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Abstract

In this note we investigate the question of higher regularity up to the boundary

for quasilinear elliptic systems which origin from the time-discretization of models

from infinitesimal elasto-plasticity. Our main focus lies on an elasto-plastic Cosserat

model. More specifically we show that the time discretization renders H2-regularity

of the displacement and H1-regularity for the symmetric plastic strain εp up to the

boundary provided the plastic strain of the previous time step is in H1, as well.

This result contrasts with classical Hencky and Prandtl-Reuss formulations where it

is known not to hold due to the occurrence of slip lines and shear bands. Similar

regularity statements are obtained for other regularizations of ideal plasticity like

viscosity or isotropic hardening.

In the first part we recall the time continuous Cosserat elasto-plasticity problem,

provide the update functional for one time step and show various preliminary results

for the update functional (Legendre-Hadamard/monotonicity). Using non standard

difference quotient techniques we are able to show the higher global regularity. Higher

regularity is crucial for qualitative statements of finite element convergence. As a

result we may obtain estimates linear in the mesh-width h in error estimates.
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1 Introduction

1.1 Plasticity and Cosserat models

This article addresses the regularity question for time-incremental formulations of geomet-

rically linear elasto-plasticity. As a representative model problem we consider generalized

continua of Cosserat-micropolar type.

The basic difference of a Cosserat model as compared with classical continuum models

is the appearance of a nonsymmetric stress tensor which is augmented by a generalized

balance of angular momentum equation allowing to model interaction of particles not only

by surface forces (classical Cauchy continuum) but also through surface couples (Cosserat

continuum). General continuum models involving independent rotations as additional

degrees of freedom have been first introduced by the Cosserat brothers [15]. For an intro-

duction to the theory of Cosserat and micropolar models we refer to the introduction in

[49, 43, 45, 44, 48], see also [22, 9].

There are a great many proposals for extensions of the elastic Cosserat framework to

infinitesimal elasto-plasticity. We mention only [17, 19, 31, 55]. Recently the finite-strain

formulation has been put into focus, see, e.g., [56, 62, 23] and references therein.

The first author has also proposed an elasto-plastic Cosserat model [45, 44] in a finite

strain framework. A geometrical linearization of this model has been investigated in

[46, 48] and is shown to be well-posed also in the rate-independent limit for both quasistatic

and dynamic processes.

When it comes to numerically solving problems in elasto-plasticity, then it is common

practice to discretize the time-evolution in the flow-rule for the plastic variable with a

backward Euler method and to consider a sequence of discrete-in-time problems [50].

Provided that the elasto-plastic model has certain variational features (hyperelasticity of

the elastic response, associative flow rule) it is possible to recast the problem for one

time-step (called the update problem in the following) itself into a variational framework:

the updated displacement is obtained as a minimizer of some update functional, see e.g.,

[61, 60, 2, 66, 67]. This line of thought can be nicely extended to finite-strain multiplicative

plasticity, see [52, 37, 36, 38] and references therein. In the geometrically linear setting the

resulting variational update problem usually has the form of a quasilinear elliptic system

whose corresponding energy has only linear growth (in case of perfect plasticity).

For qualitative statements on the rate of convergence of finite element methods it is

necessary to know precisely the regularity of the function to be approximated. This then is

the question on the regularity of the solution of the quasilinear elliptic system constituting

the update problem.

As far as classical rate-independent (perfect) elasto-plasticity is concerned we remark

that global existence for the displacement has been shown only in a very weak, measure-

valued sense, while the stresses could be shown to remain in L2(Ω), provided a safe-load

condition is assumed. For these results we refer for example to [3, 13, 64]. If hardening
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or viscosity is added, then global H1-displacement solutions are found see e.g. [1, 12, 11],

already without safe-load assumption. A complete theory for the classical rate-independent

case remains, however, elusive, see also the remarks in [13].

Since classical perfect plasticity is, therefore, notoriously ill-posed (the updated dis-

placements have derivatives only in a measure-valued sense) we focus in our investigation

of higher regularity on certain modified update functionals which might allow for more

regular updates. The Cosserat elasto-plastic model in [46] is our basic candidate. Based

on this time-continuous model we investigate the time-incremental formulation and study

the global regularity of minimizers of the corresponding update functional. In [49] this

time-incremental formulation is the basis of a finite-element approximation.

Our focus on Cosserat models is justified by the fact that the Cosserat type models

are today increasingly advocated as a means to regularize the pathological mesh size

dependence of localization computations where shear failure mechanisms [14, 40, 4] play

a dominant role, for applications in plasticity, see the non-exhaustive list [31, 19, 55, 17].

1.2 Outline of this contribution

Our contribution is organized as follows: first, we recall the time-continuous geometrically

linear elasto-plastic Cosserat model as introduced in [45, 44] and investigated mathemat-

ically in [46, 48, 47].

Referring to the development in [49] we provide in section 2 the corresponding time-

discretized formulation based on a fully implicit backward Euler discretization of the

plastic flow rule in time. It is shown in [49] that at each time step tn the updated displace-

ment field un and the updated “Cosserat–microrotation–matrix” An can equivalently be

obtained from a convex minimization problem which involves only data from the previous

time step. The plastic strain εn
p is then derived from An and un via a simple update for-

mula. Furthermore, in [49] it has been shown that the update problem admits unique mini-

mizers un ∈ H1(Ω, R3), An ∈ H1(Ω, so(3)) and εn
p ∈ L2(Ω,Sym(3)) provided that the data

coming from the previous time step are smooth enough. In order to quantify the rate of

convergence of corresponding finite element methods for the update problem we investigate

the regularity of the displacements un by studying the corresponding weak Euler–Lagrange

equations. These equations form a quasilinear elliptic system of partial differential equa-

tions. The main result of this paper is Theorem 5.2 in section 5, where we formulate a

global regularity result for weak solutions of a rather general class of quasilinear elliptic

systems of second order. The time-incremental Cosserat plasticity formulation satisfies all

the necessary assumptions of the regularity result which allows us to show higher regularity

to the extent that ∀n ∈ N : un ∈ H2(Ω, R3) , An ∈ H2(Ω, so(3)), εn
p ∈ H1(Ω,Sym(3)) if

pure Dirichlet data are assumed. Let us remark that it remains an open problem whether

a similar regularity result is also valid for the time-continuous Cosserat model or other

regularized time-continuous plasticity formulations.
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The general quasilinear elliptic systems, which we study in section 5, are of the following

type: Find u ∈ H1
0 (Ω) such that for every v ∈ H1

0 (Ω)

∫

Ω
〈M(x,∇u(x), z(x)),∇v(x)〉dx =

∫

Ω
〈f, v〉 dx.

Here, z ∈ L2(Ω, RN ) and f ∈ L2(R3) are given data. For the Cosserat model, z is identified

with (εn
p , An), the explicit structure of M = MC is given in section 2.4. It is shown

that MC is rank–one monotone in ∇u and Lipschitz continuous but not differentiable.

Consequently, we assume in the general case that the function M : Ω × M
m×d × R

N →
M

m×d is Lipschitz continuous, rank–one monotone in ∇u and induces a G̊arding inequality.

The precise conditions on M are formulated as R1–R3 in section 5.1. Our main result is

theorem 5.2, where we prove for smooth domains that u ∈ H2(Ω) provided that z ∈ H1(Ω)

and f ∈ L2(Ω). We emphasize that we do not need the differentiability of M and that

we require M to be rank-one monotone, only, instead of uniformly or strongly monotone.

A further new aspect compared to systems studied in the literature is the presence of the

function z in the definition of the differential operator.

Let us give a short overview on global regularity results for quasilinear second order

systems. Systems with quadratic growth or, more general, with p–growth are studied by

several authors. We mention here the books [42, 39, 6], and the paper [53] where global

regularity results for systems of the type

DivM(x,∇u(x)) + f(x) = 0, u
∣∣
∂Ω

= gD ,

are shown for smooth domains assuming that M is differentiable and strongly monotone.

Further results for Lipschitz domains were obtained in [21, 20, 57] again assuming that

M is strongly monotone (or uniformly monotone, if p 6= 2), differentiable and that there

is a function W such that M = DW . These results are proved with a difference quotient

technique which relies on the standard finite differences δhu(x) := u(x + h) − u(x).

