, Q_=QnN{zecR?: 25 <0} (14)
and assume H2:
H2 g2 p=q =L € (1,2), 0 <5 <6, f € LUQ), g € UPA(Qp), H € WH(2, R22)
with H‘g&iﬁi =0 on Cs,, where iy = (0,—1)" and i_ = (0,1) .
The stress based weak formulation for (3)-(6) reads as follows:

Qs Find a stress field o5 € L9?(Qs) and a displacement field us € UP? () with u|FD = g‘FD
such that it holds for every T € L92(Qs) and v € UP?(s) with ’U‘FD =0:

DW,(os) : Tdx = / e(us) : Tdex, (15)
Qs Qs
/ os :e(v)dx:/ (f +divH)vdx + H :e(v)de. (16)
Qs Qs Qs



Note that Green’s formula applied to 24 and Q_ separately implies
/ vdiv Hdz + H:E(v)da::/ v(Hm)ds
Qs Qs I'n
for every v € UP2(€)s) with u‘FD = 0. The requirement H7 = 0 on C§ realises the assumption

that the crack faces are traction free. The displacement based formulation reads

Ps Find a displacement field us € UP2(Qs) with U5|FD = g‘FD such that it holds for every
v € UP2(Qg) with U|FD =0

DWq(e(us)) : e(v)da = /Q (f+divH)vdz+ | H:e(v)da. (17)

Qs Qs

Finally we consider the following minimisation problem for 0 < § < dg:

M;s Let F = (f,Hi). Find a displacement field us € UP(Qy5) with u‘S‘FD = g|FD such that

it holds for every v € UP2(s) with ’U‘FD = g‘rD
La(Qs,us) — W (s, us, F) < La(Qs,v) — W(Sks, v, F). (18)
Here, I ( Q5, fQ )) dz with W from (9) and W (25,0, F) = fﬂé(f—kdiv H)vdz+

Jo, H 2 el )d:z:

Theorem 2.8. Let H1 and H2 be satisfied. Problems Qg, Ps and M6 are uniquely solvable
and equivalent and I.; is Fréchet-differentiable with (DI.(Qs,£(v1)),e(v2)) = fQ& DWy(e(vy)) =
e(vo)dx for every vi,vg € UP2(Qs). Note that o5 € %92(Qys) due to the assumptions
on f and thus o5 € L%(Qs) due to lemma 2.6. Finally it holds for the weak solution
(U5,0'5) S Up’2(95) X Zq’q(Q(;):

Iel(Qg,u(;) + IC(Q(;, 0'5) = / o§ - E(U5) dz.
Qs

Here, 1.(Qs,05) fQ

Proof. The theorem follows with standard arguments from convex analysis, see e.g. [35,
Prop. 51.5] and from the direct method in the calculus of variations. Note that Ps is the
weak Euler-Lagrange equation of M. O

2.5 A priori estimates and regularity

In the next lemma we show that weak solutions are uniformly bounded with respect to the
parameter 4. Such estimates are essential in the derivation of formulas for the energy release
rate.

Lemma 2.9. Assume H1 and H2. There exists a constant ¢ > 0 such that it holds for every
0 <0 < g and every weak solution (us,os5) € UP2(Qs) x LI2(Qy):

le(us)ll o2 (ay) » 1usllwroiay) <6 (19)

o5l a2 (ay) > 1t 06l Lagay) < € (20)



Proof. Note first that the constants in Poincré/Friedrichs’ inequality are uniformly bounded
with respect to 6 € [0, dgl, i.e. there exist ¢1, ¢y > 0 such that

e < b < e (21)

for every 6 € [0,0p], and similar for the constants in Korn’s inequality. This is due to
VP2(Qs,) C VP2(Qs,) for 61 < ba.

We prove now (19)-(20). The occurring numbers ¢ may vary from line to line but they are
independent of §. Choosing 7 = g5 and v = ug — ¢ as test functions for the weak formulation
Q;, adding both equations and applying the Holder and the Poincaré/Friedrichs inequality
yields

1

= m@(”%”mﬁ(ﬂa) + ”HHL‘LQ(Q&)) HE(Q)HLM(Q(;)

losll72 0, + HU?H%q(Qé)
+ (”fHLQ(Q(;) + ”diVH”Lq(Qé)) [[us — gHLP(Q(;)
2| 0 ) ()| ) )- (22)

By Poincaré/Friedrichs’ inequality (13), (21) and the triangle inequality one obtains

[[us — gHLP(Q(g) < C(HE(W)HLM(Q&) + HE(Q)HLP»Q(Q(S)) (23)

and c is independent of 6 due to (21). Thus there exists a constant ¢ which is independent of
0 such that

”06\\%2(96) + H@?leq(gé) < c(L+l|osl Loz, + le(s)ll o2y )- (24)

It follows from the constitutive law (4) and inequality (88) that

[tre(us)| = |Aos| < clos], (25)
le(us)” < ¢p(|Aas|” + a” |of|") < e(|osl” + 1+ [o7[). (26)
The last estimate follows from Young’s inequality with |osP < L \05] + 222 for p € (1,2).

