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Abstra
tWe study the evolution of a single 
ra
k in an elasti
 body and assume thatthe 
ra
k path is known in advan
e. The motion of the 
ra
k tip is modeled as arate-independent pro
ess on the basis of Gri�th's lo
al energy release rate 
riterion.A

ording to this 
riterion, the system may stay in a lo
al minimum before it per-forms a jump. The goal of this paper is to prove existen
e of su
h an evolution andto shed light on the dis
repan
y between the lo
al energy release rate 
riterion andmodels whi
h are based on a global stability 
riterion (as for example the Fran
-fort/Marigo model). We 
onstru
t solutions to the lo
al model via the vanishingvis
osity method and 
ompare di�erent notions of weak, lo
al and global solutions.1 Introdu
tionThe predi
tion of the growth of 
ra
ks in brittle materials is of importan
e in manypra
ti
al appli
ations. However, mathemati
al models involving the full elasti
 intera
tionas well as the evolution of a freely growing 
ra
k are rare. Only within the last de
ade su
hmodels were developed based on the pioneering work in [FrM93, FrM98℄ that developeda quasistati
 framework based on energy minimization. In a series of te
hni
al papers[DaT02, FrL03, DFT05, FrG06℄ the ne
essary analyti
al results have been developed toprovide existen
e results for su
h solutions. In this setting the 
ra
k path may be anarbitrary set of �nite Hausdor� dimension d−1 with the restri
tion that it is a non-de
reasing family as a fun
tion of time. The displa
ements are allowed to lie in thefun
tion spa
e GSBV (generalized spe
ial fun
tions of bounded variations), where for ea
htime instant the jump set of the deformation has to be 
ontained in the 
orresponding
ra
k set.These solutions are in fa
t spe
ial 
ases of the so-
alled energeti
 solution for rate-independent pro
esses as developed in [MiT99, MTL02, CHM02℄ for modeling the evolu-tion of phase transformations in shape-memory materials or elastoplasti
ity. The energeti
solutions 
an be 
onsidered as weak solutions of the �ow laws usually posed in engineering.For the 
ra
k problem this relates to the Gri�th 
riterion [Gri20℄ that states that a 
ra
kgrows as soon as the energy release rate is bigger than the fra
ture toughness and it isstationary otherwise. The energeti
 
on
ept is based on a global energeti
 stability prin-
iple that says that a 
ra
k grows if there is any bigger 
ra
k su
h that the total energyrelease is larger than the energy dissipated by 
reating the 
ra
k (surfa
e). Otherwisethe state is (globally) stable. A pro
ess is 
alled an �irreversible quasistati
 evolution� or,equivalently, an �energeti
 solution�, if for ea
h time instant the state is (globally) stableand the total energy balan
e holds.In this work, we are interested in the dis
repan
y between the lo
al energy-release-rate 
riterion (Gri�th) and the global stability 
riterion. The problem is that energeti
1



solutions tend to jump earlier be
ause global minimizers are used. In many systems it isexpe
ted that physi
al systems will stay in lo
al minimizers, and hen
e 
ra
k growth willo

ur later.To generate solutions staying in lo
al minimizers we will use the vanishing vis
ositylimit whi
h again is 
lose to the physi
al modeling. In fa
t, true physi
al systems are notstri
tly rate-independent but have some internal time s
ales (relaxation times) that areusually negle
ted when very slow loading is 
onsidered. However, if the rate-independentsolutions are not 
ontinuous, then the 
orresponding solution with small vis
osity developsvery large rates that are governed by the vis
osity. The aim is to understand the limitsof vis
ous solutions when the vis
osity is made smaller and smaller, see [EfM06, MRS07℄for the general philosophy. For nontrivial PDE appli
ations see also [DD∗07, MiZ07℄.The appli
ation of this idea to 
ra
k problems turns out to be te
hni
ally very di�-
ult. Hen
e, all of the rigorous results are restri
ted to problems where the 
ra
k pathis pres
ribed in advan
e and either (i) the position of the 
ra
k tip is to be determined(
f. [NeO07, ToZ06℄) or (ii) a fun
tion along the 
ra
k path, whi
h measures the maximalopening of the 
ra
k, is to be 
al
ulated in so-
alled 
ohesive zone models or delaminationproblems, 
f. [KMR06, Cag07℄.In this work we mainly study the motion of one 
ra
k tip that is driven by stressesarising from elasti
 deformations. We �x an arbitrary 
ra
k path that is assumed to betwi
e 
ontinuously di�erentiable. We 
onsider small strains and assume that the elasti
energy is 
oer
ive and stri
tly 
onvex, but not ne
essarily quadrati
 or uniformly 
onvex.The external loading o

urs through time-dependent displa
ement boundary 
onditionsas well as volume and surfa
e loading. Having given these data, we de�ne the storedenergy fun
tional E on [0, T ]×Q, for a suitable state spa
e Q, as the elasti
 energy minusthe work of external loadings. The dissipative nature of the 
ra
k propagation is en
odedin a fra
ture-toughness fun
tion κ : [s0, s1] → ]0,∞[, whi
h we assume to be 
ontinuous,and a positive vis
osity parameter ν. The vis
ous 
ra
k-tip propagation problem fordetermining the displa
ement u(t) and the 
ra
k-tip position s(t) reads
u(t) = argmin{ E(t, v, s(t)) | v ∈ Q},
0 ∈ ∂ṡR0(s(t), ṡ(t)) + νṡ(t) − G(t, u(t), s(t)),

(1.1)where R0(s, ṡ) = κ(s)ṡ for ṡ ≥ 0 and ∞ otherwise. The generalized energy-release rate Gtakes the form
G(t, v, s) := − lim

δ→0

1

δ

(
E(t, v ◦ T−1

s,δ , s+δ) − E(t, v, s)
)
,where Ts,δ is a di�eomorphism between the domains with 
ra
k length s and s + δ, re-spe
tively (see Se
tion 3.2 for details).In Se
tion 2 we give the pre
ise de�nitions and state the existen
e result that (1.1) hasa solution (uν, sν) ∈ L∞([0, T ]; W1,p) × H1([0, T ]) for ea
h ν > 0. The proof is done inSe
tion 4 using a time-in
remental minimization pro
edure.The main goal of this work is to study the limiting behavior of (uν , sν) for the vanishingvis
osity limit ν → 0 and to identify a rate-indepedent limit problem, whi
h is satis�edby all possible limit solutions. For this purpose we use the 
onvexity of E(t, ·, s), whi
h2



guarantees that u 7→ E(t, u, s) has a unique minimizer U(t, s). We de�ne the redu
edfun
tional I : [0, T ] × [s0, s1] → R by minimizing out the displa
ements:
I(t, s) := E(t,U(t, s), s).The �rst major result (see Theorem 3.6) states that under fairly general 
onditions onthe elasti
 energy E the redu
ed fun
tional I is 
ontinuously di�erentiable and satis�esthe relation

G(t, s) := −∂sI(t, s) = G(t,U(t, s), s). (1.2)Moreover, we obtain an expli
it formula for G(t, s) in terms of the Eshelby tensor as-so
iated with U(t, s). A
tually, we provide simpli�ed proofs for more general situationsand derive Theorem 3.6 from an abstra
t Theorem 3.2. In this theorem, we study thedi�erentiability properties of redu
ed energies, whi
h 
orrespond to rather general (elas-ti
) energy fun
tionals depending on a �nite number of parameters. Theorem 3.2 is alsoappli
able to the 
ase with interfa
e 
ra
ks, non-interpenetration 
onditions and to �nite-strain elasti
ity, where the energy density is no more 
onvex, but poly
onvex and maytake the value +∞. We refer to [DeD81, KhS00, Kne06, KnM07℄ for the dis
ussion ofrepresentative spe
ial 
ases.In Se
tion 5 we study the limit behavior. Using suitable a priori estimates, we showthat a subsequen
e 
onverges pointwise on [0, T ] to a limiting pro
ess s ∈ BV([0, T ]).Moreover, de�ning the jump set J(s) = { t ∈ [0, T ] | s(t+) 6= s(t−) } and the set ofdi�erentiability D(s) = { t ∈ [0, T ] | ṡ(t) exists }, then any su
h limit has to satisfy thefollowing rate-independent limit problem: u(t) = U(t, s(t)) and(a) s : [0, T ] → [s0, s1] is nonde
reasing;(b) κ(s(t)) − G(t, u(t), s(t)) ≥ 0 for all t ∈ [0, T ]\J(s);(
) if κ(s(t)) − G(t, u(t), s(t)) > 0 then t ∈ D(s) and ṡ(t) = 0;(d) for all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗) − G(t,U(t, s∗), s∗) ≤ 0.Here (a) provides the irreversibility saying that a 
ra
k 
an never heal. In (b) we see thatthe release rate G 
an never ex
eed the fra
ture toughness ex
ept in jumps, while (
) saysthat a 
ra
k 
annot move if the release rate G is stri
tly less than the fra
ture toughness
κ. Condition (d) states that along a jump path the release rate 
an never be smaller thanthe fra
ture toughness as then the 
ra
k would immediately stop, see (
).Our formulation of the limit pro
ess via (a)�(d) is essentially the same as that givenin [NeO07℄. However, our approa
h using the vanishing-vis
osity method is 
ompletelydi�erent from the monotoni
ity approa
h there. In fa
t, our approa
h 
an be generalizedin several aspe
ts. First we may allow healing of 
ra
ks by adding to the stored energya suitable surfa
e term and rede�ning R0 as κ+(s)ṡ for ṡ ≥ 0, and as κ−(s)|ṡ| for ṡ ≤ 0.Moreover, we are able to treat the 
ase of several nonintera
ting 
ra
ks in one body, seeSe
tion 7 for details. In the latter 
ase we rely on the theory developed in [EfM06℄.3



2 Problem formulation and results2.1 Setting of the problemThroughout the paper we assume that the 
onditions des
ribed in this paragraph aresatis�ed.Let Ω ⊂ R
2 be open, bounded with Lips
hitz boundary ∂Ω. We assume that ∂Ω is theunion of two disjoint subsets ΓD and ΓN , with H 1(ΓD) > 0, where H 1 denotes the onedimensional Hausdor� measure.The pres
ribed 
ra
k path is a simple C2-path C ⊂ Ω with H 1(C) := L and let

γ : [0, L] → C be its ar
-length parameterization. We assume that for every s ∈ ]0, L[we have γ(s) ∈ Ω \ ∂Ω, while the endpoints of C, that is γ(0) and γ(L), 
an meet theboundary ∂Ω. Let us �x 0 < s0 < s1 < L and for ea
h s ∈ [s0, s1] we de�ne the admissible
ra
k set by Cs := { γ(σ) | 0 ≤ σ ≤ s }. The 
ra
ked domain is then the set Ωs := Ω \ Cs.We 
onsider small strain elasti
ity and assume that the stored energy density W̃ :

R
2×2sym → R belongs to C1(R2×2sym; R) and is stri
tly 
onvex. Furthermore, there exist p ∈