In Daněček [16] the authors study systems, where M(x, u,∇u) = B(x)∇u+h(x, u,∇u).

The main assumption in [16] is that B is uniformly positive definite, h is Hölder-continuous

with respect to ∇u and h(x, u, ·) is uniformly monotone in zero. They prove that the

gradient of solutions belongs locally to certain Campanato-Spanne spaces. With our main

result we can treat the case, where h does not depend on u, is Lipschitz continuous and

monotone but not necessarily uniformly monotone and where B induces a rank-one positive

quadratic form. We obtain u ∈ H2(Ω) globally.

In [58] a nonlinear elliptic system is studied which is more related to our Cosserat-model.

There, M is chosen as M(∇u) = h(|ε(u)|)
|ε(u)| ε(u), where ε(u) is the linearized strain tensor,

and it is assumed that h is differentiable except for a finite number of points and that h

is strongly monotone. It is shown for smooth domains that u ∈ H2(Ω) by investigating

the regularity of functions uδ with Div(δε(uδ)+M(ε(uδ)))+ f = 0 for δ ց 0. The results

for uδ are obtained with standard finite differences. Further results for related models
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where obtained in [54, 7]. Let us remark that the quasilinear system we are interested in

contains the above described systems as special cases (if p = 2) and that our main result

is not covered by the above references. The local and global regularity of the stress fields

of a class of degenerated quasilinear elliptic systems is investigated in the papers [10, 33].

Note that higher regularity is not known to hold for the displacements of the classical

limit of our formulation, which is the classical time-incremental Prandtl-Reuss model. In

the first update step this model in turn is nothing else than the total deformation Hencky

plasticity model. The Hencky model does not allow for regular displacements. Here, it

is known that the displacement u ∈ L
3
2 (Ω, R3) (see, e.g., [6, p.423]) while the classical

symmetric stresses satisfy σ ∈ H1
loc(Ω,Sym(3)) ∩ H

1
2
−δ(Ω) for every δ > 0 if the data are

sufficiently regular and if Ω is a Lipschitz domain. See [59, 24, 5, 51, 18] for the local and

[32] for the global result.

The proof of our own regularity result is split into the three classical steps. In the

first step we investigate the tangential regularity of weak solutions in the case where Ω

is a cube. Since we assumed rank–one monotonicity, only, we cannot apply the standard

difference quotient technique in this step. Instead, we use finite differences which are based

on inner variations: △hu(x) = u(τh(x)) − u(x), where τh(x) = x + ϕ2(x)h for h ∈ R
d and

a cut–off function ϕ. This will be explained in more detail in remark 5.5. Let us note

that these nonstandard differences where recently applied by Nesenenko [51] in order to

obtain higher local regularity for models from elasto-plasticity with linear hardening. In

the second step we prove higher regularity in directions normal to the boundary. Due to

the lack of differentiability of M we cannot apply the usual arguments (i.e. solving the

equation for the normal derivatives) to obtain the differentiability of ∇u in the normal

direction. Instead, we exploit the rank–one monotonicity of M in order to get more

information on the missing derivative. In the final step we prove the result for arbitrary

bounded C1,1-smooth domains by the usual localization procedure. The notation is found

in the appendix.

2 The infinitesimal elasto-plastic Cosserat model

In this section we recall the specific isotropic infinitesimal elasto-plastic Cosserat model

which has been proposed in a finite-strain setting in [44] and which was analyzed in [46].

Moreover, we derive a discrete formulation. This section does not contain new results;

it serves for the clear definition of the problem and for the introduction of some of the

notation.

2.1 Time continuous infinitesimal elasto-plastic Cosserat model

The geometrically linear time continuous system in variational form with non-dissipative

Cosserat effects reads: for given body forces f(t) ∈ L2(Ω, R3) and given Dirichlet data

5



find the displacement u(t) ∈ H1(Ω, R3), the skew-symmetric microrotation A(t) ∈
H1(Ω, so(3)) and the symmetric plastic strain εp(t) ∈ L2(Ω,Sym(3)) with

∫

Ω
W (∇u,A, εp(t)) − 〈f(t), u〉dx 7→ min . w.r.t. (u,A) at fixed εp(t) ,

W (∇u,A, εp) = µ ‖sym∇u − εp‖2

+ µc ‖skew(∇u − A)‖2 +
λ

2
tr [∇u]2 + 2µ L2

c ‖∇ axl(A)‖2 ,

ε̇p(t) ∈ ∂χ(TE(t)), TE = 2µ (ε − εp) , εp ∈ Sym(3) ∩ sl(3), εp(0) = ε0
p , (2.1)

u|ΓD
= gD(t, x) − x, A|ΓD

= skew(∇gD(t, x))|ΓD
.

Here, Ω ⊂ R
3 is a bounded smooth domain and ΓD ⊂ ∂Ω is that part of the boundary

where Dirichlet data are prescribed. The parameters µ, λ > 0 are the Lamé constants

of isotropic linear elasticity, µc > 0 is the Cosserat couple modulus and Lc > 0 is an

internal length parameter.1 The classical symmetric elastic strain sym∇u is denoted by

ε. The linear operator axl : so(3) → R
3 provides the canonical identification between

the Lie-algebra so(3) of skew-symmetric matrices and vectors in R
3. The Lie-algebra of

trace free matrices is denoted by sl(3) and dev : M
3×3 → sl(3), dev X = X − 1

311 is the

orthogonal projection onto sl(3). As regards the plastic flow rule, ∂χ is the subdifferential

of a convex flow potential χ : M
3×3 → R

+ acting on the generalized conjugate forces,

i.e., the Eshelby-stress tensor TE = −∂εpW (∇u,A, εp), where W is the free energy used

in (2.1).2

The corresponding system of partial differential equations coupled with the flow rule is

given by (note that ‖A‖2
M3×3 = 2 ‖axl(A)‖2

R3 for A ∈ so(3, R))

Div σ = −f, x ∈ Ω , balance of forces ,

σ = 2µ (ε − εp) + 2µc (skew(∇u) − A) + λ tr [ε] · 11 , (2.2)

−µ L2
c ∆ axl(A) = µc axl(skew(∇u) − A) , balance of angular momentum ,

ε̇p(t) ∈ ∂χ(TE), TE = 2µ (ε − εp) ,

u|ΓD
(t, x) = gD(t, x) − x , A|ΓD

= skew(∇gD(t, x))|ΓD
,

σ.~n|∂Ω\ΓD
(t, x) = 0 , µ L2

c∇ axl(A).~n|∂Ω\ΓD
(t, x) = 0 ,

εp(0) ∈ Sym(3) ∩ sl(3) .

Note that in this model the force stresses σ need not be symmetric and that the Cosserat

effects, active through the microrotations A, only appear in the balance equations but not

1Observe that for µc = 0 or Lc = 0 one recovers the classical Prandtl-Reuss formulation for the

displacement u.
2The specification χ = IK as indicatorfunction of some elastic domain is not necessary at this point.

6



in the plastic flow rule since TE does not depend on A. It is worth noting that this model

is intrinsically thermodynamically correct. If ΓD = ∂Ω then the model admits global weak

solutions with the regularity [46]:

u ∈ L∞([0, T ],H1(Ω, R3)) , A ∈ L∞([0, T ],H1(Ω, so(3))) ,

εp ∈ L∞([0, T ], L2(Ω,Sym(3) ∩ sl(3))) . (2.3)

2.2 Backward Euler time discretization of the flow rule

For a numerical treatment we consider the time discretization of the flow rule with the

fully implicit backward Euler scheme. Let 0 = t0 < t1 < . . . < tN = T be a subdivision

of the time interval [0, T ] with tj − tj−1 = ∆t. Let fn(x) = f(x, tn) and assume that at

time tn−1 a sufficiently regular plastic strain field εn−1
p ∈ Sym(3) ∩ sl(3) is given. We

want to determine the updated displacement un ∈ H1(Ω, R3), the updated skew-

symmetric microrotation An ∈ H1(Ω, so(3)) and the updated symmetric plastic

strain εn
p ∈ L2(Ω,Sym(3) ∩ sl(3)) satisfying

Div σn = −fn, x ∈ Ω ,

σn = 2µ (εn − εn
p ) + 2µc (skew(∇un) − An) + λ tr [εn] · 11 ,

−µ L2
c ∆ axl(An) = µc axl(skew(∇un) − An) , (2.4)

εn
p − εn−1

p

∆t
∈ ∂χ(T n

E), T n
E = 2µ (εn − εn

p ) ,

un
|ΓD

(x) = gn
D(x) − x , An

|ΓD
= skew(∇gn

D(x)) ,

σn.~n|∂Ω\ΓD
(x) = 0 , µ L2

c∇ axl(A)n.~n|∂Ω\ΓD
(x) = 0 ,

εn−1
p ∈ L2(Ω,Sym(3) ∩ sl(3)) .