Thus
||tr€(u6)||L2 Q) T [€” (us HLP(QJ) (||0'6HL2 Q) T lof HLq y T 1)
24)
< (1 + llosll oy + le(@s)l oz, )- (27)
The constant ¢ is independent of . Adding (24) and (27) yields

ltr£(us)llZaay) + [1e2 o) o) + Ier oslz2(y) + 07 lI70(o

< C(l + ||tr5(u6)||L2(Q(;) + H(—ZD(U(g)HLp(Q(S) + [|tr 05”[,2(95) + Ho-(?HLq(QJ) ) (28)

and the constant c¢ is independent of 0. Since the left hand side of (28) grows at least with
power p > 1 and the right hand side grows linearly, it follows that there exists a constant
¢ > 0, which depends on ¢ but not on 9§, such that

le(ua)ll o2qy) + 105l Loz, < € (29)



Combining (29) with (23) and (21) yields (19). Since o5 is a weak solution it holds o5 €
¥29(Q), see theorem 2.8. Furthermore, lemma 2.6 implies that there exists a constant cs > 0
such that

(29)
[tr 5]l () < s lltrosll2q,) < csc

It follows in the same way as for the constant c? F of the Poincaré/Friedrichs inequality that
there exist ¢1,co > 0 with ¢; < ¢5 < ¢g for every § € [0, dg]. This finishes the proof of (20). O

For the derivation of our main result, theorem 3.1, we need also higher differentiability of weak
solutions near plane parts of the boundary and in the interior of the domain. Specialised to
the two dimensional domains €5 it holds [2, 20, 19]:

Theorem 2.10. Assume H1, H2 and let (us,05) € UP2(Q5) x £99(Q;5) be a weak solution
of Ps and Q.
Local regularity: For every e >0

2,
os, divus € W1’2(Q5) Nnw? q(Qé)7 (30)

loc loc

us € W227¢(Qs). (31)

loc

Regularity near the crack face Cs: Let P € Cs and r > 0 such that B,.(P) N (8@ U
{(6,0)T}) = 0. Let furthermore B (P) = B.(P) N Q4 with Qs from (14). It holds for
every € > 0:

o5, divug € W1~ 9B (P)), (
—92 e
o8 |" " 05 € WHT(BH(P)), (
us € WHP=¢(BE(P)), (34
(

9 Lpip+
8x1u5 e WHP(BI(P)).

Moreover, H81u5||W1,p(BT+(P)) < ¢s < ¢, where c¢s depends continuously on c{fé, 055, C(I;F,

11 o) NosllLagay)s 1usllwrn,)- Here, cﬁ;, céﬂ;, cPT | are the constants in Korn’s inequal-
ity (12) and in Poincaré/Friedrichs’ inequality (13), respectively. Since all these quantities
are bounded with respect to 0 € [0,0¢], see lemma 2.9, the constants cs are bounded as well by
a new constant C.

Remark 2.11. For a proof of the local regularity results we refer to [2] and [20, Theorem 2.3].
The regularity near plane parts of the boundaries and the crack face Cs is proved with a
difference quotient technique in [20, Theorems 2.19, 3.33] based on the ideas from [9]. Let
us note that local regularity results for the displacement and stress fields of a closely related
material model were derived by G.A. Seregin [29] and M. Fuchs [10] and correlate with the
results cited above.

3 Griffith-formula and J-integral
We introduce two further hypotheses:

H3 0 € C°(Q) with # = 1 in a neighbourhood of the crack tip (0,0)7, f € Cl(ﬁ).



H3 fc Cl(ﬁ) and there exists R > 0 such that Br(0) C © and %ﬂBR(O) = 0. Further-

more, I' C Br/(0), R’ < R, is a not self-intersecting Lipschitz continuous path around
the crack tip (0, 0)T with normal vector 7 pointing into the surrounded domain. For
example, I' = 0B 5(0), i = —x/ |z|, x € T.

Theorem 3.1. Assume H1, H2 and let (ug, 09) € UP2(Q0) x 299(Qp) be a weak solution of
P(] and Q(].

1. Assume in addition that H3 is satisfied. The energy release rate is well defined for the
Ramberg/Osgood model and the Griffith-formula is valid:

ERR(Q(],F) = / 09 : (81U0 ® VH)symd:n —|—/ (0 81(9f) dzx
Qo Q0

- / (00 : £(uo) — We(00)) 210 . (36)
Qo
2. Let H1, H2 and H3’ be satisfied. Then

ERR(QQ,F) :/(O'oﬁ)aluOdS—/
T

(00 e(ug) — Wc(ao))nl ds + / ufnids.  (37)
r r

This path integral is called J-integral.

The integrands of (36) and (37) are L'-functions and the formulas are independent of the
special choice of the function 0 and the path T'.

Remark 3.2. The J-integral and its generalisations was first discovered by J.D. Eshelby 8,
1951] and applied in fracture mechanics by G.P. Cherepanov [5, 1967] and J. Rice [28, 1968].
In literature it is also called Cherepanov-Rice integral and is a frequently used quantity in
fracture criteria for linear and nonlinear material models [3, 15, 30]. As we already mentioned
in the introduction, a mathematical rigorous derivation of (36)-(37) taking into account the
actual regularity of weak solutions is to the author’s knowledge carried out for linear elastic
materials, only: (36)-(37) is proved by P. Destuynder and M. Djaoua [6, 1981] for traction
free stress faces and by A.M. Khludnev and J. Sokolowski [17, 18, 1999/2000] for mutual non-
penetration conditions on the crack faces. Furthermore, V.G. Maz’ya and S.A. Nazarov [24,
1987] proved a formula for the energy release rate which is based on stress intensity factors. In
this paper we transfer the arguments from the linear case [6, 17, 18] to the Ramberg/Osgood
model in order to obtain (36)-(37) taking into account the actual regularity of solutions
formulated in theorem 2.10.

