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Abstract

Taking into account the actual regularity of the displacement and stress fields, we
derive the well-known Griffith-formula and the Eshelby-Cherepanov-Rice integral for the
energy release rate of an elastic body with a straight crack. It is assumed that the
constitutive relation is of power-law type (Ramberg/Osgood model).

Keywords: power-law model; fracture mechanics; derivative of the energy functional; J-
integral; Eshelby-Cherepanov-Rice integral; Griffith’s formula
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1 Introduction

We consider a body with a preexisting crack which is subjected to exterior loadings. The
Griffith-criterion [13, 1920] is a classical and commonly applied fracture criterion to decide
whether or not the crack will propagate under given forces. In Griffith’s energy approach
the crack is considered as stationary if the total potential energy in the actual configuration
is minimal compared to the energies of all admissible neighbouring configurations. Under
suitable assumptions on the crack and the applied forces, this criterion can be reformulated in
terms of the energy release rate which is related to the derivative of the potential deformation
energy with respect to the crack length. Simple formulas are needed to calculate this quantity.

In the case of linear elastic materials the energy release rate can be expressed by Griffith’s
formula, the J-integral or by stress intensity factors [15, 5, 6, 24, 18]. These formulas are
rigorously proved taking into account the regularity of weak solutions and in particular the
special singular stress behaviour of weak solutions near the crack tip. For nonlinear elastic
models similar formulas can also be formally deduced under the assumption that weak solu-
tions (displacement and stress fields) are smooth enough or that they admit an asymptotic
expansion near the crack tip like in the linear case. But in general such regularity results have
not been proved yet and it is even not clear in general whether the terms in these formally
derived formulas are well defined for weak solutions.

The goal of this paper is to deduce the well-established Griffith-formula and J-integral
for elastic materials with a constitutive relation of power-law type (Ramberg/Osgood model)
in a mathematically rigorous way from the definition of the energy release rate taking into
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account the actual regularity of weak solutions. Suitable regularity results were derived in
[2, 10, 29] and recently in [20, 19].

The paper is organised as follows: after a short description of Griffith’s energy criterion,
the Ramberg/Osgood model and the assumptions on the domain in section 2, we formulate
our main result (theorem 3.1, Griffith-formula, J-integral) in section 3. Techniques from the
linear models treated in [6, 17, 18] are adapted for the proof of our case. The paper closes
with an appendix, where we provide frequently used inequalities and a generalised Greens’
formula.

2 Formulation of the problem

2.1 Griffith-criterion and energy release rate

Let Ω0 be a body with preexisting crack C0 and assume that a loading F is applied to Ω0.
Griffith’s fracture criterion reads as follows [15, 22]:

The crack C0 is stationary with respect to the applied loading F if the total potential energy
of the body in the actual configuration is minimal compared to all admissible neighbouring

configurations.

The total potential energy Π(Ω, u, F ) of an elastic body Ω ⊂ R
d with respect to the displace-

ment field u : Ω → R
d and the exterior loading F = (f, h), where f is a volume force density

and h a surface force density, is given by

Π(Ω, u, F ) = Iel(Ω, u) −W (Ω, u, F ) +D(Ω).

Here, Iel(Ω, u) denotes the elastic strain energy

Iel(Ω, u) =

∫

Ω
Wel(ε(u)) dx

with the stored strain energy density Wel which we specify later; ε(u) = 1
2(∇u + (∇u)⊤)

denotes the linearised strain tensor. Moreover,

W (Ω, u, F ) =

∫

Ω
fudx+

∫

ΓN

huds

is the work of the exterior forces F = (f, h) and

E(Ω, u, F ) = Iel(Ω, u) −W (Ω, u, f)

denotes the potential deformation energy. The quantity D(Ω) describes a dissipative energy
which in our case characterises the energy which is spent to create the new crack surface. In
the simplest case it is assumed that D(Ω) is proportional to the macroscopic crack surface
[15]. We impose rather restrictive assumptions on the geometry of the crack and of possible
crack extensions. In particular we assume that the body is in a plane strain state, that the
crack is straight and that it can propagate straight on, only. Finally we assume that the crack
faces are traction free. This leads to the following condition on the domain Ω = Ω0:

2



δ

ΓD

ΓN

ΓN

Cδ Ωδ

Figure 1: Domain Ωδ with crack Cδ

H1 Let Sδ = {x ∈ R
2 : x2 = 0, x1 ≤ δ} for δ > 0. Ω̃ ⊂ R

2 is a bounded domain with
Lipschitz boundary and there exist l, δ0 > 0 such that ∂Ω̃ ∩ Sδ = {(−l, 0)⊤} is a single
point for every |δ| ≤ δ0. We set Ωδ = Ω̃\Sδ and Cδ = Ω̃∩Sδ for |δ| ≤ δ0. The boundary
of Ωδ is split as follows

∂Ωδ = Cδ ∪ ΓN ∪ ΓD,

where Cδ,ΓD,ΓN are pairwise disjoint and denote the crack with length l + δ, the
Dirichlet and the Neumann boundary, respectively. Moreover, ΓD 6= ∅, ΓD ∩ Cδ = ∅,
ΓD and ΓN are open and do not depend on δ, see figure 1.

We call Ω0 actual configuration with crack C0. Note that the domains Ωδ satisfy the cone
condition, [23]. The dissipative energy D(Ω) takes now the form

D(Ωδ) = 2γ(l + δ),

where the fracture toughness γ depends on the material. With the above assumptions and
notations, Griffith’s fracture criterion can be reformulated as follows:

A crack C0 in a domain Ω0 is stationary for a given loading F = (f, h), if the potential
deformation energy, which would be released at a crack extension, is less than the energy

which is needed to create the new surface.

In other words, if for δ > 0

E(Ω0, u0, F ) − E(Ωδ, uδ , F ) ≤ D(Ωδ) −D(Ω0) = 2γδ,

where u0 and uδ are the corresponding displacement fields, then the crack C0 is stationary.
This motivates the following definition:

Definition 2.1 (Energy release rate). For δ ≥ 0 let uδ be the displacement field corresponding
to Ωδ and F = (f, h). The energy release rate, shortly ERR, for the domain Ω0 with crack
C0 and exterior forces F = (f, h) is defined as

ERR(Ω0, F ) = lim
δ→0,
δ>0

1

δ

(

E(Ω0, u0, F ) − E(Ωδ, uδ, F )
)

(1)

= −
(

dE(Ωδ , uδ, F )

dδ

)

∣

∣

∣

δ=0
. (2)

The question now is whether (1) is well defined and whether there exist simple formulas
to calculate the energy release rate. Up to now we did not specify the underlying material
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model. It is shown for linear elastic materials, i.e. Wel(ε) = 1
2Cε : ε, where C denotes the

fourth order, symmetric and positive definite elasticity tensor, that the energy release rate
is well defined and can be expressed through Griffith’s formula, the J-integral or via stress
intensity factors, [6, 18, 24]. In this paper we focus on energy densities Wel which correspond
to power-law hardening models.

2.2 Notation

The following notation is used for m× d-matrices θ, τ ∈ R
m×d:

θ : τ = tr(τ⊤θ) = tr(θ⊤τ) =
m
∑

i=1

d
∑

j=1

θijτij, |θ| =
√
θ : θ.

For P ∈ R
d and R > 0, the set BR(P ) = {x ∈ R

d : |x− P | < R} denotes the open ball
with centre P and radius R. Let us note that we do not distinguish in our notation between
scalars, vectors etc. In some special cases we write e.g. Lp(Ω,Rm) for vector valued functions
u : Ω → R

m being p-integrable.

2.3 The Ramberg/Osgood model

We consider a physically nonlinear elastic material model, where the constitutive relation is
given by a power-law like relation ship. In the frame-work of deformation theory of plasticity
such models are frequently applied for the description of elastic-plastic materials with low
proportionality limit and which show strain hardening behaviour. Examples for such materials
are stainless steel alloys or aluminium alloys. The particular model we consider here was first
proposed by W. Ramberg and W.R. Osgood [26] and reads as follows for Ω ⊂ R

2:
Find a displacement field u : Ω → R

2 and a stress tensor field σ : Ω → R
2×2
sym such that it

holds for given volume and surface force densities f and h and for a given displacement g on
ΓD:

div σ + f = 0 in Ω, (3)

ε(u) −Aσ − α
∣

∣σD
∣

∣

q−2
σD = 0 in Ω, (4)

σ~n = h on ΓN , (5)

u = g on ΓD. (6)

Here, σD = σ − 1
2 trσI is the deviatoric part of σ, q ≥ 2 the strain hardening coefficient,

α > 0 a material parameter depending on the yield stress, ~n the exterior unit normal vector
and A the inverse of the elasticity matrix (tensor of elastic compliances). It is assumed that
A is symmetric and positive definite, i.e.