(1,∞) and 
onstants ci > 0 su
h that for every A ∈ R
2×2sym we have

c1 |A|p − c2 ≤ W̃ (A) ≤ c3(1 + |A|p). (2.1)The 
onvexity of W̃ and (2.1) imply that there is a 
onstant c4 > 0 su
h that
∣∣DW̃ (A)

∣∣ ≤ c4(1 + |A|p−1) (2.2)for every A ∈ R
2×2sym. Here, DW̃ : R

2×2sym → R
2×2sym denotes the derivative of W̃ . The givenDiri
hlet datum and the applied for
es shall satisfy

uDir ∈ C1([0, T ]; W1,p(Ωs0/2; R
2)),

f ∈ C1([0, T ]; W1,q(Ω; R2)), h ∈ C1([0, T ];Lq(ΓN ; R2)),
(2.3)where p−1 + q−1 = 1. The rather strong assumption f(t) ∈ W1,q(Ω) is made for te
hni
alreasons and 
ould slightly be weakened, see Remark 3.7. For shortness, we put

〈ℓ(t), v〉 :=

∫

Ω

f(t) · v dx+

∫

ΓN

h(t) · vdσfor every v ∈ W 1,p(Ωs1
; R2). For given t ∈ [0, T ], x ∈ Ω and A ∈ R

2×2 we de�ne
W (t, x, A) := W̃ ((A+ ∇uDir(t))sym),where Asym = 1

2
(A+ A⊤) is the symmetri
 part of A. Furthermore, we set
W 1,p

ΓD
(Ωs; R

2) := {w ∈W 1,p(Ωs; R
2) | w = 0 on ΓD },and the equality is understood in the sense of tra
es. We assume that the state spa
e Qis the produ
t

Q := W1,p
ΓD

(Ωs1
; R2) × [s0, s1].4



On this state spa
e we de�ne energy fun
tional E : [0, T ] ×Q → R∞ = R ∪ {∞} by
E(t, u, s) :=

{∫
Ωs
W (t, x,∇u(x))dx− 〈ℓ(t), u〉 if u ∈ W1,p

ΓD
(Ωs; R

2)

∞ else. (2.4)The assumption on W̃ and the data guarantee that for every t ∈ [0, T ] and s ∈ [s0, s1]there exists a unique element U(t, s) ∈W 1,p
ΓD

(Ωs) with
U(t, s) = argmin E(t, ·, s). (2.5)The redu
ed energy I : [0, T ] × [s0, s1] → R is de�ned as

I(t, s) := min{ E(t, v, s) | v ∈W 1,p
ΓD

(Ωs1
; R2) } = E(t,U(t, s), s). (2.6)We observe that for any t ∈ [0, T ] and any s ∈ [s0, s1] we have

I(t, s) = E(t,U(t, s), s) ≤ E(t, 0, s) <∞.By the de�nition of E , our assumption (2.1), and Hölder's inequality we derive
∫

Ωs

[
c1|(∇U(t, s)+∇uDir(t))sym|p−c2]dx ≤ E(t, 0, s)+‖ℓ(t)‖(W1,p

ΓD
(Ωs;R2))′‖U(t, s)‖W1,p

ΓD
(Ωs;R2).Applying then Korn's inequality to the left hand side and Young's inequality to the lastterm on the right hand side and using the assumptions on the data ℓ and uDir, we �nallyobtain that there exists a positive 
onstant (independent of t and s) su
h that

‖U(t, s)‖W1,p(Ωs;R2) ≤ C.We �x on
e and for all u0 := U(0, s0) and we are interested in �nding an evolution startingfrom (u0, s0).The energy release rate is de�ned by
G(t, s∗) := − d

ds
E(t,U(t, s), s)

∣∣∣
s=s∗

= − ∂

∂s
I(t, s∗). (2.7)In Theorem 3.6 we show I ∈ C1([0, T ] × [s0, s1]) and, hen
e, G is 
ontinuous. For theexpli
it formula and further properties of G, we refer to Theorem 3.6 again. In parti
ularit holds that G(t, s) = G(t,U(t, s), s) and

Gmax := sup{G(t, s) | (t, s) ∈ [0, T ] × [s0, s1] } <∞.The motion of the 
ra
k tip is asso
iated with the dissipation of energy via a dissipationpotential R. Let κ ∈ C0([0, L]) be positive and ν nonnegative, and de�ne the dissipationpotential
Rν(s, ṡ) :=

{
κ(s)ṡ+ ν

2
ṡ2 if ṡ ≥ 0

∞ else. (2.8)5



The fun
tion κ takes into a

ount the toughness of the material. Throughout the paperwe will assume
κ(s1) > Gmax. (2.9)This 
ondition will prevent the evolution s(t) from rea
hing the endpoint s1. On the otherhand, in order to obtain a nontrivial evolution, we will assume
κ(s0) < Gmax. (2.10)We are now ready to de�ne the vis
ous 
ra
k evolution model (Se
tion 2.2) and to for-mulate the rate-independent limit problem (Se
tion 2.3). In the remainder of this se
tionwe formulate the di�erent types of solutions (u, s) in terms of the elasti
 equilibrium 
on-dition and a 
ra
k-propagation law. To highlight the 
oupling between these two balan
elaws we use the full energy fun
tional E and the generalized energy-release rate G. Of
ourse, using the elasti
 equilibrium u(t) = U(t, s(t)) we have I(t, s(t)) = E(t, u(t), s(t))and the 
ru
ial identity (1.2), namely G(t, s(t)) = G(t, u(t), s(t)). In fa
t, in Se
tion 4and 5 the proofs depend essentially on this redu
tion to a problem in s alone.2.2 Vis
ous problemWe start with our notion of vis
ous solution, depending on a (small) parameter ν.De�nition 2.1 For ν > 0, a vis
ous solution asso
iated with E and Rν is a map

t 7→ (uν(t), sν(t)) with uν ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)), sν ∈ H1([0, T ]; [s0, s1]) satisfying

uν(t) = U(t, sν(t)) := argmin E(t, ·, sν(t)) for every t ∈ [0, T ] (2.11)
0 ∈ ∂ṡRν(s

ν(t), ṡν(t)) − G(t, uν(t), sν(t)) for a.e. t ∈ [0, T ]. (2.12)We note that from the de�nition it follows that uν(t) ∈ W1,p
ΓD

(Ωsν(t); R
2) for every

t ∈ [0, T ]. Moreover, it is not di�
ult to prove that any vis
ous solution (uν(·), sν(·))asso
iated with E and Rν guarantees that the map t 7→ ∂tE(t, uν(t), sν(t)) ∈ L1(0, T ) andthat the following energy balan
e 
ondition is satis�ed for every 0 ≤ t1 < t2 ≤ T (for aproof see Lemma 4.5 below):
E(t2, u

ν(t2), s
ν(t2)) +

∫ t2

t1

(
κ(sν(t))ṡν(t) + ν|ṡν(t)|2

)
dt

= E(t1, u
ν(t1), s

ν(t1)) +

∫ t2

t1

∂tE(t, uν(t), sν(t))dt.

(2.13)The main result of this se
tion is the following one, the proof is given in Se
tion 4.2after Theorem 4.2.Theorem 2.2 There exists a vis
ous solution t 7→ (uν(t), sν(t)) asso
iated with E and Rνsu
h that (uν(0), sν(0)) = (u0, s0).
6



2.3 Rate-independent limitWe are now interested in the limit of the solutions (uν , sν) in the 
ase of vanishing vis
osity,i.e., ν → 0. The limit s : [0, T ] → [s0, s1] will in general not stay 
ontinuous but willlie in BV([0, T ]) only. We want to make pre
ise what 
an be said about the limits andde�ne a limit problem that 
ontains as mu
h information about the limits as possible, inparti
ular at jump points.We re
all some basi
 properties of general fun
tions in BV([0, T ]) and introdu
e somenotations to formulate the limit problem. For a fun
tion s ∈ BV([0, T ]) the limit from theright s(t+) and the limit s(t−) from the left exist for all t ∈ [0, T ], if we let s(0−) = s(0)and s(T+) = s(T ). As 
ommon in rate-independent evolution problems we 
onsider thefun
tion s to be de�ned everywhere su
h that the three values s(t−), s(t), and s(t+) maybe di�erent. We de�ne the jump set J(s) ⊂ [0, T ] to be the set of points where s is not
ontinuous.The distributional derivative Ds of s is a bounded, signed measure that 
an be de
om-posed into three parts, namely Ds = Djs+ ṡdt+ Dcs = Djs+ D̃s. Here D̃s = ṡdt+ Dcsis the di�use part of the derivative Ds, while Djs is the dis
rete part asso
iated with thejumps, namely Djs =
∑

t∈J(s)(s(t+)−s(t−))δt. Let D(s) ⊂ [0, T ] denote the set of pointswhere s is di�erentiable, ṡ(t) = limh→0(s(t+h)− s(t))/h, then D(s) has full measure and
ṡ ∈ L1([0, T ]).Note that in general the fundamental theorem of 
al
ulus s(t2)−s(t1) =

∫ t2
t1
ṡ(t)dt doesnot hold be
ause of jumps and be
ause of the singular part. However, we have

s(t2) − s(t1) =

∫

]t1,t2[

Ds(dt) +
(
s(t2) − s(t2−)

)
−
(
s(t1) − s(t1+)

) (2.14)be
ause we did not enfor
e 
ontinuity from the left or from the right, and there is asuitable generalization for the 
hain rule (see (5.9)). To avoid all these 
ompli
ationsthe following formulation does not make usage of derivatives like in the global energeti
formulation (GES) given in De�nition 2.5.De�nition 2.3 A lo
al energeti
 solution to the rate-independent problem asso
iatedwith E and R0 is a map t 7→ (u(t), s(t)) with u ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)) and s ∈

BV([0, T ]; [s0, s1]) su
h that
u(t) = U(t, s(t)) := argminE(t, ·, s(t)) for every t ∈ [0, T ] (2.15)and the following four 
onditions hold true(a) s : [0, T ] → [s0, s1] is nonde
reasing;(b) κ(s(t)) − G(t, u(t), s(t)) ≥ 0 for all t ∈ [0, T ]\J(s);(
) if κ(s(t)) − G(t, u(t), s(t)) > 0 then t ∈ D(s) and ṡ(t) = 0;(d) for all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗) − G(t,U(t, s∗), s∗) ≤ 0.7



Condition (b) states that the energy-release rate has to be smaller than the fra
turetoughness everywhere ex
ept at the jump times. However, assuming 
ontinuity from theleft or from the right and 
ontinuity of κ and G would even prove this estimate at the jumptimes t ∈ J(s). Condition (
) states that the 
ra
k 
annot move if the energy-release rateis stri
tly less than the fra
ture toughness. Thus, so far the evolution is in full a

ordan
ewith the Gri�th 
riterion. Finally, 
ondition (d), whi
h is the essential new feature ofthe present formulation, states that during a jump the energy-release rate is not allowedto go below the fra
ture toughness. It is 
lear that this formulation is lo
al in the sensethat the evolution of s is determined solely by lo
al properties of κ and G.We observe that if (u(·), s(·)) is a lo
al energeti
 solution, then sin
e E(t, u(t), s(t)) <∞we have u(t) ∈ W1,p
ΓD

(Ωs(t); R
2).As a 
onsequen
e of De�nition 2.3, we dedu
e that any lo
al energeti
 solution t 7→

(u(t), s(t)) asso
iated with E and R0 satis�es t 7→ ∂tE(t, u(t), s(t)) ∈ L1([0, T ]) and thefollowing energy inequality
E(t2, u(t2), s(t2)) +

∫ s(t2)

s(t1)

κ(s)ds ≤ E(t1, u(t1), s(t1)) +

∫ t2

t1

∂tE(t, u(t), s(t))dt, (2.16)holds true for every 0 ≤ t1 ≤ t2 ≤ T (for a proof see Corollary 5.6).For ea
h jump time t ∈ J(s) we de�ne the nonnegative quantities ∆+(t) and ∆−(t) by
∆+(t) :=

∫ s(t+)

s(t)

[G(t,U(t, s), s) − κ(s)]ds ≥ 0,

∆−(t) :=

∫ s(t)

s(t−)

[G(t,U(t, s), s) − κ(s)]ds ≥ 0.

