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Abstract

We study the global spatial regularity of solutions of generalized elasto-plastic

models with linear hardening on smooth domains. Under natural smoothness as-

sumptions on the data and the boundary we obtain u ∈ L∞((0, T ); H
3
2
−δ(Ω)) for

the displacements and z ∈ L∞((0, T ); H
1
2
−δ(Ω)) for the internal variables. The proof

relies on a reflection argument which gives the regularity result in directions normal

to the boundary on the basis of tangential regularity results. Based on the regularity

results we derive convergence rates for a finite element approximation of the models.
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1 Introduction

This paper is devoted to the study of global spatial regularity properties of solutions to

elasto-plastic models in a geometrically linear framework. The regularity results then are

applied to derive the convergence rate for a Finite Element discretization of the elasto-

plastic models. The model class under consideration comprises rate independent elasto-

plasticity with kinematic hardening combined with a von Mises flow rule or a Tresca flow

rule, as well as elasto-visco-plastic models which include Cosserat effects.

Let Ω ⊂ R
d be a bounded domain which represents an elasto-(visco)-plastic body and

let S = (0, T ) be a time interval. The behavior of the body under the influence of external
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loadings is characterized by the (generalized) displacements u : S×Ω → R
m and a vector of

internal variables z : S×Ω → R
n, which represent the plastic strains and further hardening

variables. The time evolution under the influence of external forces is determined through

the quasi-static balance of forces (1.1) and an evolution law for the internal variable (1.2).

The resulting model consists of a system of linear elliptic partial differential equations for

u which is strongly coupled with an evolution inclusion for z:

div
(
C(x)∇u(t, x) + B(x)z(t, x)) + f(t, x) = 0 for (t, x) ∈ S × Ω, (1.1)

∂tz(t, x) ∈ g(−(B⊤(x)∇u(t, x) + L(x)z(t, x))) for (t, x) ∈ S × Ω, (1.2)

z(0, x) = z0(x) for x ∈ Ω (1.3)

together with boundary conditions for u. The underlying stored elastic energy is given by

E(u, z) =

∫

Ω

1
2
〈
(

C B
B⊤ L

)
( ∇u

z ) , ( ∇u
z )〉 dx

with a symmetric coefficient tensor A =
(

C B
B⊤ L

)
∈ L∞(Ω; Lin(Rm×d × R

n, Rm×d × R
n)).

Moreover, g : R
n → P(Rn) is a monotone multivalued constitutive function. If E is

positive semi-definite and if 0 ∈ g(0), then the system (1.1)–(1.3) belongs to the class of

models of monotone type introduced in [Alb98], which is a generalization of the class of

generalized standard materials. With the choice g = ∂χK , where ∂χK is the subdifferential

of the characteristic function χK related to the convex set K ⊂ R
n, equations (1.1)–(1.3)

describe classical rate-independent elasto-plasticity. The set K is the set of admissible

generalized stresses. A more detailed definition of the model is given in Section 4.

If the elastic energy E is coercive, i.e. if

E(u, z) ≥ α
2

(
‖u‖2

H1(Ω) + ‖z‖2
L2(Ω)

)

for all u ∈ H1
0 (Ω) and z ∈ L2(Ω) and some constant α > 0, then classical results guarantee

the existence of a unique pair (u, z) ∈ W 1,1(S; H1(Ω))×W 1,1(S; L2(Ω)) which solves (1.1)–

(1.3), see e.g. [DL72, Joh78, Bré73, HHLN88, HR99, AC04] and the references therein.

The main result of our paper is Theorem 4.1, where we prove the following global spatial

regularity for (u, z) provided that ∂Ω is smooth, that E is coercive, that the type of the

boundary conditions does not change and that the data and coefficients have some natural

smoothness properties: For all δ > 0 it holds

u ∈ L∞(S; H
3
2
−δ(Ω)), (1.4)

z ∈ L∞(S; H
1
2
−δ(Ω)), (1.5)
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where Hs(Ω) stands for Sobolev-Slobodeckij spaces, see e.g. [Tri83]. This result was an-

nounced in the paper [Kne09], where we studied a model problem on a cube.

The intrinsic difficulty of proving spatial regularity for time-dependent plasticity prob-

lems stems from the fact that the flow rule (1.2) is nonsmooth and has no regularizing terms.

Hence, spatial regularity has to be maintained during the evolution by careful estimates.

Let Q ⊂ H1(Ω)×L2(Ω) ∋ (u(t), z(t)) denote the state space. The main problem is that the

data to solution map is not Lipschitz as a mapping from W 1,1(S;Q∗) → W 1,1(S;Q), but

only as a mapping from W 1,1(S;Q∗) → L∞(S;Q), see Theorem 2.2. This stability estimate

is the basis for proving local and tangential results of the type ∇u, z ∈ L∞(S; H1
loc(Ω)).

Since a similar Lipschitz estimate is not available for the time derivative, one cannot derive

a spatial regularity result of the type ∂tz ∈ L∞(S; H1
loc(Ω)). Indeed, the example in Section

5.2.4 shows that the latter regularity in general is not valid in spite of smooth data. Since

terms of the form ∂tangz ∈ L∞(S; L2(Ω)) enter as data when we prove the regularity in

normal direction, we cannot apply the aforementioned Lipschitz estimate any more since

it would require ∂tangz ∈ W 1,1(S; L2(Ω)). In this situation we only have a weaker Hölder

estimate with exponent 1
2

for the solution to data map, see Theorem 2.2. This explains,

why in the normal direction we obtain a “half” spatial derivative, only.

The essential argument in this paper is to apply a reflection argument in order to ob-

tain higher differentiability properties for ∇u and z for the direction perpendicular to the

boundary, see Section 3.3. After localizing system (1.1)–(1.3) to a half cube by the usual

techniques, we reflect the problem to the full cube using an even extension for the inter-

nal variable z and an odd extension for the displacements modified by the value of u on

the boundary. We show that the newly defined functions satisfy a problem of the type

(1.1)–(1.3) on the full cube with coefficients depending smoothly on the space variable.

The right hand side of the extended problem contains tangential derivatives of ∇u and z.

Using tangential regularity results and the Hölder property of the data to solution map,

we obtain the additional “half” spatial derivative.

It is an unsolved problem, whether our final result (1.4)–(1.5) is optimal or whether one

should expect u ∈ L∞(S; H2(Ω)). This would coincide nicely with the local and tangential

properties ∇u, z ∈ L∞(S; H1
loc(Ω)) and also with results for solutions of linear elliptic

equations on smooth domains. Our global result (1.4)–(1.5) can be improved in a special

scalar case, i.e. m = 1. Under strong coupling assumptions between the coefficient matrices

C, B, L and the function g, we obtain indeed the full spatial regularity u ∈ L∞(S; H2(Ω)),

see Section 5.2.3. Here, we use a reflection argument, which takes into account the explicit

structure of the coefficient matrix A =
(

C B
B⊤ L

)
. This result is also extended to cubes.

In the final section we derive an estimate for the error between the solution of (1.1)–(1.3)
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and discrete solutions which are obtained from a finite element discretization in space and

an implicit Euler scheme in time. Using the above proved regularity results we obtain an

estimate for the convergence rate without any additional assumption on the smoothness

of the solutions.

Let us give a short discussion of regularity results in the literature for systems of the type

(1.1)–(1.3). Recently, the question of global spatial regularity attracted much attention.

We mention here the contributions by Alber/Nesenenko [AN09] and by Frehse/Löbach

[FL08b]. In [AN09] the authors obtain for a model similar to (1.4)–(1.5) the global result

u ∈ L∞(S; H1+ 1
3
−δ(Ω)) and z ∈ L∞(S; H

1
3
−δ(Ω)) by first proving a local result and the

tangential result ∂tang∇u ∈ L∞(S; L2(Ω)). They show that this already implies that u ∈
L∞(S; H1+ 1

4
−δ(Ω)), and similarly for z. By an iteration procedure they improve then the

differentiability from 1
4

to 1
3
. In the paper [FL08b] the authors study regularity properties

of rate independent elasto-plastic models with a von Mises flow rule and linear kinematic or

isotropic hardening. They show Hölder regularity of the stresses up to the boundary, derive

the spatial regularity ∇σ ∈ L∞(S; L1+δ(Ω)) for the stress σ and prove several additional

integrability properties. The investigations take a stress based version of (1.4)–(1.5) as a

starting point.

Local regularity properties for the model in (1.4)–(1.5) and variants of it, having e.g. only

a positive semi-definite elastic energy, were investigated by several authors [BF96, FL08a,

Shi99, Ser92, Dem09, Dem08, NC08]. Here, one typically finds that the stress σ = C∇u +

Bz belongs to L∞(S; H1
loc(Ω)). Similar results are valid for u and z provided that the

elastic energy E is coercive.

Further global results are available for time discretized versions of (1.4)–(1.5), see for

example [Rep96, KN08] and the references therein. Here one obtains σ(tk) ∈ H1(Ω)

globally for smooth domains and smooth data at every temporal discretization point tk.

However, up to now it is to our knowledge an open question whether a uniform estimate

of the form suptime step △t>0, k△t≤T ‖σ(k△t)‖H1(Ω) ≤ c is valid. This estimate would allow

to carry over the result from the discretized model to the continuous one. Finally, for the

stationary Hencky model of perfect plasticity we have the global result σ ∈ H
1
2
−δ(Ω), δ > 0,

for domains with Lipschitz boundary and with changing boundary conditions, [Kne06].

2 Existence results and stability estimates

In this section abstract existence results and stability estimates for problems of the type

(1.1)–(1.3) are recalled. The results are based on classical existence theorems by Brézis
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[Bré73] for evolution equations with maximal monotone operators. We also refer to [AC04,

HR99] and the references therein for the discussion of particular elastic-plastic and visco-

plastic models. Furthermore, we provide an estimate for the error between the solution

and approximations calculated from a time-discretized version on subspaces of Z. The

estimate is valid under the same assumptions as in the existence theorem and no additional

regularity properties of the solutions are needed. Using the regularity results, which we

derive in Sections 3–5, convergence rates will be deduced in Section 6.

Let S = (0, T ) be the time interval and Q a Hilbert space. By W k,p(S;Q), p ∈ [1,∞],

k ∈ N, we denote the Sobolev space of Bochner integrable functions having p-integrable

weak derivatives up to order k.

2.1 Existence result and stability estimates

By Q = U ×Z we denote the state spaces which is composed of the real, separable Hilbert

spaces U and Z. We identify the dual Z∗ with Z but distinguish between U and the dual

space U∗. For u ∈ U and z ∈ Z the stored energy is given by the following quadratic

functional

E(u, z) = 1
2
〈A(u, z), (u, z)〉,

where 〈·, ·〉 stands for the dual pairing in Q∗ ×Q. It is assumed that A ∈ Lin(Q,Q∗) is a

linear, bounded and self adjoint operator and that there exists a constant α > 0 such that

E(u, z) ≥ α
2
(‖u‖2

U + ‖z‖2
Z) (2.1)

for all (u, z) ∈ Q. Let furthermore G : Z → P(Z) be a maximal monotone operator with

0 ∈ G(0).

For given data z0 ∈ Z and ℓ = (ℓ1, ℓ2) : S → Q∗ the problem under consideration is:

Find u : S → U , z : S → Z with z(0) = z0 such that for a.e. t ∈ S

DuE(u(t), z(t)) = ℓ1(t)

∂tz(t) ∈ G(−DzE(u(t), z(t)) + ℓ2(t)).
(2.2)

We call the data z0 and ℓ compatible if there exists u0 ∈ U with DuE(u0, z0) = ℓ1(0) and

with −DzE(u0, z0) + ℓ2(0) ∈ D(G), where D(G) denotes the domain of G.

The following existence theorem is classical for evolution inclusions with maximal mono-

tone operators.
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Theorem 2.1. Under the above assumptions there exists for every compatible data ℓ ∈
W 2,1(S;Q∗), z0 ∈ Z a unique pair (u, z) ∈ W 1,∞(S;Q) which solves (2.2).

If G = ∂χK, where K ⊂ Z is convex, closed and with 0 ∈ K, then for every compatible

data (z0, ℓ) ∈ Z ×W 1,1(S;Q∗) there exists a unique pair (u, z) ∈ W 1,1(S;Q) solving (2.2).

In order to fix the notation, we give here a short sketch of the proof of Theorem 2.1.

Proof. The linear operator A is split as follows

A(u, z) =

(
A11 A12

A21 A22

)(
u

z

)

with bounded operators A11 ∈ Lin(U ,U∗), A12 ∈ Lin(Z,U∗), A21 = A∗
12 ∈ Lin(U ,Z) and

A22 ∈ Lin(Z,Z). By L : Z → Z we denote the Schur complement operator associated

with A, i.e. L = A22 − A21A−1
11 A12. The assumptions on A imply that L is a bounded,

self adjoint operator with 〈Lz, z〉 ≥ α ‖z‖2
Z for all z ∈ Z and α from (2.1). Problem (2.2)

is equivalent to the following reduced version: Find z : S → Z with

∂tz(t) ∈ G(−Lz(t) + F (t)), z(0) = z0, (2.3)

where F (t) = ℓ2(t) −A21A−1
11 ℓ1(t). Now u can be calculated via u = A−1

11 (ℓ1 −A12z).