Aijkl = Aklij = Ajikl and
2
∑

i,j,k,l=1

Aijklσijσkl = (Aσ) : σ ≥ cA |σ|2 . (7)

We assume here that q ≥ 2 since typical values for q range from 5 − 8 for austenitic steel
alloys [27] and 20 − 45 for aluminium alloys [25, 30]. The model is known in literature also
as Norton/Hoff model and we refer to [27, 30, 4] for more details on physical aspects.
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The complementary energy density corresponding to constitutive relation (4) is given by

Wc(σ) =
1

2
(Aσ) : σ +

α

q

∣

∣σD
∣

∣

q
(8)

for σ ∈ R
2×2
sym and fixed q ≥ 2 and the constitutive equation (4) can be rewritten as ε(u) =

DWc(σ) with DWc(σ)ij = ∂Wc(σ)
∂σij

. The complementary energy density Wc is strictly convex

and the corresponding stored strain energy density Wel is defined as the conjugate function
of Wc in the sense of convex analysis [35, 7]:

∀ ε ∈ R
2×2
sym Wel(ε) = sup

τ∈R
2×2
sym

(

τ : ε−Wc(τ)
)

. (9)

To the author’s knowledge an explicit formula for Wel is unknown.

Lemma 2.2. There exist constants c0, . . . , c4 > 0 such that for every ε ∈ R
2×2
sym

−c0 + c1 |tr ε|2 + c2
∣

∣εD
∣

∣

p ≤Wel(ε) ≤ c3 |tr ε|2 + c4
∣

∣εD
∣

∣

p
(10)

where 1
p + 1

q = 1 and q ≥ 2 is the exponent from (4). Moreover, Wel is strictly convex,
continuously differentiable and it holds

Wel(ε) +Wc(σ) = σ : ε ⇔ DWel(ε) = σ ⇔ ε = DWc(σ). (11)

Remark 2.3. Estimate (10) follows by the same arguments as in [32, Chapter III, lemma 1.2],
see also [20]. The remaining assertions follow from classical theorems in convex analysis and
in particular from [35, Prop. 51.5].

As can be seen from estimate (10), the density Wel has different growth properties with
respect to tr ε and εD. Therefore, function spaces are needed which take into account this
behaviour. Appropriate spaces were first introduced and studied by G. Geymonat and P. Su-
quet, [12].

2.4 Function spaces and weak formulations

For s > 0, p ∈ (1,∞), we denote by W s,p(Ω) the usual Sobolev-Slobodeckij spaces [1, 14].
Let Ω ⊂ R

d, d ≥ 2, be a domain and r, s ∈ (1,∞).

Lr,s(Ω) = {σ : Ω → R
d×d
sym : σD ∈ Lr(Ω), trσ ∈ Ls(Ω)},

Σr,s(Ω) = {σ ∈ Lr,s(Ω) : div σ ∈ Lr(Ω)},
U r,s(Ω) = {u : Ω → R

d : u ∈ Lr(Ω), εD(u) ∈ Lr(Ω), tr ε(u) ∈ Ls(Ω)}.

These spaces are endowed with the following natural norms:

‖σ‖Lr,s(Ω) =
∥

∥σD
∥

∥

Lr(Ω)
+ ‖tr σ‖Ls(Ω) , ‖σ‖Σr,s(Ω) = ‖σ‖Lr,s(Ω) + ‖div σ‖Lr(Ω) ,

‖u‖Ur,s(Ω) = ‖u‖Lr(Ω) +
∥

∥εD(u)
∥

∥

Lr(Ω)
+ ‖tr ε(u)‖Ls(Ω)

and are reflexive and separable Banach-spaces [12]. Moreover, Korn’s and Poincaré/Friedrichs’
inequalities hold under suitable assumptions on r, s:

5



Lemma 2.4. [12] Let Ω ⊂ R
d be a bounded domain which satisfies the cone condition.

Korn’s inequality: Let r ∈ (1,∞). The spaces U r,r(Ω) and W 1,r(Ω) have the same elements
and the norms ‖·‖W 1,r(Ω) and ‖·‖Ur,r(Ω) are equivalent. That means that there exist

constants cK1 , c
K
2 > 0 such that for every u ∈W 1,r(Ω)

cK1 ‖u‖W 1,r(Ω) ≤ ‖u‖Lr(Ω) + ‖ε(u)‖Lr(Ω) ≤ cK2 ‖u‖W 1,r(Ω) . (12)

Poincaré/Friedrichs’ inequality: Let 1 < r ≤ s <∞. If V ⊂ U r,s(Ω) is a closed subspace
with the property u ∈ V, ε(u) = 0 ⇒ u = 0, then there exists a constant cPF > 0 such
that for every u ∈ V

cPF ‖ε(u)‖Lr,s(Ω) ≥ ‖u‖Lr(Ω) . (13)

Remark 2.5. Korn’s inequality is proved e.g. in [12] for bounded domains with Lipschitz
boundaries. Taking into account that bounded domains which satisfy the cone condition can
be written as the union of a finite number of Lipschitz domains, Korn’s inequality can be
carried over to that case, too. The proof of (13) is given in [12] for Lipschitz domains and is
based on a Sobolev embedding theorem. Since this theorem is also valid for domains satisfying
the cone property [23], the proof in [12] covers also the situation in lemma 2.4.

Finally we have the following relation between Σr,s(Ω) and Σr,r(Ω):

Lemma 2.6. Let Ω ⊂ R
d be a bounded domain which satisfies the cone condition, 1 < s ≤

r <∞. The spaces Σr,s(Ω) and Σr,r(Ω) are equal and the corresponding norms are equivalent.

Remark 2.7. This lemma is based on Bogovskĭı’s theorem [11, Theorem 3.1] and an idea by
M. Fuchs [10] and is proved in [19, 20] for bounded Lipschitz domains. Since Bogovskĭı’s
theorem is also valid for bounded domains satisfying the cone condition, the proof from [19]
applies directly to the situation in lemma 2.6.

It is convenient to work with both weak formulations, the displacement based formulation
Pδ and the stress based formulation Qδ here below. We define

Ωδ,+ = Ωδ ∩ {x ∈ R
2 : x2 > 0}, Ωδ,− = Ωδ ∩ {x ∈ R

2 : x2 < 0} (14)

and assume H2:

H2 q ≥ 2, p = q′ = q
q−1 ∈ (1, 2), 0 ≤ δ ≤ δ0, f ∈ Lq(Ω̃), g ∈ Up,2(Ω0), H ∈ W 1,q(Ω0,R

2×2
sym)

with H
∣

∣

Ωδ,±
~n± = 0 on Cδ0 , where ~n+ = (0,−1)⊤ and ~n− = (0, 1)⊤.

The stress based weak formulation for (3)-(6) reads as follows:

Qδ Find a stress field σδ ∈ Lq,2(Ωδ) and a displacement field uδ ∈ Up,2(Ωδ) with u
∣

∣

ΓD
= g
∣

∣

ΓD

such that it holds for every τ ∈ Lq,2(Ωδ) and v ∈ Up,2(Ωδ) with v
∣

∣

ΓD
= 0:

∫

Ωδ

DWc(σδ) : τ dx =

∫

Ωδ

ε(uδ) : τ dx, (15)

∫

Ωδ

σδ : ε(v) dx =

∫

Ωδ

(f + divH)v dx+

∫

Ωδ

H : ε(v) dx. (16)
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Note that Green’s formula applied to Ω+ and Ω− separately implies
∫

Ωδ

v divH dx+

∫

Ωδ

H : ε(v) dx =

∫

ΓN

v(H~n) ds

for every v ∈ Up,2(Ωδ) with u
∣

∣

ΓD
= 0. The requirement H~n = 0 on Cδ realises the assumption

that the crack faces are traction free. The displacement based formulation reads

Pδ Find a displacement field uδ ∈ Up,2(Ωδ) with uδ

∣

∣

ΓD
= g

∣

∣

ΓD
such that it holds for every

v ∈ Up,2(Ωδ) with v
∣

∣

ΓD
= 0

∫

Ωδ

DWel(ε(uδ)) : ε(v) dx =

∫

Ωδ

(f + divH)v dx+

∫

Ωδ

H : ε(v) dx. (17)

Finally we consider the following minimisation problem for 0 ≤ δ ≤ δ0:

Mδ Let F = (f,H~n). Find a displacement field uδ ∈ Up,2(Ωδ) with uδ

∣

∣

ΓD
= g

∣

∣

ΓD
such that

it holds for every v ∈ Up,2(Ωδ) with v
∣

∣

ΓD
= g
∣

∣

ΓD

Iel(Ωδ, uδ) −W (Ωδ, uδ , F ) ≤ Iel(Ωδ, v) −W (Ωδ, v, F ). (18)

Here, Iel(Ωδ, v) =
∫

Ωδ
Wel(ε(v)) dx with Wel from (9) and W (Ωδ, v, F ) =

∫

Ωδ
(f+divH)v dx+

∫

Ωδ
H : ε(v) dx.