(2.17)Through them, we 
an de�ne a nonnegative fun
tion µ on 
losed subintervals of [0, T ] asfollows:
µ([t1, t2]) := ∆+(t1) + ∆−(t2) +

∑

t∈ ]t1,t2[∩J(s)

(∆+(t) + ∆−(t)). (2.18)Note that µ is �nite, sin
e G and κ are bounded and the sum of all jumps does not ex
eed
s1 − s0. Using a 
hain rule for BV fun
tions, (see, e.g.,[AFP00, Theorem 3.96℄ and (5.9)),it is then possible to derive an exa
t energy balan
e, i.e., we are able to 
hara
terize theenergy missing in (2.16) via the fun
tion µ (see Lemma 5.5). For all 0 ≤ t1 < t2 ≤ T wehave

E(t2, u(t2), s(t2)) +

∫ s(t2)

s(t1)

κ(σ)dσ + µ([t1, t2])

= E(t1, u(t1), s(t1)) +

∫ t2

t1

∂tE(τ, u(τ), s(τ))dτ.

(2.19)We are now in a position to state the main result of this se
tion.Theorem 2.4 There exists a lo
al energeti
 solution t 7→ (u(t), s(t)) to the rate-indepen-dent problem asso
iated with E and R0 su
h that (u(0), s(0)) = (u0, s0). In parti
ular,every limit point of a subsequen
e of vis
ous solutions t 7→ (uν(t), sν(t)) starting from
(u0, s0) is a lo
al energeti
 solution. 8



2.4 Dis
ussion and 
omparison with other types of solutionsWe give now three di�erent notions of solutions. For this reason we need some preliminaryadditional notations. Via the dissipation metri
 R0 we introdu
e the dissipation distan
e
D : [s0, s1] × [s0, s1] → [0,∞] de�ned by

D(s0
∗, s

1
∗) :=





∫ s1
∗

s0
∗

R0(s, ds) for s1
∗ ≥ s0

∗,

∞ otherwise.Obviously, D satis�es D(s∗, s∗) = 0 and the triangle inequality, but we put in eviden
ethat due to the de�nition of R0, it turns out that D is a non-symmetri
 distan
e, sin
e
D(s, s̃) = ∞ for s̃ < s.The D-dissipation of a 
urve s is de�ned by

DissD(s; [t1, t2]) := sup{
M∑

j=1

D(s(rj−1), s(rj)) |M ∈ N, t1 ≤ r0 < · · · < rM ≤ t2 }.We observe that DissD(s; [t1, t2]) < ∞ implies that s : [t1, t2] → [0, L] is nonde
reasingand then
DissD(s; [t1, t2]) = D(s(t1), s(t2)).De�nition 2.5 (LS) A lo
al solution to the rate-independent problem asso
iated with

E and R0 is a map t 7→ (u(t), s(t)) with u ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)) and s ∈

BV([0, T ]; [s0, s1]) satisfying the following three 
onditions:(1) lo
al stability:
u(t) = U(t, s(t)) := argmin E(t, ·, s(t)) for every t ∈ [0, T ], (2.20)

κ(s(t)) − G(t, u(t), s(t)) ≥ 0 for a.e. t ∈ [0, T ], (2.21)(2) irreversibility: the map t 7→ s(t) is nonde
reasing,(3) energy inequality: the map t 7→ ∂tE(t, u(t), s(t)) lies in L1([0, T ]) and
E(t2, u(t2), s(t2)) +

∫ s(t2)

s(t1)

κ(σ)dσ ≤ E(t1, u(t1), s(t1)) +

∫ t2

t1

∂tE(t, u(t), s(t))dt,(2.22)for every 0 ≤ t1 ≤ t2 ≤ T ;(GES) a global energeti
 solution asso
iated with E and D is a map t 7→ (u(t), s(t))with t 7→ ∂tE(t, u(t), s(t)) ∈ L1([0, T ]) satisfying for every t ∈ [0, T ] stability (S) andenergy balan
e (E):
(S) E(t, u(t), s(t)) ≤ E(t, ũ, s̃) + D(s(t), s̃) ∀(ũ, s̃) ∈ W1,p

ΓD
(Ωs1

; R2) × [s0, s1],

(E) E(t, u(t), s(t)) + DissD(s; [0, t]) = E(0, u(0), s(0)) +

∫ t

0

∂tE(t, u(t), s(t))dt;9



(AS) an approximable solution asso
iated with the energy fun
tional E and the dissi-pation metri
 R0 is a lo
al solution t 7→ (u(t), s(t)) whi
h is the point wise limit ofa subsequen
e of some vis
ous solution t 7→ (uν(t), sν(t)) asso
iated with E and Rν.Remark 2.6 We note that if t 7→ (u(t), s(t)) is a lo
al solution to the rate-independentproblem asso
iated with E and R0, then
0 ∈ ∂ṡR0(s(t), ṡ(t)) − G(t, u(t), s(t)) for a.e. t ∈ [0, T ].Indeed, from the energy inequality we derive
(
κ(s(t)) − G(t, u(t), s(t))

)
ṡ(t) ≤ 0 for a.e. t ∈ [0, T ],but a
tually we 
an substitute inequality by equality due to the irreversibility 
onditionand to stability (2.21).By the previous de�nition it follows that the weakest notion of solution is the lo
al one(LS) and therefore any other solution (among those de�ned in this work, in
luding thelo
al energeti
 one) is in parti
ular a lo
al solution. Its left-
ontinuous version 
orrespondsto the notion of irreversible quasistati
 evolution given in [ToZ06, De�nition 3.1℄.The study of global energeti
 solutions (GES) is well developed in the literature, see,e.g., [MaM05, Mie05, FrM06℄ (and referen
es therein). Moreover, the notion of globalenergeti
 solution in the 
ase of a non-symmetri
 dissipation distan
e (like in this work)
orresponds to the de�nition of irreversible quasistati
 evolution 
onsidered in [FrM98,FrL03, DFT05℄ (see also referen
es therein).We note that the left-
ontinuous version of an approximable solution (AS) �ts the def-inition of approximable irreversible quasistati
 evolution given in [ToZ06, De�nition 3.7℄.Anyway, in that paper, the authors 
onsidered a di�erent vis
ous approximation, takinginto a

ount vis
osity also for the bulk energy in the dissipation metri
, and 
on�nedthemselves to the 
ase W̃ (∇u) = |∇u|2 and κ(s) ≡ 1.In general, we expe
t that a global energeti
 solution (GES) is di�erent from a lo
alenergeti
 one. On the other hand, as stated in Theorem 2.4, we will prove that anyapproximable solution (AS) is a lo
al energeti
 solution. On the 
ontrary, maybe notany lo
al energeti
 solution is approximable. For a spe
i�
 situation 
omparing globalenergeti
 solution (GES), lo
al energeti
 solution and approximable solution (AS) withea
h other, see Example 6.3.The more general 
on
ept of BV-solution has been re
ently introdu
ed in [MRS07℄.This notion works on general metri
 spa
es, but in the 
ontext of the present work it
oin
ides with the lo
al energeti
 solution.We would like to mention also another notion of evolution whi
h was re
ently introdu
edin the work [NeO07℄:(WS) a weak solution asso
iated with E and R0 is a mapping t 7→ (u(t), s(t)) with

u ∈ L∞([0, T ]; W1,p
ΓD

(Ωs1
; R2)) and s ∈ BV([0, T ]; [s0, s1]) su
h that (u(0), s(0)) =

(U(0, s0), s0) and the following three 
onditions are satis�ed:10



(1) lo
al stability 
ondition: for every t ∈ [0, T ]

u(t) = U(t, s(t)) := argminE(t, ·, s(t)),
κ(s(t)) − G(t, u(t), s(t)) ≥ 0,(2) irreversibility: the map t 7→ s(t) is nonde
reasing,(3) weak a
tivation 
riterion:

s(·) not 
onstant in ]t− η, t+ η[ ⇒
G(t,U(t, ŝ), ŝ) ≥ κ(ŝ) ∀ŝ ∈ [s(t−), s(t+)] \ {s1}.The weak solution (WS) is de�ned a

ording to [NeO07, De�nition 2.2℄. In that workthe authors 
onsider the 
ase of bulk energy W̃ (∇u) = |∇u|2 and fra
ture toughness

κ(s) ≡ Gc > 0. This notion is very 
lose to our de�nition of lo
al energeti
 solution,and the main di�eren
e with the previous de�nitions is that they both do not requireany 
ondition on energies and that on the 
ontrary they are given in terms of �slopes�,involving energy release rate and toughness. Moreover both notions satisfy the extendedenergy balan
e (2.19), whi
h easily implies the usual energy inequality (2.22). In general,a weak solution is a lo
al energeti
 solution and vi
e versa, any lo
al energeti
 solution
s(t) 
an be modi�ed to be a weak solution, with s(t) ∈ {s(t−), s(t+)} for every t.3 Redu
ed energy and energy release rateIn the proofs of Theorems 2.2 and 2.4 we use frequently that the energy release rate G is
ontinuous. We will therefore investigate in this se
tion the 
ontinuity and di�erentiabilityproperties of the redu
ed energy I and derive a formula for G. We treat �rst a rathergeneral 
ase, where the energy E may depend on several parameters and have nonuniqueminimizers. Afterwards, the results are applied to the situation with a 
ra
k as des
ribedabove.3.1 Variation of redu
ed energies with respe
t to a �nite numberof parametersLet V be a topologi
al Hausdor� spa
e and Σ = [σ1

1, σ
1
2] × . . . × [σm

1 , σ
m
2 ] ⊂ R

m a set ofparameters. For the energy fun
tional E0 : Σ × V → R∞ = R ∪ {∞} we de�ne
I(σ) = inf{ E0(σ, v) | v ∈ V },
U(σ) = Argmin E0(σ, ·) = { v ∈ V | E0(σ, v) = I(σ) }.The following assumptions are imposed on E0, 
f. [FrM06℄.Compa
tness of energy sublevels:

∀σ ∈ Σ ∃E ∈ R : Lσ,E := { u ∈ V | E0(σ, u) ≤ E } is not empty.Furthermore, Lσ,E is 
ompa
t for every σ ∈ Σ and every E ∈ R. (E1)11



This assumption implies that for every σ ∈ Σ the set U(σ) is not empty and that I : Σ →
R is well de�ned.Uniform 
ontrol of ∂σE0:

∃ c0 ∈ R ∃ c1 > 0 ∀(σ̃, u) ∈ Σ × V with E0(σ̃, u) <∞ :

E0(·, u) ∈ C1(Σ) and |∂σE0(σ, u)| ≤ c1(c0 + E0(σ, u))∀σ ∈ Σ.