4 Proof of theorem 3.1

The proof of theorem 3.1 is long and technical. The arguments in [6, 17, 18], where this
theorem is proved for linear elastic materials, have to be transferred to our case. The main
idea there is to construct a diffeomorphism Ty : Q5 — g and to transform the integral
expressions in the difference quotient 6~!(E(Qq,uo, F) — E(Qs,us, F)) to the fixed domain
Qo. The limes is then calculated in the transformed expressions. Our proof is split into the
following steps:

10



Step 1: Let (us,05) be the weak solution of problem Ps. By (u%,0?) we denote the trans-
formed displacement and stress fields: u’ = wug o Té_l, o = o5 0 T(S_1 with Ts from
(38) here below. In the first step we prove that u’ — ug and ¢® — og are admissible
test functions for Py and we show the convergence u® — ug, 6 — g for § — 0. For
this step regularity results for us and the uniform a-priori estimates for us and os are

needed.

Step 2: Griffith’s formula is deduced based on the convergence results from the first step.
The main tools are a mean value theorem for Fréchet differentiable functionals and
Lebesgue’s convergence theorem.

Step 3: The J-integral is derived from Griffith’s formula by a generalised Green’s formula.
For this step the regularity results listed in theorem 2.10 are essential. Note that we
do not need in our proof the actual regularity and structure of the displacement and
stress fields near the crack tip. In particular we do not make any assumptions on the
asymptotic behaviour of ug or oy near the crack tip.

4.0.1 Step 1: Convergence of u° and ¢°

For § € [0,0¢] the domain Qs is transformed to {2y in the following way: let 6 € C5°(£2) be a
function according to H3. We define

Ts: Qs — Qo z—y=Ts5(x)=2—-20 <0(0x)> . (38)
It is
V. Ty(x) = <1 - 55’1(“’) _5912(”0)) . dets(z) = det Vo (T5(2)) = 1— 660.4(2),  (39)

where we use the abbreviation 0 ;(x) = a%iﬁ(x) for i € {1,2}. The mapping T} is an element

of C*(Qs) and det V,(T5(x)) > 0 if § is small enough. Therefore T} is a diffeomorphism [6].
For functions vs : Q5 — R? we introduce the notation

v (y) = vs(T5 ' (y)) for y € Q.

Derivatives are transformed as follows for x € Q05 and y € Qg:

Vous(T; () = Vo () — 6 ( 0

i) ® vxem;l@») | (40)

For a function v : Qo — R, y — v(y) with vs(z) = v(Ts(z)) for € Qs it holds

V,0(Ts(x)) = mvm@;) + 5mvxv5(@ (8 —%E%) , (41)

In the sequel we use the following abbreviations for y € ()

Vot (y) = VaO(T5 (), det’ (y) = dets(T; () = det(VaT5())],_p. 1, -
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Figure 2: Example for the notation

Finally we define

Q. = Usepo,s0) SUPP (V0%) = Useio,50 L5 (supp V0). (42)
If &g is small enough then it holds
dist(9,, 9Q) > 0

and there exists » > 0 such that B,(0) N Q, = @ which means that the set 2, has a positive
distance to the boundary of Q and also to the crack tip (0,0), see figure 2. Therefore the
regularity results from theorem 2.10 hold on 25 N ..

The following lemma states that if a weak solutions (ug,0s5) of Ps is transformed by
T then the transformed functions are in the same class of spaces as the original functions.
Due to the anisotropic structure of the space UP:2 this is not obvious and in general the set
UP2(Qy) oT(S_1 is not contained in UP(€p). But for weak solutions the differential properties
are preserved after the transformation.

Lemma 4.1. Let (us,05) € UP?(Qs) x L2(Qs) be a weak solution of Ps. Then it holds for
every 0 € [0, dp]

u? = us o Tt € UP2(Q) with u6|FD =g, (43)

ug o Ty € UP?(Qs) with ug o T‘;‘FD =g.

Furthermore Ts induces an isomorphism between the spaces W (Qo) and W (Qs) in the
following way for r € (1,00):

Ts: WH(Qo) — WH(Q5) : u s uo Ty

For fized r € (1,00) the operator norms of Ts and T(S_1 are bounded with respect to 6 € [0, ).
A similar result holds for the spaces L™*(o) and L™*(2s) with r,s € (1,00).