Theorem 2.8. Let H1 and H2 be satisfied. Problems Qδ, Pδ and Mδ are uniquely solvable
and equivalent and Iel is Fréchet-differentiable with 〈DIel(Ωδ, ε(v1)), ε(v2)〉 =

∫

Ωδ
DWel(ε(v1)) :

ε(v2) dx for every v1, v2 ∈ Up,2(Ωδ). Note that σδ ∈ Σq,2(Ωδ) due to the assumptions
on f and thus σδ ∈ Lq(Ωδ) due to lemma 2.6. Finally it holds for the weak solution
(uδ, σδ) ∈ Up,2(Ωδ) × Σq,q(Ωδ):

Iel(Ωδ, uδ) + Ic(Ωδ, σδ) =

∫

Ωδ

σδ : ε(uδ) dx.

Here, Ic(Ωδ, σδ) =
∫

Ωδ
Wc(σδ) dx.

Proof. The theorem follows with standard arguments from convex analysis, see e.g. [35,
Prop. 51.5] and from the direct method in the calculus of variations. Note that Pδ is the
weak Euler-Lagrange equation of Mδ .

2.5 A priori estimates and regularity

In the next lemma we show that weak solutions are uniformly bounded with respect to the
parameter δ. Such estimates are essential in the derivation of formulas for the energy release
rate.

Lemma 2.9. Assume H1 and H2. There exists a constant c̃ > 0 such that it holds for every
0 ≤ δ ≤ δ0 and every weak solution (uδ , σδ) ∈ Up,2(Ωδ) × Lq,2(Ωδ):

‖ε(uδ)‖Lp,2(Ωδ) , ‖uδ‖W 1,p(Ωδ) ≤ c̃, (19)

‖σδ‖Lq,2(Ωδ) , ‖trσδ‖Lq(Ωδ) ≤ c̃. (20)
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Proof. Note first that the constants in Poincré/Friedrichs’ inequality are uniformly bounded
with respect to δ ∈ [0, δ0], i.e. there exist c1, c2 > 0 such that

c1 ≤ cPF
δ ≤ c2 (21)

for every δ ∈ [0, δ0], and similar for the constants in Korn’s inequality. This is due to
V p,2(Ωδ1) ⊂ V p,2(Ωδ2) for δ1 ≤ δ2.

We prove now (19)-(20). The occurring numbers c may vary from line to line but they are
independent of δ. Choosing τ = σδ and v = uδ − g as test functions for the weak formulation
Qδ, adding both equations and applying the Hölder and the Poincaré/Friedrichs inequality
yields

‖σδ‖2
L2(Ωδ) +

∥

∥σD
δ

∥

∥

q

Lq(Ωδ)
≤ 1

min{cA, α}
(

2(‖σδ‖Lq,2(Ωδ) + ‖H‖Lq,2(Ωδ)) ‖ε(g)‖Lp,2(Ωδ)

+ (‖f‖Lq(Ωδ) + ‖divH‖Lq(Ωδ)) ‖uδ − g‖Lp(Ωδ)

+ 2 ‖H‖Lq,2(Ωδ) ‖ε(uδ)‖Lq,2(Ωδ)

)

. (22)

By Poincaré/Friedrichs’ inequality (13), (21) and the triangle inequality one obtains

‖uδ − g‖Lp(Ωδ) ≤ c(‖ε(uδ)‖Lp,2(Ωδ) + ‖ε(g)‖Lp,2(Ωδ)) (23)

and c is independent of δ due to (21). Thus there exists a constant c which is independent of
δ such that

‖σδ‖2
L2(Ωδ) +

∥

∥σD
δ

∥

∥

q

Lq(Ωδ)
≤ c
(

1 + ‖σδ‖Lq,2(Ωδ) + ‖ε(uδ)‖Lp,2(Ωδ)

)

. (24)

It follows from the constitutive law (4) and inequality (88) that

|tr ε(uδ)| = |Aσδ| ≤ c |σδ| , (25)

|ε(uδ)|p ≤ cp(|Aσδ|p + αp
∣

∣σD
δ

∣

∣

q
) ≤ c(|σδ|2 + 1 +

∣

∣σD
δ

∣

∣

q
). (26)

The last estimate follows from Young’s inequality with |σδ|p ≤ p
2 |σδ|2 + 2−p

2 for p ∈ (1, 2).
Thus

‖tr ε(uδ)‖2
L2(Ωδ) +

∥

∥εD(uδ)
∥

∥

p

Lp(Ωδ)
≤ c
(

‖σδ‖2
L2(Ωδ) +

∥

∥σD
δ

∥

∥

q

Lq(Ωδ)
+ 1
)

(24)

≤ c
(

1 + ‖σδ‖Lq,2(Ωδ) + ‖ε(uδ)‖Lp,2(Ωδ)

)

. (27)

The constant c is independent of δ. Adding (24) and (27) yields

‖tr ε(uδ)‖2
L2(Ωδ) +

∥

∥εD(uδ)
∥

∥

p

Lp(Ωδ)
+ ‖trσδ‖2

L2(Ωδ) +
∥

∥σD
δ

∥

∥

q

Lq(Ωδ)

≤ c
(

1 + ‖tr ε(uδ)‖L2(Ωδ) +
∥

∥εD(uδ)
∥

∥

Lp(Ωδ)
+ ‖trσδ‖L2(Ωδ) +

∥

∥σD
δ

∥

∥

Lq(Ωδ)

)

(28)

and the constant c is independent of δ. Since the left hand side of (28) grows at least with
power p > 1 and the right hand side grows linearly, it follows that there exists a constant
c̃ > 0, which depends on c but not on δ, such that

‖ε(uδ)‖Lp,2(Ωδ) + ‖σδ‖Lq,2(Ωδ) ≤ c̃. (29)
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Combining (29) with (23) and (21) yields (19). Since σδ is a weak solution it holds σδ ∈
Σq,q(Ω), see theorem 2.8. Furthermore, lemma 2.6 implies that there exists a constant cδ > 0
such that

‖trσδ‖Lq(Ωδ) ≤ cδ ‖trσδ‖L2(Ωδ)

(29)

≤ cδ c̃.

It follows in the same way as for the constant cPF
δ of the Poincaré/Friedrichs inequality that

there exist c1, c2 > 0 with c1 ≤ cδ ≤ c2 for every δ ∈ [0, δ0]. This finishes the proof of (20).

For the derivation of our main result, theorem 3.1, we need also higher differentiability of weak
solutions near plane parts of the boundary and in the interior of the domain. Specialised to
the two dimensional domains Ωδ it holds [2, 20, 19]:

Theorem 2.10. Assume H1, H2 and let (uδ, σδ) ∈ Up,2(Ωδ) × Σq,q(Ωδ) be a weak solution
of Pδ and Qδ.
Local regularity: For every ǫ > 0

σδ, div uδ ∈W 1,2
loc (Ωδ) ∩W

2
q
−ǫ,q

loc (Ωδ), (30)

uδ ∈W 2,2−ǫ
loc (Ωδ). (31)

Regularity near the crack face Cδ: Let P ∈ Cδ and r > 0 such that Br(P ) ∩
(

∂Ω̃ ∪
{(δ, 0)⊤}

)

= ∅. Let furthermore B+
r (P ) = Br(P ) ∩ Ωδ,+ with Ωδ,+ from (14). It holds for

every ǫ > 0:

σδ, div uδ ∈W
1

q−1
−ǫ,q(B+

r (P )), (32)
∣

∣σD
δ

∣

∣

q−2
σD

δ ∈W 1,p−ǫ(B+
r (P )), (33)

uδ ∈W 2,p−ǫ(B+
R(P )), (34)

∂

∂x1
uδ ∈W 1,p(B+

r (P )). (35)

Moreover, ‖∂1uδ‖W 1,p(B+
r (P )) ≤ cδ ≤ ĉ, where cδ depends continuously on cK1,δ, c

K
2,δ, c

PF
δ ,

‖f‖Lq(Ωδ), ‖σδ‖Lq(Ωδ), ‖uδ‖W 1,p(Ωδ). Here, cK1,δ, c
K
2,δ, c

PF
δ , are the constants in Korn’s inequal-

ity (12) and in Poincaré/Friedrichs’ inequality (13), respectively. Since all these quantities
are bounded with respect to δ ∈ [0, δ0], see lemma 2.9, the constants cδ are bounded as well by
a new constant ĉ.

Remark 2.11. For a proof of the local regularity results we refer to [2] and [20, Theorem 2.3].
The regularity near plane parts of the boundaries and the crack face Cδ is proved with a
difference quotient technique in [20, Theorems 2.19, 3.33] based on the ideas from [9]. Let
us note that local regularity results for the displacement and stress fields of a closely related
material model were derived by G.A. Seregin [29] and M. Fuchs [10] and correlate with the
results cited above.

3 Griffith-formula and J-integral

We introduce two further hypotheses:

H3 θ ∈ C∞
0 (Ω̃) with θ = 1 in a neighbourhood of the crack tip (0, 0)⊤, f ∈ C1(Ω̃).
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H3’ f ∈ C1(Ω̃) and there exists R > 0 such that BR(0) ⊂ Ω̃ and ∂
∂x1

f
∣

∣

BR(0)
= 0. Further-

more, Γ ⊂ BR′(0), R′ < R, is a not self-intersecting Lipschitz continuous path around
the crack tip (0, 0)⊤ with normal vector ~n pointing into the surrounded domain. For
example, Γ = ∂BR′/2(0), ~n = −x/ |x| , x ∈ Γ.