(E2)Using Gronwall's inequality, the following fundamental estimate 
an be dedu
ed fromassumption (E2), see e.g. [FrM06℄: For every σ1, σ2 ∈ Σ and u ∈ V with E0(σ1, u) <∞ itholds
E0(σ1, u) ≤

(
c0 + E0(σ2, u)

)
ec1|σ1−σ2| − c0.This inequality implies in parti
ular that for every σ1, σ2 ∈ Σ and u ∈ U(σ2), we have

I(σ1) ≤ E0(σ1, u) ≤
(
c0 + I(σ2)

)
ec1|σ1−σ2| − c0,and therefore,

sup
σ∈Σ

I(σ) <∞, sup{ E0(σ, u) | σ ∈ Σ, u ∈ ∪τ∈Σ U(τ) } <∞. (3.1)Proposition 3.1 Assume that (E1) and (E2) are satis�ed. Then the mapping I : Σ → Ris Lips
hitz 
ontinuous. Moreover, for every sequen
e σn → σ and every sequen
e (un)n∈Nwith un ∈ U(σn) we have limn→∞ E0(σ, un) = I(σ).Proof: Let σ1, σ2 ∈ Σ and u2 ∈ U(σ2). By 
ondition (E2) and estimate (3.1) we obtain
I(σ1) − I(σ2) ≤ E0(σ1, u2) − E0(σ2, u2)

≤ |σ1 − σ2|
∫ 1

0

|∂σE0(σ2 + s(σ1 − σ2), u2)| ds ≤ c |σ1 − σ2| ,and the 
onstant c is independent of σ1 and σ2. Inter
hanging σ1 and σ2 in the previousinequality shows that I is Lips
hitz 
ontinuous.Let (σn, un)n∈N be a sequen
e as des
ribed in the se
ond statement of Proposition 3.1.Again by property (E2) and estimate (3.1) we see that
|E0(σn, un) − E0(σ, un)| ≤ |σn − σ|

∫ 1

0

|∂σE0(σ + s(σn − σ0), un)| ds ≤ c |σn − σ| .Together with 
ontinuity of I it follows that E0(σ, un) → I(σ) for n→ ∞.For the proof of di�erentiability properties of I, we need also a 
ontinuity assumption for
∂σE0 along sequen
es (σn, un)n, where un ∈ U(τn) for some τn.Continuity of ∂σE0 along sequen
es (σn, un)n:For n ∈ N let τn, σn ∈ Σ, un ∈ U(τn). Then the following impli
ation holds:

(σn, τn, un) → (σ, σ, u) with u ∈ U(σ) =⇒ ∂σE0(σn, un) → ∂σE0(σ, u).

(E3)12



If V is identi�ed with a Bana
h spa
e, whi
h is equipped with the weak topology, thenthere are at least two 
ases su
h that assumption (E3) is satis�ed. In the 
ase, where E0has nonunique minimizers (like in �nite�strain elasti
ity), a su�
ient 
ondition for (E3)to hold is: For every E ∈ R there exists a modulus of 
ontinuity ωE : [0,∞) → [0,∞)su
h that |∂σE0(σ1, u) − ∂σE0(σ2, u)| ≤ ωE(|σ1 − σ2|) for every u ∈ V with E0(σ1, u) ≤ E.Property (E3) is then an immediate 
onsequen
e of the fundamental 
onvergen
e theoremin [FrM06℄, where it is proved that the 
onvergen
e of a sequen
e (un)n∈N together withthe 
onvergen
e of the 
orresponding energies implies the 
onvergen
e of ∂σE0(σn, un).The 
ase, where E0(σ, ·) is stri
tly 
onvex, is dis
ussed in detail in the next se
tion.For τ ∈R
m\{0} and σ ∈ Σ the right and left dire
tional derivatives of I are denoted by

∂+
τ I(σ) = lim

hց0

1
h

(
I(σ+hτ) − I(σ)

)
, (3.2)

∂−τ I(σ) = lim
hց0

1
h

(
I(σ) − I(σ−hτ)

)
. (3.3)Theorem 3.2 Let (E1)�(E3) be satis�ed. For every σ ∈ Σ and τ ∈ R

m\{0} with σ+hτ ∈
Σ for small h > 0, the right and left dire
tional derivatives with respe
t to τ exist and aregiven by

∂+
τ I(σ) = min{ ∂σE0(σ, u) · τ | u ∈ U(σ) },
∂−τ I(σ) = −∂+

−τI(σ) = max{ ∂σE0(σ, v) · τ | v ∈ U(σ) }.Moreover, ∂+
τ I and ∂−τ I are measurable and ∂+

τ I(σ) = ∂−τ I(σ) for a.e. σ ∈ Σ. Finally,if hn > 0 with limn→∞ hn = 0, then ∂±τ I(σ±hnτ) → ∂±τ I(σ).Remark 3.3 From the last assertion we may 
on
lude the following, using Theorem 2.5.1of [Cla83℄: Let Σ = [σ0, σ1] ⊂ R. Then, under assumptions of Theorem 3.2, the Clarkegeneralized gradient of I is given by ∂ClI(σ) = [∂+I(σ), ∂−I(σ)], σ ∈ (σ0, σ1). This fa
twill be used in a forth
oming paper.Proof: Let σ ∈ Σ, τ ∈ R
m\{0} su
h that σ+hτ ∈ Σ for 0 < h < h0, where h0 is 
hosensmall enough. The goal is to 
al
ulate the limit in (3.2).Upper estimate: Let u ∈ U(σ) be arbitrary. Then

1
h

(
I(σ+hτ) − I(σ)

)
≤ 1

h

(
E0(σ+hτ, u) − E0(σ, u)

)
=

∫ 1

0

∂σE0(σ+rhτ, u) · τ dr.By assumption (E2) and inequality (3.1), the integrand is bounded by a 
onstant, whi
h isindependent of s and r. Therefore, Lebesgue's Theorem of dominated 
onvergen
e implies
lim sup

hց0

1
h

(
I(σ+hτ) − I(σ)

)
≤ lim

hց0

∫ 1

0

∂σE0(σ+rhτ, u) · τ dr = ∂σE0(σ, u) · τ.Sin
e u ∈ U(σ) is arbitrary, we 
an take the in�mum on the right hand side. In fa
t, thein�mum is a minimum, whi
h 
an be seen as follows. Let (un)n∈N ⊂ U(σ) be an in�mizingsequen
e for ∂σE0(σ, ·) · τ with respe
t to U(σ). By assumption (E1) the set U(σ) is13




ompa
t and therefore, there exists an element u ∈ U(σ) and a subsequen
e (un′)n′∈N,whi
h 
onverges to u. Assumption (E3) implies that ∂σE0(σ, un′)·τ → ∂σE0(σ, u)·τ . Thus,
u is a minimizer of ∂σE0(σ, ·) · τ on U(σ) and we have proved that

lim sup
hց0

1
h

(I(σ+hτ) − I(σ)) ≤ min{ ∂σE0(σ, u) · τ | u ∈ U(σ) }.Lower estimate: For every h ∈ [0, h0] let uσ+hτ ∈ U(σ+hτ). The lower semi
ontinuityof E0 (assumption (E1)) and Proposition 3.1 imply that there exists a sequen
e hn → 0and an element u∗ ∈ U(σ) su
h that uσ+hnτ → u∗. By assumption (E3) and Lebesgue'sTheorem we obtain therefore
lim inf
n→∞

1
hn

(
I(σ+hnτ) − I(σ)

)
≥ lim

n→∞
1

hn

(
E0(σ+hnτ, uσ+hnτ ) − E0(σ, uσ+hnτ )

)

= lim
n→∞

∫ 1

0

∂σE0(σ+rhnτ, uσ+hnτ ) · τ dr = ∂σE0(σ, u∗) · τ.A proof by 
ontradi
tion shows �nally that
lim inf

hց0

1
h

(
I(σ+hτ) − I(σ)

)
≥ min{ ∂σE0(σ, v) · τ | v ∈ U(σ) }.This �nishes the proof of the �rst part of Theorem 3.2.For the proof of the se
ond part we extend I by re�e
tion to a Lips
hitz 
ontinuousand bounded fun
tion Ĩ : R

m → R. For τ ∈ R
m\{0}, h > 0 and σ ∈ Σ we de�ne

I+
τ,h(σ) = h−1(Ĩ(σ+hτ) − Ĩ(σ)) and I−

τ,h(σ) = h−1(Ĩ(σ) − Ĩ(σ−hτ)). Obviously, thefun
tions I+
τ,h and I−

τ,h are measurable with respe
t to Σ and we have due to the �rst partof Theorem 3.2 that I±
τ,h(σ) → ∂±τ I(σ) for every σ ∈ Σ. Therefore, ∂±τ I is measurable.Let ϕ ∈ C∞

0 (int Σ) be arbitrary. Lebesgue's Theorem and a 
hange of 
oordinates implythat∫
Σ

∂+
τ I(σ)ϕ(σ)dσ = lim

h→0
h−1

∫

Σ

(Ĩ(σ+hτ) − Ĩ(σ))ϕ(σ)dσ

= lim
h→0

h−1

∫

Σ

Ĩ(σ)(ϕ(σ−hτ) − ϕ(σ))dσ = −
∫

Σ

I(σ)(∇ϕ · τ)dσ.And similarly
∫

Σ

∂−τ I(σ)ϕ(σ)dσ = −
∫

Σ

I(σ)(∇ϕ · τ)dσ.Sin
e ϕ ∈ C∞
0 (int Σ) is arbitrary, we �nally obtain ∂−τ I(σ) = ∂+