Proof. Note that the space UP2(€)5) is equal to
UP2(Qs) = {u € WHP(Qs) : tre(u) = divu € L3(Qs)}

due to Korn’s inequality. By simple calculations one can see immediately that us o Ty le

WhP(Qq) and ug o Ts € WP(Qs). Furthermore T5‘FD = 4d since suppd NT'p = 0 by

12



assumptions H1 and H3. Therefore ugs o Té_l‘ =g =1wugoTs|. . It remains to prove that

I'p |FD
treg(ug o Ts) € L2(Qs) and tre, (u’) € L2(Qp). After a change of coordinates we obtain

/Q b e (ttg 0 T () da = 2 (un (9))]? dy

Qo deté(y)

0
a—mUO(y)

(40) 2 2
< (Htrsy(uo)lliz(go) o 4 dy> . (45)

Qo

The first term is finite since ug € UP2(Q). Furthermore it is supp(V,0°) C Q. and by (31),
(35) and the Sobolev embedding theorems aiyluo‘g* € Whr(Q,) ¢ L*(Q,). Therefore the
second term in (45) is finite as well and relation (44) is proved. In a similar way one can show
relation (43). The mapping properties of T follow by straight forward calculations. O

The following corollary is an immediate consequence of lemmata 2.9, 4.1 and of theorem 2.10.

Corollary 4.2. There exists a constant C > 0 which is independent of § such that it holds
for every 6 € [0,80] and every weak solution (ug,os) € UP?(Qs5) x LY2(Qs) of Ps:

d

!

<e, (46)

, Htr o <
L9:2(Q) L9:2(Qp)

0

8:171

[ 10 |
WLp(Qo)

<ec. (47)

L2(Q.19Q;5)

4

As before, u® = ug OT(S_1 ete.

We are now ready to formulate the convergence properties of the transformed solutions
u® and o for § — 0.

Lemma 4.3. For § € [0,0¢] let (us,05) € UP?(Qs5) x L92(Qs) be the weak solution of Ps.
There ezists a constant ¢ > 0 such that for every 6 € [0, dp]

H05 - 00‘ £2(5%) < C(S%, (48)
et w
Hay(u5) - Ey(uo)‘ . < ch3, (50)
Hég(u‘s) - Ey(uo)‘ e < co2. (51)
Here we have set for y €
000 = & 000) 5 () © V) (52)

Remark 4.4. 1t is not clear whether the exponents in (48)-(51) are optimal. In [18], the
sharper result Hu5 — UOHWm () < ¢d is shown for linear elasticity. For the proof of the main

theorem on Griffith’s formula it is sufficient to have convergence of u® — ug, the particular
estimate (50) is not relevant.

13



Proof. The lemma is proved by transforming problem Pgs to the domain 2y and by inserting

0% — oy and u® — ug as test functions. The a-priori estimates from lemma 2.9 and corollary

4.2 play an essential role.
Note first that the function H in (16) may be replaced by

H =nH, (53)

where 7 € C*°(R?*?) with 77‘852 = 1 and suppn Nsuppf = 0, since it holds due to Green’s
formula for every v € UP?(£)5) with ’U‘FD =0

H:e(v)dx—l—/ vdiv H dx.

/ nH :e(v) dx+/ vdiv(nH) dz =
Qs Qs Qs

Qs

Let (us,05) € UP2(Qs) x L2(Q5) be the weak solution of Ps and ¢° = o oT(;_l7 uw = ug oT5_1.
Since T is an isomorphism between the spaces L%?(£)y) and L%2(Qs) it follows after a change
of coordinates in equation (15) that u and o satisfy for every 7 € L%2(Qp)

1 5 / 1 5 ( 9 5 5>
—DW, crdy=[ — 0| =—u"®@V,0 s 7dy. 54
[ e owete®) = o (ey<u> S R

Moreover it follows from the weak formulation (16) that o satisfies the following equation
for every v € WHP(Qp) with v o Ty € VP2(Qs) = {w € UP?(Qs) : w|FD =0}

L5 9 5)
——0%: — 0| =—v®eV,0 d
Qo det? 7 <€y (©) < oy ! sym Y

v . I =5
_ /Q (77 i B7) dy /Q S Es(v)dy. (55)
0 0

As before, f0 = fo T(;_1 etc.; £ is defined in (52). Due to lemma 4.1 it holds
o 0% — 0y € L9%(Qy) is an admissible test function for Py and for (54),
o u® —uy € VP2(Qy) is an admissible test function for Py,
o (u? —ug) o Ts € VP2(Qs) and therefore u® — g is admissible for (55).

Testing Py and equations (54)-(55) with 0% — o and u® — ug and subtracting corresponding
equations leads to

/QO <LDWC(0—5) _ DWC(00)> (00— 0g) dar

det?®
1 0

_ /Q O (Q%(ué) ey (ug) — % <a—ylu6 ® vx95>> (% — o) dy. (56)
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For (55) we obtain

/go <$05 - JO)  (ey(u”) — ey (uo)) dy
1

:5/9@<821(u6—u0)®V9> % dy
+/ (deté(fé (div, H)®) — f — dwa> (u — ) dy

+/ (@HJ ﬁ) ey (u”) = £y (uo)) d

1 - 0
-5 —a: < u’ —up) @ Vg 95>d 57
T (g = y (57)
By the definition of H we have suppfl N suppf = ( and therefore T5| -~ = id which