Theorem 3.1. Assume H1, H2 and let (u0, σ0) ∈ Up,2(Ω0)×Σq,q(Ω0) be a weak solution of
P0 and Q0.

1. Assume in addition that H3 is satisfied. The energy release rate is well defined for the
Ramberg/Osgood model and the Griffith-formula is valid:

ERR(Ω0, F ) =

∫

Ω0

σ0 : (∂1u0 ⊗∇θ)sym dx+

∫

Ω0

u0 ∂1(θf) dx

−
∫

Ω0

(

σ0 : ε(u0) −Wc(σ0)
)

∂1θ dx. (36)

2. Let H1, H2 and H3’ be satisfied. Then

ERR(Ω0, F ) =

∫

Γ
(σ0~n) ∂1u0 ds−

∫

Γ

(

σ0 : ε(u0) −Wc(σ0)
)

n1 ds+

∫

Γ
ufn1 ds. (37)

This path integral is called J-integral.

The integrands of (36) and (37) are L1-functions and the formulas are independent of the
special choice of the function θ and the path Γ.

Remark 3.2. The J-integral and its generalisations was first discovered by J.D. Eshelby [8,
1951] and applied in fracture mechanics by G.P. Cherepanov [5, 1967] and J. Rice [28, 1968].
In literature it is also called Cherepanov-Rice integral and is a frequently used quantity in
fracture criteria for linear and nonlinear material models [3, 15, 30]. As we already mentioned
in the introduction, a mathematical rigorous derivation of (36)-(37) taking into account the
actual regularity of weak solutions is to the author’s knowledge carried out for linear elastic
materials, only: (36)-(37) is proved by P. Destuynder and M. Djaoua [6, 1981] for traction
free stress faces and by A.M. Khludnev and J. Sokolowski [17, 18, 1999/2000] for mutual non-
penetration conditions on the crack faces. Furthermore, V.G. Maz’ya and S.A. Nazarov [24,
1987] proved a formula for the energy release rate which is based on stress intensity factors. In
this paper we transfer the arguments from the linear case [6, 17, 18] to the Ramberg/Osgood
model in order to obtain (36)-(37) taking into account the actual regularity of solutions
formulated in theorem 2.10.

4 Proof of theorem 3.1

The proof of theorem 3.1 is long and technical. The arguments in [6, 17, 18], where this
theorem is proved for linear elastic materials, have to be transferred to our case. The main
idea there is to construct a diffeomorphism Tδ : Ωδ → Ω0 and to transform the integral
expressions in the difference quotient δ−1(E(Ω0, u0, F ) − E(Ωδ , uδ, F )) to the fixed domain
Ω0. The limes is then calculated in the transformed expressions. Our proof is split into the
following steps:
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Step 1: Let (uδ, σδ) be the weak solution of problem Pδ. By (uδ, σδ) we denote the trans-
formed displacement and stress fields: uδ = uδ ◦ T−1

δ , σδ = σδ ◦ T−1
δ with Tδ from

(38) here below. In the first step we prove that uδ − u0 and σδ − σ0 are admissible
test functions for P0 and we show the convergence uδ → u0, σ

δ → σ0 for δ → 0. For
this step regularity results for uδ and the uniform a-priori estimates for uδ and σδ are
needed.

Step 2: Griffith’s formula is deduced based on the convergence results from the first step.
The main tools are a mean value theorem for Fréchet differentiable functionals and
Lebesgue’s convergence theorem.

Step 3: The J-integral is derived from Griffith’s formula by a generalised Green’s formula.
For this step the regularity results listed in theorem 2.10 are essential. Note that we
do not need in our proof the actual regularity and structure of the displacement and
stress fields near the crack tip. In particular we do not make any assumptions on the
asymptotic behaviour of u0 or σ0 near the crack tip.

4.0.1 Step 1: Convergence of uδ and σδ

For δ ∈ [0, δ0] the domain Ωδ is transformed to Ω0 in the following way: let θ ∈ C∞
0 (Ω̃) be a

function according to H3. We define

Tδ : Ωδ → Ω0, x 7→ y = Tδ(x) = x− δ

(

θ(x)
0

)

. (38)

It is

∇xTδ(x) =

(

1 − δθ,1(x) −δθ,2(x)
0 1

)

, detδ(x) = det∇x(Tδ(x)) = 1 − δθ,1(x), (39)

where we use the abbreviation θ,i(x) = ∂
∂xi
θ(x) for i ∈ {1, 2}. The mapping Tδ is an element

of C∞(Ωδ) and det∇x(Tδ(x)) > 0 if δ is small enough. Therefore Tδ is a diffeomorphism [6].
For functions vδ : Ωδ → R

2 we introduce the notation

vδ(y) = vδ(T
−1
δ (y)) for y ∈ Ω0.

Derivatives are transformed as follows for x ∈ Ωδ and y ∈ Ω0:

∇xvδ(T
−1
δ (y)) = ∇yv

δ(y) − δ

(

∂

∂y1
vδ(y) ⊗∇xθ(T

−1
δ (y))

)

. (40)

For a function v : Ω0 → R
2, y 7→ v(y) with vδ(x) = v(Tδ(x)) for x ∈ Ωδ it holds

∇yv(Tδ(x)) =
1

detδ(x)
∇xvδ(x) + δ

1

detδ(x)
∇xvδ(x)

(

0 θ,2(x)
0 −θ,1(x)

)

. (41)

In the sequel we use the following abbreviations for y ∈ Ω0

∇xθ
δ(y) = ∇xθ(T

−1
δ (y)), detδ(y) = detδ(T

−1
δ (y)) = det(∇xTδ(x))

∣

∣

x=T−1
δ (y)

.

11



Ω∗

r
δ

Figure 2: Example for the notation

Finally we define

Ω∗ = ∪δ∈[0,δ0] supp
(

∇xθδ
)

= ∪δ∈[0,δ0]Tδ(supp∇xθ). (42)

If δ0 is small enough then it holds

dist(Ω∗, ∂Ω̃) > 0

and there exists r > 0 such that Br(0) ∩ Ω∗ = ∅ which means that the set Ω∗ has a positive
distance to the boundary of Ω̃ and also to the crack tip (0, 0), see figure 2. Therefore the
regularity results from theorem 2.10 hold on Ωδ ∩ Ω∗.

The following lemma states that if a weak solutions (uδ, σδ) of Pδ is transformed by
Tδ then the transformed functions are in the same class of spaces as the original functions.
Due to the anisotropic structure of the space Up,2 this is not obvious and in general the set
Up,2(Ωδ)◦T−1

δ is not contained in Up,2(Ω0). But for weak solutions the differential properties
are preserved after the transformation.

Lemma 4.1. Let (uδ, σδ) ∈ Up,2(Ωδ) × Lq,2(Ωδ) be a weak solution of Pδ. Then it holds for
every δ ∈ [0, δ0]

uδ = uδ ◦ T−1
δ ∈ Up,2(Ω0) with uδ

∣

∣

ΓD
= g, (43)

u0 ◦ Tδ ∈ Up,2(Ωδ) with u0 ◦ Tδ

∣

∣

ΓD
= g. (44)

Furthermore Tδ induces an isomorphism between the spaces W 1,r(Ω0) and W 1,r(Ωδ) in the
following way for r ∈ (1,∞):

Tδ : W 1,r(Ω0) →W 1,r(Ωδ) : u 7→ u ◦ Tδ.

For fixed r ∈ (1,∞) the operator norms of Tδ and T−1
δ are bounded with respect to δ ∈ [0, δ0].

A similar result holds for the spaces Lr,s(Ω0) and Lr,s(Ωδ) with r, s ∈ (1,∞).

Proof. Note that the space Up,2(Ωδ) is equal to

Up,2(Ωδ) = {u ∈W 1,p(Ωδ) : tr ε(u) = div u ∈ L2(Ωδ)}

due to Korn’s inequality. By simple calculations one can see immediately that uδ ◦ T−1
δ ∈

W 1,p(Ω0) and u0 ◦ Tδ ∈ W 1,p(Ωδ). Furthermore Tδ

∣

∣

ΓD
= id since supp θ ∩ ΓD = ∅ by

12



assumptions H1 and H3. Therefore uδ ◦ T−1
δ

∣

∣

ΓD
= g = u0 ◦ Tδ

∣

∣

ΓD
. It remains to prove that

tr εx(u0 ◦ Tδ) ∈ L2(Ωδ) and tr εy(u
δ) ∈ L2(Ω0). After a change of coordinates we obtain

∫

Ωδ

| tr εx(u0 ◦ Tδ(x))|2 dx =

∫

Ω0

1

detδ(y)
|tr εx(u0(y))|2 dy

(40)

≤ c

(

‖tr εy(u0)‖2
L2(Ω0) + δ2

∫

Ω0

∣

∣

∣

∣

∂

∂y1
u0(y)

∣

∣

∣

∣

2 ∣
∣

∣
∇xθ

δ
∣

∣

∣

2
dy

)

. (45)

The first term is finite since u0 ∈ Up,2(Ω0). Furthermore it is supp(∇xθ
δ) ⊂ Ω∗ and by (31),

(35) and the Sobolev embedding theorems ∂
∂y1

u0

∣

∣

Ω∗
∈ W 1,p(Ω∗) ⊂ L2(Ω∗). Therefore the

second term in (45) is finite as well and relation (44) is proved. In a similar way one can show
relation (43). The mapping properties of Tδ follow by straight forward calculations.