It is possible to explicitly solve the discretized flow rule (2.4)4 for εn
p in terms of εn−1

p , εn

and ∆t. To see this, consider

εn
p − εn−1

p

∆t
∈ ∂χ(2µ (εn − εn

p )) ⇔ 0 ∈ ∂χ(2µ (εn − εn
p )) −

εn
p − εn−1

p

∆t
⇔ (2.5)

0 ∈ ∂εn
p

(
µ
∥∥εn

p − εn−1
p

∥∥2
+ ∆tχ(2µ (εn − εn

p ))
)

.

Thus we can define the local potential for the local flow rule

V time(εn, εn
p , εn−1

p , ∆t) := µ
∥∥εn

p − εn−1
p

∥∥2
+ ∆tχ(2µ (εn − εn

p )) . (2.6)
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It is easy to see that V time is strictly convex in εn
p , thus V time admits a unique minimizer

satisfying (2.5)3. Moreover, we have

V time(εn, εn
p , εn−1

p , ∆t) = µ
∥∥εn

p − εn−1
p

∥∥2
+ ∆tχ(2µ (εn − εn

p ))

=
1

4µ

∥∥2µ(εn
p − εn + εn − εn−1

p )
∥∥2

+ ∆tχ(2µ (εn − εn
p ))

=
1

4µ
‖Σn − Σn

trial‖2 + ∆tχ(Σn) = Ṽ (Σn,Σn
trial) , (2.7)

where Σn = 2µ (εn−εn
p ) and the so-called trial stresses Σn

trial = 2µ (εn−εn−1
p ). Minimizing

V time w.r.t. εn
p is equivalent to minimizing Ṽ w.r.t. Σn. Proceeding further, we specialize

χ. Let us define the elastic domain in stress-space

K := {Σ ∈ M
3×3 | ‖dev Σ‖ ≤ σy } , (2.8)

with initial yield stress σy, [σy] = [MPa], and corresponding indicator function

IK(Σ) =





0 ‖dev Σ‖ ≤ σy

∞ ‖dev Σ‖ > σy ,
(2.9)

and let χ = IK . We have therefore ∂χ = ∂IK in the sense of the subdifferential. With

this choice, the unique minimizer of Ṽ is simply characterized by

inf
Σn∈K

‖Σn − Σn
trial‖2 , (2.10)

independent of ∆t. The solution is the orthogonal projection of Σn
trial onto the convex set

K, denoted by

Σn = PK(Σn
trial) ⇒ 2µ (εn − εn

p )) = PK(2µ (εn − εn−1
p )) . (2.11)

Reintroducing the last result into the balance of forces equation (2.4)1 delivers

Div σn = −fn, x ∈ Ω ,

σn = PK(2µ (εn − εn−1
p )) + 2µc (skew(∇un) − An) + λ tr [εn] · 11 . (2.12)

This step is called return-mapping [61, 60] in an engineering context of classical plas-

ticity. At given plastic strain of the previous time step εn−1
p this equation is the strong

form of the update problem for the force-balance equation.

Gathering the previous development the formal problem for the update consists in de-

termining un ∈ H1(Ω, R3), An ∈ H1(Ω, so(3)) and εn
p ∈ L2(Ω,Sym(3) ∩ sl(3)) satisfying

Div σn = −fn, x ∈ Ω ,

σn = PK(2µ (εn − εn−1
p )) + 2µc (skew(∇un) − An) + λ tr [εn] · 11 , (2.13)

−µ L2
c ∆ axl(An) = µc axl(skew(∇un) − An) .
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The updated plastic strain field is then given by

εn
p = εn − 1

2µ
PK(2µ (εn − εn−1

p )) . (2.14)

For the precise formulation of this system we need the projection operator onto the yield

surface which we recall in the following.

2.3 The projection onto the yield surface

Let K be a convex domain in stress space defined as

K :=
{
Σ ∈ M

3×3 | ‖dev Σ‖ ≤ σy

}
. (2.15)

The orthogonal projection PK : M
3×3 → K onto this set is uniquely given by (see, e.g.,[29,

30])

PK(Σ) =





Σ Σ ∈ K

Σ − (‖dev Σ‖ − σy)
dev Σ

‖dev Σ‖ Σ 6∈ K

=





Σ ‖dev Σ‖ ≤ σy

1
3tr [Σ] 11 +

σy

‖dev Σ‖ dev Σ ‖dev Σ‖ > σy .
(2.16)

It is easy to see that PK is Lipschitz continuous but not differentiable at Σ with ‖dev Σ‖ =

σy.
3 From convex analysis it is clear that PK represents a monotone operator which is

non-expansive. Therefore, PK has Lipschitz constant 1. Observe also that

PK(Σ) =
1

3
tr [Σ] 11 + PK(dev Σ) . (2.18)

For future reference we calculate also

Σ − PK(Σ) =





0 ‖dev Σ‖ ≤ σy

dev Σ
(
1 − σy

‖dev Σ‖

)
‖dev Σ‖ > σy

= [‖dev Σ‖ − σy]+
dev Σ

‖dev Σ‖ , (2.19)

‖Σ − PK(Σ)‖2 = [‖dev Σ‖ − σy]
2
+ ,

where [x]+ := max{0, x}.
3Consider the simple example p : R → R,

p(x) =

8

<

:

x |x| ≤ σy

σy
x
|x|

|x| > σy

(2.17)
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2.4 Weak form of the reduced update problem

From now onwards we take ΓD = ∂Ω and assume gD = x, i.e. the body is fixed everywhere

on its boundary and subject only to body forces. This assumption allows us to confine

attention to the simpler setting in H1
0 (Ω). We introduce the nonlinear mapping

MC : M
3×3 × Sym(3) × so(3) → M

3×3 ,

MC(X, εp, A) := PK(2µ(sym X − εp)) + λ tr [X] 11 + 2µc(skew(X) − A) . (2.20)

The weak form of the update problem (2.13) now reads as follows: for given fn ∈ L2(Ω, R3)

and εn−1
p ∈ L2(Ω,Sym(3) ∩ sl(3)) find (un, An) ∈ H1

0 (Ω, R3) × H1
0 (Ω, so(3)) solving

∫

Ω
〈MC(∇un, εn

p , An),∇v〉 dx =

∫

Ω
〈fn, v〉 dx ∀v ∈ H1

0 (Ω, R3) , (2.21)

µ L2
c

∫

Ω
〈DAn,DB〉dx = µc

∫

Ω
〈skew∇un − An, B〉dx , ∀B ∈ H1

0 (Ω, so(3)) .

(2.22)

The updated plastic strain field εn
p is then obtained by (2.14). It is shown in [49] that

for every n the system (2.21)–(2.22) admits a unique weak solution un ∈ H1
0 (Ω, R3) and

An ∈ H1
0 (Ω, so(3)). Equation (2.21) represents the quasilinear elliptic system for deter-

mining un which will be discussed with respect to regularity. Together with εn−1
p , εn ∈

H1(Ω,Sym(3)), which we will obtain from the regularity result to be proven below, using

(2.14) we see that εn
p ∈ H1(Ω,Sym(3)).