~ _ N N supp H
implies supp(H 5) = T%(supp H) = supp H. Moreover Ho(y ) = H(y) for every y € Qp and

thus WH‘; H = 0 for every y € Qg and also - t5 (div, H)? — divy H = 0 in . These

considerations show that the terms with H vanish in (57). Note further that

(LDW( °) - DWc(ffo)) (0" = o0)

det?
5
- (DWC(O'(S) - DWC(UQ)) : (0% — 00) + 5%DWC(05) : (0% — o0), (58)
(ﬁsy(ué) - &?y(uo)) 2 (6 — ap)

)

~ (7"~ ) 0 w0 45085 (s 10 o)) (59

where 02 =0,(T; (), i = 1,2. Combining equations (56)-(59) results in

/(DW( %) — DWe(09)) : (0° — 09) dy

1 sy, L (9 s 5 (o0
/ <d U)+det6 <8y1u ®@ V0 o (0% —00) dy

5
/ ey wy) : 00 — oy : 5y(u5)) dy

|
+5/ ( 0 _up) ® Va 95> co%d
QO det6 ayl (u UQ) o y

1
o[ (ot = f) =)y
=0(11 + Iz + I3) + 14(0). (60)

Holder’s inequality and the uniform a-priori estimates of corollary 4.2 imply the existence of
a constant ¢; > 0 such that for every ¢ € [0, do]

|Il—|-[2—|—13| <. (61)
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Moreover it follows from f € C 1(6) and the uniform a-priori estimates for u® (corollary 4.2)
that there exists a constant ¢y > 0 such that

[14(0)] < cad. (62)

Inequality (92) from the appendix applied to the left hand side of (60) finally leads to

2
lo° = 0llp2a) + 0™ = 00" [ o)

2 -2 2
<o~ ol + [ (721 o) 2o~ opPdr <5 (6
0
for 0 € [0,0p] and the constant ¢ is independent of 4. This implies estimates (48) and (49).

For the proof of (51) we use the relation &5(u’(y)) = DW.(c°(y)) for y € Qq. It follows
by Holder’s inequality, inequality (87) and the uniform a-priori estimates of corollary 4.2 that

/Q est?) — ey ay = /Q 0

87
& oo’

DW, (o) — DWC(UO)‘p dy

- JOHZ%QO)

ve (\UD’5|+|aé)\>”(q52)(<|oD’5\+|Ué’|>%|a”’5—a§\)pdy

q(2=p) q—2 2 g
i) (/QO<‘JD’5| + ‘JODD ‘O‘D’é — aé) dy>
(63)

< b, (64)

(<) 53 —I-CH‘JD5| —I—‘ D”

where the constant ¢ is independent of §. Moreover, again due to &5(u’) = DW,(o?), it holds

(48)
Htr(ég(ué)) —tr &?y(uo)HLQ(QO) < cH<75 — UOHLQ(QO) < e (65)

Estimates (64) and (65) imply (51). Finally, (50) follows from (51) and (52) taking into
account (47) and the definition of €, in (42). O

Step 2: Energy release rate and Griffith’s formula

We will now prove that the limes in the definition of the energy release rate, definition 2.1,

exists and that it can be expressed through Griffith’s formula. The following notation is used
for 6 € [0,80] and v € UP2(Qs)

E(Qs,v) / Wea(e(v))dx — / (f +div H)vdz — H :e(v)da. (66)
Qs Qs Qs
Here, Wq(e) = SUP_cp2x2 (1 : & — We(7)) is the stored strain energy density for Ramberg/Os-

good materials from (9) and H = nH, see (53). For v € WP (Qq) with &5(v) € LP2(Qp) (see
(52)) we define

1
Es(Qo,v) = | —Wa(és(v))d S + div, HO)vd
50, 0) /Qodet(s (Es(v)) dy — /Qodéu’ ive B0 dy
L =5

— ——H? : &5(v) dy. 67
Qodet(s 5()y ()
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Note that it holds for every weak solution us of Pg:
E5(Q0,u’) = E(Qs,us),  Es(Q,uo) = E(Qs, up o Th).

Taking into account that ug is a minimiser of F(,-) and that us is a minimiser of F({s, )
and noting that ug o T(s_1 is admissible for Mg and ug o Ty is admissible for My we obtain for
every 0 € (0, dp]:
6_1(E(QO,UO) — E(;(Q(),’u,o)) = 6_1(E(QO,UO) — E(Q5,U0 o T(;))
< 5 H(E(Q,u0) — B(Qs, us)) (68)
< 5 (E(Qo,us 0 Ty t) — E(25,u5)) = 5 (E(Qo, u’) — E5(,u’)).
In order to show that the energy release rate lims_o 6 1 (E(Qq, uo) — E(Qs, us)) is well defined,

we calculate the limes superior of the right hand side in (68) and the limes inferior of the left

hand side and show that they are finite and coincide. We begin with the limes superior. For
0 € (0,00] it is

E(Qo,u’) — E5(Qo,u’ /Wd ey(u?)) — Wa(5(u’)) dy

0 B S
0 ) ey /Q Y P dy

—/ (divyﬁ — L& div, ﬁ5> u® dy

Qo det

- H - —H5> u’)d
/Qo< det? ( ) dy

1 -~ B,
—5 | —H: WV 05> d
Qo det® <8y1 4

=L+...+ I (69)

sym

From the definition of H it follows supp H Nsuppf = 0 and 7, 5‘Supp i = td. Thus, the terms
1y, Is and Ig vanish.

