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AbstratWe study the evolution of a single rak in an elasti body and assume thatthe rak path is known in advane. The motion of the rak tip is modeled as arate-independent proess on the basis of Gri�th's loal energy release rate riterion.Aording to this riterion, the system may stay in a loal minimum before it per-forms a jump. The goal of this paper is to prove existene of suh an evolution andto shed light on the disrepany between the loal energy release rate riterion andmodels whih are based on a global stability riterion (as for example the Fran-fort/Marigo model). We onstrut solutions to the loal model via the vanishingvisosity method and ompare di�erent notions of weak, loal and global solutions.1 IntrodutionThe predition of the growth of raks in brittle materials is of importane in manypratial appliations. However, mathematial models involving the full elasti interationas well as the evolution of a freely growing rak are rare. Only within the last deade suhmodels were developed based on the pioneering work in [FrM93, FrM98℄ that developeda quasistati framework based on energy minimization. In a series of tehnial papers[DaT02, FrL03, DFT05, FrG06℄ the neessary analytial results have been developed toprovide existene results for suh solutions. In this setting the rak path may be anarbitrary set of �nite Hausdor� dimension d−1 with the restrition that it is a non-dereasing family as a funtion of time. The displaements are allowed to lie in thefuntion spae GSBV (generalized speial funtions of bounded variations), where for eahtime instant the jump set of the deformation has to be ontained in the orrespondingrak set.These solutions are in fat speial ases of the so-alled energeti solution for rate-independent proesses as developed in [MiT99, MTL02, CHM02℄ for modeling the evolu-tion of phase transformations in shape-memory materials or elastoplastiity. The energetisolutions an be onsidered as weak solutions of the �ow laws usually posed in engineering.For the rak problem this relates to the Gri�th riterion [Gri20℄ that states that a rakgrows as soon as the energy release rate is bigger than the frature toughness and it isstationary otherwise. The energeti onept is based on a global energeti stability prin-iple that says that a rak grows if there is any bigger rak suh that the total energyrelease is larger than the energy dissipated by reating the rak (surfae). Otherwisethe state is (globally) stable. A proess is alled an �irreversible quasistati evolution� or,equivalently, an �energeti solution�, if for eah time instant the state is (globally) stableand the total energy balane holds.In this work, we are interested in the disrepany between the loal energy-release-rate riterion (Gri�th) and the global stability riterion. The problem is that energeti1



solutions tend to jump earlier beause global minimizers are used. In many systems it isexpeted that physial systems will stay in loal minimizers, and hene rak growth willour later.To generate solutions staying in loal minimizers we will use the vanishing visositylimit whih again is lose to the physial modeling. In fat, true physial systems are notstritly rate-independent but have some internal time sales (relaxation times) that areusually negleted when very slow loading is onsidered. However, if the rate-independentsolutions are not ontinuous, then the orresponding solution with small visosity developsvery large rates that are governed by the visosity. The aim is to understand the limitsof visous solutions when the visosity is made smaller and smaller, see [EfM06, MRS07℄for the general philosophy. For nontrivial PDE appliations see also [DD∗07, MiZ07℄.The appliation of this idea to rak problems turns out to be tehnially very di�-ult. Hene, all of the rigorous results are restrited to problems where the rak pathis presribed in advane and either (i) the position of the rak tip is to be determined(f. [NeO07, ToZ06℄) or (ii) a funtion along the rak path, whih measures the maximalopening of the rak, is to be alulated in so-alled ohesive zone models or delaminationproblems, f. [KMR06, Cag07℄.In this work we mainly study the motion of one rak tip that is driven by stressesarising from elasti deformations. We �x an arbitrary rak path that is assumed to betwie ontinuously di�erentiable. We onsider small strains and assume that the elastienergy is oerive and stritly onvex, but not neessarily quadrati or uniformly onvex.The external loading ours through time-dependent displaement boundary onditionsas well as volume and surfae loading. Having given these data, we de�ne the storedenergy funtional E on [0, T ]×Q, for a suitable state spae Q, as the elasti energy minusthe work of external loadings. The dissipative nature of the rak propagation is enodedin a frature-toughness funtion κ : [s0, s1] → ]0,∞[, whih we assume to be ontinuous,and a positive visosity parameter ν. The visous rak-tip propagation problem fordetermining the displaement u(t) and the rak-tip position s(t) reads
u(t) = argmin{ E(t, v, s(t)) | v ∈ Q},
0 ∈ ∂ṡR0(s(t), ṡ(t)) + νṡ(t) − G(t, u(t), s(t)),

(1.1)where R0(s, ṡ) = κ(s)ṡ for ṡ ≥ 0 and ∞ otherwise. The generalized energy-release rate Gtakes the form
G(t, v, s) := − lim

δ→0

1

δ

(
E(t, v ◦ T−1

s,δ , s+δ) − E(t, v, s)
)
,where Ts,δ is a di�eomorphism between the domains with rak length s and s + δ, re-spetively (see Setion 3.2 for details).In Setion 2 we give the preise de�nitions and state the existene result that (1.1) hasa solution (uν, sν) ∈ L∞([0, T ]; W1,p) × H1([0, T ]) for eah ν > 0. The proof is done inSetion 4 using a time-inremental minimization proedure.The main goal of this work is to study the limiting behavior of (uν , sν) for the vanishingvisosity limit ν → 0 and to identify a rate-indepedent limit problem, whih is satis�edby all possible limit solutions. For this purpose we use the onvexity of E(t, ·, s), whih2



guarantees that u 7→ E(t, u, s) has a unique minimizer U(t, s). We de�ne the reduedfuntional I : [0, T ] × [s0, s1] → R by minimizing out the displaements:
I(t, s) := E(t,U(t, s), s).The �rst major result (see Theorem 3.6) states that under fairly general onditions onthe elasti energy E the redued funtional I is ontinuously di�erentiable and satis�esthe relation

G(t, s) := −∂sI(t, s) = G(t,U(t, s), s). (1.2)Moreover, we obtain an expliit formula for G(t, s) in terms of the Eshelby tensor as-soiated with U(t, s). Atually, we provide simpli�ed proofs for more general situationsand derive Theorem 3.6 from an abstrat Theorem 3.2. In this theorem, we study thedi�erentiability properties of redued energies, whih orrespond to rather general (elas-ti) energy funtionals depending on a �nite number of parameters. Theorem 3.2 is alsoappliable to the ase with interfae raks, non-interpenetration onditions and to �nite-strain elastiity, where the energy density is no more onvex, but polyonvex and maytake the value +∞. We refer to [DeD81, KhS00, Kne06, KnM07℄ for the disussion ofrepresentative speial ases.In Setion 5 we study the limit behavior. Using suitable a priori estimates, we showthat a subsequene onverges pointwise on [0, T ] to a limiting proess s ∈ BV([0, T ]).Moreover, de�ning the jump set J(s) = { t ∈ [0, T ] | s(t+) 6= s(t−) } and the set ofdi�erentiability D(s) = { t ∈ [0, T ] | ṡ(t) exists }, then any suh limit has to satisfy thefollowing rate-independent limit problem: u(t) = U(t, s(t)) and(a) s : [0, T ] → [s0, s1] is nondereasing;(b) κ(s(t)) − G(t, u(t), s(t)) ≥ 0 for all t ∈ [0, T ]\J(s);() if κ(s(t)) − G(t, u(t), s(t)) > 0 then t ∈ D(s) and ṡ(t) = 0;(d) for all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗) − G(t,U(t, s∗), s∗) ≤ 0.Here (a) provides the irreversibility saying that a rak an never heal. In (b) we see thatthe release rate G an never exeed the frature toughness exept in jumps, while () saysthat a rak annot move if the release rate G is stritly less than the frature toughness
κ. Condition (d) states that along a jump path the release rate an never be smaller thanthe frature toughness as then the rak would immediately stop, see ().Our formulation of the limit proess via (a)�(d) is essentially the same as that givenin [NeO07℄. However, our approah using the vanishing-visosity method is ompletelydi�erent from the monotoniity approah there. In fat, our approah an be generalizedin several aspets. First we may allow healing of raks by adding to the stored energya suitable surfae term and rede�ning R0 as κ+(s)ṡ for ṡ ≥ 0, and as κ−(s)|ṡ| for ṡ ≤ 0.Moreover, we are able to treat the ase of several noninterating raks in one body, seeSetion 7 for details. In the latter ase we rely on the theory developed in [EfM06℄.3



2 Problem formulation and results2.1 Setting of the problemThroughout the paper we assume that the onditions desribed in this paragraph aresatis�ed.Let Ω ⊂ R
2 be open, bounded with Lipshitz boundary ∂Ω. We assume that ∂Ω is theunion of two disjoint subsets ΓD and ΓN , with H 1(ΓD) > 0, where H 1 denotes the onedimensional Hausdor� measure.The presribed rak path is a simple C2-path C ⊂ Ω with H 1(C) := L and let

γ : [0, L] → C be its ar-length parameterization. We assume that for every s ∈ ]0, L[we have γ(s) ∈ Ω \ ∂Ω, while the endpoints of C, that is γ(0) and γ(L), an meet theboundary ∂Ω. Let us �x 0 < s0 < s1 < L and for eah s ∈ [s0, s1] we de�ne the admissiblerak set by Cs := { γ(σ) | 0 ≤ σ ≤ s }. The raked domain is then the set Ωs := Ω \ Cs.We onsider small strain elastiity and assume that the stored energy density W̃ :

R
2×2sym → R belongs to C1(R2×2sym; R) and is stritly onvex. Furthermore, there exist p ∈

(1,∞) and onstants ci > 0 suh that for every A ∈ R
2×2sym we have

c1 |A|p − c2 ≤ W̃ (A) ≤ c3(1 + |A|p). (2.1)The onvexity of W̃ and (2.1) imply that there is a onstant c4 > 0 suh that
∣∣DW̃ (A)

∣∣ ≤ c4(1 + |A|p−1) (2.2)for every A ∈ R
2×2sym. Here, DW̃ : R

2×2sym → R
2×2sym denotes the derivative of W̃ . The givenDirihlet datum and the applied fores shall satisfy

uDir ∈ C1([0, T ]; W1,p(Ωs0/2; R
2)),

f ∈ C1([0, T ]; W1,q(Ω; R2)), h ∈ C1([0, T ];Lq(ΓN ; R2)),
(2.3)where p−1 + q−1 = 1. The rather strong assumption f(t) ∈ W1,q(Ω) is made for tehnialreasons and ould slightly be weakened, see Remark 3.7. For shortness, we put

〈ℓ(t), v〉 :=

∫

Ω

f(t) · v dx+

∫

ΓN

h(t) · vdσfor every v ∈ W 1,p(Ωs1
; R2). For given t ∈ [0, T ], x ∈ Ω and A ∈ R

2×2 we de�ne
W (t, x, A) := W̃ ((A+ ∇uDir(t))sym),where Asym = 1

2
(A+ A⊤) is the symmetri part of A. Furthermore, we set
W 1,p

ΓD
(Ωs; R

2) := {w ∈W 1,p(Ωs; R
2) | w = 0 on ΓD },and the equality is understood in the sense of traes. We assume that the state spae Qis the produt

Q := W1,p
ΓD

(Ωs1
; R2) × [s0, s1].4



On this state spae we de�ne energy funtional E : [0, T ] ×Q → R∞ = R ∪ {∞} by
E(t, u, s) :=

{∫
Ωs
W (t, x,∇u(x))dx− 〈ℓ(t), u〉 if u ∈ W1,p

ΓD
(Ωs; R

2)

∞ else. (2.4)The assumption on W̃ and the data guarantee that for every t ∈ [0, T ] and s ∈ [s0, s1]there exists a unique element U(t, s) ∈W 1,p
ΓD

(Ωs) with
U(t, s) = argmin E(t, ·, s). (2.5)The redued energy I : [0, T ] × [s0, s1] → R is de�ned as

I(t, s) := min{ E(t, v, s) | v ∈W 1,p
ΓD

(Ωs1
; R2) } = E(t,U(t, s), s). (2.6)We observe that for any t ∈ [0, T ] and any s ∈ [s0, s1] we have

I(t, s) = E(t,U(t, s), s) ≤ E(t, 0, s) <∞.By the de�nition of E , our assumption (2.1), and Hölder's inequality we derive
∫

Ωs

[
c1|(∇U(t, s)+∇uDir(t))sym|p−c2]dx ≤ E(t, 0, s)+‖ℓ(t)‖(W1,p

ΓD
(Ωs;R2))′‖U(t, s)‖W1,p

ΓD
(Ωs;R2).Applying then Korn's inequality to the left hand side and Young's inequality to the lastterm on the right hand side and using the assumptions on the data ℓ and uDir, we �nallyobtain that there exists a positive onstant (independent of t and s) suh that