The following corollary is an immediate consequence of lemmata 2.9, 4.1 and of theorem 2.10.

Corollary 4.2. There exists a constant C > 0 which is independent of δ such that it holds
for every δ ∈ [0, δ0] and every weak solution (uδ, σδ) ∈ Up,2(Ωδ) × Lq,2(Ωδ) of Pδ:

∥

∥

∥
uδ
∥

∥

∥

W 1,p(Ω0)
,
∥

∥

∥
σδ
∥

∥

∥

Lq,2(Ω0)
,
∥

∥

∥
tr σδ

∥

∥

∥

Lq,2(Ω0)
≤ c, (46)

∥

∥

∥

∥

∂

∂x1
uδ

∥

∥

∥

∥

L2(Ω∗∩Ωδ)

≤ c. (47)

As before, uδ = uδ ◦ T−1
δ etc.

We are now ready to formulate the convergence properties of the transformed solutions
uδ and σδ for δ → 0.

Lemma 4.3. For δ ∈ [0, δ0] let (uδ, σδ) ∈ Up,2(Ωδ) × Lq,2(Ωδ) be the weak solution of Pδ.
There exists a constant c > 0 such that for every δ ∈ [0, δ0]

∥

∥

∥
σδ − σ0

∥

∥

∥

L2(Ω0)
≤ cδ

1
2 , (48)

∥

∥

∥
σδ,D − σD

0

∥

∥

∥

Lq(Ω0)
≤ cδ

1
q , (49)

∥

∥

∥
εy(u

δ) − εy(u0)
∥

∥

∥

Lp,2(Ω0)
≤ cδ

1
2 , (50)

∥

∥

∥
ε̃δ(u

δ) − εy(u0)
∥

∥

∥

Lp,2(Ω0)
≤ cδ

1
2 . (51)

Here we have set for y ∈ Ω0

ε̃δ(u
δ)(y) = εy(u

δ(y)) − δ

(

∂

∂y1
uδ(y) ⊗∇xθ

δ(y)

)

sym

. (52)

Remark 4.4. It is not clear whether the exponents in (48)-(51) are optimal. In [18], the
sharper result

∥

∥uδ − u0

∥

∥

W 1,2(Ω0)
≤ cδ is shown for linear elasticity. For the proof of the main

theorem on Griffith’s formula it is sufficient to have convergence of uδ → u0, the particular
estimate (50) is not relevant.
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Proof. The lemma is proved by transforming problem Pδ to the domain Ω0 and by inserting
σδ − σ0 and uδ − u0 as test functions. The a-priori estimates from lemma 2.9 and corollary
4.2 play an essential role.

Note first that the function H in (16) may be replaced by

H̃ = ηH, (53)

where η ∈ C∞(R2×2) with η
∣

∣

∂Ω̃
= 1 and suppη ∩ supp θ = ∅, since it holds due to Green’s

formula for every v ∈ Up,2(Ωδ) with v
∣

∣

ΓD
= 0:

∫

Ωδ

ηH : ε(v) dx +

∫

Ωδ

v div(ηH) dx =

∫

Ωδ

H : ε(v) dx+

∫

Ωδ

v divH dx.

Let (uδ, σδ) ∈ Up,2(Ωδ)×Lq,2(Ωδ) be the weak solution of Pδ and σδ = σδ◦T−1
δ , uδ = uδ ◦T−1

δ .
Since Tδ is an isomorphism between the spaces Lq,2(Ω0) and Lq,2(Ωδ) it follows after a change
of coordinates in equation (15) that uδ and σδ satisfy for every τ ∈ Lq,2(Ω0)

∫

Ω0

1

detδ
DWc(σ

δ) : τdy=

∫

Ω0

1

detδ

(

εy(u
δ) − δ

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

)

: τdy. (54)

Moreover it follows from the weak formulation (16) that σδ satisfies the following equation
for every v ∈W 1,p(Ω0) with v ◦ Tδ ∈ V p,2(Ωδ) = {w ∈ Up,2(Ωδ) : w

∣

∣

ΓD
= 0}

∫

Ω0

1

detδ
σδ :

(

εy(v) − δ

(

∂

∂y1
v ⊗∇xθ

δ

)

sym

)

dy

=

∫

Ω0

v

detδ

(

f δ + divx H̃
δ
)

dy +

∫

Ω0

1

detδ
H̃δ : ε̃δ(v) dy. (55)

As before, f δ = f ◦ T−1
δ etc.; ε̃δ is defined in (52). Due to lemma 4.1 it holds

• σδ − σ0 ∈ Lq,2(Ω0) is an admissible test function for P0 and for (54),

• uδ − u0 ∈ V p,2(Ω0) is an admissible test function for P0,

• (uδ − u0) ◦ Tδ ∈ V p,2(Ωδ) and therefore uδ − u0 is admissible for (55).

Testing P0 and equations (54)-(55) with σδ − σ0 and uδ − u0 and subtracting corresponding
equations leads to

∫

Ω0

(

1

detδ
DWc(σ

δ) −DWc(σ0)

)

: (σδ − σ0) dx

=

∫

Ω0

(

1

detδ
εy(u

δ) − εy(u0) −
δ

detδ

(

∂

∂y1
uδ ⊗∇xθ

δ

))

: (σδ − σ0) dy. (56)
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For (55) we obtain
∫

Ω0

( 1

detδ
σδ − σ0

)

: (εy(u
δ) − εy(u0)) dy

= δ

∫

Ω0

1

detδ

(

∂

∂y1
(uδ − u0) ⊗∇xθ

δ

)

: σδ dy

+

∫

Ω0

(

1

detδ
(f δ + (divx H̃)δ) − f − divy H̃

)

(uδ − u0) dy

+

∫

Ω0

(

1

detδ
H̃δ − H̃

)

: (εy(u
δ) − εy(u0)) dx

− δ

∫

Ω0

1

detδ
H̃δ :

(

∂

∂y1
(uδ − u0) ⊗∇xθ

δ

)

dy (57)

By the definition of H̃ we have supp H̃ ∩ supp θ = ∅ and therefore Tδ

∣

∣

supp H̃
= id which

implies supp(H̃δ) = T δ(supp H̃) = supp H̃. Moreover H̃δ(y) = H̃(y) for every y ∈ Ω0 and
thus 1

detδ H̃
δ − H̃ = 0 for every y ∈ Ω0 and also 1

detδ (divx H̃)δ − divy H̃ = 0 in Ω0. These

considerations show that the terms with H̃ vanish in (57). Note further that

( 1

detδ
DWc(σ

δ) −DWc(σ0)
)

: (σδ − σ0)

=
(

DWc(σ
δ) −DWc(σ0)

)

: (σδ − σ0) + δ
θδ
,1

detδ
DWc(σ

δ) : (σδ − σ0), (58)

( 1

detδ
εy(u

δ) − εy(u0)
)

: (σδ − σ0)

=

(

1

detδ
σδ − σ0

)

: (εy(u
δ) − εy(u0)) + δ

θδ
,1

detδ

(

εy(u0) : σδ − σ0 : εy(u
δ)
)

, (59)

where θδ
,i = θ,i(T

−1
δ (·)), i = 1, 2. Combining equations (56)-(59) results in

∫

Ω0

(

DWc(σ
δ) −DWc(σ0)

)

: (σδ − σ0) dy

= −δ
∫

Ω0

(

θδ
,1

detδ
DWc(σ

δ) +
1

detδ

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

)

: (σδ − σ0) dy

+ δ

∫

Ω0

θδ
,1

detδ

(

εy(u0) : σδ − σ0 : εy(u
δ)
)

dy

+ δ

∫

Ω0

1

detδ

(

∂

∂y1
(uδ − u0) ⊗∇xθ

δ

)

: σδ dy

+

∫

Ω0

(

1

detδ
f δ − f

)

(uδ − u0) dy

= δ(I1 + I2 + I3) + I4(δ). (60)

Hölder’s inequality and the uniform a-priori estimates of corollary 4.2 imply the existence of
a constant c1 ≥ 0 such that for every δ ∈ [0, δ0]

|I1 + I2 + I3| ≤ c1. (61)
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Moreover it follows from f ∈ C1(Ω̃) and the uniform a-priori estimates for uδ (corollary 4.2)
that there exists a constant c2 ≥ 0 such that

|I4(δ)| ≤ c2δ. (62)

Inequality (92) from the appendix applied to the left hand side of (60) finally leads to
∥

∥σδ − σ0

∥

∥

2

L2(Ω0)
+
∥

∥σδ,D − σD
0

∥

∥

q

Lq(Ω0)