Convergence of %Ilz The first term on the right hand side of (69) can be rewritten as

follows
1 1

511 =5 <Iel(sy(u6)) - Iel(é:(ué))>

where Iy : LP?()) — R, & fQ 1(¢) dy is the stored strain energy for Ramberg/Osgood
materials. Due to theorem 2.8, I is Frechet differentiable with derivative

(DICI(61)762>LP72(QO) = 5 DWCl(El) s egdx
0

for every 1,69 € LP?(€)). By the mean value theorem for Fréchet-differentiable functionals
(lemma A.3 in the appendix) there exists a constant t5 € [0, 1] such that

111 = [ DWy (e, () — dts <iu ® Vg 95> : ( 0 u’ @V, 95> dy.
4 Qo 9 Y1 sym 8 1 sym
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Note that the term (%lu‘s ® Vx0‘5> is an element of LP2(£)y) due to theorem 2.10. From

sym

the convergence results (50)-(51) it follows for § — 0

(iué ® vxe‘;) — (iuo ® vy9> in LP2(Qy),
sym

8yl 8y1 sym
ey (u’) — ots ((%1“6 ® Vx96> — gy (up) in LP2(Q).
sym

From the continuity of the Fréchet-derivative DI of I, we obtain for § — 0

1 0
- — DWCl(Ey(uO)) : <—U() ® Vy9> dy. (70)
0 Qo ayl sym
Convergence of %Ig: Since 6 € C3°(Q), it holds for § — 0
0 0
—0° — —0 in L®(Q). 71
Gt = 50 in L¥() ()

Moreover the mapping W : LP2(Q) — LY(Qo), € — We(e) is continuous due to estimate
(10) and proposition 26.6 in [36] on Nemytskii-operators. Combining (71) and and the con-
vergence result (51) leads to

1 961 S5 / (9
- =—- ——Wal(é d — Wealey(ug))=—0dy for § — 0. 72
== [ s WaE)ay -~ [ W)z oy fors—o. (7

Convergence of %13: The following identities are valid for y € Qq:

99
-3 (100 - 257°0)) = =5 (£0) - P ) + 2570 (7
T (x 5
v 1) "B Ty -0 =5 (). (74)

From (71) and assumption H3 we obtain for the second term on the right hand side of (73)

0% s o, . s

The mean value theorem and (74) imply that there exists a constant ¢(5,) € [0,1] such that
it holds for the first term on the right hand side of (73)

$ (10 -1 w) = vt ().

where §(0,y) = y—dt(5y) (96(()?/) > Note that £(d,y) converges uniformly on £ to y for 6 — 0.

Due to assumption H3, the functions f and V, f are uniformly continuous on Q) and therefore

é
S0 =1 ==,1(66) () = 057 i (5, (76)
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Combining (75) and (76) we finally arrive at

1 1 1 |
"= = g ——‘5>d—>/ —(0f)d 77
o= [ (1= ) du= [ wgoay ()

for 6 — 0. Summing up (70), (72) and (77) we get

lim sup 6~ (E(Q0, uo) — E(s5,us)) < gin}ﬁ_l(E(Qo’ué) — E5(Q0,u"))
6—0 -

0
= DWei(ey(uo)) : <8—u0 ® Vy9> dy
Qo Y1 sym

0 0
— Wl (e, (ug —de—i-/ up=— (»0f)dy. (78
| Watewgodn+ [ wogondy. @
Due to lemma 2.2 the terms We(gy(ug)) and DWei(ey(up)) can be replaced by og : y(up) —
We(0p) and og, respectively.
The limes inferior of the left hand side in (68) can be calculated similarly and it coincides
with (78). This shows that the energy release rate is well defined and that relation (36) holds.

Step 3: J-integral

The representation of the energy release rate by the J-integral is deduced from Griffith’s
formula with the help of a generalised Green’s formula which we formulate and prove in the
appendix, lemma A.2. The regularity results of theorem 2.10 are fundamental for this step.

Let assumptions H1, H2 and H3’ be satisfied and let § € C§°(Bgr(0)) with 9|BR’ 0 = L
Here we use the notation from H3’. The functions f and @ satisfy H3 as well and therefore
Griffith’s formula is valid:

ERR(Q(), F) = / (O’oaluO)Ve dx + / ug f010 dx + Ougoy f dz
Qo Qo Qo

—/ o9 : 6(’LLO)819 dr + WC(UO)&G dzx
Qo Q0

Using the generalised Green’s formula of lemma A.2 and the regularity results of theorem
2.10 we show that it is possible to integrate (79) by parts. In order to simplify the notation
we assume that the path I' is a circular path around the crack tip: T’ = dBg,(0) for some
Ry < R, see figure 3. Let us note that all arguments here below can easily be carried over to
the case of general non intersecting Lipschitz paths I' satisfying H3’.