‖U(t, s)‖W1,p(Ωs;R2) ≤ C.We �x one and for all u0 := U(0, s0) and we are interested in �nding an evolution startingfrom (u0, s0).The energy release rate is de�ned by
G(t, s∗) := − d

ds
E(t,U(t, s), s)

∣∣∣
s=s∗

= − ∂

∂s
I(t, s∗). (2.7)In Theorem 3.6 we show I ∈ C1([0, T ] × [s0, s1]) and, hene, G is ontinuous. For theexpliit formula and further properties of G, we refer to Theorem 3.6 again. In partiularit holds that G(t, s) = G(t,U(t, s), s) and

Gmax := sup{G(t, s) | (t, s) ∈ [0, T ] × [s0, s1] } <∞.The motion of the rak tip is assoiated with the dissipation of energy via a dissipationpotential R. Let κ ∈ C0([0, L]) be positive and ν nonnegative, and de�ne the dissipationpotential
Rν(s, ṡ) :=

{
κ(s)ṡ+ ν

2
ṡ2 if ṡ ≥ 0

∞ else. (2.8)5



The funtion κ takes into aount the toughness of the material. Throughout the paperwe will assume
κ(s1) > Gmax. (2.9)This ondition will prevent the evolution s(t) from reahing the endpoint s1. On the otherhand, in order to obtain a nontrivial evolution, we will assume
κ(s0) < Gmax. (2.10)We are now ready to de�ne the visous rak evolution model (Setion 2.2) and to for-mulate the rate-independent limit problem (Setion 2.3). In the remainder of this setionwe formulate the di�erent types of solutions (u, s) in terms of the elasti equilibrium on-dition and a rak-propagation law. To highlight the oupling between these two balanelaws we use the full energy funtional E and the generalized energy-release rate G. Ofourse, using the elasti equilibrium u(t) = U(t, s(t)) we have I(t, s(t)) = E(t, u(t), s(t))and the ruial identity (1.2), namely G(t, s(t)) = G(t, u(t), s(t)). In fat, in Setion 4and 5 the proofs depend essentially on this redution to a problem in s alone.2.2 Visous problemWe start with our notion of visous solution, depending on a (small) parameter ν.De�nition 2.1 For ν > 0, a visous solution assoiated with E and Rν is a map

t 7→ (uν(t), sν(t)) with uν ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)), sν ∈ H1([0, T ]; [s0, s1]) satisfying

uν(t) = U(t, sν(t)) := argmin E(t, ·, sν(t)) for every t ∈ [0, T ] (2.11)
0 ∈ ∂ṡRν(s

ν(t), ṡν(t)) − G(t, uν(t), sν(t)) for a.e. t ∈ [0, T ]. (2.12)We note that from the de�nition it follows that uν(t) ∈ W1,p
ΓD

(Ωsν(t); R
2) for every

t ∈ [0, T ]. Moreover, it is not di�ult to prove that any visous solution (uν(·), sν(·))assoiated with E and Rν guarantees that the map t 7→ ∂tE(t, uν(t), sν(t)) ∈ L1(0, T ) andthat the following energy balane ondition is satis�ed for every 0 ≤ t1 < t2 ≤ T (for aproof see Lemma 4.5 below):
E(t2, u

ν(t2), s
ν(t2)) +

∫ t2

t1

(
κ(sν(t))ṡν(t) + ν|ṡν(t)|2

)
dt

= E(t1, u
ν(t1), s

ν(t1)) +

∫ t2

t1

∂tE(t, uν(t), sν(t))dt.

(2.13)The main result of this setion is the following one, the proof is given in Setion 4.2after Theorem 4.2.Theorem 2.2 There exists a visous solution t 7→ (uν(t), sν(t)) assoiated with E and Rνsuh that (uν(0), sν(0)) = (u0, s0).
6



2.3 Rate-independent limitWe are now interested in the limit of the solutions (uν , sν) in the ase of vanishing visosity,i.e., ν → 0. The limit s : [0, T ] → [s0, s1] will in general not stay ontinuous but willlie in BV([0, T ]) only. We want to make preise what an be said about the limits andde�ne a limit problem that ontains as muh information about the limits as possible, inpartiular at jump points.We reall some basi properties of general funtions in BV([0, T ]) and introdue somenotations to formulate the limit problem. For a funtion s ∈ BV([0, T ]) the limit from theright s(t+) and the limit s(t−) from the left exist for all t ∈ [0, T ], if we let s(0−) = s(0)and s(T+) = s(T ). As ommon in rate-independent evolution problems we onsider thefuntion s to be de�ned everywhere suh that the three values s(t−), s(t), and s(t+) maybe di�erent. We de�ne the jump set J(s) ⊂ [0, T ] to be the set of points where s is notontinuous.The distributional derivative Ds of s is a bounded, signed measure that an be deom-posed into three parts, namely Ds = Djs+ ṡdt+ Dcs = Djs+ D̃s. Here D̃s = ṡdt+ Dcsis the di�use part of the derivative Ds, while Djs is the disrete part assoiated with thejumps, namely Djs =
∑

t∈J(s)(s(t+)−s(t−))δt. Let D(s) ⊂ [0, T ] denote the set of pointswhere s is di�erentiable, ṡ(t) = limh→0(s(t+h)− s(t))/h, then D(s) has full measure and
ṡ ∈ L1([0, T ]).Note that in general the fundamental theorem of alulus s(t2)−s(t1) =

∫ t2
t1
ṡ(t)dt doesnot hold beause of jumps and beause of the singular part. However, we have

s(t2) − s(t1) =

∫

]t1,t2[

Ds(dt) +
(
s(t2) − s(t2−)

)
−
(
s(t1) − s(t1+)

) (2.14)beause we did not enfore ontinuity from the left or from the right, and there is asuitable generalization for the hain rule (see (5.9)). To avoid all these ompliationsthe following formulation does not make usage of derivatives like in the global energetiformulation (GES) given in De�nition 2.5.De�nition 2.3 A loal energeti solution to the rate-independent problem assoiatedwith E and R0 is a map t 7→ (u(t), s(t)) with u ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)) and s ∈

BV([0, T ]; [s0, s1]) suh that
u(t) = U(t, s(t)) := argminE(t, ·, s(t)) for every t ∈ [0, T ] (2.15)and the following four onditions hold true(a) s : [0, T ] → [s0, s1] is nondereasing;(b) κ(s(t)) − G(t, u(t), s(t)) ≥ 0 for all t ∈ [0, T ]\J(s);() if κ(s(t)) − G(t, u(t), s(t)) > 0 then t ∈ D(s) and ṡ(t) = 0;(d) for all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗) − G(t,U(t, s∗), s∗) ≤ 0.7



Condition (b) states that the energy-release rate has to be smaller than the fraturetoughness everywhere exept at the jump times. However, assuming ontinuity from theleft or from the right and ontinuity of κ and G would even prove this estimate at the jumptimes t ∈ J(s). Condition () states that the rak annot move if the energy-release rateis stritly less than the frature toughness. Thus, so far the evolution is in full aordanewith the Gri�th riterion. Finally, ondition (d), whih is the essential new feature ofthe present formulation, states that during a jump the energy-release rate is not allowedto go below the frature toughness. It is lear that this formulation is loal in the sensethat the evolution of s is determined solely by loal properties of κ and G.We observe that if (u(·), s(·)) is a loal energeti solution, then sine E(t, u(t), s(t)) <∞we have u(t) ∈ W1,p
ΓD

(Ωs(t); R
2).As a onsequene of De�nition 2.3, we dedue that any loal energeti solution t 7→

(u(t), s(t)) assoiated with E and R0 satis�es t 7→ ∂tE(t, u(t), s(t)) ∈ L1([0, T ]) and thefollowing energy inequality
E(t2, u(t2), s(t2)) +

∫ s(t2)

s(t1)

κ(s)ds ≤ E(t1, u(t1), s(t1)) +

∫ t2

t1

∂tE(t, u(t), s(t))dt, (2.16)holds true for every 0 ≤ t1 ≤ t2 ≤ T (for a proof see Corollary 5.6).For eah jump time t ∈ J(s) we de�ne the nonnegative quantities ∆+(t) and ∆−(t) by
∆+(t) :=

∫ s(t+)

s(t)

[G(t,U(t, s), s) − κ(s)]ds ≥ 0,

∆−(t) :=

∫ s(t)

s(t−)

[G(t,U(t, s), s) − κ(s)]ds ≥ 0.

(2.17)Through them, we an de�ne a nonnegative funtion µ on losed subintervals of [0, T ] asfollows:
µ([t1, t2]) := ∆+(t1) + ∆−(t2) +

∑

t∈ ]t1,t2[∩J(s)

(∆+(t) + ∆−(t)). (2.18)Note that µ is �nite, sine G and κ are bounded and the sum of all jumps does not exeed
s1 − s0. Using a hain rule for BV funtions, (see, e.g.,[AFP00, Theorem 3.96℄ and (5.9)),it is then possible to derive an exat energy balane, i.e., we are able to haraterize theenergy missing in (2.16) via the funtion µ (see Lemma 5.5). For all 0 ≤ t1 < t2 ≤ T wehave

E(t2, u(t2), s(t2)) +

∫ s(t2)

s(t1)

κ(σ)dσ + µ([t1, t2])

= E(t1, u(t1), s(t1)) +

∫ t2

t1

∂tE(τ, u(τ), s(τ))dτ.

(2.19)We are now in a position to state the main result of this setion.Theorem 2.4 There exists a loal energeti solution t 7→ (u(t), s(t)) to the rate-indepen-dent problem assoiated with E and R0 suh that (u(0), s(0)) = (u0, s0). In partiular,every limit point of a subsequene of visous solutions t 7→ (uν(t), sν(t)) starting from
(u0, s0) is a loal energeti solution. 8



2.4 Disussion and omparison with other types of solutionsWe give now three di�erent notions of solutions. For this reason we need some preliminaryadditional notations. Via the dissipation metri R0 we introdue the dissipation distane
D : [s0, s1] × [s0, s1] → [0,∞] de�ned by

D(s0
∗, s

1
∗) :=





∫ s1
∗

s0
∗

R0(s, ds) for s1
∗ ≥ s0

∗,

∞ otherwise.Obviously, D satis�es D(s∗, s∗) = 0 and the triangle inequality, but we put in evidenethat due to the de�nition of R0, it turns out that D is a non-symmetri distane, sine
D(s, s̃) = ∞ for s̃ < s.The D-dissipation of a urve s is de�ned by

DissD(s; [t1, t2]) := sup{
M∑

j=1

D(s(rj−1), s(rj)) |M ∈ N, t1 ≤ r0 < · · · < rM ≤ t2 }.We observe that DissD(s; [t1, t2]) < ∞ implies that s : [t1, t2] → [0, L] is nondereasingand then
DissD(s; [t1, t2]) = D(s(t1), s(t2)).De�nition 2.5 (LS) A loal solution to the rate-independent problem assoiated with

E and R0 is a map t 7→ (u(t), s(t)) with u ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)) and s ∈

BV([0, T ]; [s0, s1]) satisfying the following three onditions:(1) loal stability:
u(t) = U(t, s(t)) := argmin E(t, ·, s(t)) for every t ∈ [0, T ], (2.20)

κ(s(t)) − G(t, u(t), s(t)) ≥ 0 for a.e. t ∈ [0, T ], (2.21)(2) irreversibility: the map t 7→ s(t) is nondereasing,(3) energy inequality: the map t 7→ ∂tE(t, u(t), s(t)) lies in L1([0, T ]) and
E(t2, u(t2), s(t2)) +

∫ s(t2)

s(t1)

κ(σ)dσ ≤ E(t1, u(t1), s(t1)) +

∫ t2

t1

∂tE(t, u(t), s(t))dt,(2.22)for every 0 ≤ t1 ≤ t2 ≤ T ;(GES) a global energeti solution assoiated with E and D is a map t 7→ (u(t), s(t))with t 7→ ∂tE(t, u(t), s(t)) ∈ L1([0, T ]) satisfying for every t ∈ [0, T ] stability (S) andenergy balane (E):
(S) E(t, u(t), s(t)) ≤ E(t, ũ, s̃) + D(s(t), s̃) ∀(ũ, s̃) ∈ W1,p

ΓD
(Ωs1

; R2) × [s0, s1],

(E) E(t, u(t), s(t)) + DissD(s; [0, t]) = E(0, u(0), s(0)) +

∫ t

0

∂tE(t, u(t), s(t))dt;9



(AS) an approximable solution assoiated with the energy funtional E and the dissi-pation metri R0 is a loal solution t 7→ (u(t), s(t)) whih is the point wise limit ofa subsequene of some visous solution t 7→ (uν(t), sν(t)) assoiated with E and Rν.Remark 2.6 We note that if t 7→ (u(t), s(t)) is a loal solution to the rate-independentproblem assoiated with E and R0, then
0 ∈ ∂ṡR0(s(t), ṡ(t)) − G(t, u(t), s(t)) for a.e. t ∈ [0, T ].Indeed, from the energy inequality we derive
(
κ(s(t)) − G(t, u(t), s(t))