τ I(σ) for a.e. σ ∈ Σ.For the proof of the last part of Theorem 3.2 let σn := σ+hnτ and vn ∈ U(σn) su
hthat ∂+
τ I(σn) = ∂σE(σn, vn) · τ . In view of (E1) and Proposition 3.1 we may assume that

vn → v with v ∈ U(σ). Thus, by (E3) and formula (3.2) we have
∂+

τ I(σn) = ∂σE0(σn, vn) · τ → ∂σE0(σ, v) · τ ≥ ∂+
τ I(σ). (3.4)Moreover,

∂+
τ I(σ) ≥ lim

n→∞
1

hn

(
E0(σn, vn) − E0(σ, vn)

)
= ∂σE0(σ, v) · τ. (3.5)Combining (3.4) and (3.5) �nishes the proof.14



PSfrag repla
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rr(δ)
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γ(s+δ) =

(
r(δ)

ϕs(r(δ))

)

−r0 r0Figure 3.1: Lo
al des
ription of the 
ra
k C via ϕsCorollary 3.4 Let (E1)�(E3) be satis�ed. If for every σ ∈ Σ the 
orresponding minimizerof E0(σ, ·) is unique, then I ∈ C1(Σ). Moreover, DI(σ) = ∂σE0(σ, v), where v = vσ is theminimizer of E0(σ, ·).Proof: Note �rst that for every τ ∈ R
m\{0} and every σ ∈ Σ it holds

∂τI(σ) ≡ ∂+
τ I(σ) = ∂−τ I(σ) = ∂σE0(σ, vσ) · τ,where vσ is the unique minimizer of E0(σ, ·). It remains to prove the 
ontinuity of ∂τI(σ).Let (σn)n∈N ⊂ Σ be a sequen
e with σn → σ and let (un)n∈N ⊂ V be the 
orrespondingminimizers. The uniqueness assumption and Proposition 3.1 imply that un → u, where

u ∈ V is the minimizer of E0(σ, ·). Assumption (E3) now guarantees that ∂σE0(σn, un) →
∂σE0(σ, u) and the proof is �nished.3.2 Appli
ation to the problem with pres
ribed 
ra
k pathThe s
ope of this se
tion is to show that the redu
ed energy I : [0, T ] × [s0, s1] → R,whi
h is de�ned in (2.6), is well de�ned and belongs to C1([0, T ]× [s0, s1]). Moreover, weprovide a formula for the energy release rate G(t, s) = −∂sI(t, s).In order to study the di�erentiability properties of I with respe
t to s we introdu
e afamily of di�eomorphisms Ts,δ : Ωs → Ωs+δ for s ∈ [s0, s1] and |δ| ≤ δ0, where δ0 > 0 issome small enough 
onstant. Due to the smoothness assumptions on the 
ra
k path C,the subsequent 
onsiderations 
an be 
arried out uniformly with respe
t to s ∈ [s0, s1].Sin
e the 
ra
k path C is a simple C2�
urve, after a suitable rotation, it 
an lo
allybe des
ribed as the graph of a C2�fun
tion. Let s ∈ [s0, s1], r0, δl, δr > 0 and ϕs ∈
C2([−r0, r0] ,R) su
h that for δ ∈ [−δl, δr] we have (for simpli
ity, we negle
t the rotation):

γ(s+δ) =
(

r(δ)
ϕs(r(δ))

)
, Cs+δ\Cs−δl

= { (r, ϕs(r)) | r ∈ ]−r0, r(δ)] } and r(0) = 0,see �gure 3.1. Choose θ ∈ C∞
0 (Br0

(0)) with θ∣∣
Br0/3(0)

= 1. Similar to [Kov03℄ we de�nethe mapping Ts,δ : R
2 → R

2 via
Ts,δ(x) = x+

(
(γ1(s+ δ) − γ1(s))θ(γ(s) − x)

ϕs(x1 + (γ1(s+ δ) − γ1(s))θ(γ(s) − x)) − ϕs(x1)

)
.15



Lemma 3.5 (Properties of Ts,δ) There exists a 
onstant δ0 > 0 su
h that we have(a) Ts,· ∈ C2([−δ0, δ0] × R
2,R2) and for every |δ| ≤ δ0 the mapping Ts,δ is a C2�di�eomorphism. Moreover, Ts,δ(Ωs) = Ωs+δ, Ts,δ(γ(s)) = γ(s + δ), Ts,δ(Cs) = Cs+δand Ts,δ(x) = x for every x ∈ R

2\Br0
(γ(s)).(b) The norms ‖Ts,δ‖C2(R2) and ∥∥T−1

s,δ

∥∥
C2(R2)

are uniformly bounded with respe
t to δ.There exist 
onstants c3, c4 > 0 su
h that for every |δ| ≤ δ0 and x ∈ R
2 we have

c3 ≤ det∇Ts,δ(x) ≤ c4.(
) Some derivatives:
̺s(x) := ∂δ(Ts,δ(x))

∣∣
δ=0

= γ′1(s)θ(γ(s) − x)
(

1
ϕ′

s(x1)

)
, (3.6)

∂δ(det∇Ts,δ)
∣∣
δ=0

= div ̺s, ∂δ (∇Ts,δ)
−1
∣∣
δ=0

= −∇̺s. (3.7)(d) There is a 
onstant c > 0 su
h that for every u ∈ W1,p
ΓD

(Ωs) and |δ| ≤ δ0 we have
‖u‖W1,p(Ωs)

≤ c
∥∥(∇u(∇Ts,δ)

−1)sym∥∥Lp(Ωs)
. (3.8)Proof: The proofs of parts (a)�(
) of Lemma 3.5 are 
arried out in [GiH96℄ for C∞�di�eomorphisms. Without any 
hanges, the arguments are also appli
able to C2 mappings

Ts,δ. Part (d) follows by a perturbation argument.We make use of the following abbreviations
xδ(y) = Ts,δ(y), qδ(y) = det∇Ts,δ(y), Bδ(y) = (∇Ts,δ(y))

−1.For elements v ∈ W1,p
ΓD

(Ωs) and (t, δ) ∈ [0, T ] × [−δ0, δ0] we de�ne
E0(t, δ, v) =

∫

Ωs

qδ(y)W (t, y,∇v(y)Bδ(y)) dy

−
∫

Ωs

qδ(y)f(t, xδ(y)) · v(y) dy −
∫

ΓN

h(t) · vdσ. (3.9)The de�nition of E0 is 
hosen in su
h a way that for every v ∈W 1,p
ΓD

(Ωs+δ) we have
E(t, v, s+ δ) = E0(t, δ, v ◦ Ts,δ). (3.10)Note that Ts,δ indu
es an isomorphism between the spa
es W 1,p

ΓD
(Ωs) and W 1,p

ΓD
(Ωs+δ)through u 7→ u ◦ T−1

s,δ . Therefore, for every |δ| ≤ δ0 the following identity is valid with Ias in (2.6):
I(t, s+ δ) = min{ E0(t, δ, v) | v ∈W 1,p

ΓD
(Ωs) },and argmin E0(t, δ, ·) = u ◦ Ts,δ, where u is the unique minimizer of E(t, ·, s+ δ).16



Theorem 3.6 Assumptions (2.1) and (2.3) imply that I ∈ C1([0, T ] × [s0, s1]) and thefollowing formulas are valid with ̺s from (3.6)
∂tI(t, s) =

∫

Ωs

∂tW (t, y,∇u(y)) dy−
∫

Ωs

ḟ(t) · u dy −
∫

ΓN

ḣ(t) · uds, (3.11)
−G(t, s) = ∂sI(t, s) =

∫

Ωs

(
W (t, y,∇u)I −∇u⊤DAW (t, y,∇u)

)
: ∇̺s dy

−
∫

Ωs

u · div(f(t) ⊗ ̺s) dy. (3.12)In both formulas, u is the unique minimizer of E(t, ·, s).The quantity ∇u⊤DAW (t, y,∇u)−W (t, y,∇u)I is the Eshelby or Hamilton tensor. Itfollows from the proof of Theorem 3.6 that
G(t, s) = G(t,U(t, s), s). (3.13)Moreover, we observe that Gmax whi
h appears in (2.9) is in fa
t a maximum.Remark 3.7 Integration by parts shows that ∫

Ωs
div(f ⊗̺s) · v dx = −

∫
Ωs
f · (∇v̺s) dx.This indi
ates that it would be su�
ient to assume f(t) ∈ Lq(Ω; R2) instead of f(t) ∈

W 1,q(Ω; R2). In [KnM07℄, we dedu
ed a formula for the energy release rate in the station-ary 
ase with this weaker assumption on f .Proof: In order to prove Theorem 3.6, we apply Corollary 3.4 to the energy density
E0. Thus, we only have to show that E0 satis�es 
onditions (E1)�(E3) from the previousse
tion. The formula for the energy release rate 
an then be 
al
ulated using ∂δI(t, s+δ) =

∂δE0(t, δ, u), where u = uδ is the minimizer of E0(t, δ, ·). We 
hoose V = W1,p
ΓD

(Ωs) togetherwith the weak topology and Σ = [0, T ] × [−δ0, δ0].Condition (E1) is an immediate 
onsequen
e of the growth and 
onvexity properties ofthe energy density W and relies on identity (3.10). Moreover, for every (t, δ) ∈ Σ and
v ∈W 1,p(Ωs) the partial derivatives ∂tE0 and ∂δE0 exist and are given by

∂tE0(t, δ, v) =

∫

Ωs

qδ(y)∂tW (t, y,∇v(y)Bδ(y)) dy

−
∫

Ωs

qδ(y)ḟ(t, xδ(y)) · v(y) dy −
∫

ΓN

ḣ(t) · vds, (3.14)and
∂δE0(t, δ, v) =

∫

Ωs

∂δqδ(y)W (t, y,∇v(y)Bδ(y)) dy

+

∫

Ωs

qδ(y)
(
∇v(y)⊤DAW (t, y,∇v(y)Bδ(y))

)
: ∂δBδ(y) dy

−
∫

Ωs

∂δqδ(y) f(t, xδ(y)) · v(y) dy

−
∫

Ωs

qδ(y)
(
∇f(t, xδ(y))∂δxδ(y)

)
· v(y) dy. (3.15)17



These formulas 
an be veri�ed using Lebesgue's Theorem, see also [Els05, Satz IV.5.7℄, andby applying a generalized variant of Lemma 4.1 from [KnM07℄. There, for a straight 
ra
kit is shown that f(t, xδn) → f(t, xδ) strongly in Lq(Ωs) for δn → δ and that δ−1
n (f(t, xδn)−

f(t, xδ)) → ∇f(t, xδ)∂δxδ strongly in Lq(Ωs). The generalization of this lemma to asmooth, 
urved 
ra
k is straightforward.Furthermore, ∂tE0, ∂δE0 : Σ × W1,p
ΓD

(Ωs) → R are strongly 
ontinuous. This is again a
onsequen
e of Lemma 4.1 from [KnM07℄ together with properties of Nemytskij operators[Zei86℄ (for the terms with W ) and the Lebesgue Theorem.It remains to verify the estimate in (E2) and property (E3). Taking into a

ount theuniform bounds of the family Ts,δ and assumptions (2.1) and (2.3), we obtain, basedon the generalized Korn's inequality (3.8) and relation (3.10), the following estimate forelements v ∈ W1,p
ΓD