Lemma 2.1 (Strong Legendre-Hadamard ellipticity)

Let µ > 0, 2µ+3λ > 0 and 0 < µc. Then the matrix valued function MC is strongly rank–

one monotone, i.e., there exists a constant c+
LH > 0 such that for every X ∈ M

3×3, εp ∈
Sym(3), A ∈ so(3) and for all ξ, η ∈ R

3 we have

〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉 ≥ c+
LH ‖ξ‖2 ‖η‖2 . (2.23)

Proof. The projection PK itself is monotone and for µ > 0 there is no sign-change. Thus

the map X → PK(2µ(sym X − εp)) is also monotone in X. Since (2.18) holds we have

〈PK(2µ(sym X + ξ ⊗ η − εp)) − PK(2µ(sym X − εp)), ξ ⊗ η〉 ≥ 2µ

3
tr [ξ ⊗ η]2 .

For the remaining linear contribution we have

〈λ tr [X + ξ ⊗ η] 11 + 2µc skew(X + ξ ⊗ η − A) − [λ tr [X] 11 + 2µc skew(X − A)] , ξ ⊗ η〉
= λ tr [ξ ⊗ η]2 + 2µc ‖skew(ξ ⊗ η)‖2 . (2.24)

10



Thus

〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉

≥ 2µ + 3λ

3
tr [ξ ⊗ η]2 + 2µc ‖skew(ξ ⊗ η)‖2 =

2µ + 3λ

3
〈ξ, η〉2 + µc

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)

split µ1
c + µ2

c = µc

=

(
2µ + 3λ

3
− µ1

c

)
〈ξ, η〉2 + µ1

c ‖ξ‖2 ‖η‖2 + µ2
c

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)

︸ ︷︷ ︸
≥0

≥
(

2µ + 3λ

3
− µ1

c

)
〈ξ, η〉2 + µ1

c ‖ξ‖2 ‖η‖2 ≥ µ1
c ‖ξ‖2 ‖η‖2 , (2.25)

if 0 < µ1
c < 3λ+2µ

3 . Thus MC generates a strongly Legendre-Hadamard elliptic operator

with ellipticity constant c+
LH = min(µc,

2µ+3λ
3 ). �

Obviously, M is Lipschitz continuous: for every Xi ∈ M
3×3, Pi ∈ Sym(3), Ai ∈ so(3) we

have

‖MC(X1, P1, A1) −MC(X2, P2, A2)‖ ≤ LMC
(‖X1 − X2‖ + ‖P1 − P2‖ + ‖A1 − A2‖) .

(2.26)

Lemma 2.2

Let µ > 0, 2µ + 3λ > 0 and µc > 0. The operator MC generates a strongly monotone

operator on H1
0 (Ω, R3), that is, there exists a constant cMC

> 0 such that for every

v1, v2 ∈ H1
0 (Ω, R3) and for all εp ∈ L2(Ω,Sym(3)) and A ∈ L2(Ω, so(3)) we have

∫

Ω
〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉 dx ≥ cMC

‖v1 − v2‖2
H1

0 (Ω,R3) . (2.27)

Proof. The same calculation as in the proof of Lemma 2.1 yields the estimate

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉

≥ 2µ + 3λ

3
tr [∇v1 −∇v2]

2 + 2µc ‖skew(∇v1 −∇v2)‖2 . (2.28)

Set u = v1 − v2 and consider

2µ + 3λ

3
tr [∇u]2 + 2µc ‖skew∇u‖2 =

2µ + 3λ

3
|Div u|2 + µc ‖curlu‖2 . (2.29)

The Curl/Div inequality on the space H1
0 (Ω) guarantees that there exists C+ > 0 such

that

∀ u ∈ H1
0 (Ω, R3) :

∫

Ω
|Div u|2 + ‖curlu‖2 dx ≥ C+ ‖u‖2

H1
0 (Ω,R3) , (2.30)

see for example [28]. Applying this inequality to (2.29) implies finally (2.27). �
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It is instructive to realize that although the quadratic form (2.29) is formally positive in

the sense of Nečas [41] and strongly Legendre-Hadamard elliptic with constant coefficients

it is impossible to extend the analysis to Dirichlet boundary conditions given only on a

part of the boundary ∂Ω.

We observe that
∥∥∥∥∥
√

µc skew X +

√
λ

2 · 3tr [X] 11

∥∥∥∥∥

2

=
λ

2
tr [X]2 + µc ‖skew X‖2 . (2.31)

Let Â be the constant-coefficients first order differential operator

Â.∇u =
√

µc skew(∇u) +

√
λ

2 · 3tr [∇u] 11 . (2.32)

The corresponding Fourier-symbol is given as a linear operator A(ξ) : C
3 → C

3×3 with

A(ξ).û :=
√

µc skew(ξ ⊗ û) +

√
λ

2 · 3tr [ξ ⊗ û] 11 . (2.33)

From (2.31) it follows

‖A(ξ).û‖2 =
λ

2
tr [ξ ⊗ û]2 + µc ‖skew ξ ⊗ û‖2 . (2.34)

By algebraic completeness of the symbol A(ξ) : C
3 → C

3×3 it is meant

∀ ξ ∈ C
3, ξ 6= 0 : A(ξ).û = 0C3×3 ⇒ û = 0C3 . (2.35)

Recall that the corresponding statement for real ξ, i.e.,

∀ ξ ∈ R
3, ξ 6= 0 : A(ξ).û = 0R3×3 ⇒ û = 0R3 , (2.36)

is a consequence of strict Legendre-Hadamard ellipticity of Â. If the symbol is algebraically

complete, then, using the result in Nečas [41] the induced quadratic form
∫

Ω

∥∥∥Â.∇u
∥∥∥

2
+ ‖u‖2 dx (2.37)

is an equivalent norm on H1(Ω, R3). However, we proceed to show that A as defined in

(2.33) corresponding to our quadratic form (2.29) is not algebraically complete.

Proof. To this end we write

A(ξ).û = 0 ⇒ tr [ξ ⊗ û] = 0, and skew(ξ ⊗ û) = 0 ⇒ ξ = û , tr [ξ ⊗ ξ] = 0 . (2.38)

Consider for simplicity the 2D-case:

ξ =

(
α1 + i β1

α2 + i β2

)
, ξ ⊗ ξ =

(
ξ1 ξ1 ξ1 ξ2

ξ2 ξ1 ξ2 ξ2

)
,

tr [ξ ⊗ ξ] = ξ1ξ1 + ξ2ξ2 = α2
1 + α2

2 − (β2
1 + β2

2) + 2i(α1β1 + α2β2) = 0 . (2.39)
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Choosing ξ = (i, 1)T shows that tr [ξ ⊗ ξ] = 0, which proves the claim. �

Thence, the quadratic form is not algebraically complete and this excludes the treatment

of mixed boundary conditions on u in the following: we are forced to assume ΓD = ∂Ω.

However, inhomogeneous Dirichlet conditions may be prescribed as far as the use of the

Div /Curl estimate is concerned.

2.5 Variational form of the update problem

Due to the underlying variational formulation, the weak form (2.21) of the time-incremental

Cosserat problem still has a variational structure. In [49] it is shown that solving (2.21)–

(2.22) is equivalent to the following minimization problem: find (un, An) ∈ H1
0 (Ω, R3) ×

H1
0 (Ω, so(3)) which minimize the functional

In
incr(u,A) = Eincr(u,A, εn−1

p ) −
∫

Ω
〈fn, u〉 dx (2.40)

in H1
0 (Ω, R3)×H1

0 (Ω, so(3)). Here Eincr denotes the free energy of the incremental problem

defined by

Eincr(u,A, εp) =
1

2µ

∫

Ω
Ψ
(
2µ(sym(∇u) − εp)

)
dx +

λ

2

∫

Ω
tr [∇u]2 dx

+ µc

∫

Ω
‖skew(∇u) − A‖2 dx + µL2

c

∫

Ω
‖DA‖2 dx, (2.41)

with a potential function Ψ : M
3×3 → R

+ of the form

Ψ(X) :=






1
2 ‖X‖2 ‖dev X‖ ≤ σy

1
2

(
1
3tr [X]2 + 2σy ‖dev X‖ − σy

2
)

‖dev X‖ > σy

=
1

2
‖X‖2 − 1

2
[‖dev X‖ − σy]

2
+ . (2.42)

Clearly, Ψ is convex but not strongly convex outside the yield surface. Moreover, it has

only linear growth outside the yield surface. Note that for the first time step n = 1 and

ε0
p = 0, µc = 0, Lc = 0 the functional I1

incr(u, 0) reduces to the primal plastic functional of

static perfect plasticity (Hencky-plasticity) [35, 63, 24, 25, 6].