)
ṡ(t) ≤ 0 for a.e. t ∈ [0, T ],but atually we an substitute inequality by equality due to the irreversibility onditionand to stability (2.21).By the previous de�nition it follows that the weakest notion of solution is the loal one(LS) and therefore any other solution (among those de�ned in this work, inluding theloal energeti one) is in partiular a loal solution. Its left-ontinuous version orrespondsto the notion of irreversible quasistati evolution given in [ToZ06, De�nition 3.1℄.The study of global energeti solutions (GES) is well developed in the literature, see,e.g., [MaM05, Mie05, FrM06℄ (and referenes therein). Moreover, the notion of globalenergeti solution in the ase of a non-symmetri dissipation distane (like in this work)orresponds to the de�nition of irreversible quasistati evolution onsidered in [FrM98,FrL03, DFT05℄ (see also referenes therein).We note that the left-ontinuous version of an approximable solution (AS) �ts the def-inition of approximable irreversible quasistati evolution given in [ToZ06, De�nition 3.7℄.Anyway, in that paper, the authors onsidered a di�erent visous approximation, takinginto aount visosity also for the bulk energy in the dissipation metri, and on�nedthemselves to the ase W̃ (∇u) = |∇u|2 and κ(s) ≡ 1.In general, we expet that a global energeti solution (GES) is di�erent from a loalenergeti one. On the other hand, as stated in Theorem 2.4, we will prove that anyapproximable solution (AS) is a loal energeti solution. On the ontrary, maybe notany loal energeti solution is approximable. For a spei� situation omparing globalenergeti solution (GES), loal energeti solution and approximable solution (AS) witheah other, see Example 6.3.The more general onept of BV-solution has been reently introdued in [MRS07℄.This notion works on general metri spaes, but in the ontext of the present work itoinides with the loal energeti solution.We would like to mention also another notion of evolution whih was reently introduedin the work [NeO07℄:(WS) a weak solution assoiated with E and R0 is a mapping t 7→ (u(t), s(t)) with

u ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)) and s ∈ BV([0, T ]; [s0, s1]) suh that (u(0), s(0)) =

(U(0, s0), s0) and the following three onditions are satis�ed:10



(1) loal stability ondition: for every t ∈ [0, T ]

u(t) = U(t, s(t)) := argminE(t, ·, s(t)),
κ(s(t)) − G(t, u(t), s(t)) ≥ 0,(2) irreversibility: the map t 7→ s(t) is nondereasing,(3) weak ativation riterion:

s(·) not onstant in ]t− η, t+ η[ ⇒
G(t,U(t, ŝ), ŝ) ≥ κ(ŝ) ∀ŝ ∈ [s(t−), s(t+)] \ {s1}.The weak solution (WS) is de�ned aording to [NeO07, De�nition 2.2℄. In that workthe authors onsider the ase of bulk energy W̃ (∇u) = |∇u|2 and frature toughness

κ(s) ≡ Gc > 0. This notion is very lose to our de�nition of loal energeti solution,and the main di�erene with the previous de�nitions is that they both do not requireany ondition on energies and that on the ontrary they are given in terms of �slopes�,involving energy release rate and toughness. Moreover both notions satisfy the extendedenergy balane (2.19), whih easily implies the usual energy inequality (2.22). In general,a weak solution is a loal energeti solution and vie versa, any loal energeti solution
s(t) an be modi�ed to be a weak solution, with s(t) ∈ {s(t−), s(t+)} for every t.3 Redued energy and energy release rateIn the proofs of Theorems 2.2 and 2.4 we use frequently that the energy release rate G isontinuous. We will therefore investigate in this setion the ontinuity and di�erentiabilityproperties of the redued energy I and derive a formula for G. We treat �rst a rathergeneral ase, where the energy E may depend on several parameters and have nonuniqueminimizers. Afterwards, the results are applied to the situation with a rak as desribedabove.3.1 Variation of redued energies with respet to a �nite numberof parametersLet V be a topologial Hausdor� spae and Σ = [σ1

1, σ
1
2] × . . . × [σm

1 , σ
m
2 ] ⊂ R

m a set ofparameters. For the energy funtional E0 : Σ × V → R∞ = R ∪ {∞} we de�ne
I(σ) = inf{ E0(σ, v) | v ∈ V },
U(σ) = Argmin E0(σ, ·) = { v ∈ V | E0(σ, v) = I(σ) }.The following assumptions are imposed on E0, f. [FrM06℄.Compatness of energy sublevels:

∀σ ∈ Σ ∃E ∈ R : Lσ,E := { u ∈ V | E0(σ, u) ≤ E } is not empty.Furthermore, Lσ,E is ompat for every σ ∈ Σ and every E ∈ R. (E1)11



This assumption implies that for every σ ∈ Σ the set U(σ) is not empty and that I : Σ →
R is well de�ned.Uniform ontrol of ∂σE0:

∃ c0 ∈ R ∃ c1 > 0 ∀(σ̃, u) ∈ Σ × V with E0(σ̃, u) <∞ :

E0(·, u) ∈ C1(Σ) and |∂σE0(σ, u)| ≤ c1(c0 + E0(σ, u))∀σ ∈ Σ.

(E2)Using Gronwall's inequality, the following fundamental estimate an be dedued fromassumption (E2), see e.g. [FrM06℄: For every σ1, σ2 ∈ Σ and u ∈ V with E0(σ1, u) <∞ itholds
E0(σ1, u) ≤

(
c0 + E0(σ2, u)

)
ec1|σ1−σ2| − c0.This inequality implies in partiular that for every σ1, σ2 ∈ Σ and u ∈ U(σ2), we have

I(σ1) ≤ E0(σ1, u) ≤
(
c0 + I(σ2)

)
ec1|σ1−σ2| − c0,and therefore,

sup
σ∈Σ

I(σ) <∞, sup{ E0(σ, u) | σ ∈ Σ, u ∈ ∪τ∈Σ U(τ) } <∞. (3.1)Proposition 3.1 Assume that (E1) and (E2) are satis�ed. Then the mapping I : Σ → Ris Lipshitz ontinuous. Moreover, for every sequene σn → σ and every sequene (un)n∈Nwith un ∈ U(σn) we have limn→∞ E0(σ, un) = I(σ).Proof: Let σ1, σ2 ∈ Σ and u2 ∈ U(σ2). By ondition (E2) and estimate (3.1) we obtain
I(σ1) − I(σ2) ≤ E0(σ1, u2) − E0(σ2, u2)

≤ |σ1 − σ2|
∫ 1

0

|∂σE0(σ2 + s(σ1 − σ2), u2)| ds ≤ c |σ1 − σ2| ,and the onstant c is independent of σ1 and σ2. Interhanging σ1 and σ2 in the previousinequality shows that I is Lipshitz ontinuous.Let (σn, un)n∈N be a sequene as desribed in the seond statement of Proposition 3.1.Again by property (E2) and estimate (3.1) we see that
|E0(σn, un) − E0(σ, un)| ≤ |σn − σ|

∫ 1

0

|∂σE0(σ + s(σn − σ0), un)| ds ≤ c |σn − σ| .Together with ontinuity of I it follows that E0(σ, un) → I(σ) for n→ ∞.For the proof of di�erentiability properties of I, we need also a ontinuity assumption for
∂σE0 along sequenes (σn, un)n, where un ∈ U(τn) for some τn.Continuity of ∂σE0 along sequenes (σn, un)n:For n ∈ N let τn, σn ∈ Σ, un ∈ U(τn). Then the following impliation holds:

(σn, τn, un) → (σ, σ, u) with u ∈ U(σ) =⇒ ∂σE0(σn, un) → ∂σE0(σ, u).

(E3)12



If V is identi�ed with a Banah spae, whih is equipped with the weak topology, thenthere are at least two ases suh that assumption (E3) is satis�ed. In the ase, where E0has nonunique minimizers (like in �nite�strain elastiity), a su�ient ondition for (E3)to hold is: For every E ∈ R there exists a modulus of ontinuity ωE : [0,∞) → [0,∞)suh that |∂σE0(σ1, u) − ∂σE0(σ2, u)| ≤ ωE(|σ1 − σ2|) for every u ∈ V with E0(σ1, u) ≤ E.Property (E3) is then an immediate onsequene of the fundamental onvergene theoremin [FrM06℄, where it is proved that the onvergene of a sequene (un)n∈N together withthe onvergene of the orresponding energies implies the onvergene of ∂σE0(σn, un).The ase, where E0(σ, ·) is stritly onvex, is disussed in detail in the next setion.For τ ∈R
m\{0} and σ ∈ Σ the right and left diretional derivatives of I are denoted by

∂+
τ I(σ) = lim

hց0

1
h

(
I(σ+hτ) − I(σ)

)
, (3.2)

∂−τ I(σ) = lim
hց0

1
h

(
I(σ) − I(σ−hτ)

)
. (3.3)Theorem 3.2 Let (E1)�(E3) be satis�ed. For every σ ∈ Σ and τ ∈ R

m\{0} with σ+hτ ∈
Σ for small h > 0, the right and left diretional derivatives with respet to τ exist and aregiven by

∂+
τ I(σ) = min{ ∂σE0(σ, u) · τ | u ∈ U(σ) },
∂−τ I(σ) = −∂+

−τI(σ) = max{ ∂σE0(σ, v) · τ | v ∈ U(σ) }.Moreover, ∂+
τ I and ∂−τ I are measurable and ∂+

τ I(σ) = ∂−τ I(σ) for a.e. σ ∈ Σ. Finally,if hn > 0 with limn→∞ hn = 0, then ∂±τ I(σ±hnτ) → ∂±τ I(σ).Remark 3.3 From the last assertion we may onlude the following, using Theorem 2.5.1of [Cla83℄: Let Σ = [σ0, σ1] ⊂ R. Then, under assumptions of Theorem 3.2, the Clarkegeneralized gradient of I is given by ∂ClI(σ) = [∂+I(σ), ∂−I(σ)], σ ∈ (σ0, σ1). This fatwill be used in a forthoming paper.Proof: Let σ ∈ Σ, τ ∈ R
m\{0} suh that σ+hτ ∈ Σ for 0 < h < h0, where h0 is hosensmall enough. The goal is to alulate the limit in (3.2).Upper estimate: Let u ∈ U(σ) be arbitrary. Then

1
h

(
I(σ+hτ) − I(σ)

)
≤ 1

h

(
E0(σ+hτ, u) − E0(σ, u)

)
=

∫ 1

0

∂σE0(σ+rhτ, u) · τ dr.By assumption (E2) and inequality (3.1), the integrand is bounded by a onstant, whih isindependent of s and r. Therefore, Lebesgue's Theorem of dominated onvergene implies
lim sup

hց0

1
h

(
I(σ+hτ) − I(σ)

)
≤ lim

hց0

∫ 1

0

∂σE0(σ+rhτ, u) · τ dr = ∂σE0(σ, u) · τ.Sine u ∈ U(σ) is arbitrary, we an take the in�mum on the right hand side. In fat, thein�mum is a minimum, whih an be seen as follows. Let (un)n∈N ⊂ U(σ) be an in�mizingsequene for ∂σE0(σ, ·) · τ with respet to U(σ). By assumption (E1) the set U(σ) is13



ompat and therefore, there exists an element u ∈ U(σ) and a subsequene (un′)n′∈N,whih onverges to u. Assumption (E3) implies that ∂σE0(σ, un′)·τ → ∂σE0(σ, u)·τ . Thus,
u is a minimizer of ∂σE0(σ, ·) · τ on U(σ) and we have proved that

lim sup
hց0

1
h

(I(σ+hτ) − I(σ)) ≤ min{ ∂σE0(σ, u) · τ | u ∈ U(σ) }.Lower estimate: For every h ∈ [0, h0] let uσ+hτ ∈ U(σ+hτ). The lower semiontinuityof E0 (assumption (E1)) and Proposition 3.1 imply that there exists a sequene hn → 0and an element u∗ ∈ U(σ) suh that uσ+hnτ → u∗. By assumption (E3) and Lebesgue'sTheorem we obtain therefore
lim inf
n→∞

1
hn

(
I(σ+hnτ) − I(σ)

)
≥ lim

n→∞
1

hn

(
E0(σ+hnτ, uσ+hnτ ) − E0(σ, uσ+hnτ )

)

= lim
n→∞

∫ 1

0

∂σE0(σ+rhnτ, uσ+hnτ ) · τ dr = ∂σE0(σ, u∗) · τ.A proof by ontradition shows �nally that
lim inf

hց0

1
h

(
I(σ+hτ) − I(σ)