≤
∥

∥σδ − σ0

∥

∥

2

L2(Ω0)
+

∫

Ω0

(∣

∣σδ,D
∣

∣+
∣

∣σD
0

∣

∣

)q−2∣
∣σδ,D − σD

0

∣

∣

2
dx ≤ cδ (63)

for δ ∈ [0, δ0] and the constant c is independent of δ. This implies estimates (48) and (49).
For the proof of (51) we use the relation ε̃δ(u

δ(y)) = DWc(σ
δ(y)) for y ∈ Ω0. It follows

by Hölder’s inequality, inequality (87) and the uniform a-priori estimates of corollary 4.2 that
∫

Ω0

∣

∣ε̃δ(u
δ) − εy(u0)

∣

∣

p
dy =

∫

Ω0

∣

∣

∣
DWc(σ

δ) −DWc(σ0)
∣

∣

∣

p
dy

(87)

≤ c
∥

∥σδ − σ0

∥

∥

p

L2(Ω0)

+ c

∫

Ω0

(
∣

∣σD,δ
∣

∣+
∣

∣σD
0

∣

∣)
p(q−2)

2

(

(
∣

∣σD,δ
∣

∣+
∣

∣σD
0

∣

∣)
q−2
2

∣

∣σD,δ − σD
0

∣

∣

)p
dy

(48)

≤ cδ
p
2 + c

∥

∥

∥

∣

∣σD,δ
∣

∣+
∣

∣σD
0

∣

∣

∥

∥

∥

q(2−p)
2

Lq(Ω0)

(
∫

Ω0

(

∣

∣σD,δ
∣

∣+
∣

∣σD
0

∣

∣

)q−2 ∣
∣

∣
σD,δ − σD

0

∣

∣

∣

2
dy

)
p
2

(63)

≤ cδ
p
2 , (64)

where the constant c is independent of δ. Moreover, again due to ε̃δ(u
δ) = DWc(σ

δ), it holds

∥

∥tr(ε̃δ(u
δ)) − tr εy(u0)

∥

∥

L2(Ω0)
≤ c
∥

∥σδ − σ0

∥

∥

L2(Ω0)

(48)

≤ cδ
1
2 . (65)

Estimates (64) and (65) imply (51). Finally, (50) follows from (51) and (52) taking into
account (47) and the definition of Ω∗ in (42).

Step 2: Energy release rate and Griffith’s formula

We will now prove that the limes in the definition of the energy release rate, definition 2.1,
exists and that it can be expressed through Griffith’s formula. The following notation is used
for δ ∈ [0, δ0] and v ∈ Up,2(Ωδ)

E(Ωδ, v) =

∫

Ωδ

Wel(ε(v)) dx −
∫

Ωδ

(f + div H̃)v dx−
∫

Ωδ

H̃ : ε(v) dx. (66)

Here, Wel(ε) = supτ∈R
2×2
sym

(τ : ε−Wc(τ)) is the stored strain energy density for Ramberg/Os-

good materials from (9) and H̃ = ηH, see (53). For v ∈W 1,p(Ω0) with ε̃δ(v) ∈ Lp,2(Ω0) (see
(52)) we define

Eδ(Ω0, v) =

∫

Ω0

1

detδ
Wel(ε̃δ(v)) dy −

∫

Ω0

1

detδ
(f δ + divx H̃

δ)v dy

−
∫

Ω0

1

detδ
H̃δ : ε̃δ(v) dy. (67)
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Note that it holds for every weak solution uδ of Pδ:

Eδ(Ω0, u
δ) = E(Ωδ , uδ), Eδ(Ω0, u0) = E(Ωδ , u0 ◦ Tδ).

Taking into account that u0 is a minimiser of E(Ω0, ·) and that uδ is a minimiser of E(Ωδ, ·)
and noting that uδ ◦ T−1

δ is admissible for M0 and u0 ◦ Tδ is admissible for Mδ we obtain for
every δ ∈ (0, δ0]:

δ−1(E(Ω0, u0) − Eδ(Ω0, u0)) = δ−1(E(Ω0, u0) −E(Ωδ , u0 ◦ Tδ))

≤ δ−1(E(Ω0, u0) − E(Ωδ, uδ)) (68)

≤ δ−1(E(Ω0, uδ ◦ T−1
δ ) − E(Ωδ, uδ)) = δ−1(E(Ω0, u

δ) −Eδ(Ω0, u
δ)).

In order to show that the energy release rate limδ→0 δ
−1(E(Ω0, u0)−E(Ωδ, uδ)) is well defined,

we calculate the limes superior of the right hand side in (68) and the limes inferior of the left
hand side and show that they are finite and coincide. We begin with the limes superior. For
δ ∈ (0, δ0] it is

E(Ω0, u
δ) − Eδ(Ω0, u

δ) =

∫

Ω0

Wel(εy(u
δ)) −Wel(ε̃δ(u

δ)) dy

− δ

∫

Ω0

θδ
,1

detδ
Wel(ε̃δ(u

δ)) dy −
∫

Ω0

(f − 1

detδ
f δ)uδ dy

−
∫

Ω0

(

divy H̃ − 1

detδ
divx H̃

δ

)

uδ dy

−
∫

Ω0

(

H̃ − 1

detδ
H̃δ

)

: εy(u
δ) dy

− δ

∫

Ω0

1

detδ
H̃δ :

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

dy

= I1 + . . .+ I6 (69)

From the definition of H̃ it follows supp H̃ ∩ supp θ = ∅ and Tδ

∣

∣

supp H̃
= id. Thus, the terms

I4, I5 and I6 vanish.

Convergence of 1
δ I1: The first term on the right hand side of (69) can be rewritten as

follows
1

δ
I1 =

1

δ

(

Iel(εy(u
δ)) − Iel(ε̃(u

δ))
)

where Iel : Lp,2(Ω0) → R, ε 7→
∫

Ω0
Wel(ε) dy is the stored strain energy for Ramberg/Osgood

materials. Due to theorem 2.8, Iel is Fréchet-differentiable with derivative

〈DIel(ε1), ε2〉Lp,2(Ω0) =

∫

Ω0

DWel(ε1) : ε2 dx

for every ε1, ε2 ∈ Lp,2(Ω0). By the mean value theorem for Fréchet-differentiable functionals
(lemma A.3 in the appendix) there exists a constant tδ ∈ [0, 1] such that

1

δ
I1 =

∫

Ω0

DWel

(

εy(u
δ) − δtδ

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

)

:

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

dy.
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Note that the term
(

∂
∂y1

uδ ⊗∇xθ
δ
)

sym
is an element of Lp,2(Ω0) due to theorem 2.10. From

the convergence results (50)-(51) it follows for δ → 0

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

−→
(

∂

∂y1
u0 ⊗∇yθ

)

sym

in Lp,2(Ω0),

εy(u
δ) − δtδ

(

∂

∂y1
uδ ⊗∇xθ

δ

)

sym

−→ εy(u0) in Lp,2(Ω0).

From the continuity of the Fréchet-derivative DIel of Iel we obtain for δ → 0

1

δ
I1 →

∫

Ω0

DWel(εy(u0)) :

(

∂

∂y1
u0 ⊗∇yθ

)

sym

dy. (70)

Convergence of 1
δ I2: Since θ ∈ C∞

0 (Ω̃), it holds for δ → 0

∂

∂x1
θδ → ∂

∂y1
θ in L∞(Ω0). (71)

Moreover the mapping Wel : Lp,2(Ω0) → L1(Ω0), ε 7→ Wel(ε) is continuous due to estimate
(10) and proposition 26.6 in [36] on Nemytskii-operators. Combining (71) and and the con-
vergence result (51) leads to

1

δ
I2 = −

∫

Ω0

θδ
,1

detδ
Wel(ε̃δ(u

δ)) dy → −
∫

Ω0

Wel(εy(u0))
∂

∂y1
θ dy for δ → 0. (72)

Convergence of 1
δ I3: The following identities are valid for y ∈ Ω0:

−1

δ

(

f(y) − 1

detδ
f δ(y)

)

= −1

δ

(

f(y) − f δ(y)
)

+
θδ
,1

detδ
f δ(y), (73)

y − T−1
δ (y)

y=Tδ(x)
= Tδ(x) − x = −δ

(

θδ(y)
0

)

. (74)

From (71) and assumption H3 we obtain for the second term on the right hand side of (73)

θδ
,1

detδ
f δ → f

∂

∂y1
θ in L∞(Ω0). (75)

The mean value theorem and (74) imply that there exists a constant t(δ,y) ∈ [0, 1] such that
it holds for the first term on the right hand side of (73)

1

δ

(

f(y) − f δ(y)
)

= −∇yf(ξ(δ, y))

(

θδ(y)
0

)

,

where ξ(δ, y) = y−δt(δ,y)

(

θδ(y)
0

)

. Note that ξ(δ, y) converges uniformly on Ω0 to y for δ → 0.