Calculating the subdifferential of the convex potential shows that

∂Ψ(Σ).H =





〈Σ,H〉 ‖dev Σ‖ ≤ σy

1
3tr [Σ] tr [H] +

σy

‖dev Σ‖ 〈dev Σ,dev H〉 ‖dev Σ‖ > σy

= 〈PK(Σ),H〉 . (2.43)

Hence ∂Ψ(Σ) = PK(Σ) motivating the variational structure.
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The following relationship between the potential Ψ and the projection PK is also valid

Ψ(X) =
1

2
‖X‖2 − 1

2
‖X − PK(X)‖2 . (2.44)

For future reference the second differential of the potential Ψ can be calculated in those

points where the potential is differentiable. It holds

D2
XΨ(X).(H,H) =






‖H‖2 ‖dev X‖ < σy

does not exist ‖dev X‖ = σy

1
3tr [H]2 + σy

(
‖dev H‖2

‖dev X‖ − 〈dev X,H〉2

‖dev X‖3

)
‖dev X‖ > σy .

(2.45)

The potential Ψ is not strictly rank-one convex in X, since, taking H = ξ⊗η with 〈ξ, η〉 = 0

yields

D2
XΨ(X).(ξ ⊗ η, ξ ⊗ η) =





‖ξ‖2 ‖η‖2 ‖dev X‖ ≤ σy

σy

(
‖dev ξ⊗η‖2

‖dev X‖ − 〈dev X,ξ⊗η〉2

‖dev X‖3

)
‖dev X‖ > σy

(2.46)

Taking X = ξ ⊗ η shows finally

D2
XΨ(X).(ξ ⊗ η, ξ ⊗ η) =





‖ξ‖2 ‖η‖2 ‖dev X‖ ≤ σy

0 ‖dev X‖ > σy .
(2.47)

3 Improved error estimates for Cosserat plasticity

Let h > 0 be the mesh-size of a finite element method and let Vh ⊂ H1
0 (Ω, R3) be a

corresponding discrete finite-element space. Let us concentrate on the displacement ap-

proximation only. In [49, Th.8] the following error estimate for the discrete solution

uµc,n
h ∈ Vh of the Galerkin-approximation of (2.41) in Vh has been shown:

∥∥uµc,n − uµc,n
h

∥∥
H1

0 (Ω)
≤ C1

µc
inf

vh∈Vh

‖uµc,n − vh‖H1
0 (Ω) , (3.1)

with a constant C1 > 0. Here, uµc,n = un is the exact solution of (2.21).

Using our regularity result from section 5, i.e., uµc,n ∈ H2(Ω, R3), the right hand side

can be estimated qualitatively. If Vh is chosen to be the space of piecewise linear finite

elements, then it holds [8, p.107]

∥∥uµc,n − uµc,n
h

∥∥
H1

0 (Ω)
≤ C2

µc
h ‖uµc,n‖H2(Ω) . (3.2)

In [49] it has also been shown that for µc → 0 the classical Prandtl-Reuss symmet-

ric Cauchy stresses σ0 are approximated by the sequence of non-symmetric stresses σµc

whenever a safe load condition is satisfied. The estimate (3.2) strongly suggests therefore

to balance h against µc to obtain optimal rates of convergence to the classical solution as

in [54], where hardening type approximations have been considered.
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4 Higher regularity for alternative regularized update po-

tentials

Our regularity result can also be applied to many other problems arising in the context

of infinitesimal plasticity. There exist several other possibilities to regularize the classical

update problem for the Prandtl–Reuss model. We recall the classical update problem:

find a minimizer un ∈ BD(Ω, R3) of the functional

Iclass
incr (u) = Eclass

incr (u, εn−1
p ) −

∫

Ω
〈fn, u〉 dx , (4.1)

where Eclass
incr denotes the free energy of the classical incremental problem defined by

Eclass
incr (u, εp) =

1

2µ

∫

Ω
Ψ
(
2µ(sym(∇u) − εp)

)
dx +

∫

Ω

λ

2
tr [∇u]2 dx , (4.2)

with the potential Ψ as in (2.42). There is a vast literature on this Prandtl-Reuss update

problem, mostly for the first time step n = 1, in which case it is the classical Hencky-

problem of total deformation plasticity [63, 54, 24, 25]. In this case, the plastic strain

field εp is a symmetric bounded measure [63, 6]. The classical symmetric Cauchy stresses

σ = 2µ (sym∇u− εp) + λ tr [∇u] 11 satisfy σ ∈ L2(Ω,Sym(3)), indeed higher regularity for

the stresses can be shown in the sense that σ ∈ H1
loc(Ω,Sym(3)) ∩ H

1
2
−δ(Ω).

For regularization purposes the following proposals are usually made:

Ereg
incr(u, εp) =

1

2µ

∫

Ω
Ψ
(
2µ(sym(∇u) − εp)

)
dx +

∫

Ω

λ

2
tr [∇u]2 + Reg(∇u, εp) dx , (4.3)

with the function Reg in the form

Reg(∇u, εp) =
µ δ

2
‖dev sym∇u − εp‖2 , Fuchs/Seregin [24, p.60] ,

Reg(∇u, εp) =
1

2µ (1 + ∆t
η

)
[‖µ(dev sym∇u − εp)‖ − σy]

2
+ , linear viscosity η ,

Reg(∇u, εp) =
µ δ

2
‖∇u − εp‖2 , locally strictly convex in ∇u . (4.4)

In each case, for δ > 0 the density of the update problem is then uniformly convex in

the symmetric strain ε = sym∇u. Moreover,

Reg(∇u, εp) +
λ

2
tr [∇u]2 ≥ c+ ‖ε − εp‖2 , (4.5)

and Korn’s first inequality establishes quadratic growth and we have uniform convexity

for the regularized problem. Our main regularity result applies therefore also to these

models.

In the case with linear hardening it is simpler to write the update potential directly. We

consider as an example isotropic hardening with the hardening variable α ≥ 0 (a measure
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for the accumulated plastic strain in the previous time step). Here, the energy Eincr can

be expressed as (cf. [60, p.124])

Ehard
incr (u, εp, α) =

1

2µ

∫

Ω
Ψhard

(
2µ(sym(∇u) − εp), α

)
dx +

∫

Ω

λ

2
tr [∇u]2 dx , (4.6)

with (cf. (2.42))

Ψhard(X,α) =






1
2 ‖X‖2 ‖dev X‖ ≤ σy +H α

1
2 (1+ H

1[MPa]
)

(
H

1[MPa] ‖X‖2 + 1
3 tr [X]2

+2 (σy +H α) ‖dev X‖ − (σy +H α)2
)

‖dev X‖ > σy +H α

=
1

2
‖X‖2 − 1

2 (1 + H
1[MPa])

[
‖dev X‖ − (σy +H α)

]2
+

, (4.7)

whose second derivative coincides with the consistent tangent method introduced already

in [61]. The constant H > 0 is the hardening modulus with dimension [MPa]. In this

form it is easy to see that for positive hardening modulus H > 0 the isotropic hardening

update potential is uniformly convex in sym∇u with quadratic growth and has a Lipschitz

continuous derivative. Therefore, our main regularity result applies also to this functional.4

The relative merits of each individual regularization scheme depend on their ability to

balance regularization and approximation. Linear viscosity and hardening can be justified

on physical grounds, but the (small) viscosity parameter η > 0 is difficult to estimate, as

is the linear hardening modulus H > 0. The physically motivated regularization terms

have the property to only control the symmetric part of the displacement gradient. The

regularization (4.4)3, however, does not satisfy the linearized frame-indifference condition.

All alternative regularization procedures thus establish local coercivity in the strains.