)
≥ min{ ∂σE0(σ, v) · τ | v ∈ U(σ) }.This �nishes the proof of the �rst part of Theorem 3.2.For the proof of the seond part we extend I by re�etion to a Lipshitz ontinuousand bounded funtion Ĩ : R

m → R. For τ ∈ R
m\{0}, h > 0 and σ ∈ Σ we de�ne

I+
τ,h(σ) = h−1(Ĩ(σ+hτ) − Ĩ(σ)) and I−

τ,h(σ) = h−1(Ĩ(σ) − Ĩ(σ−hτ)). Obviously, thefuntions I+
τ,h and I−

τ,h are measurable with respet to Σ and we have due to the �rst partof Theorem 3.2 that I±
τ,h(σ) → ∂±τ I(σ) for every σ ∈ Σ. Therefore, ∂±τ I is measurable.Let ϕ ∈ C∞

0 (int Σ) be arbitrary. Lebesgue's Theorem and a hange of oordinates implythat∫
Σ

∂+
τ I(σ)ϕ(σ)dσ = lim

h→0
h−1

∫

Σ

(Ĩ(σ+hτ) − Ĩ(σ))ϕ(σ)dσ

= lim
h→0

h−1

∫

Σ

Ĩ(σ)(ϕ(σ−hτ) − ϕ(σ))dσ = −
∫

Σ

I(σ)(∇ϕ · τ)dσ.And similarly
∫

Σ

∂−τ I(σ)ϕ(σ)dσ = −
∫

Σ

I(σ)(∇ϕ · τ)dσ.Sine ϕ ∈ C∞
0 (int Σ) is arbitrary, we �nally obtain ∂−τ I(σ) = ∂+

τ I(σ) for a.e. σ ∈ Σ.For the proof of the last part of Theorem 3.2 let σn := σ+hnτ and vn ∈ U(σn) suhthat ∂+
τ I(σn) = ∂σE(σn, vn) · τ . In view of (E1) and Proposition 3.1 we may assume that

vn → v with v ∈ U(σ). Thus, by (E3) and formula (3.2) we have
∂+

τ I(σn) = ∂σE0(σn, vn) · τ → ∂σE0(σ, v) · τ ≥ ∂+
τ I(σ). (3.4)Moreover,

∂+
τ I(σ) ≥ lim

n→∞
1

hn

(
E0(σn, vn) − E0(σ, vn)

)
= ∂σE0(σ, v) · τ. (3.5)Combining (3.4) and (3.5) �nishes the proof.14



PSfrag replaements
rr(δ)
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γ(s+δ) =

(
r(δ)

ϕs(r(δ))

)

−r0 r0Figure 3.1: Loal desription of the rak C via ϕsCorollary 3.4 Let (E1)�(E3) be satis�ed. If for every σ ∈ Σ the orresponding minimizerof E0(σ, ·) is unique, then I ∈ C1(Σ). Moreover, DI(σ) = ∂σE0(σ, v), where v = vσ is theminimizer of E0(σ, ·).Proof: Note �rst that for every τ ∈ R
m\{0} and every σ ∈ Σ it holds

∂τI(σ) ≡ ∂+
τ I(σ) = ∂−τ I(σ) = ∂σE0(σ, vσ) · τ,where vσ is the unique minimizer of E0(σ, ·). It remains to prove the ontinuity of ∂τI(σ).Let (σn)n∈N ⊂ Σ be a sequene with σn → σ and let (un)n∈N ⊂ V be the orrespondingminimizers. The uniqueness assumption and Proposition 3.1 imply that un → u, where

u ∈ V is the minimizer of E0(σ, ·). Assumption (E3) now guarantees that ∂σE0(σn, un) →
∂σE0(σ, u) and the proof is �nished.3.2 Appliation to the problem with presribed rak pathThe sope of this setion is to show that the redued energy I : [0, T ] × [s0, s1] → R,whih is de�ned in (2.6), is well de�ned and belongs to C1([0, T ]× [s0, s1]). Moreover, weprovide a formula for the energy release rate G(t, s) = −∂sI(t, s).In order to study the di�erentiability properties of I with respet to s we introdue afamily of di�eomorphisms Ts,δ : Ωs → Ωs+δ for s ∈ [s0, s1] and |δ| ≤ δ0, where δ0 > 0 issome small enough onstant. Due to the smoothness assumptions on the rak path C,the subsequent onsiderations an be arried out uniformly with respet to s ∈ [s0, s1].Sine the rak path C is a simple C2�urve, after a suitable rotation, it an loallybe desribed as the graph of a C2�funtion. Let s ∈ [s0, s1], r0, δl, δr > 0 and ϕs ∈
C2([−r0, r0] ,R) suh that for δ ∈ [−δl, δr] we have (for simpliity, we neglet the rotation):

γ(s+δ) =
(

r(δ)
ϕs(r(δ))

)
, Cs+δ\Cs−δl

= { (r, ϕs(r)) | r ∈ ]−r0, r(δ)] } and r(0) = 0,see �gure 3.1. Choose θ ∈ C∞
0 (Br0

(0)) with θ∣∣
Br0/3(0)

= 1. Similar to [Kov03℄ we de�nethe mapping Ts,δ : R
2 → R

2 via
Ts,δ(x) = x+

(
(γ1(s+ δ) − γ1(s))θ(γ(s) − x)

ϕs(x1 + (γ1(s+ δ) − γ1(s))θ(γ(s) − x)) − ϕs(x1)

)
.15



Lemma 3.5 (Properties of Ts,δ) There exists a onstant δ0 > 0 suh that we have(a) Ts,· ∈ C2([−δ0, δ0] × R
2,R2) and for every |δ| ≤ δ0 the mapping Ts,δ is a C2�di�eomorphism. Moreover, Ts,δ(Ωs) = Ωs+δ, Ts,δ(γ(s)) = γ(s + δ), Ts,δ(Cs) = Cs+δand Ts,δ(x) = x for every x ∈ R

2\Br0
(γ(s)).(b) The norms ‖Ts,δ‖C2(R2) and ∥∥T−1

s,δ

∥∥
C2(R2)

are uniformly bounded with respet to δ.There exist onstants c3, c4 > 0 suh that for every |δ| ≤ δ0 and x ∈ R
2 we have

c3 ≤ det∇Ts,δ(x) ≤ c4.() Some derivatives:
̺s(x) := ∂δ(Ts,δ(x))

∣∣
δ=0

= γ′1(s)θ(γ(s) − x)
(

1
ϕ′

s(x1)

)
, (3.6)

∂δ(det∇Ts,δ)
∣∣
δ=0

= div ̺s, ∂δ (∇Ts,δ)
−1
∣∣
δ=0

= −∇̺s. (3.7)(d) There is a onstant c > 0 suh that for every u ∈ W1,p
ΓD

(Ωs) and |δ| ≤ δ0 we have
‖u‖W1,p(Ωs)

≤ c
∥∥(∇u(∇Ts,δ)

−1)sym∥∥Lp(Ωs)
. (3.8)Proof: The proofs of parts (a)�() of Lemma 3.5 are arried out in [GiH96℄ for C∞�di�eomorphisms. Without any hanges, the arguments are also appliable to C2 mappings

Ts,δ. Part (d) follows by a perturbation argument.We make use of the following abbreviations
xδ(y) = Ts,δ(y), qδ(y) = det∇Ts,δ(y), Bδ(y) = (∇Ts,δ(y))

−1.For elements v ∈ W1,p
ΓD

(Ωs) and (t, δ) ∈ [0, T ] × [−δ0, δ0] we de�ne
E0(t, δ, v) =

∫

Ωs

qδ(y)W (t, y,∇v(y)Bδ(y)) dy

−
∫

Ωs

qδ(y)f(t, xδ(y)) · v(y) dy −
∫

ΓN

h(t) · vdσ. (3.9)The de�nition of E0 is hosen in suh a way that for every v ∈W 1,p
ΓD

(Ωs+δ) we have
E(t, v, s+ δ) = E0(t, δ, v ◦ Ts,δ). (3.10)Note that Ts,δ indues an isomorphism between the spaes W 1,p

ΓD
(Ωs) and W 1,p

ΓD
(Ωs+δ)through u 7→ u ◦ T−1

s,δ . Therefore, for every |δ| ≤ δ0 the following identity is valid with Ias in (2.6):
I(t, s+ δ) = min{ E0(t, δ, v) | v ∈W 1,p

ΓD
(Ωs) },and argmin E0(t, δ, ·) = u ◦ Ts,δ, where u is the unique minimizer of E(t, ·, s+ δ).16



Theorem 3.6 Assumptions (2.1) and (2.3) imply that I ∈ C1([0, T ] × [s0, s1]) and thefollowing formulas are valid with ̺s from (3.6)
∂tI(t, s) =

∫

Ωs

∂tW (t, y,∇u(y)) dy−
∫

Ωs

ḟ(t) · u dy −
∫

ΓN

ḣ(t) · uds, (3.11)
−G(t, s) = ∂sI(t, s) =

∫

Ωs

(
W (t, y,∇u)I −∇u⊤DAW (t, y,∇u)

)
: ∇̺s dy

−
∫

Ωs

u · div(f(t) ⊗ ̺s) dy. (3.12)In both formulas, u is the unique minimizer of E(t, ·, s).The quantity ∇u⊤DAW (t, y,∇u)−W (t, y,∇u)I is the Eshelby or Hamilton tensor. Itfollows from the proof of Theorem 3.6 that
G(t, s) = G(t,U(t, s), s). (3.13)Moreover, we observe that Gmax whih appears in (2.9) is in fat a maximum.Remark 3.7 Integration by parts shows that ∫

Ωs
div(f ⊗̺s) · v dx = −

∫
Ωs
f · (∇v̺s) dx.This indiates that it would be su�ient to assume f(t) ∈ Lq(Ω; R2) instead of f(t) ∈

W 1,q(Ω; R2). In [KnM07℄, we dedued a formula for the energy release rate in the station-ary ase with this weaker assumption on f .Proof: In order to prove Theorem 3.6, we apply Corollary 3.4 to the energy density
E0. Thus, we only have to show that E0 satis�es onditions (E1)�(E3) from the previoussetion. The formula for the energy release rate an then be alulated using ∂δI(t, s+δ) =

∂δE0(t, δ, u), where u = uδ is the minimizer of E0(t, δ, ·). We hoose V = W1,p
ΓD

(Ωs) togetherwith the weak topology and Σ = [0, T ] × [−δ0, δ0].Condition (E1) is an immediate onsequene of the growth and onvexity properties ofthe energy density W and relies on identity (3.10). Moreover, for every (t, δ) ∈ Σ and
v ∈W 1,p(Ωs) the partial derivatives ∂tE0 and ∂δE0 exist and are given by

∂tE0(t, δ, v) =

∫

Ωs

qδ(y)∂tW (t, y,∇v(y)Bδ(y)) dy

−
∫

Ωs

qδ(y)ḟ(t, xδ(y)) · v(y) dy −
∫

ΓN

ḣ(t) · vds, (3.14)and
∂δE0(t, δ, v) =

∫

Ωs

∂δqδ(y)W (t, y,∇v(y)Bδ(y)) dy

+

∫

Ωs

qδ(y)
(
∇v(y)⊤DAW (t, y,∇v(y)Bδ(y))

)
: ∂δBδ(y) dy

−
∫

Ωs

∂δqδ(y) f(t, xδ(y)) · v(y) dy

−
∫

Ωs

qδ(y)
(
∇f(t, xδ(y))∂δxδ(y)

)
· v(y) dy. (3.15)17



These formulas an be veri�ed using Lebesgue's Theorem, see also [Els05, Satz IV.5.7℄, andby applying a generalized variant of Lemma 4.1 from [KnM07℄. There, for a straight rakit is shown that f(t, xδn) → f(t, xδ) strongly in Lq(Ωs) for δn → δ and that δ−1
n (f(t, xδn)−

f(t, xδ)) → ∇f(t, xδ)∂δxδ strongly in Lq(Ωs). The generalization of this lemma to asmooth, urved rak is straightforward.Furthermore, ∂tE0, ∂δE0 : Σ × W1,p
ΓD

(Ωs) → R are strongly ontinuous. This is again aonsequene of Lemma 4.1 from [KnM07℄ together with properties of Nemytskij operators[Zei86℄ (for the terms with W ) and the Lebesgue Theorem.It remains to verify the estimate in (E2) and property (E3). Taking into aount theuniform bounds of the family Ts,δ and assumptions (2.1) and (2.3), we obtain, basedon the generalized Korn's inequality (3.8) and relation (3.10), the following estimate forelements v ∈ W1,p
ΓD