(Ωs):
E0(t, δ, v) ≥ c2 ‖v‖p

W1,p(Ωs)

− c3(1 + ‖uDir‖p
C1([0,T ];W1,p(Ωs)) + ‖f‖q

C1([0,T ];W1,q(Ωs))
+ ‖h‖q

C1([0,T ];Lq(ΓN ))). (3.16)The 
onstants ci > 0 are independent of v, δ and t. On the other hand, from (3.14) and(3.15) by Hölder's inequality we obtain the estimate
|∂tE0(t, δ, v)| + |∂δE0(t, δ, v)|
≤ c
(
‖v‖p

W1,p(Ωs) + ‖f‖q
C1([0,T ];W1,q(Ωs))

+ ‖uDir‖p
C1([0,T ];W1,p(Ωs)) + ‖h‖q

C1([0,T ];Lq(ΓN ))

)and c > 0 is independent of v, t and δ. Together with (3.16) this proves (E2).Let now t, tn, t̃n ∈ [0, T ], δ, δn, δ̃n ∈ [−δ0, δ0] with (tn, t̃n) → (t, t), (δn, δ̃n) → (δ, δ) andassume that un is the unique minimizer of E0(t̃n, δ̃n, ·) with un ⇀ u weakly in W1,p
ΓD

(Ωs),where u is the minimizer of E0(t, δ, ·). Proposition 3.1 implies that the sequen
e (un)n∈N isa minimizing sequen
e for E0(t, δ, ·). Sin
e the energy density W̃ is assumed to be stri
tly
onvex, it follows from a result by Visintin [Vis84℄ that the minimizing sequen
e 
onvergesalso strongly in W1,p(Ωs). From the 
ontinuity properties of ∂tE0 and ∂δE0 we 
on
ludetherefore that
∂tE0(tn, δn, un) → ∂tE0(t, δ, u), ∂δE0(tn, δn, un) → ∂δE0(t, δ, u).This proves 
ondition (E3). Corollary 3.4 now implies that I ∈ C1([0, T ] × [s0, s1]). Theformulas for the derivatives of I follow from (3.14) and (3.15) with δ = 0 taking intoa

ount relations (3.6) and (3.7).Remark 3.8 Non-interpenetration 
an be in
luded in our model for both, straight and
urved 
ra
ks. This means that we have to restri
t the spa
e W1,p

ΓD
(Ωs; R

2) to the 
onvex
one V≥(Ωs) = { v ∈ W1,p
ΓD

(Ωs) | [v]ν ≥ 0 }, where [v] = v+ − v− denotes the di�eren
eof the tra
es of v on the positive and negative side of Cs, and ν is the unit normal to
Cs pointing from the negative to the positive side. If the 
ra
k is straight, the proof ofTheorem 3.6 is still valid, sin
e Ts,δ indu
es an isomorphism between V≥(Ωs) and V≥(Ωs+δ).In the 
ase of a 
urved 
ra
k we use the Piola transform Pδ : V≥(Ωs+δ) → V≥(Ωs) with
Pδ v = (cof ∇Ts,δ)

⊤ v◦Ts,δ, where cof denotes the 
ofa
tor matrix. The Piola transform18



generates an isomorphism between V≥(Ωs+δ) and V≥(Ωs). The energy E0 from (3.9) hasto be repla
ed by E≥ with
E≥(t, δ, v) =

∫

Ωs

qδ W (t, y,∇
(
(cof ∇Ts,δ)

−⊤v
)
Bδ) dy

−
∫

Ωs

qδ f(t, xδ) ·
(
(cof ∇Ts,δ)

−⊤v
)
dy −

∫

ΓN

h(t) · vdσ.Note that E(t, v, s+ δ) = E≥(t, δ, Pδv) for every v ∈ V≥(Ωs+δ). Now the same argumentsas in the proof of Theorem 3.6 
an be applied to E≥ under the additional assumption thatthe 
ra
k is C3-smooth. The energy release rate is given by (with u = U(t, s)):
−G(t, s) = ∂δE≥(t, 0, u) =

∫

Ωs

(
W (t, y,∇u)I −∇u⊤DAW (t, y,∇u)

)
: ∇̺s dy

−
∫

Ωs

v · div(f ⊗ ̺s) dy −
∫

Ωs

f ·
(
(∇̺s − div ̺sI)v

)
dy

+

∫

Ωs

DAW (t, y,∇u) : ∇
(
(∇̺s − div ̺sI)v

)
dy. (3.17)If the 
ra
k is straight, then this formula redu
es to (3.12). It remains open whether thisis also true in the general 
ase. This investigation will be 
ontinued in a subsequent paper.4 Solutions for the vis
ous problemIn this se
tion we deal with the redu
ed fun
tional I(t, s) de�ned in (2.6) and with the
orresponding energy release rate G(t, s) de�ned in (2.7).The existen
e of a vis
ous solution sν is obtained by minimizing a sequen
e de�nedthrough time-dis
retization, i.e., using the minimizing movements theory of De Giorgi[De 93℄ (see also [Amb95℄ and the re
ent book [AGS05℄). In this se
tion the vis
osityparameter ν > 0 is �xed.4.1 Time-in
remental problemsFor N ∈ N \ {0} we de�ne the time-step τ = T/N and tk := kτ for k = 0, 1, . . . , N . Wede�ne by indu
tion sν

k as follows: sν
0 := s0 and for k ≥ 1 the value sν

k is de�ned by
sν

k ∈ argmin{ I(tk, s̃) + τRν

(
sν

k−1,
s̃− sν

k−1

τ

)
| s̃ ∈ [s0, s1] }. (4.1)The existen
e of sν

k is an easy 
onsequen
e of the dire
t method in the 
al
ulus of varia-tions, sin
e s 7→ I(t, s) is 
ontinuous and s 7→ Rν(s
ν
k−1,

s−sν
k−1

τ
) is lower semi
ontinuous.We observe that sν

k satis�es
0 ∈ ∂ṡRν

(
sν

k−1,
sν

k − sν
k−1

τ

)
−G(tk, s

ν
k) + ∂χ[s0,s1](s

ν
k), (4.2)for every k = 1, . . . , N . 19



If sν
k < s1, then by (4.2) we dedu
e that

(
κ(sν

k−1) −G(tk, s
ν
k) + ν

sν
k − sν

k−1

τ
)
)sν

k − sν
k−1

τ
= 0. (4.3)Indeed, let us �rst observe that (4.2) is equivalent to

R0

(
sν

k−1,
s̃− sν

k−1

τ

)
−R0

(
sν

k−1,
sν

k − sν
k−1

τ

)
+
(
ν
sν

k − sν
k−1

τ
−G(tk, s

ν
k)
) s̃− sν

k

τ
≥ 0for all s̃ ∈ R. Using R0(s, ṡ) = ∞ for ṡ < 0, it is su�
ient to 
onsider s̃ ≥ sν

k−1 whi
hgives (
κ(sν

k−1) + ν
sν

k − sν
k−1

τ
−G(tk, s

ν
k))
) s̃− sν

k

τ
≥ 0.In parti
ular, for any s̃ > sν

k we obtain κ(sν
k−1) + ν

sν
k−sν

k−1

τ
− G(tk, s

ν
k) ≥ 0. If we 
hoosenow s̃ = sν

k−1 then we derive
(
κ(sν

k−1) + ν
sν

k − sν
k−1

τ
−G(tk, s

ν
k)
)sν

k − sν
k−1

τ
≤ 0.The last two inequalities together with the fa
t that sν

k ≥ sν
k−1 give (4.3).Let sν

τ and sν
τ be the left-
ontinuous and right-
ontinuous pie
ewise 
onstant inter-polants of sν

k su
h that sν
τ (tk) = sν

τ (tk) = sν
k, i.e.,

sν
τ (t) := sν

k ∀t ∈ ]tk−1, tk], sν
τ (t) := sν

k−1 ∀t ∈ [tk−1, tk[, k = 1, . . . , N. (4.4)Let tk : [0, T ] → [0, T ] be given by
tτ (0) := 0, tτ (t) := tk for t ∈ ]tk−1, tk].Moreover, we de�ne the pie
ewise a�ne interpolants

ŝν
τ (t) := sν

k−1 +
t− tk−1

τ
(sν

k − sν
k−1) ∀t ∈ ]tk−1, tk] . (4.5)Hen
e, we 
an rewrite the time-in
remental problem (4.2) by

0 ∈ ∂ṡRν(s
ν
τ (t),

˙̂sν
τ (t)) −G(tτ (t), s

ν
τ (t)) + ∂χ[s0,s1](s

ν
τ (t)). (4.6)We now prove that these interpolants satisfy suitable a priori bounds.Lemma 4.1 There exists a positive 
onstant C su
h that for every ν > 0 and every τ > 0the following estimates hold true.

‖sν
τ‖L∞(0,T ), ‖sν

τ‖L∞(0,T ) ≤ C (4.7)
∫ T

0

Rν(s
ν
τ (t),

˙̂sν
τ (t))dt ≤ C (4.8)

‖ ˙̂sν
τ‖L2(0,T ) ≤

C√
ν

(4.9)
‖sν

τ − ŝν
τ‖L∞(0,T ), ‖sν

τ − ŝν
τ‖L∞(0,T ) ≤ C

√
τ√
ν
. (4.10)Moreover, for every ν > 0 there exists τ0 = τ0(ν) su
h that

sν
τ (t) < s1 ∀τ < τ0 ∀t ∈ [0, T ]. (4.11)20



Proof: Sin
e sν
k belongs to [s0, s1] for every k = 1, . . . , N , estimate (4.7) is triviallysatis�ed by any 
onstant C ≥ s1. By the minimality of sν

k and taking sν
k−1 as testfun
tion we dedu
e

I(tk, s
ν
k) + τRν

(
sν

k−1,
sν

k − sν
k−1

τ

)
≤ I(tk, s

ν
k−1) + τRν(s

ν
k−1, 0)

= I(tk−1, s
ν
k−1) +

∫ tk

tk−1

∂tI(t, sν
k−1)dt,that is

I(tk, s
ν
k) − I(tk−1, s

ν
k−1) +

∫ tk

tk−1

Rν

(
sν

k−1,
sν

k − sν
k−1

τ

)
dt ≤

∫ tk

tk−1

∂tI(t, sν
k−1)dt.By adding this inequality we obtain, for every 0 ≤ i ≤ k ≤ N ,

I(tk, s
ν
k) − I(ti, s

ν
i ) +

∫ tk

ti

Rν(s
ν
τ (t),

˙̂sν
τ (t))dt ≤

∫ tk

ti

∂tI(t, sν
τ (t))dt.Thus

I(tτ (t), s
ν
τ (t)) +

∫ tτ (t)

0

Rν(s
ν
τ (r),

˙̂sν
τ(r))dr ≤ I(0, s0) +

∫ tτ (t)