Due to assumption H3, the functions f and ∇yf are uniformly continuous on Ω̃ and therefore

1

δ
(f − f δ) = −∇yf(ξ(δ, ·))

(

θδ

0

)

→ −θ ∂

∂y1
f in L∞(Ω0). (76)
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Combining (75) and (76) we finally arrive at

1

δ
I3 = −1

δ

∫

Ω0

uδ

(

f − 1

detδ
f δ

)

dy →
∫

Ω0

u0
∂

∂y1
(θf) dy (77)

for δ → 0. Summing up (70), (72) and (77) we get

lim sup
δ→0

δ−1(E(Ω0, u0) − E(Ωδ, uδ)) ≤ lim
δ→0

δ−1(E(Ω0, u
δ) − Eδ(Ω0, u

δ))

=

∫

Ω0

DWel(εy(u0)) :

(

∂

∂y1
u0 ⊗∇yθ

)

sym

dy

−
∫

Ω0

Wel(εy(u0))
∂

∂y1
θ dy +

∫

Ω0

u0
∂

∂y1
(θf) dy. (78)

Due to lemma 2.2 the terms Wel(εy(u0)) and DWel(εy(u0)) can be replaced by σ0 : εy(u0) −
Wc(σ0) and σ0, respectively.

The limes inferior of the left hand side in (68) can be calculated similarly and it coincides
with (78). This shows that the energy release rate is well defined and that relation (36) holds.

Step 3: J-integral

The representation of the energy release rate by the J-integral is deduced from Griffith’s
formula with the help of a generalised Green’s formula which we formulate and prove in the
appendix, lemma A.2. The regularity results of theorem 2.10 are fundamental for this step.

Let assumptions H1, H2 and H3’ be satisfied and let θ ∈ C∞
0 (BR(0)) with θ

∣

∣

BR′ (0)
= 1.

Here we use the notation from H3’. The functions f and θ satisfy H3 as well and therefore
Griffith’s formula is valid:

ERR(Ω0, F ) =

∫

Ω0

(σ0∂1u0)∇θ dx+

∫

Ω0

u0f∂1θ dx+

∫

Ω0

θu0∂1f dx

−
∫

Ω0

σ0 : ε(u0)∂1θ dx+

∫

Ω0

Wc(σ0)∂1θ dx

= I1 + . . . + I5. (79)

Using the generalised Green’s formula of lemma A.2 and the regularity results of theorem
2.10 we show that it is possible to integrate (79) by parts. In order to simplify the notation
we assume that the path Γ is a circular path around the crack tip: Γ = ∂BR0(0) for some
R0 < R′, see figure 3. Let us note that all arguments here below can easily be carried over to
the case of general non intersecting Lipschitz paths Γ satisfying H3’.

We set Ω∗ = BR(0)\(BR0(0) ∪ C0). It holds supp∇θ ⊂ Ω∗ and therefore the integration
domains in I1, I2, I4 and I5 can be replaced by Ω∗. Since Ω∗ has a positive distance to the
exterior boundary ∂Ω̃ and also to the crack tip, the regularity results of theorem 2.10 are
valid on Ω∗. It follows from these regularity results that

θ∂1u0 ∈W 1,p(Ω∗),

σ0 ∈ Bq, 1
q−1

−ǫ,q(Ω∗)

for ǫ > 0, where

Bδ,s,γ = {v : Ω∗ → R
d : v ∈W s,δ(Ω∗), div v ∈ Lγ(Ω∗)}
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θ = 0

θ = 1

R′

R0

R

Ω∗

Γ

Figure 3: Circular path Γ

is the space defined in lemma A.2. The parameters δ = q, s = 1
q−1 − ǫ and γ = q satisfy (b)

in lemma A.2 with d = 2. Thus we obtain for I1 by Green’s formula

I1 =

∫

∂Ω∗

θ∂1u0(σ0~n) ds−
∫

Ω∗

θσ0 : ε(∂1u0) dx−
∫

Ω∗

θ∂1u0 div σ0 dx (80)

and the integrands are L1-functions. Theorem 2.10 and assumption H3’ imply

u0f ∈W 1,p−ǫ(Ω∗)

for every ǫ > 0 and therefore, again by lemma A.2,

I2 = −
∫

Ω∗

θ(f∂1u0 + u0∂1f) dx+

∫

∂Ω∗

θu0fn1 ds. (81)

The term I4 can be rewritten as follows with the product rule

I4 = −
2
∑

i,j=1

∫

Ω∗

(

σ0,ij

0

)

∇(θεij(u0)) dx+

∫

Ω∗

θσ0 : ∂1ε(u0) dx.

Regularity theorem 2.10 implies

θεij(u0) ∈W 1,p−ǫ(Ω∗) for ǫ > 0,

(σ0,ij , 0)
T ∈ B(p−ǫ)′, 1

q−1
−ǫ1(ǫ),2

(Ω∗) with ǫ1(ǫ) ց 0 for ǫ→ 0.

Assumption (b) of lemma A.2 is satisfied for δ = (p − ǫ)′, s = 1
q−1 − ǫ1(ǫ), γ = 2 and ǫ > 0,

small. Therefore

I4 = −
∫

∂Ω∗

θε(u0) : σ0n1 ds+

∫

Ω∗

θε(u0) : ∂1σ0 dx+

∫

Ω∗

θσ0 : ∂1ε(u0) dx. (82)

Using that Wc(σ0) = (1
2ε(u0) + α(2−q)

2q

∣

∣σD
0

∣

∣

q−2
σD

0 ) : σ0 ≡ ε∗ : σ0, the term I5 is equal to

I5 =

∫

Ω0

ε∗ : σ0∂1θ dy

Due to theorem 2.10 it is

θε∗ = θ

(

1

2
ε(u0) +

α(2 − q)

2q

∣

∣σD
0

∣

∣

q−2
σD

0

)

∈W 1,p−ǫ(Ω∗) for ǫ > 0.
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In the same way as for I4 we obtain

I5 =

∫

∂Ω∗

θε∗ : σ0n1 ds−
∫

Ω∗

θε∗ : ∂1σ0 dx−
∫

Ω∗

θσ0 : ∂1ε∗ dx

=

∫

∂Ω∗

θWc(σ0)n1 ds−
∫

Ω∗

θDWc(σ0) : ∂1σ0 dy. (83)

Summing up (80), (81), (82), (83) and I3 we arrive at

ERR(Ω0, F ) = I1 + . . .+ I5

=

∫

∂Ω∗

θ∂1u0σ0~n ds+

∫

∂Ω∗

θu0fn1 ds−
∫

∂Ω∗

θ(ε(u0) : σ0 −Wc(σ0))n1 ds. (84)

By the assumptions it is θ
∣

∣

∂BR(0)
= 0, θ

∣

∣

∂BR0
(0)

= 1 and on the crack face C0 we have

σ0~n
∣

∣

C0
= 0 and n1

∣

∣

C0
= 0. Therefore the path ∂Ω∗ in (84) can be replaced by Γ = ∂BR0(0)

and the proof of theorem 3.1 is finished.

A Appendix

A.1 Some inequalities

Lemma A.1. Let n ∈ N. For A,B ∈ R
n with |B| ≥ |A| and t ∈ [0, 1

4 ] it holds [33, formula
(2.20)]:

4 |B + t(A−B)| ≥ |A| + |B| . (85)

Let q ≥ 2. It holds for every A,B ∈ R
n

1

q
|A|q − 1

q
|B|q − |B|q−2B : (A−B) ≥ 2−1−2q (|A| + |B|)q−2 |A−B|2 . (86)

∣

∣

∣
|A|q−2A− |B|q−2B

∣

∣

∣
≤ c (|A| + |B|)q−2 |A−B| . (87)

For n ∈ N, ai ∈ R with ai ≥ 0 for 1 ≤ i ≤ n, we have [21]:

(

n
∑

i=1

ai

)α

≤ nα−1

(

n
∑

i=1

aα
i

)

if α ≥ 1, (88)

(

n
∑

i=1

ai

)α

≥ nα−1

(

n
∑

i=1

aα
i

)

if 0 ≤ α ≤ 1. (89)

Proof of (86). Let A,B ∈ R
n and γ(t) = B + t(A−B) for t ∈ R. Taylor’s expansion yields

1

q
|A|q − 1

q
|B|q − |B|q−2B : (A−B) =

∫ 1

0
(1 − t)

d2

dt2

(

1

q
|γ(t)|q

)

dt

≥
∫ 1

0
(1 − t) |γ(t)|q−2 |A−B|2 dt. (90)
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Assume first that |B| ≥ |A|. By (85) we obtain

(90) ≥ 42−q

∫ 1
4

0
(1 − t) dt(|A| + |B|)q−2 |A−B|2 .

If |A| > |B|, then a change of coordinates leads to

(90) =

∫ 1

0
s |A+ s(B −A)|q−2 |A−B|2 ds

(85)

≥ 42−q

∫ 1
4

0
s ds(|A| + |B|)q−2 |A−B|2 .

Proof of (87). Again by Taylor’s formula:

∣

∣

∣
|A|q−2A− |B|q−2B

∣

∣

∣
≤
∫ 1

0

∣

∣

∣

∣

d

dt

(

|B + t(A−B)|q−2 (B + t(A−B))
)

∣

∣

∣

∣

dt

≤
∫ 1

0
(q − 1) |B + t(A−B)|q−2 |A−B| dt.