(Ωs):
E0(t, δ, v) ≥ c2 ‖v‖p

W1,p(Ωs)

− c3(1 + ‖uDir‖p
C1([0,T ];W1,p(Ωs)) + ‖f‖q

C1([0,T ];W1,q(Ωs))
+ ‖h‖q

C1([0,T ];Lq(ΓN ))). (3.16)The onstants ci > 0 are independent of v, δ and t. On the other hand, from (3.14) and(3.15) by Hölder's inequality we obtain the estimate
|∂tE0(t, δ, v)| + |∂δE0(t, δ, v)|
≤ c
(
‖v‖p

W1,p(Ωs) + ‖f‖q
C1([0,T ];W1,q(Ωs))

+ ‖uDir‖p
C1([0,T ];W1,p(Ωs)) + ‖h‖q

C1([0,T ];Lq(ΓN ))

)and c > 0 is independent of v, t and δ. Together with (3.16) this proves (E2).Let now t, tn, t̃n ∈ [0, T ], δ, δn, δ̃n ∈ [−δ0, δ0] with (tn, t̃n) → (t, t), (δn, δ̃n) → (δ, δ) andassume that un is the unique minimizer of E0(t̃n, δ̃n, ·) with un ⇀ u weakly in W1,p
ΓD

(Ωs),where u is the minimizer of E0(t, δ, ·). Proposition 3.1 implies that the sequene (un)n∈N isa minimizing sequene for E0(t, δ, ·). Sine the energy density W̃ is assumed to be stritlyonvex, it follows from a result by Visintin [Vis84℄ that the minimizing sequene onvergesalso strongly in W1,p(Ωs). From the ontinuity properties of ∂tE0 and ∂δE0 we onludetherefore that
∂tE0(tn, δn, un) → ∂tE0(t, δ, u), ∂δE0(tn, δn, un) → ∂δE0(t, δ, u).This proves ondition (E3). Corollary 3.4 now implies that I ∈ C1([0, T ] × [s0, s1]). Theformulas for the derivatives of I follow from (3.14) and (3.15) with δ = 0 taking intoaount relations (3.6) and (3.7).Remark 3.8 Non-interpenetration an be inluded in our model for both, straight andurved raks. This means that we have to restrit the spae W1,p

ΓD
(Ωs; R

2) to the onvexone V≥(Ωs) = { v ∈ W1,p
ΓD

(Ωs) | [v]ν ≥ 0 }, where [v] = v+ − v− denotes the di�ereneof the traes of v on the positive and negative side of Cs, and ν is the unit normal to
Cs pointing from the negative to the positive side. If the rak is straight, the proof ofTheorem 3.6 is still valid, sine Ts,δ indues an isomorphism between V≥(Ωs) and V≥(Ωs+δ).In the ase of a urved rak we use the Piola transform Pδ : V≥(Ωs+δ) → V≥(Ωs) with
Pδ v = (cof ∇Ts,δ)

⊤ v◦Ts,δ, where cof denotes the ofator matrix. The Piola transform18



generates an isomorphism between V≥(Ωs+δ) and V≥(Ωs). The energy E0 from (3.9) hasto be replaed by E≥ with
E≥(t, δ, v) =

∫

Ωs

qδ W (t, y,∇
(
(cof ∇Ts,δ)

−⊤v
)
Bδ) dy

−
∫

Ωs

qδ f(t, xδ) ·
(
(cof ∇Ts,δ)

−⊤v
)
dy −

∫

ΓN

h(t) · vdσ.Note that E(t, v, s+ δ) = E≥(t, δ, Pδv) for every v ∈ V≥(Ωs+δ). Now the same argumentsas in the proof of Theorem 3.6 an be applied to E≥ under the additional assumption thatthe rak is C3-smooth. The energy release rate is given by (with u = U(t, s)):
−G(t, s) = ∂δE≥(t, 0, u) =

∫

Ωs

(
W (t, y,∇u)I −∇u⊤DAW (t, y,∇u)

)
: ∇̺s dy

−
∫

Ωs

v · div(f ⊗ ̺s) dy −
∫

Ωs

f ·
(
(∇̺s − div ̺sI)v

)
dy

+

∫

Ωs

DAW (t, y,∇u) : ∇
(
(∇̺s − div ̺sI)v

)
dy. (3.17)If the rak is straight, then this formula redues to (3.12). It remains open whether thisis also true in the general ase. This investigation will be ontinued in a subsequent paper.4 Solutions for the visous problemIn this setion we deal with the redued funtional I(t, s) de�ned in (2.6) and with theorresponding energy release rate G(t, s) de�ned in (2.7).The existene of a visous solution sν is obtained by minimizing a sequene de�nedthrough time-disretization, i.e., using the minimizing movements theory of De Giorgi[De 93℄ (see also [Amb95℄ and the reent book [AGS05℄). In this setion the visosityparameter ν > 0 is �xed.4.1 Time-inremental problemsFor N ∈ N \ {0} we de�ne the time-step τ = T/N and tk := kτ for k = 0, 1, . . . , N . Wede�ne by indution sν

k as follows: sν
0 := s0 and for k ≥ 1 the value sν

k is de�ned by
sν

k ∈ argmin{ I(tk, s̃) + τRν

(
sν

k−1,
s̃− sν

k−1

τ

)
| s̃ ∈ [s0, s1] }. (4.1)The existene of sν

k is an easy onsequene of the diret method in the alulus of varia-tions, sine s 7→ I(t, s) is ontinuous and s 7→ Rν(s
ν
k−1,

s−sν
k−1

τ
) is lower semiontinuous.We observe that sν

k satis�es
0 ∈ ∂ṡRν

(
sν

k−1,
sν

k − sν
k−1

τ

)
−G(tk, s

ν
k) + ∂χ[s0,s1](s

ν
k), (4.2)for every k = 1, . . . , N . 19



If sν
k < s1, then by (4.2) we dedue that

(
κ(sν

k−1) −G(tk, s
ν
k) + ν

sν
k − sν

k−1

τ
)
)sν

k − sν
k−1

τ
= 0. (4.3)Indeed, let us �rst observe that (4.2) is equivalent to

R0

(
sν

k−1,
s̃− sν

k−1

τ

)
−R0

(
sν

k−1,
sν

k − sν
k−1

τ

)
+
(
ν
sν

k − sν
k−1

τ
−G(tk, s

ν
k)
) s̃− sν

k

τ
≥ 0for all s̃ ∈ R. Using R0(s, ṡ) = ∞ for ṡ < 0, it is su�ient to onsider s̃ ≥ sν

k−1 whihgives (
κ(sν

k−1) + ν
sν

k − sν
k−1

τ
−G(tk, s

ν
k))
) s̃− sν

k

τ
≥ 0.In partiular, for any s̃ > sν

k we obtain κ(sν
k−1) + ν

sν
k−sν

k−1

τ
− G(tk, s

ν
k) ≥ 0. If we hoosenow s̃ = sν

k−1 then we derive
(
κ(sν

k−1) + ν
sν

k − sν
k−1

τ
−G(tk, s

ν
k)
)sν

k − sν
k−1

τ
≤ 0.The last two inequalities together with the fat that sν

k ≥ sν
k−1 give (4.3).Let sν

τ and sν
τ be the left-ontinuous and right-ontinuous pieewise onstant inter-polants of sν

k suh that sν
τ (tk) = sν

τ (tk) = sν
k, i.e.,

sν
τ (t) := sν

k ∀t ∈ ]tk−1, tk], sν
τ (t) := sν

k−1 ∀t ∈ [tk−1, tk[, k = 1, . . . , N. (4.4)Let tk : [0, T ] → [0, T ] be given by
tτ (0) := 0, tτ (t) := tk for t ∈ ]tk−1, tk].Moreover, we de�ne the pieewise a�ne interpolants

ŝν
τ (t) := sν

k−1 +
t− tk−1

τ
(sν

k − sν
k−1) ∀t ∈ ]tk−1, tk] . (4.5)Hene, we an rewrite the time-inremental problem (4.2) by

0 ∈ ∂ṡRν(s
ν
τ (t),

˙̂sν
τ (t)) −G(tτ (t), s

ν
τ (t)) + ∂χ[s0,s1](s

ν
τ (t)). (4.6)We now prove that these interpolants satisfy suitable a priori bounds.Lemma 4.1 There exists a positive onstant C suh that for every ν > 0 and every τ > 0the following estimates hold true.

‖sν
τ‖L∞(0,T ), ‖sν

τ‖L∞(0,T ) ≤ C (4.7)
∫ T

0

Rν(s
ν
τ (t),

˙̂sν
τ (t))dt ≤ C (4.8)

‖ ˙̂sν
τ‖L2(0,T ) ≤

C√
ν

(4.9)
‖sν

τ − ŝν
τ‖L∞(0,T ), ‖sν

τ − ŝν
τ‖L∞(0,T ) ≤ C

√
τ√
ν
. (4.10)Moreover, for every ν > 0 there exists τ0 = τ0(ν) suh that

sν
τ (t) < s1 ∀τ < τ0 ∀t ∈ [0, T ]. (4.11)20



Proof: Sine sν
k belongs to [s0, s1] for every k = 1, . . . , N , estimate (4.7) is triviallysatis�ed by any onstant C ≥ s1. By the minimality of sν

k and taking sν
k−1 as testfuntion we dedue

I(tk, s
ν
k) + τRν

(
sν

k−1,
sν

k − sν
k−1

τ

)
≤ I(tk, s

ν
k−1) + τRν(s

ν
k−1, 0)

= I(tk−1, s
ν
k−1) +

∫ tk

tk−1

∂tI(t, sν
k−1)dt,that is

I(tk, s
ν
k) − I(tk−1, s

ν
k−1) +

∫ tk

tk−1

Rν

(
sν

k−1,
sν

k − sν
k−1

τ

)
dt ≤

∫ tk

tk−1

∂tI(t, sν
k−1)dt.By adding this inequality we obtain, for every 0 ≤ i ≤ k ≤ N ,

I(tk, s
ν
k) − I(ti, s

ν
i ) +

∫ tk

ti

Rν(s
ν
τ (t),

˙̂sν
τ (t))dt ≤

∫ tk

ti

∂tI(t, sν
τ (t))dt.Thus

I(tτ (t), s
ν
τ (t)) +

∫ tτ (t)

0

Rν(s
ν
τ (r),

˙̂sν
τ(r))dr ≤ I(0, s0) +

∫ tτ (t)

0

∂tI(r, sν
τ (r))drholds true for every t ∈ [0, T ]. Sine now I ∈ C1([0, T ] × [s0, s1]) by Theorem 3.6, wededue the existene of a positive onstant C independent of τ and ν suh that

∫ T

0

Rν(s
ν
τ (t),

˙̂sν
τ (t))dt ≤ C(T + 1) + I(0, s0),whih proves estimate (4.8). From the de�nition of Rν given by (2.8) it follows that (4.8)is equivalent to ∫ T

0

(
κ(sν

τ (t))
˙̂sν
τ (t) +

ν

2
| ˙̂sν

τ (t)|2
)

dt ≤ C.The non-negativity of the �rst term implies the estimate (4.9).In order to prove (4.10), let now t ∈ ]tk−1, tk]. Then by the de�nition of sν
τ (t) and ŝν

τ (t)given by (4.4) and (4.5), respetively, we derive
sν

τ (t) − ŝν
τ (t) = sν

k − sν
k−1 −

t− tk−1

τ
(sν

k − sν
k−1) = (τ − t+ tk−1) ˙̂sν

τ (t) ≤ τ | ˙̂sν
τ (t)|.Thus,

|sν
τ (t) − ŝν

τ (t)| ≤
∫ tk

tk−1

| ˙̂sν
τ (t)|dt ≤

√
τ
(∫ tk

tk−1

| ˙̂sν
τ(t)|2 dt

)1/2

≤
√
τ ‖ ˙̂sν

τ‖L2(0,T ),whih, thanks to (4.9), gives the �rst estimate in (4.10). The seond one is obtained in asimilar way, sine for every t ∈ ]tk−1, tk[ we have
|sν

τ (t) − ŝν
τ (t)| = |t− tk−1

τ
(sν

k − sν
k−1)| ≤ τ | ˙̂sν

τ (t)|.21



We observe that from (4.7), (4.9) and (4.10) it follows that ŝν
τ ∈ L∞(0, T ).To onlude, we need to prove the existene of τ0 suh that (4.11) is satis�ed. We startby de�ning the quantity smax as

smax := max{ s ∈ [s0, s1] | κ(s) ≤ Gmax }.By assumptions (2.10) and (2.9) it turns out that smax is well de�ned and that smax < s1.Moreover, κ(s) > Gmax for every s ∈ ]smax, s1].Let k∗ ∈ N be suh that sν
k ≤ smax for all k = 1, . . . , k∗ and (for N > k∗) let us assume

sν
k∗+1 > smax. If sν

k∗+1 < s1 then κ(sν
k∗+1) > Gmax and therefore by (4.3) sν

k = sν
k∗+1 for all

k = k∗ + 1, . . . , N .On the other hand, if sν
k∗+1 = s1, then, by the de�nition (4.1) we get