In terms of the new variable y(t) = L 1
2 z(t)−L− 1

2 F (t), the mapping G̃ : Z → P(Z) with

G̃(ζ) = L 1
2G(L 1

2 ζ) and the data f(t) = −L− 1
2 ∂tF (t), problem (2.3) can equivalently be

written as: Find y : S → Z with

∂ty(t) ∈ f(t) + G̃(−y(t)), y(0) = y0 = L 1
2 z0 − L− 1

2 F (0). (2.4)

The operator G̃ is maximal monotone with respect to the standard scalar product in Z.

Theorem 3.4 and Proposition 3.3 in [Bré73] applied to (2.4) provide the existence result

in case of an arbitrary maximal monotone mapping G, while Proposition 3.4 from [Bré73]

gives the result for the case G = ∂χK.

In the next Theorem we recall stability estimates which are the basis for our regularity

results. For more detailed continuity properties of the solution operator we refer to [Kre99].

Theorem 2.2. Assume (2.1) and let G : Z → P(Z) be a monotone operator.

(a) There exists a constant κ1 > 0 such that for all ui ∈ L∞(S;U) and zi ∈ W 1,1(S;Z),

i ∈ {1, 2}, which are solutions to problem (2.2) with data zi
0 ∈ Z and ℓi = (ℓi

1, ℓ
i
2) ∈

6



L∞(S;Q∗), it holds

∥∥u1 − u2
∥∥2

L∞(S;U)
+
∥∥z1 − z2

∥∥2

L∞(S;Z)

≤ κ1

( ∥∥z1
0 − z2

0

∥∥2

Z
+
∥∥z1 − z2

∥∥
W 1,1(S;Z)

∥∥ℓ1 − ℓ2
∥∥

L∞(S;Q∗)
+
∥∥ℓ1

1 − ℓ2
1

∥∥2

L∞(S;U∗)

)

(2.5)

(b) There exists a constant κ2 > 0 such that for all ui ∈ W 1,1(S;U) and zi ∈ W 1,1(S;Z),

which are solutions to problem (2.2) with respect to the data zi
0 ∈ Z and ℓi ∈

W 1,1(S;Q∗), it holds

∥∥u1 − u2
∥∥

L∞(S;U)
+
∥∥z1 − z2

∥∥
L∞(S;Z)

≤ κ2

( ∥∥z1
0 − z2

0

∥∥
Z

+
∥∥ℓ1 − ℓ2

∥∥
W 1,1(S;Q∗)

)
. (2.6)

Proof. Assumption (2.1) implies that there exists κ > 0 such that

∥∥u1 − u2
∥∥

L∞(S;U)
≤ κ

( ∥∥z1 − z2
∥∥

L∞(S;Z)
+
∥∥ℓ1

1 − ℓ2
1

∥∥
L∞(S;U∗)

)
. (2.7)

Let L be the Schur complement operator and F i, i ∈ {1, 2}, be the functions defined in

the proof of Theorem 2.1. Since G is monotone and since L is self adjoint, the solutions zi

of (2.3) satisfy for almost every t ∈ S

1
2

d
dt
〈z1(t) − z2(t),L(z1(t) − z2(t))〉 ≤ 〈∂t(z

1(t) − z2(t)), F 1(t) − F 2(t)〉. (2.8)

Integrating this estimate with respect to t, applying Hölder’s inequality and taking into

account (2.7) results in (2.5).

If ℓ ∈ W 1,1(S;Q∗), then integrating (2.8) with respect to t, partial integration and

Young’s inequality result in the estimate

∥∥z1(t) − z2(t)
∥∥2

Z
≤ c

(∥∥z1
0 − z2

0

∥∥2

Z
+

∫ t

0

∥∥z1(s) − z2(s)
∥∥2

Z
ds

+
∥∥F 1 − F 2

∥∥
W 1,1(S;Z)

( ∥∥F 1 − F 2
∥∥

W 1,1(S;Z)
+
∥∥z1 − z2

∥∥
L∞(S;Z)

))
. (2.9)

Applying the Gronwall inequality and Young’s inequality to the previous estimate leads in

combination with (2.7) to estimate (2.6).

2.2 An estimate of the approximation error

We adopt the notation of the previous Section 2.1. The goal of this section is to derive an

abstract error estimate for the approximation of the solution of (2.3) by time-discretized
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solutions on subspaces of Z. Here, we restrict ourselves to the case where G is the sub-

differential of the characteristic function of a convex, closed set K ⊂ Z. In this case the

corresponding evolution model describes a rate independent process and we may directly

apply Theorem 2.2 from [MPPS09] in order to estimate the error due to time-discretization.

For h ∈ [0, h0] let Zh ⊂ Z be closed subspaces, Z0 = Z, and let Lh : Z → Z be linear,

uniformly bounded and self adjoint operators which are uniformly positive definite on Z
(not only on Zh), i.e.

sup
0≤h≤h0

‖Lh‖op ≤ β and for all z ∈ Z we have 〈Lhz, z〉 ≥ α ‖z‖2 (2.10)

for some α, β > 0, which are independent of h. In addition it is assumed that Lh : Zh → Zh

for all h. Later, for h > 0 the operators Lh will be identified with discretized versions of

the Schur complement operator L ≡ L0 introduced in the previous section.

Let G : Z → P(Z) be given as G = ∂ZχK, where K ⊂ Z is closed, convex and 0 ∈ K and

∂Z denotes the subdifferential of χK with respect to the space Z. We make the following

compatibility assumption on the spaces Zh and the operator G:

for all η ∈ Zh it holds G(η) ∩ Zh = ∂Zh
χKh

(η), (2.11)

where Kh = K∩Zh and ∂Zh
is the subdifferential with respect to Zh. We define Gh : Zh →

P(Zh) as Gh = ∂Zh
χZh

. Obviously, G0 = G and Gh(η) ⊂ G(η) for η ∈ Zh.

For given Fh ∈ W 1,1(S;Zh) and z0,h ∈ Zh consider the problem: Find zh ∈ W 1,1(S;Zh)

with zh(0) = z0,h such that for a.e. t ∈ S

∂tzh(t) ∈ Gh(−Lhzh(t) + Fh(t)). (2.12)

Like in the previous section we call (z0,h, Fh) compatible if −Lhz0,h + Fh(0) ∈ D(Gh).

Theorem 2.3. Assume that for all h ∈ [0, h0] the operators Lh and Gh have the above de-

scribed properties. Let further the functions zh ∈ W 1,1(S;Zh) satisfy (2.12) with compatible

data Fh ∈ W 1,1(S;Zh) and z0,h ∈ Zh. Then for all t ∈ S it holds

α ‖z(t) − zh(t)‖2
Z

≤ β ‖z0,0 − z0,h‖2
Z + 2 ‖∂tz − ∂tzh‖L1(S;Z) ‖(Lhz − Fh) − (L0z − F0)‖L∞(S;Z) , (2.13)

where z(t) := zh=0(t).

By Theorem 2.1 the existence of the functions z and zh is guaranteed.
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Proof. Observe that z satisfies (2.12) for h = 0 if and only if for almost all t it holds

〈∂tz(t) − θ, (−L0z(t) + F0(t)) − η〉 ≥ 0 ∀η ∈ Z, θ ∈ G(η). (2.14)

In view of (2.11) this inequality is valid for θ = ∂tzh(t) ∈ Gh(−Lhzh(t) + Fh(t)). Hence,

using the symmetry of Lh it follows for a.e. t ∈ S:

d

dt

1

2
〈Lh(z − zh)(t), (z − zh)(t)〉

= 〈∂t(z − zh)(t),L0z(t) − F0(t) + (Fh(t) −Lhzh(t))〉
+ 〈∂t(z − zh)(t), F0(t) −L0z(t) − (Fh(t) − Lhz(t))〉

Due to (2.14) the first term on the right hand side is not positive. After integration with

respect to t and using the uniform positivity and boundedness of Lh we arrive at (2.13).

Next we investigate the error between the solution of (2.12) and the solutions of the fully

discretized problems.

For the time discretization an implicit Euler scheme is used. Let τ ∈ [0, T ] denote the

fineness of the partition Πτ = {0 = t0τ < t1τ < . . . < tNτ
τ = T} of the time interval [0, T ], i.e.

τ = max{ tiτ − ti−1
τ ; 1 ≤ i ≤ Nτ }. The fully discretized problem reads: For 1 ≤ k ≤ Nτ

find zk
h,τ ∈ Zh such that with z0

h,τ = z0,h we have

zk
h,τ − zk−1

h,τ

tkτ − tk−1
τ

∈ Gh(−Lh(z
k
h,τ ) + Fh(t

k
τ )). (2.15)

By ẑh,τ : S → Zh we denote the continuous and piecewise affine interpolant corresponding

to { zk
h,τ ; 0 ≤ k ≤ Nτ }.

Let R : Z → R∞ = R ∪ {∞} be the convex conjugate functional to χK , i.e. R(θ) =

supη∈K〈η, θ〉, and let Rh : Zh → R∞ be the convex conjugate to χKh
with respect to Zh.

Observe that R and Rh are convex, lower semicontinuous and positively homogeneous of

degree one, [IT79]. Moreover, the compatibility assumption (2.11) implies that Rh = R
∣∣
Zh

.

Hence, problem (2.15) is equivalent to the following minimization problem

zk
h,τ ∈ Argmin{ 1

2
〈Lhη, η〉 − 〈Fh(t

k
τ ), η〉 + R(η − zk−1

h,τ ) ; η ∈ Zh }.

The existence of minimizers and the solvability of the discrete problem (2.15) follows with

direct method in the calculus of variations. Due to the positivity assumptions on Lh the

minimizer is unique.

The error estimate between the solution of the spatially discretized problem (2.12)

and the fully discretized problem relies on a straightforward adaption of Theorem 2.2

in [MPPS09]. The important point is that the estimate holds uniformly with respect to

the spaces Zh, h ∈ [0, h0].
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Theorem 2.4. [MPPS09] Let the assumptions of Theorem 2.3 be satisfied and assume

that for all h ∈ [0, h0] the data (z0,h, Fh) ∈ Zh × W 1,∞(S;Zh) are compatible with

sup0≤h≤h0

(
‖z0,h‖Z + ‖Fh‖W 1,∞(S;Z)

)
< ∞. Let zh ∈ W 1,1(S;Zh) be the solution of (2.12)

and let ẑh,τ be the above introduced affine interpolant. Then there exists a constant c > 0

such that for all t, τ ∈ S and all h ∈ [0, h0] it holds

‖zh(t) − ẑh,τ(t)‖Z ≤ c
√

τ . (2.16)

Proof. Since the operators {Lh ; h ∈ [0, h0] } are uniformly bounded and uniformly pos-

itive definite and since the data Fh is assumed to be uniformly bounded in W 1,∞(S;Z),

the stability estimates in Theorem 2.2 and step 1 in the proof of Theorem 2.1 in [Mie05]

imply that there exists a constant c > 0 such that

sup
0≤h≤h0,0≤τ≤T

‖zh‖W 1,∞(S;Z) + ‖ẑh,τ‖W 1,∞(S;Z) ≤ c.

Estimate (2.16) now is a consequence of Theorem 2.2 in [MPPS09].

Combining Theorem 2.3 and Theorem 2.4 we obtain an estimate for the (full) discretiza-

tion error:

Corollary 2.5. Let the assumptions of Theorem 2.3 and Theorem 2.4 be satisfied. Then

there exists a constant, which is independent of τ, t and h, such that for all t, τ ∈ S and

h ∈ [0, h0] we have

c ‖z(t) − ẑh,τ (t)‖Z ≤
√

τ + ‖z0,0 − z0,h‖Z + ‖∂tz − ∂tzh‖
1
2

L1(S;Z) ‖(Lhz − Fh) − (L0z − F0)‖
1
2

L∞(S;Z) .

This Corollary is the basis for deriving convergence rates of Finite Element approxima-

tions of elasto-plastic models, see Section 6. Further estimates for the term (Lh − L0)z

rely on smoothness properties of z. We emphasize that Corollary2.5 is derived without any

additional smoothness assumptions on the solution z.