In contrast, the Cosserat regularization is weaker in the sense that only strong Legendre-

Hadamard ellipticity is reestablished, which, provided displacement boundary data are

prescribed, suffice for existence, uniqueness and higher regularity. Thus the Cosserat

approach appears as the weakest regularization among the considered ones.

5 The regularity theorem

We know already that (2.41) has solutions un ∈ H1(Ω, R3). Looking at the system for the

microrotations An at given ∇un ∈ L2(Ω, M3×3) we realize at once that the linearity in An

together with the Laplacian structure allows to use standard elliptic regularity results for

linear systems which yields higher regularity for the microrotations: An ∈ H2(Ω, so(3)).

In this section we study the regularity of the displacement field un, which is determined

through equation (2.21).

4Repin [54, eq.(2.3)] calls (4.4)2 linear hardening and shows the regularity uδ ∈ H2
loc(Ω, R3) while for

the planar case n = 2 he obtains uδ ∈ H2(Ω, R
2) if Γ = ∂Ω is smooth.
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5.1 Higher regularity for a quasilinear elliptic system

The quasilinear elliptic system introduced in section 2.4 is a special case of the systems

which we define here below. For d,m,N ≥ 1 and Ω ⊂ R
d let M : Ω×M

m×d×R
N → M

m×d

be a matrix valued function with the following properties:

R1 The mapping M : Ω × M
m×d × R

N → M
m×d is a Carathéodory function which is

Lipschitz continuous in the following sense: there exist constants L1, L2 > 0 such

that for every x, xi ∈ Ω, a, ai ∈ M
m×d and z, zi ∈ R

N we have

‖M(x1, a, z) −M(x2, a, z)‖ ≤ L1(‖a‖ + ‖z‖) ‖x1 − x2‖ , (5.1)

‖M(x, a1, z1) −M(x, a2, z2)‖ ≤ L2(‖a1 − a2‖ + ‖z1 − z2‖), (5.2)

M(x, 0, 0) = 0. (5.3)

Assumption R1 implies the useful estimate

‖M(x1, a1, z1) −M(x2, a2, z2)‖
≤ L1(‖a1‖ + ‖z1‖) ‖x1 − x2‖ + L2(‖a1 − a2‖ + ‖z1 − z2‖). (5.4)

R2 The mapping M is strongly rank–one monotone. That means that there exists a

constant cLH > 0 such that for every x ∈ Ω, a ∈ M
m×d, z ∈ R

N , ξ ∈ R
m and η ∈ R

d

we have

〈M(x, a + ξ ⊗ η, z) −M(x, a, z), ξ ⊗ η〉 ≥ cLH ‖ξ‖2 ‖η‖2 . (5.5)

R3 The G̊arding inequality shall be satisfied: there exist constants CG > 0, cG ∈ R such

that for every u1, u2 ∈ H1(Ω) with u1 − u2 ∈ H1
0 (Ω) and for every z ∈ L2(Ω) the

following inequality is valid:

∫

Ω
〈M(x,∇u1, z) −M(x,∇u2, z),∇(u1 − u2)〉 dx

≥ CG ‖∇(u1 − u2)‖2
L2(Ω) − cG ‖u1 − u2‖2

L2(Ω) .

Remark 5.1

If M is differentiable, then the G̊arding inequality already implies that M is rank–one

monotone, see for example [65, Th.6.1].

We investigate the regularity properties of weak solutions to the following quasilinear

elliptic boundary value problem. For given g ∈ H
1
2 (∂Ω), z ∈ L2(Ω, RN ) and f ∈ L2(Ω, Rm)

find u ∈ H1(Ω, Rm) with u
∣∣
∂Ω

= g such that for every v ∈ H1
0 (Ω, Rm) we have:

∫

Ω
〈M(x,∇u(x), z(x)),∇v(x)〉 dx =

∫

Ω
〈f, v〉dx . (5.6)
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Theorem 5.2

Let Ω ⊂ R
d be a bounded C1,1–smooth domain, m ≥ 1, N ≥ 1, and assume that M :

Ω × M
m×d × R

N → M
m×d satisfies R1–R3. Let furthermore g ∈ H

3
2 (∂Ω), z ∈ H1(Ω)

and f ∈ L2(Ω). Every weak solution u ∈ H1(Ω) of (5.6) with u
∣∣
∂Ω

= g is an element of

H2(Ω) and satisfies

‖u‖H2(Ω) ≤ c
(
‖g‖

H
3
2 (∂Ω)

+ ‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
.

Before we prove theorem 5.2, we apply it to the situation described in section 2.4. There,

m = d = 3 and R
N is identified with Sym(3) × so(3) so that z = (εp, A). Moreover,

M(x,∇u, z) = MC(∇u, εp, A)

= PK(2µ(sym∇u − εp)) + λ(tr [∇u])11 + 2µc(skew(∇u) − A).

Since PK is a Lipschitz continuous mapping, we see immediately, that assumption R1 is

satisfied. R2 is proved in lemma 2.1 and the G̊arding inequality is satisfied since MC

generates a strongly monotone operator on H1
0 (Ω), see lemma 2.2. Therefore, we have the

following result for the reduced update problem (2.13):

Theorem 5.3

Let Ω be C1,1–smooth, fn ∈ L2(Ω) and εn−1
p ∈ H1(Ω). Then un ∈ H2(Ω), An ∈ H2(Ω)

and εn
p ∈ H1(Ω).

The proof of theorem 5.2 is carried out with a difference quotient technique. We cover the

boundary of Ω with a finite number of domains and map each of these domains with a C1,1–

diffeomorphism onto the unit cube in such a way that the image of the boundary of Ω lies

on the midplane of the unit cube. We first prove higher regularity in directions tangential

to the midplane by estimating difference quotients. The regularity in normal direction

is then obtained on the basis of the tangential regularity and by using the differential

equation together with the rank–one monotonicity of M.

Since M is nonlinear and since we assumed rank–one monotonicity in stead of strong

monotonicity, we cannot use as test functions the usual finite differences of the type

h−1ϕ2(x)(u(x + h) − u(x)), where ϕ is a cut–off function. Instead, we use differences

which are based on inner variations. We begin the proof of theorem 5.2 by studying a

model problem on a half cube.

5.2 A model problem on a half cube

Let Cr = {x ∈ R
d ; |xi| < r, 1 ≤ i ≤ d } be a cube with side length 2r, C±

r the upper and

lower half–cube, respectively, and Mr = {x ∈ Cr ; xd = 0 } the mid plane.

Lemma 5.4

Let Ω = C−
1 , f ∈ L2(C−

1 ), z ∈ H1(C−
1 ) and assume that u ∈ H1(C−

1 ) with u
∣∣
M1

= 0

satisfies (5.6). Then for every r ∈ (0, 1) and for 1 ≤ i ≤ d − 1 we have ∂iu ∈ H1(C−
r ).
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Moreover, there is a constant cr > 0 such that

‖∂iu‖H1(C−
r ) ≤ cr

(
‖u‖

H1(C−
1 ) + ‖z‖

H1(C−
1 ) + ‖f‖

L2(C−
1 )

)
. (5.7)

Proof. Let r ∈ (0, 1) and ϕ ∈ C∞
0 (C1) with ϕ(x) = 1 on Cr. For h ∈ R

d we introduce the

mapping

τh : C1 → R
d : x → τh(x) = x + ϕ(x)h.

Let h0 = ‖ϕ‖−1
W 1,∞(C1) min

{
1,dist(suppϕ, ∂C1)

}
. For every h ∈ R

d with |h| < h0 and h

parallel to the plane M1, the mapping τh is a diffeomorphism from C1 onto itself with

τh(C±
1 ) = C±

1 , τh(M1) = M1 and τh(x) = x for every x ∈ ∂C1, see e.g. [26]. Moreover, τh

has the following properties (if |h| < h0):

∇τh(x) =
(
11 + h ⊗∇ϕ(x)

)
, det[∇τh(x)] = 1 + 〈h,∇ϕ(x)〉,

∇yτ
−1
h (y) =

(
11 + h ⊗∇ϕ

)−1∣∣
τ−1
h

(y)
= 11 −

(
(1 + 〈h,∇ϕ〉)−1h ⊗∇ϕ

)∣∣
τ−1
h

(y)
.