−G(tk∗+1, s1) + κ(sν
k∗) +

ν

τ
(s1 − sν

k∗) ≤ 0or, equivalently, sine s1 − sν
k∗ > 0,

ν

τ
≤ G(tk∗+1, s1) − κ(sν

k∗)

s1 − sν
k∗

≤ Gmax − κ(sν
k∗)

s1 − sν
k∗

<
κ(s1) − κ(sν

k∗)

s1 − sν
k∗

≤ κ(s1)

s1 − smax =: L∗where the seond inequality is derived from the de�nition of Gmax and the third one omesfrom our assumption (2.9).Therefore, by taking τ0 < ν/L∗ we dedue that this seond ase annot our and hene
sν

k∗+1 < s1 for every k∗ and the proof is omplete.From now on we will onsider τ < τ0 so that, thanks to (4.11) the time-inrementalproblem (4.6) beomes
0 ∈ ∂ṡRν(s

ν
τ (t),

˙̂sν
τ (t)) −G(tτ (t), s

ν
τ (t)). (4.12)4.2 Existene of a visous solutionWe onsider now the limit in τ and prove that it is a visous solution.Theorem 4.2 There exist a funtion sν ∈ H1([0, T ]; [s0, s1]) and a subsequene of τ (notlabeled) suh that

sν
τ , s

ν
τ , ŝ

ν
τ → sν in L∞([0, T ] ; [s0, s1]) (4.13)
˙̂sν
τ ⇀ ṡν in L2([0, T ] ; R). (4.14)Moreover, for a.e. t ∈ [0, T ]

0 ∈ ∂ṡRν(s
ν(t), ṡν(t)) −G(t, sν(t)). (4.15)Proof: We essentially use the ontinuous embedding H1([0, T ]) ⊂ C0,1/2([0, T ]) and theompat embedding of C0,1/2([0, T ]) ⊂ C0([0, T ]) (via the Arzela-Asoli theorem).Using estimates (4.9) the sequene (ŝν

τ )τ is bounded in H1([0, T ]; [s0, s1]) and we �nd aweakly onvergent subsequene (not renamed). In partiular, (4.14) holds.22



By the ompat embedding into C0([0, T ]) it also onverges uniformly on [0, T ]. Em-ploying (4.10) we have also proved (4.13).To establish the di�erential inlusion (4.15) we pass to the limit in (4.12). First notethat G is ontinuous, hene we have
gτ(t) := G(tτ (t), s

ν
τ (t)) → g0(t) := G(t, sν(t)) for all t ∈ [0, T ].Equation (4.12) is equivalent to

∫ T

0

Rν(s
ν
τ (t), w(t)) −Rν(s

ν
τ (t),

˙̂sν
τ(t)) − gτ (t)(w(t)− ˙̂sν

τ (t))dt ≥ 0 (4.16)for all w ∈ L2([0, T ]). In fat, it su�es to onsider w with w ≥ 0 a.e. in [0, T ]. Forpassing to the limit τ → 0 note that the �rst term onverges pointwise with a majorant
κmaxw + ν

2
w2, hene its limit is ∫ T

0
Rν(s

ν , w) dt. The third term onverges beause it isa salar produt of a strongly and a weakly onvergent sequene. For the seond term,using the fat that ˙̂sν
τ (t) ≥ 0, we estimate

∫ T

0

|Rν(s
ν
τ (t),

˙̂sν
τ (t)) −Rν(ŝ

ν
τ (t),

˙̂sν
τ (t))|dt ≤ ωκ

(
‖sν

τ−ŝν
τ‖∞

) ∫ T

0

˙̂sν
τ (t)dt,where ωκ is a modulus of ontinuity of κ ∈ C0([0, L]). As the last integral equals sν

τ (T )−
sν

τ (0) ≤ s1 − s0 and by (4.10), the di�erene tends to 0 for τ → 0. Thus it remainsto show the onvergene of ∫ T

0
Rν(ŝ

ν
τ (t),

˙̂sν
τ (t)) dt but this equals again ∫ sν

τ (T )

s0
κ(s) ds +

ν
2

∫ T

0
| ˙̂sν

τ (t)|2 dt. The onvergene of the �rst term follows with (4.13), while aording to(4.14) lower semiontinuity an be applied to the seond term. In partiular, taking the
lim inf as τ → 0 in (4.16) we �nd

∫ T

0

Rν(s
ν(t), w(t)) −Rν(s

ν(t), ṡν(t)) − g0(t)(w(t)−ṡν(t))dt ≥ 0for all w ∈ L2([0, T ]), whih is equivalent to the desired equation (4.15). This onludesthe proof.Now we are in a position to prove the main result of Setion 2.2, whih turns out to bean easy onsequene of the previous Theorem 4.2.Proof of Theorem 2.2: For the given sν : [0, T ] → [s0, s1] we hoose uν(t) ≡ U(t, sν(t))for every t ∈ [0, T ], then (2.11) of De�nition 2.1 is satis�ed. Moreover, (4.15) togetherwith (3.13) provides (2.12).Lemma 4.3 The subdi�erential formulation (4.15) is equivalent to the following threeproperties whih hold true for a.e. t ∈ [0, T ]:
(aν) ṡν(t) ≥ 0;
(bν) κ(sν(t)) + νṡν(t) −G(t, sν(t)) ≥ 0;
(cν) (κ(sν(t)) + νṡν(t) −G(t, sν(t)))ṡν(t) = 0.23



We note that by Lemma 4.3 it turns out that the visous solution t 7→ sν(t) satis�es theKarush-Kuhn-Tuker onditions ([Kar39, KuT51℄).Proof: It is su�ient to prove that onditions (aν)�(cν) are equivalent to the followingevolutionary variational inequality
R0(s

ν(t), σ̇) −R0(s
ν(t), ṡν(t)) +

[
νṡν(t) −G(t, sν(t))

]
(σ̇ − ṡν(t)) ≥ 0 ∀σ̇ ∈ R. (4.17)The diretion (aν)�(cν) ⇒ (4.17) is immediate, while the opposite diretion is obtainedby an argument very similar to the one proving (4.3) and therefore it is omitted.We de�ne

smin := min{ s > s0 | κ(s) ≥ Gmax }and note that by our assumption (2.9) we have smin < s1. It turns out that
sν(t) ≤ smin < s1 for every t ∈ [0, T ]. (4.18)Indeed, if there is t∗ ∈ ]0, T ] with sν(t∗) > smin then there exist t1 < t2 ≤ t∗ suh that

sν(t1) = smin, sν(t) > smin ∀t ∈ ]t1, T ] and κ(sν(t)) > Gmax ∀t ∈ ]t1, t2](see also Figure 4.1).PSfrag replaements κ(s)

Gmax
smin sν(t2) sν(t∗) s1s0 sFigure 4.1: A possible situation for the graph of κ and the quantities smin = sν(t1), sν(t2)and sν(t∗).Therefore κ(sν(t)) − G(t, sν(t)) > 0 for every t ∈ ]t1, t2]. Condition (cν) in Lemma 4.3implies then ṡν(t) = 0 a.e. on ]t1, t2]. By the ontinuity of sν we derive smin = sν(t1) =

sν(t2) > smin, a ontradition and (4.18) is proven.Let us note that the same argument an be used to prove the following lemma.Lemma 4.4 Let sν be a visous solution for I and Rν and let t ∈ [0, T ] be suh that
κ(sν(t)) − G(t, sν(t)) > 0. Then there exists δ > 0 suh that the map sν is onstant in
[t− δ, t+ δ] ∩ [0, T ].Proof: By ontinuity, there exists δ > 0 suh that κ(sν(t̂)) − G(t̂, sν(t̂)) > 0 for every
t̂ ∈ [t− δ, t+ δ] ∩ [0, T ].Now we an onlude following the same argument as above (replaing the interval
]t1, t2] with [t− δ, t+ δ] ∩ [0, T ]).We end this setion by proving the energy balane ondition.24



Lemma 4.5 Let sν ∈ H1([0, T ]; [s0, s1]) be a funtion satisfying (4.15). Then the follow-ing energy balane ondition holds true
I(t2, s

ν(t2))+

∫ t2

t1

(
κ(sν(t))ṡν(t)+ν|ṡν(t)|2

)
dt = I(t1, s

ν(t1))+

∫ t2

t1

∂tI(t, sν(t))dt, (4.19)for every 0 ≤ t1 < t2 ≤ T .Proof: By Lemma 4.3 it follows that the map sν satis�es onditions (aν)�(cν). Moreover,for a.e. t ∈ [0, T ] we have, via the hain rule for sν ∈ H1([0, T ]),
−G(t, sν(t))ṡν(t) = ∂sI(t, sν(t))ṡν(t) =

d

dt
I(t, sν(t)) − ∂tI(t, sν(t)).Now (4.19) is an immediate onsequene of the integral version of ondition (cν).We observe that, sine uν(t) = U(t, sν(t)), ondition (4.19) turns out to be equivalentto energy balane (2.13).5 Rate-independent limitIn this setion we want to pass to the limit in ν, in order to prove the existene of a loalenergeti solution assoiated with I and R0. This proedure is usually alled vanishingvisosity method. We begin by stating some a priori estimates.Lemma 5.1 Let sν ∈ H1([0, T ]; [s0, s1]) be a solution of (4.15). Then there exists apositive onstant (independent of ν) suh that the following estimates hold true:

‖sν‖L∞(0,T ) ≤ C (5.1)
∫ T

0

Rν(s
ν(t), ṡν(t))dt ≤ C (5.2)

ν

∫ T

0

|ṡν(t)|2 dt ≤ C. (5.3)Proof: Sine sν(t) ∈ [s0, s1] for every t ∈ [0, T ], we dedue that estimate (5.1) is satis�edby any onstant C ≥ s1. Lemma 4.3 guarantees that ondition (cν) holds true. Thus wederive
∫ T

0

[
κ(sν(t))ṡν(t) + ν|ṡν(t)|2

]
dt =

∫ T

0

G(t, sν(t))ṡν(t)dt

= −I(T, sν(T )) + I(0, s0) +

∫ T

0

∂tI(t, sν(t))dtand the last right-hand side is bounded sine I ∈ C1([0, T ] × [s0, s1]), by Theorem 3.6.By ondition (aν) and (2.8) we get that (5.2) and then (5.3) hold true, and therefore theproof is omplete. 25



Theorem 5.2 There exist a funtion s ∈ BV(0, T ; [s0, s1]) and a subsequene of ν (notlabeled) suh that
sν ∗
⇀ s in BV(0, T ; [s0, s1]) (5.4)

sν(t) → s(t) for all t ∈ [0, T ]. (5.5)Moreover, the limit funtion s is a loal energeti solution for R0 and I as de�ned inDe�nition 2.3, namely(a) s is nondereasing;(b) κ(s(t)) −G(t, s(t)) ≥ 0 for all t ∈ [0, T ]\J(s) ;() if κ(s(t)) −G(t, s(t)) > 0, then t ∈ D(s) and ṡ(t) = 0;(d) for all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗) −G(t, s∗) ≤ 0,where J(s) and D(s) denote the jump set and the set of di�erentiability, respetively.Proof: An appliation of the lassial Helly seletion theorem (see, e.g., [Rud76℄) to-gether with the a priori estimates of Lemma 5.1 provide the existene of a subsequeneof ν and of a funtion s ∈ BV([0, T ]; [s0, s1]) satisfying (5.4)�(5.5).Taking into aount these onvergenes, we want to derive the limit problem solved bythe map t 7→ s(t). The idea is to onsider the limit in the formulation (aν)�(cν) whih isequivalent to (4.15) as shown in Lemma 4.3.First of all, let us note that ondition (a) is an immediate onsequene of Helly'sTheorem. It follows that t 7→ s(t) is ontinuous at a.e. t ∈ [0, T ], and the jump set
J(s) is at most ountable, sine the sum of jumps is bounded by s1 − s0.Further, we observe that a priori bound (5.3) implies

νṡν → 0 in L2([0, T ]). (5.6)Moreover, by ondition (bν)

∫ T

0

ψ(t)
[
κ(sν(t)) −G(t, sν(t)) + νṡν(t)

]
dt ≥ 0for every ψ ∈ L2([0, T ]) with ψ ≥ 0. Thanks to (5.6) we an pass to the limit and obtainan integral version of ondition (b), namely

∫ T

0

ψ(t)
(
κ(s(t)) −G(t, s(t))