2.3 Generalized elasto-plastic models

Let Ω ⊂ R
d be a bounded domain with Lipschitz boundary, m, n ∈ N. By End(Rs) we

denote the endomorphisms from R
s to R

s. Choose A ∈ L∞(Ω; End(Rm×d × R
n)) and

assume that A is symmetric, i.e. 〈A(x) ( F1
z1

) , ( F2
z2

)〉 = 〈A(x) ( F2
z2

) , ( F1
z1

)〉 for a.e. x ∈ Ω and
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every Fi ∈ R
m×d, zi ∈ R

n and i ∈ {1, 2}. Here, 〈·, ·〉 stands for the scalar product in

R
m×d × R

n. For u ∈ H1(Ω, Rm) and z ∈ L2(Ω, Rn) we define

E(u, z) = 1
2

∫

Ω

〈A(x)
(

∇u(x)
z(x)

)
,
(

∇u(x)
z(x)

)
〉 dx. (2.17)

Let Z = L2(Ω, Rn) and assume that there exists a closed subspace U ⊂ H1(Ω, Rm) and a

constant α > 0 such that for all u ∈ U and z ∈ Z it holds

E(u, z) ≥ α
2

(
‖u‖2

H1(Ω) + ‖z‖2
L2(Ω)

)
. (2.18)

Furthermore, let g : R
n → P(Rn) be a maximal monotone mapping with 0 ∈ g(0). In

particular, the choice g = ∂χK is admissible, where K ⊂ R
n is closed, convex and with

0 ∈ K and where χK denotes the characteristic function associated with K. We define

G : Z → P(Z), G(z) = { η ∈ L2(Ω, Rn) ; η(x) ∈ g(z(x)) a.e. in Ω }, (2.19)

which is a maximal monotone mapping with respect to Z. In this setting, Theorem 2.1

provides the existence of a unique pair (u, z) ∈ W 1,1(S;U × Z) satisfying (2.2) with E
from (2.17) and G from (2.19). As is discussed in Section 5.1 this framework comprises

elasto-plasticity with linear kinematic hardening as well as elasto-visco-plasticity including

Cosserat effects.

In Sections 3–5 we study the spatial regularity properties of the solutions (u, z), while in

Section 6 we discuss the error due to a spatial finite element discretization and an implicit

Euler scheme in time.

3 Regularity for model problems on a cube

3.1 Local regularity

The starting point of our global regularity analysis is to study the local regularity properties

on cubes of solutions of the systems introduced in Section 2.3. These properties are derived

with a difference quotient technique which is based on inner variations. The results in part

(b) of the regularity Theorem 3.1 here below are a straightforward extension of the results

from [AN09] to our slightly more general setting. In part (a) of Theorem 3.1 we discuss

the local regularity properties for data which have less temporal regularity.

In the sequel we use the following notation: For matrices T, S ∈ R
m×d the inner product

is denoted by S : T = tr(T⊤S) with the corresponding norm |T | =
√

T : T . Moreover, I is

the identity matrix in R
d×d.

11



For r > 0 let Cr = (−r, r)d be a cube with side length 2r. Let m, n ∈ N, U = H1
0 (Cr, R

m)

and Z = L2(Cr, R
n). The coefficient function A shall satisfy

A1 A ∈ C0,1(Cr, End(Rm×d × R
n)) is symmetric and there exists a constant α > 0 such

that for all u ∈ U and z ∈ Z we have E(u, z) ≥ α
2

(
‖u‖2

H1(Cr) + ‖z‖2
L2(Cr)

)
.

The energy E(u, z) is defined in (2.17). It is assumed that the term ℓ1 in (2.2) can be

written as

〈ℓ1(t), v〉(U∗,U) =

∫

Cr

f(t) · v + H(t) : ∇v dx, (3.1)

with suitable f ∈ L∞(S; L2(Cr)) and H ∈ L∞(S; L2(Cr)). We study the spatial regularity

of functions u ∈ L∞(S;U) and z ∈ W 1,1(S;Z) which satisfy for a.e. t ∈ S and every v ∈ U
the relations

∫

Cr

〈A
(

∇u(t)
z(t)

)
, (∇v

0 )〉 dx =

∫

Cr

f(t) · v + H(t) : ∇v dx,

∂tz(t) ∈ G(−DzE(u(t), z(t)) + ℓ2(t))

z(0) = z0.

(3.2)

In terms of the projection operators Pm×d : R
m×d × R

n → R
m×d, (F, z) 7→ F and Pn :

R
m×d × R

n → R
n, (F, z) 7→ z, problem (3.2) can equivalently be written as

∫

Cr

Pm×d[A
(

∇u(t)
z(t)

)
] : ∇v dx =

∫

Cr

f(t) · v + H(t) : ∇v dx,

∂tz(t) ∈ G(−Pn[A
(

∇u(t)
z(t)

)
] + ℓ2(t)).

(3.3)

In the sequel we use the following spaces defined for domains Ω2 ⊂ Ω1 and i ∈ {1, . . . , d}:

Fi(Ω1, Ω2) = { v ∈ L2(Ω1) ; ∂xi
(v
∣∣
Ω2

) ∈ L2(Ω2) } (3.4)

with ‖v‖Fi(Ω1,Ω2)
= ‖v‖L2(Ω1) + ‖∂xi

v‖L2(Ω2). Moreover, finite differences are denoted by

△heu(t, x) := u(t, x + he) − u(t, x)

for h ∈ R and e ∈ R
d\{0}. By {e1, . . . , ed} we denote the standard basis in R

d. The spatial

regularity of solutions is discussed under different assumptions on the temporal smoothness

of the data.

A2 There exists ρ ∈ (0, r) and i ∈ {1, . . . , d} such that z0 ∈ Fi(Cr, Cρ), f ∈ L∞(S; L2(Cr)),

H ∈ L∞(S;Fi(Cr, Cρ)) and ℓ2 ∈ L∞(S;Fi(Cr, Cρ)).
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A3 There exists ρ ∈ (0, r) and i ∈ {1, . . . , d} such that z0 ∈ Fi(Cr, Cρ), f ∈ W 1,1(S; L2(Cr)),

H ∈ W 1,1(S;Fi(Cr, Cρ)) and ℓ2 ∈ W 1,1(S;Fi(Cr, Cρ)).

Theorem 3.1 (Local regularity on cubes). Let condition A1 be satisfied.

(a) Let the pair (u, z) ∈ L∞(S;U) × W 1,1(S;Z) solve (3.2) with data according to as-

sumption A2. Then there exists h0 > 0 such that

sup
0<h<h0, t∈S

h− 1
2 ‖△hei

∇u(t)‖L2(Cρ/2) < ∞,

sup
0<h<h0, t∈S

h− 1
2 ‖△hei

z(t)‖L2(Cρ/2) < ∞.

(b) Let the pair (u, z) ∈ W 1,1(S;U × Z) satisfy (3.2) with data according to A3. Then

∇u ∈ L∞(S;Fi(Cr, C ρ
2
)), z ∈ L∞(S;Fi(Cr, Cρ

2
)).

If the assumptions of part (b) of Theorem 3.1 are valid for all i ∈ {1, . . . , d}, then

u
∣∣
Cρ/2

∈ L∞(S; H2(Cρ/2)), z
∣∣
Cρ/2

∈ L∞(S; H1(Cρ/2)).

If the assumptions of part (a) are satisfied for every i ∈ {1, . . . , d}, then it follows that

sup
t∈S

‖u(t)‖
B

3
2
2,∞(Cρ/2)

< ∞, sup
t∈S

‖z(t)‖
B

1
2
2,∞(Cρ/2)

< ∞. (3.5)

The spaces Bs
p,q(Ω) are Besov spaces and we refer to [Tri83] for a precise definition. We

only recall that v ∈ Bs
2,∞(Ω) for s ∈ (0, 1) if and only if v ∈ L2(Ω) and

sup
1≤i≤d, eΩ⋐Ω, 0<h<h0

h−s ‖△hei
v‖L2(eΩ) < ∞,

where {e1, . . . , ed} is an arbitrary basis in R
d. Moreover, for every δ > 0 and s > 0 with

s /∈ N the embeddings Hs(Ω) ⊂ Bs
2,∞(Ω) ⊂ Hs−δ(Ω) are continuous. Hence, we obtain

from (3.5) that for every δ > 0

u
∣∣
Cρ/2

∈ L∞(S; H
3
2
−δ(Cρ/2)), z

∣∣
Cρ/2

∈ L∞(S; H
1
2
−δ(Cρ/2)).

Proof of Theorem 3.1. Let ρ ∈ (0, r) be given according to the assumptions in Theorem

3.1 and choose ϕ ∈ C∞
0 (Cr) with ϕ(x) = 1 on Cρ/2 and supp ϕ ⊂ Cρ. For h ∈ R

d we

introduce the following family of inner variations τh : Cr → R
d, x → τh(x) = x + ϕ(x)h.
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Let h0 = min{dist(supp ϕ, ∂Cr), ‖ϕ‖W 1,∞(Cr))
−1}. For every h ∈ R

d with |h| < h0, the

mapping τh is a diffeomorphism from Cr onto itself with τh(x) = x for every x ∈ ∂Cr, see

e.g. [GH96]. Obviously,

∇τh(x) =
(
I + h ⊗∇ϕ(x)

)
, det(∇τh(x)) = 1 + h · ∇ϕ(x). (3.6)

Let the pair (u, z) ∈ L∞(S;U)×W 1,1(S;Z) be a solution of problem (3.2) and ei the vector

introduced in assumptions A2 and A3. For h ∈ Rei with |h| < h0 we define the shifted

functions uh(t, x) := u(t, τh(x)) and zh(t, x) := z(t, τh(x)). Clearly, the shifted functions

have the same temporal and spatial regularity as u and z.

Straightforward calculations, which are based on a change of coordinates with τh, imply

that for almost every t and every v ∈ U the shifted functions uh and zh satisfy
∫

Cr

〈A
(

∇uh(t)
zh(t)

)
, (∇v

0 )〉 dx

=

∫

Cr

det∇τhfh(t) · v dx +

∫

Cr

(det∇τh)
(
Hh(t)(∇τh)

−⊤
)

: ∇v dx

+

∫

Cr

〈F h
1 (t),∇v〉 dx

=: 〈ℓh
1(t), v〉(U∗,U).

(3.7)

As before, fh(t, x) = f(t, τh(x)), Hh(t, x) = H(t, τh(x)) and Ah = A ◦ τh. Moreover, F h
1 (t)

is given by the relation
∫

Cr

〈F h
1 (t),∇v〉 dx =

∫

Cr

〈A
(

∇uh(t)
zh(t)

)
− det∇τhAh

(
∇uh(t)(∇τh)−1

zh(t)

)
, (∇v

0 )〉 dx

−
∫

Cr

det∇τh〈Ah

(
∇uh(t)(∇τh)−1

zh(t)

)
,
(

∇v(∇τ−1
h −I)

0

)
〉 dx.

The following evolution law is satisfied by uh and zh

∂tzh(t) ∈ g(−DzE(uh(t), zh(t)) + F h
2 (t) + ℓ2,h(t)), zh(0) = z0◦τh. (3.8)

Here, ℓ2,h = ℓ2◦τh and

F h
2 (t) = −Pn

(
(Ah − A)

(
∇uh(t)
zh(t)

)
+ Ah

(
∇uh(t)(∇τ−1

h −I)
0

))
,

where Pn is the already introduced projection onto the R
n component.

From the Lipschitz continuity of the coefficient matrix A and the properties of τh, where

we use in particular the relations in (3.6), we deduce the estimate

∥∥F h
1

∥∥
L∞(S;L2(Cr))

+
∥∥F h

2

∥∥
L∞(S;L2(Cr))

≤ c |h|
(
‖u‖L∞(S;U) + ‖z‖L∞(S;Z)

)
, (3.9)
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and if (u, z) ∈ W 1,1(S;U × Z), then

∥∥F h
1

∥∥
W 1,1(S;L2(Cr))

+
∥∥F h

2

∥∥
W 1,1(S;L2(Cr))

≤ c |h|
(
‖u‖W 1,1(S;U) + ‖z‖W 1,1(S;Z)

)
. (3.10)

In both inequalities, the constant c is independent of h. By estimates (3.9) and (3.10)

we have ℓh
1 ∈ L∞(S;U∗) in the situation described in part (a) of Theorem 3.1 and ℓh

1 ∈
W 1,1(S;U∗) if the assumptions of part (b) are valid.

Let first the assumptions of part (a) be satisfied. From the stability estimate (2.5)

applied to (3.7) and (3.8) it follows that there exists a constant c > 0 which is independent

of h such that

‖u − uh‖2
L∞(S;U) + ‖z − zh‖2

L∞(S;Z) ≤ c
(
‖z0 − z0,h‖2

L2(Cr) +
∥∥ℓ1 − ℓh

1

∥∥2

L∞(S;U∗)

+2c(ϕ) ‖z‖W 1,1(S;Z)

(∥∥ℓ1 − ℓh
1

∥∥
L∞(S;U∗)

+
∥∥ℓ2 − ℓ2,h − F h

2

∥∥
L∞(S;Z)

))
. (3.11)

In view of A2 we have (see e.g. Lemma 4.1 in [KM08])

‖z0 − z0,h‖L∞(S;Z) ≤ c |h| ‖z0‖Fi(Cr ,Cρ) .

The last term in (3.11) can be estimated in the same way. For estimating the terms with

ℓ1 observe that

‖f(t) − det∇τhfh(t)‖U∗ = sup
v∈U , ‖v‖

U
=1

∫

Cr

(f(t) − det∇τhfh(t)) · v dx

= sup
v∈U , ‖v‖

U
=1

∫

Cr

f(t) · (v − v◦τ−1
h ) dx ≤ c(ϕ) |h| ‖f(t)‖L2(Cρ) .