For a function v : C−
1 → R

s we introduce

△hv = v◦τh − v, △hv = v − v◦τ−1
h .

For f, g ∈ L2(C−
1 ), |h| < h0 and h ‖ M1 the following product rule is valid:

∫

C−
1

f △hg dx = −
∫

C−
1

g△hf dx −
∫

C−
1

(f ◦τh g) 〈h,∇ϕ〉 dx. (5.8)

This identity can be shown by a transformation of coordinates y = τh(x) in the term

(g ◦τ−1
h )f . Let u ∈ H1

0 (C−
1 ) be a solution of (5.6). We define for h ∈ R

d with |h| < h0

and h ‖ M1

vh(x) = △h(△hu(x)).

In view of the assumptions on ϕ, h0 and h it follows that vh ∈ H1
0 (C−

1 ). Inserting vh into

(5.6) yields

∫

C−
1

〈M(x,∇u, z),∇vh〉dx =

∫

C−
1

〈f, vh〉dx. (5.9)

Note that ∇vh = △h∇(△hu) + [(det[∇τh])−1(∇△hu)h⊗∇ϕ]◦τ−1
h and therefore, (5.9) is

equivalent to

∫

C−
1

〈M(x,∇u, z),△h∇(△hu)〉dx

= −
∫

C−
1

〈M(x,∇u, z),
(
det[∇τh]−1(∇△hu)h ⊗∇ϕ

)
◦τ−1

h 〉 dx

+

∫

C−
1

〈f,△h△hu〉 dx.
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Furthermore, the product rule (5.8) entails

∫

C−
1

〈△hM(x,∇u, z) , ∇△hu〉dx

= −
∫

C−
1

〈M(x,∇u, z)◦τh,∇△hu〉〈h,∇ϕ〉 dx

+

∫

C−
1

〈M(x,∇u, z),
(
(det[∇τh])−1(∇△hu)h ⊗∇ϕ

)
◦τ−1

h 〉 dx

+

∫

C−
1

〈f,△h△hu〉dx

=: S1 + S2 + S3 (5.10)

Finally we have

∫

C−
1

〈M(x,∇(u◦τh), z) −M(x,∇u, z) , ∇△hu〉dx

=

∫

C−
1

〈△hM(x,∇u, z),∇△hu〉dx

+

∫

C−
1

〈M(x,∇(u◦τh), z) −M(x,∇u, z)◦τh

)
,∇△hu〉 dx

(5.10)
= S1 + S2 + S3

+

∫

C−
1

〈M(x,∇(u◦τh), z) −M(x,∇u, z)◦τh,∇△hu〉dx

= S1 + . . . + S4. (5.11)

The next task is to show that there is a constant c > 0, which does not depend on h, such

that

|S1 + . . . + S4| ≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
‖△hu‖H1(C−

1 ) . (5.12)

Due to the Lipschitz assumptions on M we have

|S1| + |S2| ≤ c |h| ‖M(·,∇u, z)‖L2(C−
1 ) ‖△hu‖H1(C−

1 )

≤ c |h|
(
‖u‖

H1(C−
1 ) + ‖z‖

L2(C−
1 )

)
‖△hu‖

H1(C−
1 ) .

Moreover, since f ∈ L2(C−
1 ), the term S3 can be estimated as

|S3| ≤ c |h| ‖f‖L2(C−
1 ) ‖△hu‖H1(C−

1 ) .

By inequality (5.4) we see that

|S4| ≤ cL1 |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 )

)
‖△hu‖H1(C−

1 )

+ cL2

(
‖∇(u ◦ τh) − (∇u) ◦ τh‖L2(C−

1 ) + c |h| ‖z‖H1(C−
1 )

)
‖△hu‖H1(C−

1 ) .
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The identity ∇(u◦τh) − (∇u)◦τh = (∇u)◦τh (h ⊗∇ϕ) leads to

|S4| ≤ c |h|
(
‖u‖

H1(C−
1 ) + ‖z‖

H1(C−
1 )

)
‖△hu‖

H1(C−
1 ) .

Collecting all the above estimates we finally arrive at inequality (5.12). G̊arding’s inequal-

ity (see R3) and Poincaré’s inequality imply that

∫

C−
1

〈M(x,∇(u ◦ τh),z) −M(x,∇u, z) , ∇△hu〉dx

≥ CG ‖∇△hu‖2
L2(C−

1 )
− cG ‖△hu‖2

L2(C−
1 )

≥ c
(
‖△hu‖2

H1(C−
1 )

− |h|2 ‖u‖2
H1(C−

1 )

)
.

Combining the above estimates with (5.11) and (5.12) results finally in

‖△hu‖2
H1(C−

1 )
≤ c |h|

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
‖△hu‖H1(C−

1 )

+ c |h|2 ‖u‖2
H1(C−

1 )

and the constant c is independent of h. From Young’s inequality we obtain

|h|−1 ‖△hu‖H1(C−
1 ) ≤ c

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
. (5.13)

It follows from this inequality that ∂iu ∈ H1(C−
r ) for 1 ≤ i ≤ d − 1 and that ‖∂iu‖H1(C−

r )

is bounded by the right hand side in (5.13), see e.g. [34]. �

Remark 5.5

If we choose the usual finite differences as test functions, i.e. ṽh(x) = δ−h(ϕ2δhu), where

δhu = u(x + h) − u(x), then similar calculations as those for vh lead to the estimate

∫

C−
1

ϕ2(x)〈M(x,∇u(x + h), z(x)) −M(x,∇u(x), z(x)), δh∇u〉 dx ≤ c |h|
∥∥ϕ2δhu

∥∥
H1(C−

1 )
,

(5.14)

compare also (5.11) and (5.12). But now neither R2 nor R3 help us to find a lower bound

for the left hand side of (5.14) in terms of
∥∥ϕ2δh∇u

∥∥2

L2(C−
1 )

, since in general δh∇u is not

a rank–one matrix, and since we cannot interchange ϕ and M due to the nonlinearity of

M.

Lemma 5.6 (Regularity in normal direction)

With the same assumptions as in lemma 5.4 it follows for every r ∈ (0, 1) that ∂du ∈
H1(C−

r ). Furthermore, there exists a constant cr > 0 such that

‖u‖
H2(C−

r ) ≤ cr

(
‖z‖

H1(C−
1 ) + ‖f‖

L2(C−
1 ) + ‖u‖

H1(C−
1 )

)
. (5.15)
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Proof. Let r ∈ (0, 1). Equation (5.6) implies that

DivM(x,∇u(x), z(x)) + f(x) = 0 (5.16)

for almost every x ∈ C−
1 . Let Mi denote the columns of the matrix valued function M,

i.e. Mi(x, a, z) = (Mα
i (x, a, z))1≤α≤m ∈ R

m for 1 ≤ i ≤ d. The Lipschitz continuity of M
and the tangential regularity proved in lemma 5.4 guarantee that ∂iMi(·,∇u, z) ∈ L2(C−

r )

for 1 ≤ i ≤ d− 1 and is bounded by the right hand side in (5.7). Together with (5.16) we

obtain therefore

∂dMd(·,∇u, z) = −f −
d−1∑

i=1

∂iMi(·,∇u, z) ∈ L2(C−
r ).