Let q ≥ 2. The following convexity and monotonicity inequalities hold for every σ1, σ2 ∈ R
2×2

due to the previous lemma:

Wc(σ1) −Wc(σ2) −DWc(σ2) : (σ1 − σ2)

≥ c
(

|σ1 − σ2|2 +
(
∣

∣σD
1

∣

∣+
∣

∣σD
2

∣

∣

)q−2 ∣
∣σD

1 − σD
2

∣

∣

2
)

, (91)
(

DWc(σ1) −DWc(σ2)
)

: (σ1 − σ2)

≥ c
(

|σ1 − σ2|2 +
(
∣

∣σD
1

∣

∣+
∣

∣σD
2

∣

∣

)q−2 ∣
∣σD

1 − σD
2

∣

∣

2
)

. (92)

A.2 Some lemmata

Lemma A.2 (Green’s formula). Let Ω ⊂ R
d, d ≥ 2, be a bounded domain with Lipschitz

boundary. For s ∈ [0, 1] and 1 < γ ≤ δ <∞ we define

Bδ,s,γ(Ω) =
{

v : Ω → R
d : v ∈W s,δ(Ω), div v ∈ Lγ(Ω)

}

,

‖v‖Bδ,s,γ (Ω) = ‖v‖W s,δ(Ω) + ‖div v‖Lγ(Ω) .

This space endowed with the above defined norm is a Banach space. Moreover
(

C∞(Ω)
)d

is
dense in Bδ,s,γ(Ω).
Let in addition s− 1

δ > 0 and let either (a) or (b) here below be satisfied:

(a) 1 < γ ≤ δ ≤ d
d−1 ,

(b) δ > d
d−1 and 1 < dδ

d+δ ≤ γ ≤ δ.

Then the following Green’s formula is valid for every v ∈ Bδ,s,γ(Ω) and every w ∈ W 1,δ′(Ω)
with 1

δ′ + 1
δ = 1

∫

Ω
v∇w dx+

∫

Ω
w div v dx =

∫

∂Ω
w
∣

∣

∂Ω

(

v
∣

∣

∂Ω
~n
)

ds. (93)
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The vector ~n is the exterior unit normal vector on ∂Ω. Note that the integrands are elements
of L1(Ω) and L1(∂Ω), respectively. Note further that the space W 1,δ′(Ω) is continuously
embedded in Lγ′

(Ω) for parameters γ, δ satisfying (a) or (b). Therefore the left hand side of
(93) is well defined.

Proof. For the proof of the density result we follow the standard arguments in [12, 31]. Since
Ω is a bounded domain with Lipschitz boundary there exists a finite number of open sets Ωj,
1 ≤ j ≤ J , such that Ω ⊂ ∪J

j=1Ωj and Ωj ⊂⊂ Ω or Ωj ∩ Ω is star-shaped with respect

to an element zj ∈ Ωj ∩ Ω, see [31, 23]. Moreover there exist open sets Ω̃j ⊂⊂ Ωj with
Ω ⊂ ∪J

j=1Ω̃j and Ω̃j ⊂⊂ Ω or Ω̃j ∩ Ω is star-shaped with respect to an element z̃j ∈ Ω̃j ∩ Ω.
Let {αj , 1 ≤ j ≤ J} be a partition of unity with respect to Ω subordinate to the covering

{Ω̃j , 1 ≤ j ≤ J}, i.e. αj ∈ C∞
0 (Ω̃j), αj ≥ 0 and

∑J
j=1 αj(x) = 1 for every x ∈ Ω. Note that

αju ∈ Bδ,s,γ(Ω) for u ∈ Bδ,s,γ(Ω). We will prove now for u ∈ Bδ,s,γ(Ω)

For every ǫ > 0 there exists a function ϕj,ǫ ∈ C∞
0 (Ωj) such that

‖ϕj,ǫ − αju‖Bδ,s,γ(Ω∩Ωj)
≤ ε

J
. (94)

If (94) holds, then the function ψǫ =
∑J

j=1 ϕj,ǫ is an element of C∞(Ω) and

‖ψǫ − u‖Bδ,s,γ(Ω) ≤
J
∑

j=1

‖αju− ϕj,ǫ‖Bδ,s,γ (Ω∩Ωj)
≤ ε.

For the proof of (94) we distinguish two cases.
Case 1: For Ωj ⊂⊂ Ω we apply the standard regularising procedure [12, 31]. Let ρ ∈ C∞

0 (Rd)
with ρ ≥ 0,

∫

Rd ρ(x) dx = 1 and supp ρ ⊂ B1(0). Straight forward calculations show that the
function

ϕj,ν(x) =
1

νd

∫

Ω
ρ

(

x− y

ν

)

αj(y)u(y) dy

is an element of C∞
0 (Ωj) and satisfies (94) if ν > 0 is small enough.

Case 2: Let Ω̃j ∩ Ω be star-shaped with respect to z̃j ∈ Ω̃j ∩ Ω where we assume without
loss of generality that z̃j = 0. For λ > 1 and y ∈ λ(Ω̃j ∩ Ω) we define

Sλ(αju)(y) = αj

(y

λ

)

u
(y

λ

)

.

Straight forward calculations show that Sλ(αju) is an element of Bδ,s,γ(λ(Ω̃j ∩ Ω)). If λ > 1
is small enough then

Ω̃j ∩ Ω ⊂⊂ λ(Ω̃j ∩ Ω) ⊂⊂ Ωj .

Let ηλ ∈ C∞
0 (λ(Ω̃j ∩ Ω)) be a cut-off function with ηλ

∣

∣

1+λ
2

(Ω̃j∩Ω)
= 1. It holds

ηλSλ(αju) ∈ Bδ,s,γ(Ωj) and supp(ηλSλ(αju)) ⊂ Ωj.

For λ→ 1 we have the following convergence

ηλSλ(αju)
∣

∣

Ω̃j∩Ω
= Sλ(αju)

∣

∣

Ω̃j∩Ω
→ αju in Bδ,s,γ(Ω̃j ∩ Ω). (95)
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This assertion is a consequence of lemma 1.1 in [31] which states that

∥

∥

∥
Sλ(v)

∣

∣

Ω̃j∩Ω
− v
∥

∥

∥

Lδ(Ω̃j∩Ω)
→ 0

for every v ∈ Lδ(Ω̃j ∩ Ω). Moreover it is div(Sλ(αju))
∣

∣

Ω̃j∩Ω
= 1

λSλ(div(αju)) and therefore

we have, again by lemma 1.1 in [31], ‖div(Sλ(αju) − αju‖Lγ(Ω∩Ω̃j)
→ 0. In a similar way the

convergence of Sλ(αju) in W s,δ(Ω) is proved.
The functions ηλSλ(αju) can be approximated in Bδ,s,γ(Ωj) due to case 1 for fixed λ > 1 by
functions {ϕλ

n, n ∈ N} ⊂ C∞
0 (Ωj). This together with (95) proves (94) for the star-shaped

domain Ω̃j ∩ Ω.
For the proof of Green’s formula (93) we define the following bilinear forms for v ∈ Bδ,s,γ(Ω)
and w ∈W 1,δ′(Ω)

L1(v,w) =

∫

Ω
v∇w dx+

∫

Ω
w div v dx, (96)

L2(v,w) =

∫

∂Ω

(

v
∣

∣

∂Ω

)

~nw
∣

∣

∂Ω
ds. (97)

Due to the assumptions (a) and (b) the space W 1,δ′(Ω) is continuously embedded in Lγ′

(Ω)
and therefore L1 is well defined and continuous. Moreover it follows from s− 1

δ > 0 and trace

theorem [14, Theorem 1.5.1.2] that v
∣

∣

∂Ω
∈ Lδ(∂Ω) and w

∣

∣

∂Ω
∈ Lδ′(∂Ω) and therefore L2 is

well defined and continuous as well. From the classical Green’s formula we obtain that L1

and L2 coincide on the set (C∞(Ω))d ×C∞(Ω). Since this set is dense in Bδ,s,γ(Ω)×W 1,δ′(Ω)
and since the bilinear forms are continuous we get L1(v,w) = L2(v,w) for every v ∈ Bδ,s,γ(Ω)
and every w ∈W 1,δ′(Ω).

Lemma A.3. Let X be a Banach space and I : X → R a functional which is Fréchet-
differentiable with derivative DI ∈ X ′. For every u and h ∈ X there exists a constant
t0 = t0(u, h) ∈ [0, 1] such that

I(u+ h) − I(u) = 〈DI(u+ t0h), h〉(X′ ,X).

Proof. The functional I admits the following Taylor expansion, see [37, 34],

I(u+ h) − I(u) =

∫ 1

0
〈DI(u+ th), h〉(X′ ,X) dt.

Since I is Fréchet-differentiable, the function f : R → R, t 7→ 〈DI(u + th), h〉(X′,X) is con-
tinuous. The lemma now follows from the mean value theorem for integrals of continuous
functions [16].
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