Thus, altogether it follows that there exists a constant κ > 0 such that for all h ∈ Rei\{0}
with |h| < h0 we have

|h|− 1
2
(
‖△hu‖L∞(S;H1(Cρ/2)) + ‖△hz‖L∞(S;L2(Cρ/2))

)

≤ κ
(
‖z0‖Fi(Cr ,Cρ) + ‖f‖L∞(S;L2(Cρ)) + ‖H‖L∞(S;Fi(Cr ,Cρ)) + ‖ℓ2‖L∞(S;Fi(Cr ,Cρ))

+ ‖u‖L∞(S;U) + ‖z‖W 1,1(S;Z)

)
.

This proves the assertions of Theorem 3.1, part (a). The results in part (b) follow in the

same way by applying stability estimate (2.6) to (3.7) and (3.8).

3.2 Tangential regularity on a half cube

For r > 0 let Kr = (−r, r)d−1 × (0, r) be a half cube with bottom Γ0 = (−r, r)d−1 × {0}
and let m, n ∈ N. We choose Z = L2(Kr, R

n) and consider closed subspaces U(Kr) ⊂
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H1(Kr, R
m) allowing for different types of boundary conditions for different components

of u ∈ U(Kr). In particular, let D ⊂ {1, . . . , m}, D might also be the empty set. Then

U(Kr) := { u ∈ H1(Kr, R
m) ; u

∣∣
∂Kr\Γ0

= 0, ui

∣∣
Γ0

= 0 for i ∈ D }.

Theorem 3.2. Assume that the coefficient function A satisfies A1 from Section 3.1 with

respect to Kr and U(Kr) × Z. Let the pair (u, z) ∈ W 1,1(S;U(Kr) × Z) satisfy (3.2) on

Kr and assume that the data has the following regularity for some ρ ∈ (0, r):

z0 ∈ H1(Kr), f ∈ W 1,1(S; L2(Kr)), H ∈ W 1,1(S; L2(Kr) ∩ H1(Kρ)), (3.12)

ℓ2 ∈ W 1,1(S; L2(Kr) ∩ H1(Kρ)). (3.13)

Then for 1 ≤ i ≤ d − 1 we have the tangential regularity

∂xi
∇u ∈ L∞(S; L2(K ρ

2
)), ∂xi

z ∈ L∞(S; L2(K ρ
2
)). (3.14)

This theorem is a straightforward generalization of a recent result by Alber/Nesenenko

[AN09], where the case m = d and pure Dirichlet conditions on Γ0 are considered. The

theorem can be derived in the same way as the results in part (b) of Theorem 3.1 and

we omit the proof. We just remark that the space U is invariant with respect to inner

variations τh which are tangential to Γ0.

3.3 Global regularity on a half cube

Before we formulate the key result of this paper, Theorem 3.3, we need some further

notation. Let again Kr = (−r, r)d−1×(0, r) be the half cube with bottom Γ0 = (−r, r)d−1×
{0} and let m, n ∈ N. By R = I−2ed⊗ed we denote the reflection at the boundary Γ0. The

extended coefficient function Ae is defined via Ae(x) = A(x) for x ∈ Kr and Ae(x) = A(Rx)

for x ∈ Cr\Kr.

Theorem 3.3 (Global regularity on a half cube). Assume that the extended coefficient

function Ae satisfies condition A1 from Section 3.1 with respect to the full cube Cr and

H1
0 (Cr) × L2(Cr). Let the pair (u, z) ∈ L∞(S; H1(Kr)) × W 1,1(S;Z) satisfy (3.2) on Kr

for all v ∈ H1
0 (Kr). Assume furthermore that for all t it holds supp u(t) ⊂ K 3r

4
and that

for 1 ≤ i ≤ d − 1 the functions u and z have the tangential regularity

∂i∇u ∈ L∞(S; L2(Kr)), ∂iz ∈ L∞(S; L2(Kr)).

For the data we assume that

z0 ∈ H1(Kr), f ∈ L∞(S; L2(Kr)),

ℓ2, H ∈ L∞(S;∩d−1
i=1Fi(Kr, Kr)) ∩ L∞(S; H1(K r

2
)).
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Then supt∈S ‖u(t)‖
B

3/2
2,∞(Kr/4)

< ∞, supt∈S ‖z(t)‖
B

1/2
2,∞(Kr/4)

< ∞, and for every δ > 0 we

have

u ∈ L∞(S; H
3
2
−δ(K r

4
)), z ∈ L∞(S; H

1
2
−δ(K r

4
)).

The proof of this theorem relies on a reflection argument and is carried out in the

Lemmata 3.4–3.5 here below.

Let (u, z) ∈ L∞(S; H1(Kr)) × W 1,1(S;×Z) be a solution to problem (3.2) on Kr as de-

scribed in Theorem 3.3. Choose a function ϕ ∈ C∞([0, r]) with ϕ(s) = 1 in a neighborhood

of s = 0, ϕ(s) = 0 for s ≥ r
2

and 0 ≤ ϕ ≤ 1. By γ0 we denote the trace operator from

H1(Kr) to H
1
2 (Γ0) and define for x = (x′, xd) ∈ Kr

û(t, x) := ϕ(xd)(γ0u(t))(x′). (3.15)

The tangential regularity of u entails the following regularity for û:

Lemma 3.4. Under the assumptions of Theorem 3.3 it holds û, ∂dû ∈ L∞(S; H1(Kr))

with supp û(t) ⊂ K 3r
4
.

Proof. The proof is similar to the proof of Lemma 4.2 from [Kne09] with obvious modifi-

cations.

The following extensions to Cr will be used:

ue(t, x) :=





u(t, x) − û(t, x) x ∈ Kr

−u(t, Rx) + û(t, Rx) x ∈ Cr\Kr

. (3.16)

For the inner variable we use an even extension:

ze(t, x) :=





z(t, x) x ∈ Kr

z(t, Rx) x ∈ Cr\Kr

(3.17)

and similar for z0, where the extension is denoted by z0,e. The extended functions have

the smoothness ue ∈ L∞(S; H1
0(Cr)), ze ∈ W 1,1(S; L2(Cr)) and z0,e ∈ H1(Cr). Finally let

Ee(v, η) =
∫

Cr

1
2
〈Ae

(
∇v
η

)
,
(
∇v
η

)
〉 dx.

Lemma 3.5. Let the assumptions of Theorem 3.3 be satisfied. There exist functions fe ∈
L∞(S; L2(Cr)), He ∈ L∞(S;Fd(Cr, C r

2
)) and ℓ2,e ∈ L∞(S;Fd(Cr, C r

2
)) such that for all

v ∈ H1
0 (Cr) we have

∫

Cr

〈Ae

(
∇ue(t)
ze(t)

)
, (∇v

0 )〉 dx =

∫

Cr

fe(t) · v dx +

∫

Cr

He(t) : ∇v dx,

∂tze(t) ∈ G(−DzEe(ue(t), ze(t)) + ℓ2,e(t))

ze(0) = z0,e.

(3.18)
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Proof. Observe first that for all v ∈ H1
0 (Cr) it holds with ṽ(x) = v(Rx)

∫

Cr

〈Ae ( ∇ue
ze

) , (∇v
0 )〉 dx =

∫

Kr

〈A (∇u
z ) ,

(
∇(v−ev)

0

)
〉 dx −

∫

Kr

〈A (∇û
0 ) , ( ∇v

0 )〉 dx

+

∫

Cr\Kr

〈Ae ( ∇u
z )
∣∣
Rx

,
(
∇v(R+I)

0

)
〉 dx

+

∫

Cr\Kr

〈Ae

(
∇ûR−∇u(R+I)

0

) ∣∣
Rx

, (∇v
0 )〉 dx.

Since the pair (u, z) solves (3.3) and since v − ṽ ∈ H1
0 (Kr), we may replace the first term

on the right hand side with f and H and obtain after rearranging the terms the following

relation:
∫

Cr

〈Ae ( ∇ue
ze

) , (∇v
0 )〉 dx =

∫

Kr

fv dx +

∫

CR\Kr

(−f◦R)v dx

−
∫

Cr\Kr

H◦R(R + I) : ∇v dx

+

∫

Cr\Kr

(
Pm×d

[
A (∇u

z )
]
◦R
)
(R + I) : ∇v dx

+

∫

Kr

H : ∇v dx +

∫

Cr\Kr

H◦R : ∇v dx

−
∫

Kr

Pm×d

[
A (∇û

0 )
]

: ∇v dx

+

∫

Cr\Kr

Pm×d

[
A
(
∇ûR−∇u(R+I)

0

) ]
◦R : ∇v dx.

(3.19)

Observe that the regularity assumption on u and z imply that

div
((

H◦R − Pm×d

[
A (∇u

z )
]
◦R
)
(R + I)

)
∈ L∞(S; L2(Cr\Kr))

since due to the factor R+ I the derivative with respect to xd does not appear. Thus, after

applying the Gauss Theorem, the first four integrals on the right hand side in (3.19) can

be replaced with the term
∫

Cr
fe(t, x) · v(x) dx, where

fe(t, x) =





f(t, x) x ∈ Kr,

−f(t, Rx) + 2 divx′

(
H(t, Rx) − Pm×d

[
A
(

∇u(t)
z(t)

) ]
◦R
)

x ∈ Cr\Kr.
(3.20)

Here, we use the notation divx′ σ = ∂x1σ1 + . . . + ∂xd−1
σd−1 = 1

2
div(σ(R + I)) for σ : Cr →

R
m×d, and σi is the i-th column of σ. Note that fe ∈ L∞(S; L2(Cr)).
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Let

θe(t, x) =




∇û(t, x) x ∈ Kr,

−∇(û(t, Rx)) +
(
∇(u(t, Rx))

)
(R + I) x ∈ Cr\Kr.

From the assumptions on u and from Lemma 3.4 we conclude that ∂d(θe

∣∣
Kr

) ∈ L∞(S; L2(Kr))

and ∂dθe

∣∣
Cr\Kr

∈ L∞(S; L2(Cr\Kr)). Since the traces on Γ0 of θe

∣∣
Kr

and of θe

∣∣
Cr\Kr

coin-

cide, it follows that θe ∈ L∞(S;Fd(Cr, Cr)). Moreover, we define

He(t, x) = −Pm×d

[
Ae(x)

(
θe(t,x)

0

) ]
+





H(t, x) x ∈ Kr,

H(t, Rx) x ∈ Cr\Kr.
(3.21)

The assumptions on H and the properties of θe imply that He ∈ L∞(S;Fd(Cr, C r
2
)). With

these definitions, the right hand side in (3.19) is equal to
∫

Cr
fe(t) ·v dx+

∫
Cr

He(t) : ∇v dx,

which leads to the first equation in (3.18).

Finally we define

ℓ2,e(t, x) = −Pn

[
Ae(x)

(
θe(t,x)

0

) ]
+





ℓ2(t, x) x ∈ Kr,

ℓ2(t, Rx) x ∈ Cr\Kr.

As before we have ℓ2,e ∈ L∞(S;Fd(Cr, C r
2
)). Moreover, straightforward calculations show

that the extended functions satisfy the second relation in (3.18). This finishes the proof of

Lemma 3.5.

Proof of Theorem 3.3. Theorem 3.3 is an immediate consequence of part (a) of Theo-

rem 3.1 and of Lemma 3.5.

Observe that even with stronger assumptions on the temporal regularity of the data we

cannot extend in the proof of Theorems 3.1 and 3.2 the regularity of u from L∞(S; H2
loc(Kr)∩

H2
tang(Kr)) to W 1,1(S; H2

loc(Kr) ∩ H2
tang(Kr)). In fact, the example in Section 5.2.4 shows

that in spite of arbitrary smooth data, u does not belong to W 1,1(S; H2(Ω)) in general.

Thus we cannot expect that the extended data in the proof of Theorem 3.3 (see Lemma

3.5), which contain tangential derivatives of u and z, have the temporal regularity for-

mulated in assumption A3. Hence, in order to obtain the global regularity, we can only

apply the weak result formulated in part (a) of Theorem 3.1, and not the stronger result

stated in part (b) of Theorem 3.1. This explains the loss of a “half” derivative in the

normal direction. However, for time independent problems, where the model reduces to a

linear elliptic system of partial differential equations, the reflection argument gives a full

additional spatial derivative.
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4 Main regularity theorem

4.1 Basic assumptions and main result

We are now ready to formulate and prove the main regularity theorem for generalized

elasto-(visco)-plastic models on smooth domains. In particular we assume the following:

R1 Ω ⊂ R
d is a bounded domain with C1,1-smooth boundary, see e.g. [Gri85].

For A ∈ L∞(Ω, End(Rm×d × R
n)), u ∈ H1(Ω, Rm) and z ∈ L2(Ω, Rn) the energy E is

defined as in (2.17):

E(u, z) = 1
2

∫

Ω

〈A (∇u
z ) , (∇u

z )〉 dx.