By Lemma 7.23 in [27] the derivative ∂d can be replaced with a finite difference in the

following way: For every Ω′ ⊂⊂ C−
r and every h ∈ R

d with |h| < dist(Ω′, ∂C−
r ) and h⊥M1

we have

‖δhMd(·,∇u, z)‖L2(Ω′) ≤
(
‖f‖

L2(C−
r ) +

d−1∑

i=1

‖∂iMi(·,∇u, z)‖
L2(C−

r )

)
|h|

=: c0 |h| . (5.17)

Here, δhv(x) := v(x+h)−v(x) for h ∈ R
d. Thus, for every h⊥M1 with |h| < dist(Ω′, ∂C−

r )

we have
∫

Ω′

〈δhMd(x,∇u, z), δh∂du〉dx ≤ c0 |h| ‖δh∂du‖L2(Ω′) , (5.18)

where c0 is the constant from (5.17). We split now the left hand side into a term which can

be estimated from below due to the rank-one monotonicity of M and into terms which may

be estimated from above using the Lipschitz continuity of M and the regularity results

from lemma 5.4. For functions v : C−
1 → R

m we define ∇̃v(x) = (∂1v(x), . . . , ∂d−1v(x), 0) ∈
M

m×d. Furthermore, vh(x) := v(x+h) and ed = (0, . . . , 0, 1)⊤ ∈ R
d. With these notations

we have
∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉dx

=

∫

Ω′

〈δhMd(x,∇u, z), δh∂du〉 dx

+

∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x + h,∇uh, zh), δh∂du〉dx

= S1 + S2. (5.19)

The term S1 is already estimated in (5.18). From the Lipschitz continuity of M (see (5.4))

and the regularity results of lemma 5.4 we obtain by straightforward calculations

|S2| ≤ c ‖δh∂du‖L2(Ω′)

(
(
∥∥∇̃u + ∂duh ⊗ ed

∥∥
L2(Ω′)

+ ‖z‖
H1(C−

1 )) |h| +
∥∥δh∇̃u

∥∥
L2(Ω′)

)

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) +

∥∥∂d∇̃u
∥∥

L2(C−
r )

)
‖δh∂du‖L2(Ω′) (5.20)
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and the constant c is independent of Ω′ and h. Moreover, choosing ξ = ∂duh and η = ed

in (5.5), we obtain for the left hand side in (5.19) from the rank-one monotonicity of M
that
∫

Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉dx ≥ cLH ‖δh∂du‖2
L2(Ω′) . (5.21)

Estimates (5.18)–(5.21) together with Young’s inequality finally imply that

|h|−1 ‖δh∂du‖L2(Ω′) ≤ c
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) +

∥∥∂d∇̃u
∥∥

L2(C−
r )

)
(5.22)

for every h⊥M1 and the constant c is independent of h and Ω′ ⋐ C−
r . This implies that

∂2
du ∈ L2(C−

r ) and
∥∥∂2

du
∥∥

L2(c−r )
is bounded by the right hand side in (5.22). Estimate

(5.15) is a combination of (5.22) and (5.7). �

5.3 Proof of theorem 5.2

Let the assumptions of theorem 5.2 be valid and assume that g = 0. Choose x0 ∈ ∂Ω and

let Ux0 be a neighborhood of x0 such that there exists a C1,1-diffeomorphism Φx0 : Ux0 →
C1, where C1 is the unit cube in R

d, with the following properties (we omit the index

x0): Φ(U) = C1, Φ(U ∩ Ω) = C−
1 , Φ(U\Ω) = C+

1 , Φ(U ∩ ∂Ω) = M1 and Φ(x0) = 0. Let

u ∈ H1
0 (Ω) be a solution for (5.6) with the data f ∈ L2(Ω) and z ∈ H1(Ω). It follows that

∫

U∩Ω
〈M(x,∇u, z),∇v〉 dx =

∫

U∩Ω
〈f, v〉 dx

for every v ∈ H1
0 (Ω ∩ U). After a transformation of coordinates with y = Φ(x) and

Ψ := Φ−1, the previous equation can be written as follows: Let ũ(y) = u(Ψ(y)). For every

v ∈ H1
0 (C−

1 ) we have

∫

C−
1

〈M̃(y,∇ũ, z̃),∇v〉 dy =

∫

C−
1

〈f̃ , v〉 dy.

Here, we use the abbreviations

M̃(y, a, ζ) = |det[∇Ψ(y)]| M(Ψ(y), a(∇Ψ(y))−1, ζ)(∇Ψ(y))−⊤, (5.23)

f̃(y) = |det[∇Ψ(y)]| f(Ψ(y)), (5.24)

z̃(y) = z(Ψ(y)) (5.25)

for y ∈ C−
1 , a ∈ M

m×d and ζ ∈ R
N . It follows immediately from the properties of the

diffeomorphism Φ and from those of M that M̃ satisfies R1–R3 with respect to C−
1 .

Furthermore, f̃ and z̃ have the smoothness required in lemma 5.4. Thus, lemmata 5.4 and

5.6 guarantee that ũ ∈ H2(C−
r ) for every r < 1 and that estimate (5.15) is valid. After

applying the inverse transformation Ψ : C−
1 → U ∩Ω, we have finally shown the following:

For every x0 ∈ Ω exists an open neighborhood Ũx0 such that u
∣∣
Ũx0∩Ω

∈ H2(Ũx0 ∩ Ω) and
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estimate (5.15) is valid with respect to Ũx0 ∩ Ω. The constants may depend on x0. Since

Ω is assumed to be bounded, we can cover Ω by a finite number of the domains Ũx0 and

obtain finally that u ∈ H2(Ω) with

‖u‖H2(Ω) ≤ c
(
‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)). (5.26)

This proves theorem 5.2 for the case of vanishing Dirichlet conditions. The general case can

be seen as follows. There exists a linear and continuous extension operator F : H
3
2 (∂Ω) →

H2(Ω) with (F (g))
∣∣
∂Ω

= g for every g ∈ H
3
2 (Ω), see for example [68]. Then u ∈ H1(Ω)

with u
∣∣
∂Ω

= g for some g ∈ H
3
2 (∂Ω) is a solution to (5.6) if and only if there exists an

element ũ ∈ H1
0 (Ω) with u = ũ + F (g) and for every v ∈ H1

0 (Ω), ũ satisfies

∫

Ω
〈M̂(x,∇ũ, z̃),∇v〉 dx =

∫

Ω
〈f, v〉 dx,

where z̃ = (F (g), z) and M̂(x, a, z̃) = M(x, a + F (g)(x), z). Clearly, M̂ satisfies R1–R3

as well and by the first part of this proof it follows that ũ ∈ H2(Ω). This finishes the proof

of theorem 5.2.

6 Discussion

We have shown that the time-incremental Cosserat elasto-plasticity problem admits H1(Ω)-

regular updates of the symmetric plastic strain εn
p provided that the previous plastic strain

εn−1
p is in H1(Ω) and the domain and data are suitably regular. Altogether, the time-

incremental problem allows the regularity ∀n ∈ N : un ∈ H2(Ω, R3), εn
p ∈ H1(Ω,Sym(3))

and An ∈ H2(Ω, so(3)). Uniform bounds in time are missing and it is an open question

whether a similar result holds for the time continuous problem.

The presented method of proof for higher regularity uses a difference quotient method

which is based on inner variations and can be extended to more general problems. This

will be the subject of further investigations.
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Notation

We denote by M
3×3 the set of real 3 × 3 second order tensors, written with capital letters. The standard

Euclidean scalar product on M
3×3 is given by 〈X, Y 〉

M3×3 = tr
ˆ

XY T
˜

, and thus the Frobenius tensor norm

is ‖X‖2 = 〈X, X〉
M3×3 (we use these symbols indifferently for tensors and vectors). The identity tensor

on M
3×3 will be denoted by 11, so that tr [X] = 〈X, 11〉. We let Sym and PSym denote the symmetric and

positive definite symmetric tensors respectively. We adopt the usual abbreviations of Lie-algebra theory,

i.e. so(3) := {X ∈ M
3×3 |XT = −X} are skew symmetric second order tensors and sl(3) := {X ∈

M
3×3 |tr [X] = 0} are traceless tensors. We set sym(X) = 1

2
(XT + X) and skew(X) = 1

2
(X − XT ) such

that X = sym(X)+skew(X). For X ∈ M
3×3 we set for the deviatoric part dev X = X− 1

3
tr [X] 11 ∈ sl(3).

For a second order tensor X we let X.ei be the application of the tensor X to the column vector ei. The

first and second differential of a scalar valued function W (F ) are written DF W (F ).H and D2
F W (F ).(H,H),

respectively. Sometimes we use also ∂XW (X) to denote the first derivative of W with respect to X. We

employ the standard notation of Sobolev spaces, i.e. L2(Ω), H1,2(Ω), H1,2
◦ (Ω), which we use indifferently

for scalar-valued functions as well as for vector-valued and tensor-valued functions.
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