0

∂tI(r, sν
τ (r))drholds true for every t ∈ [0, T ]. Sin
e now I ∈ C1([0, T ] × [s0, s1]) by Theorem 3.6, wededu
e the existen
e of a positive 
onstant C independent of τ and ν su
h that

∫ T

0

Rν(s
ν
τ (t),

˙̂sν
τ (t))dt ≤ C(T + 1) + I(0, s0),whi
h proves estimate (4.8). From the de�nition of Rν given by (2.8) it follows that (4.8)is equivalent to ∫ T

0

(
κ(sν

τ (t))
˙̂sν
τ (t) +

ν

2
| ˙̂sν

τ (t)|2
)

dt ≤ C.The non-negativity of the �rst term implies the estimate (4.9).In order to prove (4.10), let now t ∈ ]tk−1, tk]. Then by the de�nition of sν
τ (t) and ŝν

τ (t)given by (4.4) and (4.5), respe
tively, we derive
sν

τ (t) − ŝν
τ (t) = sν

k − sν
k−1 −

t− tk−1

τ
(sν

k − sν
k−1) = (τ − t+ tk−1) ˙̂sν

τ (t) ≤ τ | ˙̂sν
τ (t)|.Thus,

|sν
τ (t) − ŝν

τ (t)| ≤
∫ tk

tk−1

| ˙̂sν
τ (t)|dt ≤

√
τ
(∫ tk

tk−1

| ˙̂sν
τ(t)|2 dt

)1/2

≤
√
τ ‖ ˙̂sν

τ‖L2(0,T ),whi
h, thanks to (4.9), gives the �rst estimate in (4.10). The se
ond one is obtained in asimilar way, sin
e for every t ∈ ]tk−1, tk[ we have
|sν

τ (t) − ŝν
τ (t)| = |t− tk−1

τ
(sν

k − sν
k−1)| ≤ τ | ˙̂sν

τ (t)|.21



We observe that from (4.7), (4.9) and (4.10) it follows that ŝν
τ ∈ L∞(0, T ).To 
on
lude, we need to prove the existen
e of τ0 su
h that (4.11) is satis�ed. We startby de�ning the quantity smax as

smax := max{ s ∈ [s0, s1] | κ(s) ≤ Gmax }.By assumptions (2.10) and (2.9) it turns out that smax is well de�ned and that smax < s1.Moreover, κ(s) > Gmax for every s ∈ ]smax, s1].Let k∗ ∈ N be su
h that sν
k ≤ smax for all k = 1, . . . , k∗ and (for N > k∗) let us assume

sν
k∗+1 > smax. If sν

k∗+1 < s1 then κ(sν
k∗+1) > Gmax and therefore by (4.3) sν

k = sν
k∗+1 for all

k = k∗ + 1, . . . , N .On the other hand, if sν
k∗+1 = s1, then, by the de�nition (4.1) we get

−G(tk∗+1, s1) + κ(sν
k∗) +

ν

τ
(s1 − sν

k∗) ≤ 0or, equivalently, sin
e s1 − sν
k∗ > 0,

ν

τ
≤ G(tk∗+1, s1) − κ(sν

k∗)

s1 − sν
k∗

≤ Gmax − κ(sν
k∗)

s1 − sν
k∗

<
κ(s1) − κ(sν

k∗)

s1 − sν
k∗

≤ κ(s1)

s1 − smax =: L∗where the se
ond inequality is derived from the de�nition of Gmax and the third one 
omesfrom our assumption (2.9).Therefore, by taking τ0 < ν/L∗ we dedu
e that this se
ond 
ase 
annot o

ur and hen
e
sν

k∗+1 < s1 for every k∗ and the proof is 
omplete.From now on we will 
onsider τ < τ0 so that, thanks to (4.11) the time-in
rementalproblem (4.6) be
omes
0 ∈ ∂ṡRν(s

ν
τ (t),

˙̂sν
τ (t)) −G(tτ (t), s

ν
τ (t)). (4.12)4.2 Existen
e of a vis
ous solutionWe 
onsider now the limit in τ and prove that it is a vis
ous solution.Theorem 4.2 There exist a fun
tion sν ∈ H1([0, T ]; [s0, s1]) and a subsequen
e of τ (notlabeled) su
h that

sν
τ , s

ν
τ , ŝ

ν
τ → sν in L∞([0, T ] ; [s0, s1]) (4.13)
˙̂sν
τ ⇀ ṡν in L2([0, T ] ; R). (4.14)Moreover, for a.e. t ∈ [0, T ]

0 ∈ ∂ṡRν(s
ν(t), ṡν(t)) −G(t, sν(t)). (4.15)Proof: We essentially use the 
ontinuous embedding H1([0, T ]) ⊂ C0,1/2([0, T ]) and the
ompa
t embedding of C0,1/2([0, T ]) ⊂ C0([0, T ]) (via the Arzela-As
oli theorem).Using estimates (4.9) the sequen
e (ŝν

τ )τ is bounded in H1([0, T ]; [s0, s1]) and we �nd aweakly 
onvergent subsequen
e (not renamed). In parti
ular, (4.14) holds.22



By the 
ompa
t embedding into C0([0, T ]) it also 
onverges uniformly on [0, T ]. Em-ploying (4.10) we have also proved (4.13).To establish the di�erential in
lusion (4.15) we pass to the limit in (4.12). First notethat G is 
ontinuous, hen
e we have
gτ(t) := G(tτ (t), s

ν
τ (t)) → g0(t) := G(t, sν(t)) for all t ∈ [0, T ].Equation (4.12) is equivalent to

∫ T

0

Rν(s
ν
τ (t), w(t)) −Rν(s

ν
τ (t),

˙̂sν
τ(t)) − gτ (t)(w(t)− ˙̂sν

τ (t))dt ≥ 0 (4.16)for all w ∈ L2([0, T ]). In fa
t, it su�
es to 
onsider w with w ≥ 0 a.e. in [0, T ]. Forpassing to the limit τ → 0 note that the �rst term 
onverges pointwise with a majorant
κmaxw + ν

2
w2, hen
e its limit is ∫ T

0
Rν(s

ν , w) dt. The third term 
onverges be
ause it isa s
alar produ
t of a strongly and a weakly 
onvergent sequen
e. For the se
ond term,using the fa
t that ˙̂sν
τ (t) ≥ 0, we estimate

∫ T

0

|Rν(s
ν
τ (t),

˙̂sν
τ (t)) −Rν(ŝ

ν
τ (t),

˙̂sν
τ (t))|dt ≤ ωκ

(
‖sν

τ−ŝν
τ‖∞

) ∫ T

0

˙̂sν
τ (t)dt,where ωκ is a modulus of 
ontinuity of κ ∈ C0([0, L]). As the last integral equals sν

τ (T )−
sν

τ (0) ≤ s1 − s0 and by (4.10), the di�eren
e tends to 0 for τ → 0. Thus it remainsto show the 
onvergen
e of ∫ T

0
Rν(ŝ

ν
τ (t),

˙̂sν
τ (t)) dt but this equals again ∫ sν

τ (T )

s0
κ(s) ds +

ν
2

∫ T

0
| ˙̂sν

τ (t)|2 dt. The 
onvergen
e of the �rst term follows with (4.13), while a

ording to(4.14) lower semi
ontinuity 
an be applied to the se
ond term. In parti
ular, taking the
lim inf as τ → 0 in (4.16) we �nd

∫ T

0

Rν(s
ν(t), w(t)) −Rν(s

ν(t), ṡν(t)) − g0(t)(w(t)−ṡν(t))dt ≥ 0for all w ∈ L2([0, T ]), whi
h is equivalent to the desired equation (4.15). This 
on
ludesthe proof.Now we are in a position to prove the main result of Se
tion 2.2, whi
h turns out to bean easy 
onsequen
e of the previous Theorem 4.2.Proof of Theorem 2.2: For the given sν : [0, T ] → [s0, s1] we 
hoose uν(t) ≡ U(t, sν(t))for every t ∈ [0, T ], then (2.11) of De�nition 2.1 is satis�ed. Moreover, (4.15) togetherwith (3.13) provides (2.12).Lemma 4.3 The subdi�erential formulation (4.15) is equivalent to the following threeproperties whi
h hold true for a.e. t ∈ [0, T ]:
(aν) ṡν(t) ≥ 0;
(bν) κ(sν(t)) + νṡν(t) −G(t, sν(t)) ≥ 0;
(cν) (κ(sν(t)) + νṡν(t) −G(t, sν(t)))ṡν(t) = 0.23



We note that by Lemma 4.3 it turns out that the vis
ous solution t 7→ sν(t) satis�es theKarush-Kuhn-Tu
ker 
onditions ([Kar39, KuT51℄).Proof: It is su�
ient to prove that 
onditions (aν)�(cν) are equivalent to the followingevolutionary variational inequality
R0(s

ν(t), σ̇) −R0(s
ν(t), ṡν(t)) +

[
νṡν(t) −G(t, sν(t))

]
(σ̇ − ṡν(t)) ≥ 0 ∀σ̇ ∈ R. (4.17)The dire
tion (aν)�(cν) ⇒ (4.17) is immediate, while the opposite dire
tion is obtainedby an argument very similar to the one proving (4.3) and therefore it is omitted.We de�ne

smin := min{ s > s0 | κ(s) ≥ Gmax }and note that by our assumption (2.9) we have smin < s1. It turns out that
sν(t) ≤ smin < s1 for every t ∈ [0, T ]. (4.18)Indeed, if there is t∗ ∈ ]0, T ] with sν(t∗) > smin then there exist t1 < t2 ≤ t∗ su
h that

sν(t1) = smin, sν(t) > smin ∀t ∈ ]t1, T ] and κ(sν(t)) > Gmax ∀t ∈ ]t1, t2](see also Figure 4.1).PSfrag repla
ements κ(s)

Gmax
smin sν(t2) sν(t∗) s1s0 sFigure 4.1: A possible situation for the graph of κ and the quantities smin = sν(t1), sν(t2)and sν(t∗).Therefore κ(sν(t)) − G(t, sν(t)) > 0 for every t ∈ ]t1, t2]. Condition (cν) in Lemma 4.3implies then ṡν(t) = 0 a.e. on ]t1, t2]. By the 
ontinuity of sν we derive smin = sν(t1) =

sν(t2) > smin, a 
ontradi
tion and (4.18) is proven.Let us note that the same argument 
an be used to prove the following lemma.Lemma 4.4 Let sν be a vis
ous solution for I and Rν and let t ∈ [0, T ] be su
h that
κ(sν(t)) − G(t, sν(t)) > 0. Then there exists δ > 0 su
h that the map sν is 
onstant in
[t− δ, t+ δ] ∩ [0, T ].Proof: By 
ontinuity, there exists δ > 0 su
h that κ(sν(t̂)) − G(t̂, sν(t̂)) > 0 for every
t̂ ∈ [t− δ, t+ δ] ∩ [0, T ].Now we 
an 
on
lude following the same argument as above (repla
ing the interval
]t1, t2] with [t− δ, t+ δ] ∩ [0, T ]).We end this se
tion by proving the energy balan
e 
ondition.24