)
dt ≥ 0 ∀ψ ∈ L2([0, T ]), ψ ≥ 0beause of onvergene (5.5), and ontinuity of κ and of G. Then, κ(s(t))−G(t, s(t)) ≥ 0for a.e. t ∈ [0, T ]. In partiular, the inequality is true for every t in whih the map s isontinuous, and therefore ondition (b) is proven.In order to obtain ondition (d), let us �x t̂ ∈ J(s) and s(t̂−) ≤ sa < sb ≤ s(t̂+). Fromthe ontinuity of the map t 7→ sν(t) we dedue that for every ν there exist t̂ν− and t̂ν+ suhthat

t̂ν− < t̂ν+, t̂ν− → t̂, t̂ν+ → t̂, sν(t̂ν−) ≡ sa, sν(t̂ν+) ≡ sb.26



Condition (cν) of Lemma 4.3 implies
∫ t̂ν+

t̂ν
−

ϕ(sν(t))
(
κ(sν(t)) −G(t, sν(t))

)
ṡν(t)dt ≤ 0 (5.7)for every ϕ ∈ L2([s0, s1]) with ϕ ≥ 0. Now we hange variables, putting σ := sν(t) andde�ning tν(σ) := min{ t ∈ [t̂ν−, t̂

ν
+] | sν(t) = σ } so that inequality (5.7) beomes

∫ sb

sa

ϕ(σ)
(
κ(σ) −G(tν(σ), σ)

)
dσ ≤ 0for every ϕ ∈ L2([s0, s1]), ϕ ≥ 0. Passing now to the limit as ν → 0, sine tν(σ) → t̂, forevery σ ∈ [s(t̂−), s(t̂+)], and sine G is ontinuous thanks to Theorem 3.6, we get

∫ sb

sa

ϕ(σ)
(
κ(σ) −G(t̂, σ)

)
dσ ≤ 0.Therefore, κ(s∗) − G(t̂, s∗) ≤ 0 for every s∗ ∈ [sa, sb] and by the fat that sa and sb werearbitrarily hosen in [s(t̂−), s(t̂+)] we obtain �nally ondition (d).We are left with ondition (). Let t be suh that κ(s(t)) − G(t, s(t)) > 0. Then byondition (d) t /∈ J(s) so that the map s is ontinuous in t. By ontinuity of κ and G andthe pointwise onvergene (5.5) we derive the existene of ν0 > 0 and of δ > 0 suh thatfor every ν ∈ [0, ν0] and every t̂ ∈ [t− δ, t+ δ] ∩ [0, T ] we have κ(sν(t̂)) −G(t̂, sν(t̂)) > 0.Applying now Lemma 4.4 we dedue that (for some possibly smaller δ > 0) the map sν isonstant on [t−δ, t+δ]∩ [0, T ] for every ν ∈ [0, ν0]. Therefore, the limit map s is onstanton [t− δ, t+ δ] ∩ [0, T ], so that t ∈ D(s) and ṡ(t) = 0.This onludes the proof of ondition () and the theorem is proven.We observe that from (4.18) and (5.5) it follows that

s(t) ≤ smin < s1 ∀t ∈ [0, T ]and therefore s(t) does not reah the point s1 during the time interval [0, T ].With the help of the monotone inverse t̂ : [s(0), s(T )] → [0, T ] of s : [0, T ] → [s0, s1],we an distinguish between the following three di�erent regimes:Regime I (stiking rak tip, i.e., no motion of rak tip):
ṡ(t) = 0, t̂(s) jumps, κ(s(t)) −G(t, s(t)) ≥ 0;Regime II (rak grows slowly):both t̂ and s are ontinuous and κ(s(t)) −G(t, s(t)) = 0;Regime III (rak tip jumps):
s jumps at t, t̂′(s) = 0 and κ(s(t)) −G(t, s(t)) ≤ 0.When κ(s(t)) − G(t, s(t)) = 0 the three di�erent situations are all admissible. Onthe other hand, the ase κ(s(t)) − G(t, s(t)) > 0 will always express Regime I (i.e., norak growth), while the ase κ(s(t))−G(t, s(t)) < 0 shall orrespond only to Regime III.However, by additionally assuming s(t) ∈ {s(t−), s(t+)} this last ase disappears eventhough jumps our along whih κ(s̃) < G(t, s̃) for s̃ ∈ ]s(t−), s(t+)[ is possible.27



Remark 5.3 Under the additional assumption that the map s 7→ G(t, s) is Lipshitzontinuous, uniqueness of the visous solution sν is guaranteed, and then sν(t) onvergesmonotonially to the limit s(t) (personal ommuniation by Negri). Therefore in thissituation t 7→ s(t) turns out to be ontinuous from the left (i.e., s(t) = s(t−)), and thesituation κ(s(t)) −G(t, s(t)) < 0 annot our.Proof of Theorem 2.4: Arguing in the same manner as in the proof of Theorem 2.2,for the map s : [0, T ] → [s0, s1] obtained from Theorem 5.2 we hoose u(t) := U(t, s(t)) =

argminE(t, ·, s(t)) so that (2.15) in De�nition 2.3 is satis�ed. Theorem 5.2 together withequality (3.13) provides onditions (a)-(d).The following lemma implies that any loal energeti solution is a loal solution (LS),whih was de�ned in De�nition 2.5.Lemma 5.4 Conditions (a)�() of Theorem 5.2 are equivalent to the subdi�erential for-mulation
0 ∈ ∂ṡR0(s(t), ṡ(t)) −G(t, s(t)) for every t ∈ D(s).The proof is very similar to the proof of Lemma 4.3 and therefore it is omitted.Now we are in a position to prove our extended energy balane. For the sake of larity,we reall �rst the de�nition of the funtion µ given in (2.18):

µ([t1, t2]) := ∆+(t1) + ∆−(t2) +
∑

t∈ ]t1,t2[∩J(s)

(∆+(t) + ∆−(t)),where for eah jump time t ∈ J(s) we de�ned in (2.17) the nonnegative quantities ∆+(t)and ∆−(t) by
∆+(t) :=

∫ s(t+)

s(t)

[G(t, σ) − κ(σ)]dσ and ∆−(t) :=

∫ s(t)

s(t−)

[G(t, σ) − κ(σ)]dσrespetively. We observe that µ is a nonnegative set funtion de�ned on losed subintervalsof [0, T ], that it is �nite and additive, so that
µ([t1, t2]) = µ([t1, t3]) + µ([t3, t2]) ∀0 ≤ t1 < t3 < t2 ≤ T.Lemma 5.5 Every loal energeti solution t 7→ s(t) assoiated with I and R0 satis�esthe following extended energy balane: for every 0 ≤ t1 < t2 ≤ T we have

I(t2, s(t2)) +

∫ s(t2)

s(t1)

κ(σ)dσ + µ([t1, t2]) = I(t1, s(t1)) +

∫ t2

t1

∂tI(τ, s(τ))dτ, (5.8)where the funtion µ is given by (2.18).Proof: The proof is essentially an appliation of the hain rule in BV. Indeed, we havethat I(·, s(·)) ∈ BV([0, T ]) and
DI(·, s(·)) = ∂tI(·, s(·))dt+ ∂sI(·, s(·))D̃s+

∑

t∈J(s)

[
I(t, s(t+)) − I(t, s(t−))

]
δt (5.9)28



where J(s) ⊂ [0, T ] is the set of disontinuity points of s, and D̃s = ṡdt + Dcs is thedi�use part of the derivative Ds (for a proof see, e.g., [AFP00, Theorem 3.96℄).We note that
∂sI(·, s(·))D̃s = −κ(s(·))D̃ssine by onditions (b) and () we have (κ(s(·)) − G(·, s(·)))D̃s = 0. On the other hand,for the jump part of the derivative we have

DjI(·, s(·)) = −
∑

t∈J(s)

∫ s(t+)

s(t−)

G(t, σ)dσ δt.Now, by (2.14) we derive
I(t2, s(t2)) − I(t1, s(t1)) =

∫

]t1,t2[

DI(·, s(·)) −
∫ s(t2)

s(t2−)

G(t2, σ)dσ −
∫ s(t1+)

s(t1)

G(t1, σ)dσ.Therefore, (5.9) and
∫ s(t+)

s(t−)

G(t, σ)dσ = ∆+(t) + ∆−(t) +

∫ s(t+)

s(t−)

κ(σ)dσyield
I(t2, s(t2)) − I(t1, s(t1)) =

∫ t2

t1

∂tI(t, s(t))dt− µ([t1, t2]) −
∫

]t1,t2[

κ(s(·))D̃s

−
∫ s(t2)

s(t2−)

κ(σ)dσ −
∫ s(t1+)

s(t1)

κ(σ)dσ −
∑

t∈J(s)∩]t1,t2[

∫ s(t+)

s(t−)

κ(σ)dσ δt,whih is equal to (5.8), and the proof is omplete.This proves also (2.19).Now the usual energy inequality turns out to be a diret onsequene of the previousresult, (simply by using the fat that µ([t1, t2]) ≥ 0).Corollary 5.6 Every loal energeti solution t 7→ s(t) assoiated with I and R0 satis�esthe following simpli�ed energy inequality: for every 0 ≤ t1 ≤ t2 ≤ T we have
I(t2, s(t2)) +

∫ s(t2)

s(t1)

κ(s)ds ≤ I(t1, s(t1)) +

∫ t2

t1

∂tI(t, s(t)) dt.This gives energy inequality (2.16).6 ExamplesHere we present a few examples, whih highlight the features of the funtionals andsolutions onstruted above. Throughout we restrit to the ase of linearized elastiity,suh that the energy E is quadrati in u. For Dirihlet boundary onditions and loadingof the form (uDir(t, ·), ℓ(t)) = a(t)(u0Dir, ℓ0) the redued energy I takes the form I(t, s) =

a(t)2Î(s). Moreover, we will assume that the rak path is the straight line C := [0, L]×{0}and that the frature toughness is onstant, i.e., κ(s) ≡ κ.29



Example 6.1 In this example we treat a toy problem, whih an be onsidered as asingular limit of a very thin body Ω = ]0, L[ × ]−h, h[ with 0 < h ≪ 1. The presribedrak path is γ(s) = (s, 0) and the displaement u is restrited to be symmetri withrespet to the x-axis, i.e., u(t, x, y) = diag(1,−1) u(t, x,−y). Moreover, for very small h, itis reasonable to assume that the displaement has the form u(t, x, y) = (0, v(t, x)sign(y)),where v(t, x) = 0 for x > s(t) (ahead of the rak). The purpose of the resulting toy modelis to show that we are able to generate a large lass of possible release rate funtionals
G in the form G(t, s) = a(t)2Ĝ(s). Moreover, we �nd the asymptotis for rak lengthgoing to 0. In our toy problem we have Ĝ(s) ∼ s2 whih indiates that we are not ableto desribe rak initiation.Under these assumptions the PDE problem redues to the following ODE problem. Forany s ∈ ]0, L[ we set
Vs := { v ∈ H1

0([0, L]) | spt(v) ⊂ [0, s] } and E(t, v) :=

∫ L

0

[1
2
v′(x)2 + a(t)f̂(x)v(x)]dx.With Î(s) := min{ E(1, v) | v ∈ Vs }/a(1)2 we �nd

I(t, s) = a(t)2Î(s) and G(t, s) = a(t)2Ĝ(s),where Ĝ(s) = −Î ′(s) ≥ 0. In fat, Î an be determined expliitly using F (x) =
∫ x

0
(x −

ξ)f̂(ξ)dξ, i.e., we have F (0) = 0 = F ′(0), F ′′ = f̂ . The unique minimizer v = Vs ∈ Vs of
E(1, ·) reads

Vs(x) =




F (x) − F (s)

s
x for x ∈ [0, s],

0 otherwise.Some expliit alulations yield
Î(s) =

F (s)2

2s
− 1

2

∫ s

0

F ′(x)2 dx and Ĝ(s) = −Î ′(s) =
1

2

(
F ′(s) − F (s)

s

)2 ≥ 0.From the last expression we see that every Ĝ in the form Ĝ(s) = s2

2
γ(s)2 with γ ∈

W1,1([0, L]) an be realized as a release rate by taking F (s) = s
∫ s

0
γ(x) dx, i.e., f̂(s) =

sγ′(s)+2γ(s).Example 6.2 Let us reall the example proposed in [ToZ06, Setion 7℄: there, a(t) = t,
ℓ(t) = 0, and E(t, u, s) =