R2 The coefficient function A belongs to C0,1(Ω, End(Rm×d ×R
n)), is self adjoint and the

energy satisfies E(v, z) ≥ α
2

(
‖v‖2

H1(Ω) + ‖z‖2
L2(Ω)

)
for all v ∈ H1

0 (Ω) and z ∈ L2(Ω).

Note that R2 shall be satisfied for v ∈ H1
0 (Ω), only, independently of the type of boundary

conditions which finally are imposed on the generalized displacements.

R3 g : R
n → P(Rn) is maximal monotone with 0 ∈ g(0). Moreover, G : L2(Ω, Rn) →

P(L2(Ω, Rn)) is defined as in (2.19).

R4 z0 ∈ H1(Ω, Rn), f ∈ W 1,1(S; L2(Ω, Rm)), H ∈ W 1,1(S; H1(Ω, Rm×d)),

ℓ2 ∈ W 1,1(S; H1(Ω, Rn)) and u0 ∈ W 1,1(S; H
3
2 (∂Ω, Rm)).

For D ⊂ {1, . . . , m}, where D=∅ is not excluded, the set of admissible generalized dis-

placements is given by

U = { v ∈ H1(Ω, Rm) ; vi

∣∣
∂Ω

= 0 for i ∈ D }. (4.1)

With this choice it is possible to define different types of boundary conditions for the

different components of u.

We consider functions (u, z) ∈ W 1,1(S; H1(Ω, Rm)) × W 1,1(S; L2(Ω, Rn)) which for all

v ∈ U and a.e. t ∈ S satisfy the following relations

DuE(u(t), z(t))[v] =

∫

Ω

〈A
(

∇u(t)
z(t)

)
, (∇v

0 )〉 dx =

∫

Ω

f(t) · v + H(t) : ∇v dx,

∂tz(t) ∈ G
(
− DzE(t, u(t), z(t)) + ℓ2(t)

)
,

z(0) = z0,

ui(t)
∣∣
∂Ω

= u0,i(t) for i ∈ D.

(4.2)

20



Theorem 4.1 (Main Regularity Theorem). Let R1–R4 be satisfied and assume that the

pair (u, z) ∈ W 1,1(S; H1(Ω))×W 1,1(S; L2(Ω)) satisfies (4.2) for all v ∈ U and almost every

t ∈ S. Then

sup
t∈S

‖u(t)‖
B

3
2
2,∞(Ω)

< ∞, sup
t∈S

‖z(t)‖
B

1
2
2,∞(Ω)

< ∞,

and for every δ > 0 we have

u ∈ L∞(S; H
3
2
−δ(Ω)), z ∈ L∞(S; H

1
2
−δ(Ω)). (4.3)

The optimality of Theorem 4.3 and further examples are discussed in Section 5. The

proof of Theorem 4.1 is carried out in Sections 4.2–4.3. By the usual arguments we may

assume for the Dirichlet datum that u0 ≡ 0 and thus u ∈ W 1,1(S;U).

4.2 Step 1: Localization of the model and tangential regularity

Assumption R1 implies that for every y0 ∈ ∂Ω there exists a neighborhood Vy0 of y0 and a

C1,1-diffeomorphism Φy0 : Vy0 → C1 having the properties Φy0(y0) = 0, Φy0(∂Ω∩Vy0) = Γ0,

Φy0(Ω ∩ Vy0) = K1 and Φy0(Vy0\Ω) = C1\K1. The diffeomorphism Φy0 is chosen in such

a way that det∇Φy0 is constant. This choice is always possible for C1,1-smooth domains,

see for example [Gri85]. The inverse of Φy0 is denoted by Ψy0 : C1 → Vy0 .

Let A ∈ C0,1(Ω; End(Rm×d × R
n)) be the coefficient function in (4.2). For x ∈ K1,

Fi ∈ R
m×d, zi ∈ R

n we define AΦy0
∈ C0,1(K1; End(Rm×d × R

n)) via

〈AΦy0
(x) ( F1

z1
) , ( F2

z2
)〉 = 〈A(Ψy0(x))

(
F1(∇Ψy0(x))−1

z1

)
,
(

F2(∇Ψy0(x))−1

z2

)
〉.

Moreover,

EΦy0
(v, ζ) :=

1

2

∫

K1

〈AΦy0

(
∇v
ζ

)
,
(
∇v
ζ

)
〉 dx.

Finally let W(Kr) = { v ∈ H1(Kr) ; v
∣∣
∂Kr\Γ0

= 0 } for r > 0.

Lemma 4.2. Let conditions R1 and R2 be satisfied. For every y0 ∈ ∂Ω there exists

r ∈ (0, 1) such that for all v ∈ W(Kr) and ζ ∈ L2(Kr) it holds

EΦy0
(v, ζ) ≥ α

4

(
‖∇v‖2

L2(Kr) + ‖ζ‖2
L2(Kr)

)
(4.4)

with α from R2.

Proof. Assume that conditions R1 and R2 are satisfied. By a localization argument

similar to the one described in [GH96, Chap. 4.1.3, Legendre-Hadamard condition] and a

scaling argument it follows that for all x0 ∈ Ω, r > 0, v ∈ H1
0 (Cr) and ζ ∈ L2(Cr) it holds

∫

Cr

〈A(x0)
(
∇v
ζ

)
,
(
∇v
ζ

)
〉 dx ≥ α(‖∇v‖2

L2(Cr) + ‖ζ‖2
L2(Cr)). (4.5)
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Here, α is the same constant as in condition R2 and does not depend on r. Moreover, by

using even extensions for v ∈ W(Kr) and odd extensions for ζ ∈ L2(Kr) from Kr to Cr, it

follows that estimate (4.5) is valid also on W(Kr) × L2(Kr) with the same constant α as

in (4.5).

Let now y0 ∈ ∂Ω be arbitrary. For all r ∈ (0, 1], v ∈ W(Kr) and ζ ∈ L2(Kr) we have

2EΦy0
(v, ζ) =

∫

Kr

〈A(y0)
(
∇v
ζ

)
,
(
∇v
ζ

)
〉 dx +

∫

Kr

〈(AΦy0
(x) − A(y0))

(
∇v
ζ

)
,
(
∇v
ζ

)
〉 dx

≥ (α − cA,Φy0
diam(Kr))(‖∇v‖2

L2(Cr) + ‖ζ‖2
L2(Cr)).

The constant cA,Φy0
depends on Φy0 and on the Lipschitz properties of A, but is independent

of r. For small enough r we therefore arrive at (4.4).

In the sequel we omit the index y0.

Let (u, z) ∈ W 1,1(S;U) × W 1,1(S; L2(Ω)) be given as in Theorem 4.1, choose y0 ∈ ∂Ω

and let r ∈ (0, 1) be given according to Lemma 4.2. Let furthermore ϕ ∈ C∞
0 (C 3r

4
) with

0 ≤ ϕ ≤ 1 and with ϕ ≡ 1 on C r
2
. For (t, x) ∈ S × Kr we define

uΦ(t, x) = ϕ(x)u(t, Ψ(x)), zΦ(t, x) = z(t, Ψ(x)).

Furthermore, the space

U(Kr) = {w ∈ H1(Kr) ; v
∣∣
∂Kr\Γ0

= 0, vi

∣∣
Γ0

= 0 for i ∈ D }

is defined in the same way as in Section 3.2. Obviously, U(Kr) ⊂ W(Kr) and

(uΦ, zΦ) ∈ W 1,1(S;U(Kr)) × W 1,1(S; L2(Kr)).

Testing (4.2) with v◦Φ, where v ∈ U(Kr), changing the coordinates using Φ and moving

the lower order terms to the right hand side, we arrive at the following relations taking

into account that |det∇Φ| is constant:

For all v ∈ U(Kr) and almost every t ∈ S it holds
∫

Kr

〈AΦ(x)
(

∇uΦ(t)
zΦ(t)

)
, (∇v

0 )〉 dx =

∫

Kr

fΦ(t) · v dx + HΦ(t) : ∇v dx,

∂tzΦ(t) ∈ G
(
− Pn

[
AΦ

(
∇uΦ(t)
zΦ(t)

) ]
+ ℓ2,Φ(t)

)
,

zΦ(0) = z0,Φ.

(4.6)

Here, z0,Φ = z0 ◦ Ψ. Moreover, with ũ(t, x) = u(t, Ψ(x)) we have

fΦ(t) = f(t)◦Ψ,

HΦ(t) = H(t)◦Ψ∇Ψ−⊤ − Pm×d

[
AΦ

(
∇((1−ϕ)eu)

0

) ]
,

ℓ2,Φ(t) = ℓ2(t)◦Ψ − Pn

[
AΦ

(
∇((1−ϕ)eu)

0

) ]
.

(4.7)
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From assumption R4 and using that (1 − ϕ)ũ = 0 on Kr/2, we obtain

fΦ ∈ W 1,1(S; L2(Kr)), HΦ ∈ W 1,1(S; L2(Kr)) ∩ W 1,1(S; H1(K r
2
)),

ℓ2,Φ ∈W 1,1(S; L2(Kr)) ∩ W 1,1(S; H1(K r
2
)).

(4.8)

In view of Lemma 4.2 we are now exactly in the situation described in Section 3.2 on

tangential regularity. Theorem 3.2 therefore implies that for 1 ≤ i ≤ d − 1 we have

∂xi
∇uΦ ∈ L∞(S; L2(K r

4
)), ∂xi

zΦ ∈ L∞(S; L2(K r
4
)).

Since y0 ∈ ∂Ω was arbitrary and since ∂Ω can be covered with a finite number of the

domains Ψy0(K r
4
), the tangential regularity result is also valid for u and z on the whole

domain Ω.

4.3 Step 2: Global regularity

We consider again the localized problem (4.6). Thanks to the first step we have the

additional regularity ∂i∇uΦ ∈ L∞(S; L2(Kr)) and ∂izΦ ∈ L∞(S; L2(Kr)) for 1 ≤ i ≤ d−1.

Thus, in addition to (4.8) the data in (4.7) satisfy

HΦ, ℓ2,Φ ∈ L∞(S;∩d−1
i=1Fi(Kr, Kr)).

By a reflection argument it follows from Lemma 4.2 that the extended coefficient function

AΦ,e, which is defined by AΦ,e(x) = AΦ(x) for x ∈ Kr and AΦ,e(x) = AΦ(Rx) for x ∈ Cr\Kr,

satisfies ∫

Cr

〈AΦ,e

(
∇v
ζ

)
,
(
∇v
ζ

)
〉 dx ≥ κ

(
‖v‖2

H1(Cr) + ‖ζ‖2
L2(Cr)

)

for all v ∈ H1
0 (Cr), ζ ∈ L2(Cr) and some constant κ > 0. Theorem 3.3 now guarantees

that supt∈S ‖uΦ(t)‖
B

3/2
2,∞(Kr/4)

< ∞, supt∈S ‖zΦ(t)‖
B

1/2
2,∞(Kr/4)

< ∞, and that for every δ > 0

we have uΦ ∈ L∞(S; H
3
2
−δ(K r

4
)) and zΦ ∈ L∞(S; H

1
2
−δ(K r

4
)). Since y0 ∈ ∂Ω is arbitrary

and since ∂Ω can be covered with a finite number of domains Ψy0(K r
4
), we arrive finally

at (4.3) and the proof of Theorem 4.1 is finished.

5 Examples and Discussion

5.1 Application to elasto-visco-plastic models

The Regularity Theorem 4.1 is in particular applicable to classical elastic–plastic models

with linear hardening having positive definite hardening coefficients and to elastic-plastic

models with Cosserat-effects.
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5.1.1 Elasto-(visco)-plasticity with linear hardening

For elasto-plastic models with linear hardening we have m = d. Let ε : R
d×d → R

d×d
sym denote

the linearized strain tensor, which is defined through ε(F ) = 1
2
(F +F⊤) for F ∈ R

d×d. Let

furthermore C ∈ C1,1(Ω, End(Rd×d
sym)). The tensor C corresponds to the elasticity tensor.

It is assumed that C is self adjoint and that there exists a constant α > 0 such that

C(x)F : F ≥ α |F |2 for all F ∈ R
d×d
sym and all x ∈ Ω. Let moreover L ∈ C1,1(Ω; End(Rn))

be self adjoint and uniformly positive definite and choose B ∈ C1,1(Ω, Lin(Rn, Rd×d
sym)). B

maps the vector z of internal variables onto the plastic strain. For u ∈ H1(Ω, Rd) and

z ∈ L2(Ω, Rn) the stored energy reads

EH(u, z) =
1

2

∫

Ω

C(ε(∇u) − Bz) : (ε(∇u) − Bz) + (Lz) · z dx. (5.1)

Since C and L are assumed to be positive definite, it follows with Korn’s inequality that

estimate (2.18) is satisfied for all u ∈ H1
0 (Ω) and z ∈ Z. Problem (2.2) formulated with

EH from (5.1) and G from (2.19) constitutes an elastic-(visco)-plastic model with linear

hardening and takes the form: Find (u, z) ∈ W 1,1(S;U) × W 1,1(S;Z) such that for a.e.

t ∈ S and every v ∈ U
∫

Ω

C(ε(∇u(t)) − Bz(t)) : ε(∇v) dx = 〈ℓ1(t), v〉(U∗,U),

∂tz(t) ∈ g
(
− (−B⊤C(ε(∇u(t)) − Bz(t)) + Lz(t)) + ℓ2(t)

)
.