We set Q. = Bg(0)\(Bg,(0) U Cp). It holds supp VO C Q, and therefore the integration
domains in I, I, I; and I5 can be replaced by €),. Since ), has a positive distance to the
exterior boundary 9 and also to the crack tip, the regularity results of theorem 2.10 are
valid on Q. It follows from these regularity results that

001ug € WHP(1,),
o0 €EB, 1 (Q*)

q7ﬁ_67q

for € > 0, where

Bssn=1{v: 0 — R v e WH(Q,), dive € L7()}
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Figure 3: Circular path T’

is the space defined in lemma A.2. The parameters 6 = ¢, s = q%l — e and y = ¢ satisfy (b)
in lemma A.2 with d = 2. Thus we obtain for I; by Green’s formula
L = 001ug(oon) ds — Oog : e(Orup) de — / 001ug div og dz (80)
0 Qs Qs

and the integrands are L'-functions. Theorem 2.10 and assumption H3’ imply
ugf € WHP=E(Q,)

for every € > 0 and therefore, again by lemma A.2,

I, = — H(falm) + UQalf) dz + / Oug fnq ds. (81)
Q. 0

The term I can be rewritten as follows with the product rule
2 ..
Iy =— Z / <O-0’m> V(9€Z](’LL0))(L’E + fog : 816(U0) dz.
“—Ja, \ 0 Q.
)=
Regularity theorem 2.10 implies
Ocij(ug) € WHP™E(Q,) for e > 0,
,2(8)  with €1(e) \, 0 for € — 0.

Assumption (b) of lemma A.2 is satisfied for § = (p — €)', s = q%l —€1(e), y=2and € > 0,
small. Therefore

Iy = — Oe(ug) : oony ds + Oc(ug) : oodr + Ooq : O1(up) da. (82)
O [ [

Using that We(09) = (3e(uo) + %q_q) ‘Jéj‘q_z o) : 00 = &4 : 00, the term I is equal to
[5 = / Ex t 0'0819 dy
Qo
Due to theorem 2.10 it is

1 2 — -
fe, =0 <§5(u0) + oz(T]q) ‘aé)‘q 2O'OD> e WhP=(Q,) for € > 0.
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In the same way as for I we obtain

I5 = Ocy : ogny ds — Oc, : O109dx — Oog : 0165 dx
O Q. Qu

= QWC(O'())nl ds —/ QDWC(O'()) : 810'0 dy. (83)
aQ* *

Summing up (80), (81), (82), (83) and I3 we arrive at
ERR(Q, F)=1L+...+I;

= 001ugopm ds + Ougfnids — 0(e(ug) : 090 — Wel(og))ni ds.  (84)
O O O

By the assumptions it is 9‘ 0BR(0) = 0, 9‘ 0Br (0) = 1 and on the crack face Cy we have
g 0

aoﬁ‘co = 0 and n1|00 = 0. Therefore the path 0, in (84) can be replaced by I' = dBg,(0)
and the proof of theorem 3.1 is finished.

A Appendix

A.1 Some inequalities

Lemma A.1. Let n € N. For A,B € R™ with |B| > |A| and t € [0, 1] it holds [33, formula
(2.20)]:

4|B+t(A—-B)| > |A|+ |B|. (85)

Let ¢ > 2. It holds for every A,B € R"
SN =Bl = [BITPB (A= B) 2 2 (Al + B) A= B (56)
14172 A= | B[ B < c(|A| + |B))* *|A - BI. (87)

Forn €N, a; € R with a; >0 for 1 <i<n, we have [21]:
(Z ai> < pot (Z af‘) ifa>1, (88)
i=1 i=1
(Z az) > pol <Z af‘) f0<a<l. (89)
i=1 i=1

Proof of (86). Let A, B € R"” and v(t) = B+ t(A — B) for t € R. Taylor’s expansion yields

1 1 1 dz /1
“JAlY - =Bl |B|l"?B:(A-B :/ 1—t—<—
q! ! q\ 9 — |B] ( ) 0( )dt2 .

ol at

1
> [a-ohr2ia- e . (90)
0
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Assume first that |B| > |A|. By (85) we obtain

1

(00) > 427 / "(1— ) di(|A] + | B2 |A - BP.
0

If |A] > |B|, then a change of coordinates leads to

1

L (85)
(90) = / S|A+s(B—A)"2[A—B? ds > 42—q/4 sds(|A + |B))"?|A— BJ.
0 0
Proof of (87). Again by Taylor’s formula:

‘|A|q—2 A~ |BJ12 B( <[ % (|B FHA— B2 (B4 t(A - B))) ‘ dt

1
g/(mJNB+ﬂA—BW*ﬂA—Mdt
0

O

Let ¢ > 2. The following convexity and monotonicity inequalities hold for every oy, oy € R2X2
due to the previous lemma:

We(o1) — We(o2) — DWe(03) : (01 — 02)

>c<\01—02] +(‘01 |+|02 ‘)q_ ‘01 —02D‘2>, (91)
(DWC(O'l) — DWC(O'Q)) : (01— 02)
> c(lov = oo + (|0 |+ [oF )" |oP = o [") . (92)

A.2 Some lemmata

Lemma A.2 (Green’s formula). Let Q C R% d > 2, be a bounded domain with Lipschitz
boundary. For s € [0,1] and 1 < v < < oo we define

Bior(Q) = { L0 =R v e WH(Q), dive € L'Y(Q)} ,

”U”B(SM(Q) = ”UHWSv5(9) + ”diVUHL'v(Q)‘

This space endowed with the above defined norm is a Banach space. Moreover (Coo(ﬁ))d
dense in Bs s (£2).
Let in addition s — % > 0 and let either (a) or (b) here below be satisfied:

(a) 1<y<d§< di
(b) 6> 24 and 1 < £ < <.