∫
Ωs

|∇u(x)|2 dx for u = tu0Dir on ΓD. The redued energyfuntional then takes the form I(t, s) = t2Î(s). The authors fous on the shape ofthe graph of Î (instead of Ĝ) and provide an expliit example in whih Î is onaveon some subinterval of [s0, s1]. Atually the onstrution goes by approximation, and adomain Ωε ⊂ R
2 and a presribed boundary displaement uεDir, both dependent on a smallparameter ε, are provided.Spei�ally Ωε onsists of two diss B−2 and B2 of radius 1 entered at (−2, 0) and (2, 0)respetively, onneted by a retangle Tε of height ∼ 2ε. The boundary displaement uεDiris suh that on half part of Tε (the left one) the body experienes some �losing� fore,30
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Figure 6.1: The set Ωε and the e�et of the presribed boundary displaement.while on the other half part (the right one), the body experienes some �opening� fore(see Figure 6.1).Then, the limit of the energy
Îε(s) := min{

∫

Ωε\Cs

|∇u|2dx | u ∈ H1(Ωε \ Cs; R), u = uεDir on ∂Ωε \ Cs }as ε → 0 is onsidered. Note that here the presribed rak path is C = [−3, 3] × {0}.As s 7→ Îε(s) is a C2-funtion, in order to obtain that the map is not onvex on thewhole interval [−2, 2] the following three fats are established: lim supε→0+ Îε(2) is �nite,
lim infε→0+ Îε(−2) = +∞; while lim supε→0+ Î ′

ε(−2) is �nite.We note here in addition that it is possible to prove that lim supε→0+ Î ′
ε(2) is �nite, too.The proof follows the lines of the one proving that lim supε→0+ Î ′

ε(−2) is �nite, for whihwe refer to [ToZ06, Setion 7℄.Thus, we an onlude that the pro�le of Î(s) is onave in a �rst subinterval of [−2, 2]and it is onvex in the last part.Example 6.3 We disuss here the di�erent behavior of our loal energeti solution de-�ned in De�nition 2.3, the global energeti solution (GES), and a �generi� loal solution(LS) de�ned in De�nition 2.5, in the partiular ase of a(t) = t, ℓ(t) = 0, and
Ĝ(s) =

{
s− s0 + 1 if s0 ≤ s ≤ 2s0

3s0 + 1 − s if 2s0 ≤ s ≤ L.Thanks to our Example 6.1 suh a hoie for Ĝ(s) is admissible.In general, we have to ompare the position of Ĝ(s(t)) with the line κ
t2
, whih is movingdown as time inreases. Aording to Gri�th, we distinguish between three di�erentsituations (see also Figure 6.2):(1) Regime I: no rak growth in the region stritly above the graph of Ĝ, sine therewe have κ

t2
− Ĝ(s(t)) > 0;(2) Regime III: jumps in the region stritly below the graph of Ĝ, where κ

t2
−Ĝ(s(t)) < 0;(3) Regime II: slow rak propagation when κ

t2
− Ĝ(s(t)) = 0.31
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Figure 6.2: Interplay between Ĝ(s(t)) and κ/t2.Let us start with the global energeti solution (GES), that we denote here by sG(t).Aording to the stability ondition (S), we have

t2Î(sG(t)) ≤ t2Î(ŝ) + κ(ŝ− sG(t)) ∀ŝ ≥ sG(t), ∀t ∈ [0, T ]whih is equivalent to
∫ ŝ

sG(t)

(
Ĝ(σ) − κ

t2
)
dσ ≤ 0 ∀ŝ ≥ sG(t), ∀t ∈ [0, T ].On the other hand, energy balane ondition (E) gives

(
− Ĝ(sG(t)) +

κ

t2
)
ṡG(t) = 0.Therefore, assuming sG(0) = s0, we expet that sG will start to propagate (with a jump)at the �rst time t = t1 suh that the following equal-area rule is satis�ed:

∫ sG(t)

s0

(
Ĝ(σ) − κ

t2
)
dσ = 0. (6.1)This behavior is represented in piture (GES) of Figure 6.3. At time t1 we have (6.1)satis�ed, so that the two triangles denoted by Λ in the piture have the same area. For

t ∈ ]t1, T ], the global energeti solution will grow ontinuously.In our spei� example, we get
sG(t) =




s0 if 0 ≤ t <

√
κ(1+

√
2)

1+
√

2(1+s0)
=: t1

3s0 + 1 − κ
t2

if t1 < t ≤ T.We ontinue now with the loal energeti solution s(t). As already disussed, aordingto the De�nition 2.3, we expet that for any time t, s(t) will belong to the epigraph of
Ĝ. By ondition () s(t) will remain onstantly equal to s0 until some time t2 ≥ t1 forwhih κ

t22
− Ĝ(s0) = 0. The loal energeti solution has then to move, and aording toondition (d) it will jump to the next point at whih κ

t22
− Ĝ(s(t2+)) = 0. From this timeon, the solution will grow ontinuously. See piture (LES) of Figure 6.3.32
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(LS)Figure 6.3: Di�erent behavior of three notions of evolutions. Piture (GES) orrespondsto the global energeti solution, piture (LES) to the loal energeti solution, and piture(LS) to a possible loal solution.In this spei� example, it turns out that approximable solution (AS), weak solution(WS) and BV-solution introdued in subsetion 2.4 oinide with the loal energetisolution. To be preise, here we get:
s(t) =

{
s0 if 0 ≤ t <

√
κ =: t2 > t1

3s0 + 1 − κ
t2

if t2 < t ≤ T.Finally, onerning the loal solution (LS), denoted here by sL(t), from the energyinequality (2.22), we derive
t2
(
Î(sL(t+)) − Î(sL(t+))

)
+ κ(sL(t+) − sL(t−)) ≤ 0or, equivalently, ∫ sL(t+)

sL(t−)

(
− Ĝ(σ) +

κ

t2
)
dσ ≤ 0.Hene, a loal solution an also jump at some time t3 ∈ ]t1, t2] in the region above thegraph of Ĝ, then remaining onstant up to time t4 at whih equality κ

t24
− Ĝ(s(t4)) = 0holds, and hene growing ontinuously.A possible loal solution is represented in piture (LS) of Figure 6.3. Starting from

s0, a loal solution sL(t) an jump at any time t3 in the interval [t1, t2]. The maximalreahable position of sL(t3+) is the one suh that the sum of the areas of the triangles 1and 2 is equal to the area of the triangle 3.In our spei� ase, for any y ∈ [0,
√

2
1+

√
2
s0] and any s̃ ∈ [3s0−y, 3s0−y+

√
2(s0 − y)2 − y2]we obtain the following loal solution

s(t) =





s0 if 0 ≤ t ≤
√

κ
1+y

=: t3

s̃ if t3 < t <
√

κ
1+3s0−es

=: t4

3s0 + 1 − κ
t2

if t4 < t ≤ T.An example using full two dimensional elastiity and showing the di�erent behaviorof the global energeti solution (GES) and the approximable solution (AS) is already33



present in [ToZ06, Setion 4℄. However, our Example 6.3, whih is onstruted followinga ompletely di�erent approah, provides some geometrial haraterization of the twosolutions, and, additionally, it also gives a desription of the general behavior of the loalsolution (LS), whih was not disussed in [ToZ06, Setion 4℄.7 Disussion and outlookWe have shown that the rate-independent limit problem and its solutions are quite dif-ferent from other solutions suggested in the literature. However, they essentially oinidewith the �weak solutions� of [NeO07℄ and the BV-solutions in [MRS07℄. This oinidenemay be lost if we generalize the model.First onsider a situation where the rak tip may move bakward and forward. Thismay model the delamination of a tape that is originally glued to a glass plate. Afterpulling it o� it is possible to glue it again by pushing hard onto the plate again. In thisase, the surfae energy is not totally dissipated and part of it is stored. Hene, to modelthis situation we need to onsider a new (redued) energy funtional obtained by addingto the previous one a nonnegative term representing the reated surfae energy:
I(t, s) := E(t,U(t, s), s) +

∫ s

s0

a(σ)dσwhere E and U are de�ned in (2.4) and (2.5), respetively, and a ∈ C0([0, L]) is positive.The dissipation metri takes the form
R0(s, ṡ) =

{
κ+(s)ṡ for ṡ ≥ 0,

κ−(s)|ṡ| for ṡ ≤ 0,with κ± ∈ C0([0, L]) positive. Note that the ase of nondereasing rak tip studiedin this paper orresponds to the hoie κ = κ+ + a and κ− = ∞. Then, the visousproblem 0 ∈ ∂ṡR0(s, ṡ) + νṡ + ∂sI(t, s) an be still solved by the same inrementalmethod developed in Setion 4 and the extration of a limit proess still works. To haveglobal existene of solutions, we make the following assumptions on κ+ and κ−. Let usdenote Jmax = max(t,s) ∂sI(t, s) and Jmin = min(t,s) ∂sI(t, s). To prevent the rak tip fromreahing the endpoint s1 we assume κ+(s1) > −Jmin whih orresponds to (2.9), while todo not returning to the starting point s0 we assume κ−(s0) > Jmax. Moreover, in orderto obtain a nontrivial solution we assume κ+(s0) < −∂sI(t, s0) for some t ∈ [0, T ] (whihorresponds to (2.10)), while for allowing the rak tip to move bakward we assume thatthere exists (t, s) ∈ [0, T ] × [s0, s1] suh that κ−(s) < ∂sI(t, s). The orresponding limitproblem then reads(a) s ∈ BV([0, T ]; [s0, s1]);(b) for all t ∈ [0, T ]\J(s) we have ∂sI(t, s(t)) ∈ [−κ+(s(t)), κ−(s(t))];() if ∂sI(t, s(t)) ∈ ]−κ+(s(t)), κ−(s(t))[, then t ∈ D(s) and ṡ(t) = 0;(d) for t ∈ J(s) and s∗ between s(t−) and s(t+) we have ∂sI(t, s∗) 6∈ ]−κ+(s∗), κ
−(s∗)[.34



A seond generalization onerns the modeling of several, noninterating rak paths
C1, . . . , CN . Let s = (s1, . . . , sN) ∈ Σ ⊂ R

N denote the N-tuple ontaining the position ofeah rak tip. As above we obtain a redued energy funtional I : [0, T ] × Σ → R, suhthat Gj(t, s) = −∂sj
I(t, s) denotes the energy release rate for the j-th rak tip if all theothers stay �xed. Moreover, we de�ne the dissipation funtional
R0(s, ṡ) =

{ ∑N
j=1 κj(sj)ṡj for ṡ ∈ [0,∞[N ,

∞ otherwise.Introduing the vetor G(t, s) = (G1(t, s), . . . , GN(t, s)) of all release rates, the visousapproximation takes the form
R

N ∋ 0 ∈ ∂ṡR0(s, ṡ) + νṡ − G(t, s).Again the methods in Setions 4 and 5 provide visous solutions s
ν ∈ H1([0, T ]; RN) whihare bounded in BV([0, T ]; RN), independently of ν. Hene, Helly's seletion priniplestill allows us to selet a subsequene that onverges pointwise to a limit funtion s ∈

BV([0, T ]; RN).However, it is not so easy to see what problem the limit solutions have to satisfy.The problem is that some raks may behave well while others jump. In partiular, oneshould expet that a jump in one rak path hanges the other release rates signi�antlyand hene generates jumps at these raks as well. One way of obtaining a limit problemis to use the arlength parameterization introdued in [EfM06℄. We will not give thedetails here but just state the result if we transform bak the limiting equation from thereinto the original time setting. For this we introdue the dissipation potential
R∞(s, ṡ) =

{
R0(s, ṡ) for |ṡ|2 ≤ 1,

∞ otherwise.Here the Eulidian norm |v|2 = (v · v)1/2 orresponds to the visous dissipation potential
Rvis(s, ṡ) = ν

2
|ṡ|22.Now the limit funtions s satisfy(a) s ∈ BV([0, T ]; RN) with s(t) ∈ Σ;(b) for t ∈ D(s) we have 0 ∈ ∂ṡR0(s(t), ṡ(t)) − G(t, s(t));() for eah t∗ ∈ J(s) there exists σ∗ ∈ W1,∞([0, 1]; RN) with(1) σ∗(0) = s(t∗−), σ∗(1) = s(t∗+), and(2) σ′

∗(τ) 6= 0 and 0 ∈ ∂ṡR∞
(
σ∗(τ),

σ′
∗(τ)

|σ′
∗(τ)|2

)
− G(t, σ∗(τ)) for a.e. τ ∈ [0, 1].Note that s has at most a ountable number of jump points in J(s). The funtion σ∗may be onsidered as onneting the point s(t∗−), where the jump starts, with the point

s(t∗+) where the jump ends. Condition (2) says that along the whole urve σ∗ at leastfor one of the rak tips the energy release rate has to reah the orresponding fraturetoughness. 35



Thus, this type of solution is lose to the notion of BV-solutions in [MRS07℄, but therethe visosity norm Rvis(s, ṡ) = ν
2
R0(s, ṡ)2 is used instead of ν

2
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