(5.2)

The global regularity theorem 4.1 is applicable to this model. Observe that g can be chosen

according to the von Mises flow rule as well as according to the Tresca flow rule.

This setting comprises linear kinematic hardening while pure isotropic hardening is ex-

cluded in our analysis. In the pure isotropic case, the matrix L is positive semidefinite,

only. We refer to [HR99, Joh78] for an existence proof for the case with isotropic hardening.

Hölder regularity of solutions, also in the isotropic case, is investigated in [FL08a].

5.1.2 Elasto-plasticity coupled with Cosserat micropolar effects

In [NC05] an elastic-plastic model was introduced which incorporates Cosserat micropo-

lar effects. This model is analyzed in [NC05, NC08] with respect to existence and local

regularity and in [KN08] with respect to global regularity of a time discretized version.

Let Ω ⊂ R
d, d = 3, be a bounded domain. In this model, not only the displacements u

but also linearized micro-rotations Q are taken into account. These micro-rotations are

represented with skew-symmetric tensors which are identified with vectors in R
d(d−1)

2 . Con-

sequently, m = d + d(d − 1)/2. The generalized displacements are now given by the pair
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(u, Q) ∈ R
d×R

d×d
skew

∼= R
m. The internal variable z is identified with the plastic strain tensor

z = εp ∈ R
d×d
sym, dev

∼= R
n with a suitable n ∈ N. The set R

d×d
sym, dev consists of the symmetric

matrices with zero trace. For u ∈ H1(Ω, Rd), Q ∈ H1(Ω, Rd×d
skew) and εp ∈ L2(Ω, Rd×d

sym,dev)

the stored energy reads

EC((u, Q), εp) =

∫

Ω

µ |ε(∇u) − εp|2 + µc |skew (∇u − Q)|2 +
λ

2
|tr∇u|2 + γ |∇Q|2 dx.

(5.3)

Here, λ, µ > 0 are the Lamé constants, µc > 0 is the Cosserat couple modulus and γ > 0

depends on the Lamé constants and an internal length parameter. Let U = H1
0 (Ω, Rd) ×

H1
0 (Ω, Rd×d

skew) and Z = L2(Ω, Rd×d
sym, dev). It is proved in [NC05] that there exists a constant

α > 0 such that for all (u, Q) ∈ U and εp ∈ Z we have

EC((u, Q), εp) ≥
α

2

(
‖u‖2

H1(Ω) + ‖Q‖2
H1(Ω) + ‖εp‖2

L2(Ω)

)
(5.4)

and therefore EC satisfies the assumption (2.18). Problem (2.2) formulated with EC from

(5.3) and with a maximal monotone operator G defined as in (2.19) describes elasto-plastic

material behavior which is coupled with Cosserat micropolar effects. Note that DuE(u, z) in

(2.2) has to be interpreted as D(u,Q)EC(u, Q, εp). The existence of solutions was investigated

in [NC05]. If R1, R3 and R4 are valid, then by Theorem 4.1 for every δ > 0 we have

the global regularity u ∈ L∞(S; H
3
2
−δ(Ω)) and εp ∈ L∞(S; H

1
2
−δ(Ω)), while the existence

proof already provides Q ∈ W 1,1(S; H2(Ω)), see [NC05]. It is also possible to choose

U = H1
0 (Ω, Rd) × H1(Ω; Rd×d

skew), which means that Dirichlet conditions are prescribed for

the displacements and Neumann conditions for the micro-rotation tensor Q.

5.2 Discussion of the optimality of Theorem 4.1

It is not clear whether the result presented in Theorem 4.1 is optimal or whether one should

expect that u ∈ L∞(S; H2(Ω)) and z ∈ L∞(S; H1(Ω)) for smooth domains. The latter

regularity would fit well to the local result provided in Theorem 3.1 and to regularity results

for elliptic equations. In this section we show that the improved regularity can be achieved

for some special cases. For A ∈ C0,1(Ω; End(Rm×d×R
n)) we use the notation A =

(
A11 A12
A21 A22

)

with coefficient matrices A11 ∈ C0,1(Ω; End(Rm×d)), A12 = A∗
21 ∈ C0,1(Ω; Lin(Rm×d, Rn))

and A22 ∈ C0,1(Ω; End(Rn)).

5.2.1 The decoupled case

Assume that A12 = 0 and that G satisfies R3. In this case, the elliptic equation and the

evolution equation in (4.2) are decoupled. The extended function ℓ2,e occurring in the
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proof of Lemma 3.5 is now given by

ℓ2,e(t, x) =





ℓ2(t) x ∈ Kr

ℓ2(t, Rx) x ∈ Cr\Kr

and belongs to W 1,1(S; H1(Cr)) instead of L∞(S;Fd(Cr, Cρ)). Thus part (b) of Theorem

3.1 is applicable and yields z ∈ L∞(S; H1(Kr)). Under the assumptions of Theorem 4.1 it

therefore holds in the decoupled case that u ∈ W 1,1(S; H2(Ω)) and z ∈ L∞(S; H1(Ω)).

5.2.2 The one dimensional case

Let d = 1, m, n ∈ N and Ω = (0, 1). Furthermore, let the pair (u, z) ∈ W 1,1(S; H1(Ω) ×
L2(Ω)) be a solution of (4.2). Applying the reflection procedure from Section 3.3 leads

to extended functions having the regularity (ue, ze) ∈ W 1,1(S; H1(C1) × L2(C1)), fe ∈
W 1,1(S; L2(C1)), θe, He, ℓ2,e ∈ W 1,1(S; H1(C1)) with C1 = (−1, 1). Hence, Theorem 3.1(b)

gives

Theorem 5.1. Let d = 1 and assume that R1–R4 are satisfied. Then the solutions u and

z have the regularity u ∈ L∞(S; H2(Ω)), z ∈ L∞(S; H1(Ω)).

5.2.3 Improved regularity if u is scalar

If the function u is scalar, i.e. m = 1, improved regularity results can be obtained provided

that certain coupling conditions between the coefficient matrix A and the function g are

satisfied. For the proof of the result we apply again a reflection argument. In contrast to the

approach presented in Section 3 the model is not reflected perpendicular to the boundary

but in a direction which is locally given by A11(x)ν(x) for x ∈ ∂Ω. Here, ν : ∂Ω → R
d

denotes the interior unit normal vector. In particular we assume

R1’ Ω ⊂ R
d is a bounded domain with C2,1-smooth boundary and ∂Ω = ΓD.

R2’ The coefficient matrix A belongs to C1,1(Ω; End(Rd×R
n)), is self adjoint and satisfies

E(v, z) ≥ α
2
(‖v‖2

H1(Ω) + ‖z‖2
L2(Ω)) for every v ∈ H1

0 (Ω) and z ∈ L2(Ω).

R3’ g : R
n → P(Rn) satisfies R3.

R4’ z0 ∈ H1(Ω, Rn), f ∈ W 1,1(S; L2(Ω)) and u0 ∈ W 1,1(S; H2(Ω)).

In order to formulate the compatibility conditions, we define for x ∈ ∂Ω and A11(x) ∈ R
d×d

Rν(x) = I − 2

〈A11(x)ν(x), ν(x)〉A11(x)ν(x) ⊗ ν(x) (5.5)
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with the interior normal vector ν : ∂Ω → R
d. The matrix Rν locally determines the

reflection at ∂Ω. Observe that for all x ∈ ∂Ω we have

(Rν(x))2 = I and Rν(x)A11(x)Rν(x)⊤ = A11(x). (5.6)

R5’ For every x0 ∈ ∂Ω there exists a neighborhood W ⊂ R
d and a mapping P ∈ C0,1(∂Ω∩

W ; End(Rn)) such that the inverse matrix (P (x))−1 exists for every x ∈ ∂Ω∩W and

such that the following conditions hold for every x ∈ ∂Ω ∩ W :

(a) Rν(x)A12(x)P (x) = A12(x),

(b) P (x)⊤A22(x)P (x) = A22(x),

(c) −P (x)−1g(−P (x)−⊤η) = g(η) for all η ∈ R
n,

(d) Compatibility for the initial datum: (I + P−1)z0 = 0 on ∂Ω.

We consider the problem to find (u, z) ∈ W 1,1(S; H1(Ω)) × W 1,1(S; L2(Ω)) which satisfy

for a.e. t ∈ S and every v ∈ H1
0 (Ω) the relations

∫

Ω

〈A
(

∇u(t)
z(t)

)
, (∇v

0 )〉 dx =

∫

V

f(t)v dx,

∂tz(t) ∈ g(−Pn[A
(

∇u(t)
z(t)

)
])

z(0) = z0, u(t)
∣∣
∂Ω

= u0(t)
∣∣
∂Ω

.

(5.7)

Theorem 5.2. Let R1’–R5’ be satisfied and assume that the pair (u, z) solves (5.7). Then

u ∈ L∞(S; H2(Ω)), z ∈ L∞(S; H1(Ω)) and (I + P−1)z(t) = 0 on ∂Ω for all t ∈ S.

The proof is carried out in the next two lemmata, where we first construct a local

diffeomorphism from Ω ∩ W to W\Ω. This diffeomorphism is closely related with Rν . In

the second step we localize and extend problem (5.7) from Ω∩W to W and show that the

new problem satisfies the smoothness assumptions of part (b) of Theorem 3.1.

Lemma 5.3. For every x0 ∈ ∂Ω exists a neighborhood V with V+ = Ω∩V and V− = V \Ω
and a C1,1-diffeomorphism T : V → V with the properties T (x) = x for all x ∈ ∂Ω ∩ V ,

T (V±) = V∓ and ∇T (x) = Rν(x) for all x ∈ ∂Ω ∩ V .

Proof. We define the following mapping

T̃ : ∂Ω × R → R
d; (ỹ, yd) 7→ ỹ + ydA11(ỹ)ν(ỹ).
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Since ∂Ω is assumed to be C2,1-smooth, the mapping T̃ belongs to C1,1(∂Ω × R
d). For

yd = 0 we have

∇T̃ (ỹ, 0) = ITey∂Ω + A11(ỹ)ν(ỹ) ⊗ ν(ỹ) = IRd + (A11(ỹ) − IRd)ν(ỹ) ⊗ ν(ỹ), (5.8)

where ITey∂Ω is the restriction of the identity to the tangent space of ∂Ω in ỹ. Moreover,

det∇T̃ (ỹ, 0) = 〈A11(ỹ)ν(ỹ)), ν(ỹ)〉 > 0 since A11 is uniformly positive definite. Thus the

inverse of ∇T̃ (ỹ, 0) exists in all points (ỹ, 0) ∈ ∂Ω × R and is given by

(∇T̃ (ỹ, 0))−1 = IRd − 1

〈A11ν, ν〉
(A11 − IRd)ν ⊗ ν.

Let now x0 ∈ ∂Ω be arbitrary. By the Implicit Function Theorem there exists a neighbor-

hood V ⊂ R
d of x0 and a neighborhood Ṽ ⊂ ∂Ω × R of (x0, 0) such that T̃ : Ṽ → V is

a C1,1-diffeomorphism with T̃ (Ṽ±) = V±. Here, Ṽ± = { (ỹ, yd) ∈ Ṽ ; yd
>
< 0 }, V+ = Ω ∩ V ,

V− = V \Ω. Let the reflection at ∂Ω be given by R : ∂Ω×R → ∂Ω×R, R(ỹ, yd) = (ỹ,−yd)

with ∇R(ỹ, 0) = IRd − 2ν × ν. The mapping T we are looking for is defined through

T : V → V, T (x) = T̃ (R(T̃−1(x))).

By construction, T is a C1,1-diffeomorphism with T (V±) = V∓. Moreover, straightforward

calculations show that for every x ∈ ∂Ω we have

∇T (x) = ∇T̃ (x, 0)∇R(x, 0)(∇T̃ (x, 0))−1 = Rν(x).

This finishes the proof of Lemma 5.3.

From now on we assume that u0 = 0 and u(t) ∈ H1
0 (Ω) and that the set V from Lemma

5.3 is contained in the set W from R5’.