Then the following Green’s formula is valid for every v € Bsg () and every w € le‘sl(Q)
with 3 + 3 =1

Vwd +/ diveod :/ ) ds. 93
/Qv wdx Qw ivodzx agw‘aﬂ(v‘agn) s (93)
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The vector 71 is the exterior unit normal vector on 0X). Note that the integrands are elements
of LX) and L'(0S), respectively. Note further that the space W° (Q) is continuously
embedded in LY (Q) for parameters v, satisfying (a) or (b). Therefore the left hand side of
(93) is well defined.

Proof. For the proof of the density result we follow the standard arguments in [12, 31]. Since
1is a bounded domain with Lipschitz boundary there exists a finite number of open sets €2,
1 < j < J, such that Q C UJ 1825 and ©; CC Q or ©; N is star-shaped with respect
to an element z; € Q; N Q, see [31 23]. Moreover there exist open sets Q; CC Q; with
QcC U] 1Q and Q cC Qor Q N € is star-shaped with respect to an element Zj € Q N €.
Let {a;,1 <j < J } be a partltlon of unity with respect to 2 subordinate to the covering
{Q;,1 <j < J}, e a; €CF(Q), a; >0 and 23-]:1 aj(z) =1 for every x € Q. Note that
aju € Bs s ~(Q) for u € Bs s ~(€2). We will prove now for u € Bs ()

For every € > 0 there exists a function @; . € C3°(2;) such that
€

||(70j75 - ajuHBg,s,’y(QﬁQj) é j (94)

If (94) holds, then the function ¢ = 23-]:1 @j.e is an element of C*() and

J
e — ulls,, oy < Sl — Diells, (g, < &
j=1

For the proof of (94) we distinguish two cases.
Case 1: For ; CC Q we apply the standard regularising procedure [12, 31]. Let p € C§°(R?)
with p > 0, [pap(2)dz =1 and supp p C By(0). Straight forward calculations show that the

function o) 1 /Q ) (x Y > o (y)u(y) dy

vd v

is an element of C5°(€2;) and satisfies (94) if v > 0 is small enough.
Case 2: Let (2 N (2 be star-shaped with respect to z; € 2 N () where we assume without
loss of generality that Z; = 0. For A > 1 and y € A(2; N Q) we define

St =es (2) (%)

Straight forward calculations show that Sy(cyu) is an element of Bs s~ (A(Q; N Q)). If A > 1

is small enough then . )
QN CCA;NN) CC Q.

Let 1 € C°(A\(Q; N Q)) be a cut-off function with nA‘ﬂ(QnQ) = 1. It holds
2 J
n)‘SA(aju) € Bss,(;) and supp(n)‘SA(aju)) C Q.
For A\ — 1 we have the following convergence

Sy (aju = Si(oju |Q g aju in Bss,(Q;NQ). (95)

|Q nQ
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This assertion is a consequence of lemma 1.1 in [31] which states that

— 0

HSA(U)‘QJ-OQ o U‘ L3(Q,nQ)
for every v € L%(Q; N Q). Moreover it is div(SA(ozju))‘Qij = 15,(div(a;u)) and therefore
we have, again by lemma 1.1 in [31], ||div(Sy(oju) — ajuHL“/(QmQj) — 0. In a similar way the
convergence of Sy(ayu) in W5°(€) is proved.

The functions 7*S)(cju) can be approximated in Bj s~ (€2;) due to case 1 for fixed A > 1 by
functions {eh,n € N} C C§°(£;). This together with (95) proves (94) for the star-shaped
domain €2; N Q.

For the proof of Green’s formula (93) we define the following bilinear forms for v € B, ,(£2)
and w € WhH'(Q)

Li(v,w) = /QUVw do + /deivvdm, (96)
Ly(v,w) = /89 (v|aﬂ) ﬁw|aQ ds. (97)

Due to the assumptions (a) and (b) the space W% (Q) is continuously embedded in LY ()
and therefore Ly is well defined and continuous. Moreover it follows from s — % > 0 and trace

theorem [14, Theorem 1.5.1.2] that v| a0 € L°(09) and w| a0 € LY (9Q) and therefore Ly is
well defined and continuous as well. From the classical Green’s formula we obtain that L;
and Ly coincide on the set (C%°(Q))? x C>°(Q). Since this set is dense in Bs,(Q) x W' (Q)
and since the bilinear forms are continuous we get L (v, w) = La(v,w) for every v € Bs,,(£2)
and every w € W9'(Q). O

Lemma A.3. Let X be a Banach space and I : X — R a functional which is Fréchet-
differentiable with derivative DI € X'. For every u and h € X there exists a constant
to = to(u, h) € [0,1] such that

I(u+h) = I(u) = (DI(u+toh), h)(x' x)-
Proof. The functional I admits the following Taylor expansion, see [37, 34],
1
(u+h) — I(u) = / (DI(u+ th), b (xr ) dt.
0
Since I is Fréchet-differentiable, the function f : R — R, ¢ +— (DI(u + th), h)x x) is con-
tinuous. The lemma now follows from the mean value theorem for integrals of continuous

functions [16]. O
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