The following extended functions will be considered in the sequel: Choose x0 ∈ ∂Ω and

let T : V → V be the corresponding diffeomorphism from Lemma 5.3. Choose ϕ ∈ C∞
0 (V )

with ϕ
∣∣
Bδ(x0)

= 1 for some δ > 0. The matrix valued function P introduced in condition

R5’ is extended to V in the following way: Let T̃ be the diffeomorphism defined in the

proof of Lemma 5.3. For x ∈ V we have T̃−1(x) = (ỹ, yd) ∈ ∂Ω×R. By T̃−1
∂Ω we denote the

projection onto the point ỹ, i.e. T̃−1
∂Ω (x) = ỹ ∈ ∂Ω. The extension of P is now defined as

Pe(x) = P (T̃−1
∂Ω (x)), x ∈ V.
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By construction, Pe ∈ C0,1(V , End(Rn)). Observe that the inverse matrix (Pe(x))−1 exists

for every x ∈ V and that (Pe(·))−1 belongs to C0,1(V , End(Rn)). We define

ue(t, x) =





(ϕu)(t, x) (t, x) ∈ S × V+

−(ϕu)(t, T−1(x)) (t, x) ∈ S × V−

,

ze(t, x) =





z(t, x) (t, x) ∈ S × V+

−(P−1
e z)(t, T−1(x)) (t, x) ∈ S × V−

.

Obviously, (ue, ze) ∈ W 1,1(S; H1
0 (V ) × L2(V )). The coefficient function A is extended as

follows

A11,e =





A11 on V+

(∇TA11∇T⊤)◦T−1 on V−

, A22,e =





A22 on V+

(P⊤
e A22Pe)◦T−1 on V−

,

A12,e =





A12 on V+

(∇TA12Pe)◦T−1 on V−

, A21,e = A⊤
12,e .

Due to the compatibility condition R5’, the coefficient matrix Ae =
(

A11,e A12,e

A21,e A22,e

)
belongs

to C0,1(V , End(Rd × R
n)). Moreover, the data is extended as follows

fe =





f on V+
(
−f + |det∇T |−1 (A11∇u + A12z) · ∇ |det∇T |

)
◦T−1 on V−

,

He =





A11∇((ϕ − 1)u) on V+

−
(
∇TA11∇((ϕ − 1)u)

)
◦T−1 on V−

,

ℓ2,e =





A21∇((ϕ − 1)u) on V+

−(P⊤
e A21∇((ϕ − 1)u))◦T−1 on V−

,

z0,e =





z0 on V+

−(P−1
e z0)◦T−1 on V−

.

Thanks to R5’, the extended functions have the regularity fe ∈ W 1,1(S; L2(V )), He, ℓ2,e ∈
W 1,1(S; L2(V )) ∩ W 1,1(S; H1(Bδ(x0))) and z0,e ∈ H1(V ). Finally, for η ∈ R

n we define

ge(x, η) =





g(η) on V+

−P−1
e ◦T−1 g(−P−⊤

e ◦T−1 η) on V−

.

Due to condition R5’, we have in fact the identity ge(x, η) = g(η) for all x ∈ V and η ∈ R
n.
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Lemma 5.4. Assume that R1’-R5’ of this section are satisfied. For a.e. t ∈ S and every

v ∈ H1
0 (V ) the above defined extended functions (ue, ze) ∈ W 1,1(S; H1

0 (V ))×W 1,1(S; L2(V ))

satisfy
∫

V

〈Ae

(
∇ue(t)
ze(t)

)
, ( ∇v

0 )〉 dx =

∫

V

fe(t)v + He(t) · ∇v dx,

∂tze(t) ∈ ge(−Pn[Ae

(
∇ue(t)
ze(t)

)
] + ℓ2,e(t))

ze(0) = z0,e.

(5.9)

Moreover, the coefficients and the data z0,e, fe, He and ℓ2,e have the smoothness described

in conditions A1 and A3 of Section 3.1. Thus, u ∈ L∞(S; H2(Bδ(x0) ∩ Ω)) and z ∈
L∞(S; H1(Bδ(x0) ∩ Ω)).

Proof. The last assertion of Lemma 5.4 is an immediate consequence of Theorem 3.1

applied to ue and ze and (5.9). We recall that ge(x, η) = g(η) for all x ∈ V and η ∈ R
n.

Since ze ∈ L∞(S; H1(Bδ(x0)), the traces of ze from V+ and from V− on ∂Ω coincide, which

entails (I + P−1)z(t) = 0 on ∂Ω for all t.

Relation (5.9) can be derived as follows: straightforward calculations show that for

v ∈ H1
0 (V ) it holds
∫

V

〈Ae

(
∇ue(t)
ze(t)

)
, (∇v

0 )〉 dx =

∫

V+

(A11∇ue + A12z) · ∇(v − |det∇T | v◦T ) dy

+

∫

V+

(
(A11∇ue + A12z) · ∇ |det∇T |

)
v◦T dy.

Since |det∇T (y)| = |det Rν(y)| = 1 for y ∈ ∂Ω, it follows that v−|det∇T | v◦T ∈ H1
0 (V+).

Thus, on the basis of (5.7), we arrive at the following relation
∫

V

〈Ae

(
∇ue(t)
ze(t)

)
, (∇v

0 )〉 dx =

∫

V+

f
(
v − |det∇T | v◦T ) + He · ∇(v − |det∇T | v◦T ) dy

+

∫

V−

(
|det∇T |−1 (A11∇ue + A12z) · ∇ |det∇T |

)
◦T−1v dx

with He from above. After a transformation of coordinates we obtain the first relation

in Lemma 5.4. The second relation is an immediate consequence of the definitions of the

extended functions in combination with relation (5.7).

A concrete example, where condition R5’ is satisfied, is the following with n = d:

Let A =
(

A11 −A11
−A11 A11+A22

)
with symmetric, positive definite and constant matrices A11,

A22 ∈ R
d×d. The corresponding stored energy reads

E(u, z) = 1
2

∫

Ω

A11(∇u − z) · (∇u − z) + A22z · z dx.
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Moreover, g = ∂χK for some convex and closed set K ⊂ R
d. Let Ω ⊂ R

d satisfy R1’

and let Rν := I − 2
〈A11ν,ν〉

A11ν ⊗ ν for ν ∈ R
d\{0}. Observe that R−1

ν = Rν . With

Pν = A−1
11 R−1

ν A11 = R⊤
ν , condition R5’ reads as follows

(a) RνA22R
⊤
ν = A22 for all ν ∈ R

d\{0},

(b) −R⊤
ν g(−Rνη) = g(η) for all η ∈ R

d and ν ∈ R
d\{0}.

Proposition 5.5. The compatibility condition R5’ is satisfied if and only if K = −RνK
for every ν ∈ R

d\{0} and if there exists α > 0 such that A22 = αA11.

If K = { η ∈ R
d ; 〈Bη, η〉 ≤ 1 } for some symmetric and positive definite B ∈ R

d×d,

then the condition on K is satisfied if and only if there exists a constant β > 0 such that

B = βA−1
11 .

Proof. The Proposition follows from Lemma A.1 and Lemma A.2 in the appendix.

This scalar example shows that if the anisotropy of “Hooke’s law” given by A11 is strongly

correlated with the anisotropy in the hardening coefficients A22 and the convex set K,

then the displacements u(t) have full H2 regularity up to the boundary of Ω. The crucial

point in the scalar case is the existence of the local diffeomorphism T from Ω to some

larger domain having the property (5.6) for Rν = ∇T . It is not clear, whether a similar

construction is possible for true elasto-plasticity, where m = d, or for the general vectorial

case with m > 1.

Example 5.6. As a byproduct of the proof of Theorem 5.2 we obtain the following regu-

larity result, which might be of interest for convergence studies of numerical schemes. Let

Ω ⊂ R
d be a rectangular cuboid, m = 1, n = d, E(u, z) = 1

2

∫
Ω
|∇u − z|2 + α |z|2 dx for

some α > 0 and g = ∂χK with K = Bρ(0) ⊂ R
d. Assume that R4’ is satisfied. If in addi-

tion there exists ξ : ∂Ω → R such that the initial datum satisfies z0(x) = ξ(x)ν(x), where

ν : ∂Ω → R
d is the interior normal vector, then u ∈ L∞(S; H2(Ω)) and z ∈ L∞(S; H1(Ω)).

Proof. Like in the proof of Theorem 5.2 we extend the problem by reflection across all

faces to a larger cuboid which completely contains Ω. Due to the compatibility assumptions

on the coefficients and on the initial datum the extended data and coefficients are smooth

and part (b) of Theorem 3.1 is applicable.

5.2.4 Example: ∂tz /∈ L∞(S; H1(Ω))

In spite of smooth data the rate ∂tz does not belong to L∞(S; H1(Ω)), in general. The

following example is inspired by Seregin’s paper [Ser99].
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Let 0 < R1 < R2. We set Ω = BR2(0)\BR1(0) and choose the following energy for

u, z : Ω → R:

E(u, z) = 1
2

∫

Ω

∣∣∇u − x
|x|

z
∣∣2 + z2 dx.

Moreover, g(η) := ∂χ[−1,1](η) for η ∈ R. We assume that u(t)
∣∣
∂BR1

= 0, u(t)
∣∣
∂BR2

= t,

z0 = 0 and that the remaining data (f , H , ℓ2) vanish. It is easily checked that the

assumptions of Theorem 5.2 are satisfied and hence the problem has a unique solution with

the regularity ∇u, z ∈ W 1,1(S; L2(Ω)) ∩ L∞(S; H1(Ω)). Due to the rotational symmetry

of the problem the solution does not depend on the angle and can explicitly be calculated.

Introducing polar-coordinates, the solution u, z : S × (R1, R2) → R has to satisfy

∂2
r u + r−1∂ru − ∂rz − r−1z = 0 in S × (R1, R2),

∂tz ∈ ∂χ[−1,1](∂ru − 2z) in S × (R1, R2),

z(0, ·) = 0, u(t, R1) = 0, u(t, R2) = t.

For t ≤ t1 := R1 ln(R2/R1) it follows that u(t, r) = t ln(r/R1)
ln(R2/R1)

, z(t, r) = 0. In this regime, no

plastic strains are present. For t > t1 the plastic variable z starts to grow and there exists

r∗(t) such that z(t, r) > 0 for r < r∗ and z(r, t) = 0 for r > r∗, i.e. r∗(t) separates the

plastic region from the elastic region. The dependence of r∗ of t is given implicitly through

the relation

t(r∗) = R1 − r∗ + r∗ ln
R2r∗
R2

1

.

Simple calculations show that t(r∗) is strictly increasing, and hence r∗(t) ≥ R1 is strictly

growing, as well. Moreover, for t ≥ t1 we have

u(t, r) =





b(t) − r + 2r∗(t) ln r if r ≤ r∗(t)

c(t) + r∗(t) ln r else
, z(t, r) =




−1 + r∗(t)r

−1 if r ≤ r∗(t),

0 else
,

with functions b(t) = R1 − 2r∗(t) lnR1 and c(t) = t− r∗(t) lnR2. Since r′∗(t) > 0 for t ≥ t1

it follows that ∂tz(t, ·) /∈ H1(R1, R2) for t > t1. This example shows that in general one

can at most expect ∂tz ∈ Lp(S; H
1
2
−δ(Ω)) for some p ∈ [1,∞] and δ > 0.

6 Convergence rate for space-time-discretization

In this section we demonstrate how the above proved regularity results enter into the

derivation of convergence rates for a space-time-discretization of elasto-plastic models.
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For shortness we restrict ourselves to the case with Dirichlet boundary conditions, hence

U = H1
0 (Ω), and assume that the coefficient tensor A is constant. Moreover, we consider

the rate-independent case, where the maximal monotone function G coincides with the

subdifferential of a characteristic function. Thus, classical elasto-plasticity with linear

kinematic hardening is included in this section.

Let Th be a regular triangulation of Ω. For approximating the generalized displacements

we use functions, which are continuous and piecewise affine with respect to Th, while for

the interior variables we use piecewise constant functions:

Uh = { u ∈ H1
0 (Ω) ; u

∣∣
τ
∈ P1(τ) ∀τ ∈ Th },

Zh = { z ∈ L2(Ω) ; z
∣∣
τ
∈ P0(τ) ∀τ ∈ Th }.

Here, Pk(τ) denote the polynomials of order k on τ . Let the energy E be given according

to R2 in Section 4.

Let furthermore K ⊂ R
n be convex, closed and with 0 ∈ K, K = { z ∈ L2(Ω, Rn) ; z(x) ∈

K a.e. in Ω } and Kh = K ∩ Zh. Let furthermore G = ∂ZχK be the subdifferential in Z
of the characteristic function associated with K and Gh = ∂Zh

χKh
the subdifferential in

Zh of the characteristic function associated with Kh. Observe that G, Gh and the space

Zh satisfy the compatibility assumption (2.11). Indeed, for ηh ∈ Zh we have the identity

Gh(ηh) = { θh ∈ Zh ; θh(x) ∈ ∂χK(ηh(x)) a.e. in Ω } = G(ηh) ∩ Zh.

The problem to be approximated reads: Given compatible data (z0, f) ∈ Z×W 1,∞(S; H−1(Ω))

find (u, z) ∈ W 1,∞(S;U ×Z) with z(0) = z0 such that for a.e. t ∈ S and all v ∈ U it holds
∫

Ω

〈A
(

∇u(t)
z(t)

)
, ( ∇v

0 )〉 dx = 〈f(t), v〉,

∂tz(t) ∈ G(−DzE(u(t), z(t))).

(6.1)

The fully discretized problem is defined as: Given a partition Πτ of the time-interval [0, T ]

and a triangulation Th , find uk
h,τ ∈ Uh and zk

h,τ ∈ Zh which for 1 ≤ k ≤ N τ and every

v ∈ Uh satisfy
∫

Ω

〈A
(

∇uk
h,τ

zk
h,τ

)
, (∇v

0 )〉 dx = 〈f(tkτ ), v〉,

zk
h,τ − zk−1

h,τ

tkτ − tk−1
τ

∈ G(−DzE(uk
h,τ , z

k
h,τ ))

z0
h,τ = z0,h.

(6.2)

Here, z0,h is a suitable projection of the initial datum z0 on Zh. The fully discrete model

corresponds to a conforming approximation of the convex set K and coincides with the
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discrete problem studied in [AC00, HR99]. Let ρ = χ∗
K : R

n → R
n be the convex conjugate

of χK and R(η) =
∫
Ω

ρ(η(x)) dx for η ∈ Z. Then the discrete problem may equivalently

be written as: Find (uk
h,τ , z

k
h,τ ) ∈ Uh ×Zh such that

(uk
h,τ , z

k
h,τ) ∈ Argmin{ E(vh, ηh) − 〈f(tkτ), vh〉 + R(ηh − zk−1

h,τ ) ; vh ∈ Uh, ηh ∈ Zh }.

This incremental minimization problem is the starting point for the convergence studies

in [MRS08]. Using similar arguments as e.g. in [KN08], the problem (6.2) may also be

written as a system of quasilinear elliptic equations for determining uk
h,τ from zk−1

h,τ , which

is combined with a simple update formula for zk
h,τ .

As in Section 2.2 we denote with ûh,τ and ẑh,τ the continuous and piecewise affine inter-

polants corresponding to the time incremental solutions { (uk
h,τ , z

k
h,τ) ; 0 ≤ k ≤ N τ }. For

the error between the original solution (u, z) and the approximation (ûh,τ , ẑk,τ) we obtain

Theorem 6.1. Under the above assumptions and if the coefficient tensor A is constant

satisfies R2 (Section 4), there exists a constant c > 0 such that for all h, τ and all t ∈ [0, T ]

it holds

c
(
‖u(t) − ûh,τ(t)‖H1(Ω) + ‖z(t) − ẑh,τ (t)‖L2(Ω)

)

≤
√

τ + τ ‖f‖W 1,∞(S;U∗) + inf
vh∈Uh

‖u(t) − vh‖U

+ ‖z0 − z0,h‖L2(Ω) + sup
s∈S

inf
vh∈Uh

‖u(s) − vh‖
1
2

H1(Ω) . (6.3)

If in particular, if u ∈ L∞(S; H1+s(Ω)) for some s ∈ (0, 1], and ‖z0 − z0,h‖Z ≤ ch
s
2 , then

we obtain the convergence rate

‖u(t) − ûh,τ(t)‖H1(Ω) + ‖z(t) − ẑh,τ (t)‖L2(Ω) ≤ c(
√

τ + h
s
2 ).

Observe that ‖z − zh‖W 1,1(S;Z) enters into the constant c of estimate (6.3). Due to

Theorem 2.4 this error is uniformly bounded with respect to h.

Proof. The Strang Lemma implies the following estimate for the difference of the original

solution u and the affine interpolant ûh,τ : There exists a constant c1 > 0 such that for all

h and τ and for all t ∈ [0, T ] it holds

‖u(t) − ûh,τ(t)‖U ≤ c1( inf
vh∈Uh

‖u(t) − vh‖U + ‖ẑh,τ (t) − z(t)‖Z +
∥∥f(t) − f̂τ (t)

∥∥
U∗

),

where f̂τ ∈ W 1,∞(S;U∗) is the piecewise affine interpolant associated with { f(tkτ) ; 1 ≤
k ≤ N τ }. Hence it is sufficient to provide an estimate for ‖ẑh,τ(t) − z(t)‖Z . But this
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estimate relies on Corollary 2.5. In order to apply Corollary 2.5, we have to define the

Schur complement operators L and Lh and prove that they satisfy condition (2.10) of

Section 2.2.

The coefficient matrix A ∈ End(Rm×d × R
n) is split as follows: A =

(
A11 A12
A21 A22

)
with

A11 ∈ End(Rm×d), A12 = A∗
21 ∈ Lin(Rn, Rm×d) and A22 ∈ End(Rn). The induced linear

and bounded operators Aij are given as follows:

A11 : U → U∗, 〈A11(u), v〉 =

∫

Ω

A11∇u : ∇v dx u, v ∈ U ,

A11,h : Uh → U∗
h , 〈A11,h(uh), vh〉 =

∫

Ω

A11∇uh : ∇vh dx uh, vh ∈ Uh,

A12 = A∗
21 : Z → U∗, 〈A12(z), u〉 =

∫

Ω

A12z : ∇u dx u ∈ U , z ∈ Z,

A22 : Z → Z, A22(z) = A22z z ∈ Z.

Due to the positivity assumption R2, A11 and A11,h are uniformly (with respect to h)

positive definite on U and Uh. Hence, the following Schur-complement operators are well

defined and uniformly bounded with respect to h:

L : Z → Z, L = A22 −A21A−1
11 A12,

Lh : Z → Z, Lh = A22 −A21A−1
11,hA12.

Moreover, L and Lh are self adjoint and uniformly positive definite on Z. The uniform

positive definiteness can be seen as follows: For all z ∈ Z we have

〈Lhz, z〉 = 〈
(

A11,h A12

A21 A22

)(
−A−1

11,hA12z
z

)
,
(

−A−1
11,hA12z

z

)
〉 ≥ α(

∥∥A−1
11,hA12z

∥∥2

U
+ ‖z‖2

Z)

with α > 0 from condition R2. Since A21 maps Uh to Zh and since the coefficients A

are constant, the operator Lh maps Zh onto Zh. Hence, assumption (2.10) is satisfied.

Finally, we define F ∈ W 1,∞(S;Z) and Fh ∈ W 1,∞(S;Zh) through the relations F (t) =

−A21A−1
11 f(t) and Fh(t) = −A21A−1

11,hf(t). With these definitions we are exactly in the

situation described in Section 2.2 and problem (6.2) is equivalent to problem (2.15).

Hence, the error estimate between the original solution z and the affine interpolation of

the solutions of the fully discretized problem provided in Corollary 2.5 is valid. It remains

to derive an estimate for the term ‖(Lz − F ) − (Lhz − Fh)‖L∞(S;Z). Observe that for all

t ∈ [0, T ]

‖(Lz − F )(t) − (Lhz − Fh)(t)‖Z ≤ c ‖u(t) − ũh(t)‖U ,
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where u is the solution of the original problem (6.1) and ũh ∈ L∞(S,Uh) satisfies

∫

Ω

A11∇ũh(t) : ∇vh dx = 〈f(t), vh〉 −
∫

Ω

A12z(t) : ∇vh dx

for all vh ∈ Uh and t ∈ [0, T ]. Hence, Céa’s Lemma implies that there is a constant c > 0

such that for all t it holds

‖u(t) − ũh(t)‖U ≤ inf
vh∈Uh

‖u(t) − v‖U .

Collecting all estimates finally finishes the proof of Theorem 6.1.

A Proof of Proposition 5.5

Lemma A.1. Let A, B ∈ Lin(Rd, Rd) be symmetric with det A 6= 0 and assume that for

all ν ∈ R
d\{0} we have RνBR⊤

ν = B with Rν = I− 2
〈Aν,ν〉

Aν ⊗ ν. Then there exists α ∈ R

such that B = αA.

Proof. Let {e1, . . . , ed} be an orthonormal system of eigenvectors of A, i.e. Aei = λiei

for some λi ∈ R\{0} and 〈ei, ej〉 = δij. Then the set { ei ⊗ ej ; i, j ∈ {1, . . . , d} } is a

basis of Lin(Rd, Rd) which is orthonormal with respect to the inner product defined by

S : T = tr(T⊤S). This means that (ei ⊗ ej) : (ek ⊗ el) = δikδjl and A : (ei ⊗ ej) = λiδij .

Thus the identity RνBR⊤
ν = B is valid for all ν ∈ R

d\{0} if and only if

(RνBR⊤
ν ) : (ei ⊗ ej) = B : (ei ⊗ ej) (A.1)

for all ν ∈ R
d\{0} and all i, j ∈ {1, . . . , d}. Observe that (A.1) is equivalent to

2λiλj〈ν, ei〉〈ν, ej〉〈Bν, ν〉 = 〈Aν, ν〉
(
λj〈ν, ej〉〈ν, Bei〉 + λi〈ν, ei〉〈ν, Bej〉

)
(A.2)

for all ν ∈ R
d\{0} and all i, j ∈ {1, . . . , d}. With ν = ei 6= ej we obtain from (A.2) the

condition 0 = λ2
i 〈ei, Bej〉. Since λi 6= 0, it follows that

B : (ei ⊗ ej) = B : (ej ⊗ ei) = 〈ei, Bej〉 = 0 = A : (ei ⊗ ej) (A.3)

for all i 6= j. Assume again that i 6= j. With the choice ν = aiei + ajej , where a2
i + a2

j = 1

and aiaj 6= 0, it follows from (A.2) in combination with (A.3) that

a2
i

(
〈Bei, ei〉 − λicij

)
+ a2

j

(
〈Bej , ej〉 − λjcij

)
= 0
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for all these ai and aj . Here, cij = (2λiλj)
−1
(
λj〈Bei, ei〉 + λi〈Bej , ej〉

)
. This implies that

〈Bei, ei〉 − λicij = 0 for all i 6= j from which we deduce (with j = 1) that

〈Bei, ei〉 =
〈Be1, e1〉

λ1

〈Aei, ei〉

for all i ∈ {1, . . . , d}. Together with (A.3) it follows that B = 〈Be1,e1〉
λ1

A.

Lemma A.2. Let A, B ∈ Lin(Rd, Rd) be symmetric with det A > 0 and det B > 0. Assume

that for all ν ∈ R
d\{0} we have −RνK = K, where K = { η ∈ R

d ; 〈Bη, η〉 ≤ 1 } and

Rν = I − 2
〈Aν,ν〉

Aν ⊗ ν. Then there exists β > 0 such that B = βA−1.

Proof. Short calculations show that

R⊤
ν BRν = B + 2

〈Aν,ν〉2

(
− 〈Aν, ν〉(BAν ⊗ ν + ν ⊗ BAν) + 2〈BAν, Aν〉ν ⊗ ν

)

=: B + 2
〈Aν,ν〉2

Tν .

The assumption −RνK = K implies that for all ν ∈ R
d\{0} and all η ∈ R

d we have

〈Bη, η〉 ≤ 1 ⇔ 〈Bη, η〉 + 2
〈Aν,ν〉2

〈Tνη, η〉 ≤ 1.

Thus, 〈Tνη, η〉 = 0 for all η ∈ R
d. Note that

〈Tνη, η〉 = 2〈ν, η〉
(
〈BAν, Aν〉〈η, ν〉 − 〈Aν, ν〉〈BAν, η〉

)
.

Let {e1, . . . , ed} be an orthonormal basis of eigenvectors of A with eigenvalues λi > 0. Let

furthermore ν = ei +αej and η = ei for i 6= j and α ∈ R. From 〈Tνη, η〉 = 0 it follows that

for all α ∈ R we have

0 = αλiλj〈Bei, ej〉 + α2λj

(
λj〈Bej, ej〉 − λi〈Bei, Bei〉

)
− α3λ2

j〈Bej , ei〉.

This implies that 〈Bei, ej〉 = 0 for i 6= j and λj〈Bej , ej〉 = λi〈Bei, Bei〉 for all i, j, from

which we conclude that 〈Bej , ej〉 = λ1〈Be1, e1〉λ−1
j = λ1〈Be1, e1〉〈A−1ej , ej〉. In the same

way as in the proof of the previous Lemma, it follows finally that B = λ1〈Be1, e1〉A−1.
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loc-stress and strain regularity in cosserat plasticity.

Technical report, Technical University of Darmstadt, 2008. (submitted to ZAMM).

[Rep96] S. I. Repin. Errors of finite element method for perfectly elasto-plastic problems.

Math. Models Methods Appl. Sci., 6(5):587–604, 1996.

[Ser92] G.A. Seregin. Differential properties of solutions of evolutionary variational inequali-

ties in plasticity theory. Probl. Mat. Anal., 12:153–173, 1992.

[Ser99] G. A. Seregin. Remarks on the regularity up to the boundary for solutions to varia-

tional problems in plasticity theory. J. Math. Sci., 93(5):779–783, 1999.

[Shi99] P. Shi. Interior regularity of solutions to a dynamic cyclic plasticity model in higher

dimensions. Adv. Math. Sci. Appl., 9(2):817–837, 1999.

[Tri83] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics.
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