Lemma 4.5 Let sν ∈ H1([0, T ]; [s0, s1]) be a fun
tion satisfying (4.15). Then the follow-ing energy balan
e 
ondition holds true
I(t2, s

ν(t2))+

∫ t2

t1

(
κ(sν(t))ṡν(t)+ν|ṡν(t)|2

)
dt = I(t1, s

ν(t1))+

∫ t2

t1

∂tI(t, sν(t))dt, (4.19)for every 0 ≤ t1 < t2 ≤ T .Proof: By Lemma 4.3 it follows that the map sν satis�es 
onditions (aν)�(cν). Moreover,for a.e. t ∈ [0, T ] we have, via the 
hain rule for sν ∈ H1([0, T ]),
−G(t, sν(t))ṡν(t) = ∂sI(t, sν(t))ṡν(t) =

d

dt
I(t, sν(t)) − ∂tI(t, sν(t)).Now (4.19) is an immediate 
onsequen
e of the integral version of 
ondition (cν).We observe that, sin
e uν(t) = U(t, sν(t)), 
ondition (4.19) turns out to be equivalentto energy balan
e (2.13).5 Rate-independent limitIn this se
tion we want to pass to the limit in ν, in order to prove the existen
e of a lo
alenergeti
 solution asso
iated with I and R0. This pro
edure is usually 
alled vanishingvis
osity method. We begin by stating some a priori estimates.Lemma 5.1 Let sν ∈ H1([0, T ]; [s0, s1]) be a solution of (4.15). Then there exists apositive 
onstant (independent of ν) su
h that the following estimates hold true:

‖sν‖L∞(0,T ) ≤ C (5.1)
∫ T

0

Rν(s
ν(t), ṡν(t))dt ≤ C (5.2)

ν

∫ T

0

|ṡν(t)|2 dt ≤ C. (5.3)Proof: Sin
e sν(t) ∈ [s0, s1] for every t ∈ [0, T ], we dedu
e that estimate (5.1) is satis�edby any 
onstant C ≥ s1. Lemma 4.3 guarantees that 
ondition (cν) holds true. Thus wederive
∫ T

0

[
κ(sν(t))ṡν(t) + ν|ṡν(t)|2

]
dt =

∫ T

0

G(t, sν(t))ṡν(t)dt

= −I(T, sν(T )) + I(0, s0) +

∫ T

0

∂tI(t, sν(t))dtand the last right-hand side is bounded sin
e I ∈ C1([0, T ] × [s0, s1]), by Theorem 3.6.By 
ondition (aν) and (2.8) we get that (5.2) and then (5.3) hold true, and therefore theproof is 
omplete. 25



Theorem 5.2 There exist a fun
tion s ∈ BV(0, T ; [s0, s1]) and a subsequen
e of ν (notlabeled) su
h that
sν ∗
⇀ s in BV(0, T ; [s0, s1]) (5.4)

sν(t) → s(t) for all t ∈ [0, T ]. (5.5)Moreover, the limit fun
tion s is a lo
al energeti
 solution for R0 and I as de�ned inDe�nition 2.3, namely(a) s is nonde
reasing;(b) κ(s(t)) −G(t, s(t)) ≥ 0 for all t ∈ [0, T ]\J(s) ;(
) if κ(s(t)) −G(t, s(t)) > 0, then t ∈ D(s) and ṡ(t) = 0;(d) for all t ∈ J(s) and all s∗ ∈ [s(t−), s(t+)] we have κ(s∗) −G(t, s∗) ≤ 0,where J(s) and D(s) denote the jump set and the set of di�erentiability, respe
tively.Proof: An appli
ation of the 
lassi
al Helly sele
tion theorem (see, e.g., [Rud76℄) to-gether with the a priori estimates of Lemma 5.1 provide the existen
e of a subsequen
eof ν and of a fun
tion s ∈ BV([0, T ]; [s0, s1]) satisfying (5.4)�(5.5).Taking into a

ount these 
onvergen
es, we want to derive the limit problem solved bythe map t 7→ s(t). The idea is to 
onsider the limit in the formulation (aν)�(cν) whi
h isequivalent to (4.15) as shown in Lemma 4.3.First of all, let us note that 
ondition (a) is an immediate 
onsequen
e of Helly'sTheorem. It follows that t 7→ s(t) is 
ontinuous at a.e. t ∈ [0, T ], and the jump set
J(s) is at most 
ountable, sin
e the sum of jumps is bounded by s1 − s0.Further, we observe that a priori bound (5.3) implies

νṡν → 0 in L2([0, T ]). (5.6)Moreover, by 
ondition (bν)

∫ T

0

ψ(t)
[
κ(sν(t)) −G(t, sν(t)) + νṡν(t)

]
dt ≥ 0for every ψ ∈ L2([0, T ]) with ψ ≥ 0. Thanks to (5.6) we 
an pass to the limit and obtainan integral version of 
ondition (b), namely

∫ T

0

ψ(t)
(
κ(s(t)) −G(t, s(t))

)
dt ≥ 0 ∀ψ ∈ L2([0, T ]), ψ ≥ 0be
ause of 
onvergen
e (5.5), and 
ontinuity of κ and of G. Then, κ(s(t))−G(t, s(t)) ≥ 0for a.e. t ∈ [0, T ]. In parti
ular, the inequality is true for every t in whi
h the map s is
ontinuous, and therefore 
ondition (b) is proven.In order to obtain 
ondition (d), let us �x t̂ ∈ J(s) and s(t̂−) ≤ sa < sb ≤ s(t̂+). Fromthe 
ontinuity of the map t 7→ sν(t) we dedu
e that for every ν there exist t̂ν− and t̂ν+ su
hthat

t̂ν− < t̂ν+, t̂ν− → t̂, t̂ν+ → t̂, sν(t̂ν−) ≡ sa, sν(t̂ν+) ≡ sb.26



Condition (cν) of Lemma 4.3 implies
∫ t̂ν+

t̂ν
−

ϕ(sν(t))
(
κ(sν(t)) −G(t, sν(t))

)
ṡν(t)dt ≤ 0 (5.7)for every ϕ ∈ L2([s0, s1]) with ϕ ≥ 0. Now we 
hange variables, putting σ := sν(t) andde�ning tν(σ) := min{ t ∈ [t̂ν−, t̂

ν
+] | sν(t) = σ } so that inequality (5.7) be
omes

∫ sb

sa

ϕ(σ)
(
κ(σ) −G(tν(σ), σ)

)
dσ ≤ 0for every ϕ ∈ L2([s0, s1]), ϕ ≥ 0. Passing now to the limit as ν → 0, sin
e tν(σ) → t̂, forevery σ ∈ [s(t̂−), s(t̂+)], and sin
e G is 
ontinuous thanks to Theorem 3.6, we get

∫ sb

sa

ϕ(σ)
(
κ(σ) −G(t̂, σ)

)
dσ ≤ 0.Therefore, κ(s∗) − G(t̂, s∗) ≤ 0 for every s∗ ∈ [sa, sb] and by the fa
t that sa and sb werearbitrarily 
hosen in [s(t̂−), s(t̂+)] we obtain �nally 
ondition (d).We are left with 
ondition (
). Let t be su
h that κ(s(t)) − G(t, s(t)) > 0. Then by
ondition (d) t /∈ J(s) so that the map s is 
ontinuous in t. By 
ontinuity of κ and G andthe pointwise 
onvergen
e (5.5) we derive the existen
e of ν0 > 0 and of δ > 0 su
h thatfor every ν ∈ [0, ν0] and every t̂ ∈ [t− δ, t+ δ] ∩ [0, T ] we have κ(sν(t̂)) −G(t̂, sν(t̂)) > 0.Applying now Lemma 4.4 we dedu
e that (for some possibly smaller δ > 0) the map sν is
onstant on [t−δ, t+δ]∩ [0, T ] for every ν ∈ [0, ν0]. Therefore, the limit map s is 
onstanton [t− δ, t+ δ] ∩ [0, T ], so that t ∈ D(s) and ṡ(t) = 0.This 
on
ludes the proof of 
ondition (
) and the theorem is proven.We observe that from (4.18) and (5.5) it follows that

s(t) ≤ smin < s1 ∀t ∈ [0, T ]and therefore s(t) does not rea
h the point s1 during the time interval [0, T ].With the help of the monotone inverse t̂ : [s(0), s(T )] → [0, T ] of s : [0, T ] → [s0, s1],we 
an distinguish between the following three di�erent regimes:Regime I (sti
king 
ra
k tip, i.e., no motion of 
ra
k tip):
ṡ(t) = 0, t̂(s) jumps, κ(s(t)) −G(t, s(t)) ≥ 0;Regime II (
ra
k grows slowly):both t̂ and s are 
ontinuous and κ(s(t)) −G(t, s(t)) = 0;Regime III (
ra
k tip jumps):
s jumps at t, t̂′(s) = 0 and κ(s(t)) −G(t, s(t)) ≤ 0.When κ(s(t)) − G(t, s(t)) = 0 the three di�erent situations are all admissible. Onthe other hand, the 
ase κ(s(t)) − G(t, s(t)) > 0 will always express Regime I (i.e., no
ra
k growth), while the 
ase κ(s(t))−G(t, s(t)) < 0 shall 
orrespond only to Regime III.However, by additionally assuming s(t) ∈ {s(t−), s(t+)} this last 
ase disappears eventhough jumps o

ur along whi
h κ(s̃) < G(t, s̃) for s̃ ∈ ]s(t−), s(t+)[ is possible.27



Remark 5.3 Under the additional assumption that the map s 7→ G(t, s) is Lips
hitz
ontinuous, uniqueness of the vis
ous solution sν is guaranteed, and then sν(t) 
onvergesmonotoni
ally to the limit s(t) (personal 
ommuni
ation by Negri). Therefore in thissituation t 7→ s(t) turns out to be 
ontinuous from the left (i.e., s(t) = s(t−)), and thesituation κ(s(t)) −G(t, s(t)) < 0 
annot o

ur.Proof of Theorem 2.4: Arguing in the same manner as in the proof of Theorem 2.2,for the map s : [0, T ] → [s0, s1] obtained from Theorem 5.2 we 
hoose u(t) := U(t, s(t)) =

argminE(t, ·, s(t)) so that (2.15) in De�nition 2.3 is satis�ed. Theorem 5.2 together withequality (3.13) provides 
onditions (a)-(d).The following lemma implies that any lo
al energeti
 solution is a lo
al solution (LS),whi
h was de�ned in De�nition 2.5.Lemma 5.4 Conditions (a)�(
) of Theorem 5.2 are equivalent to the subdi�erential for-mulation
0 ∈ ∂ṡR0(s(t), ṡ(t)) −G(t, s(t)) for every t ∈ D(s).The proof is very similar to the proof of Lemma 4.3 and therefore it is omitted.Now we are in a position to prove our extended energy balan
e. For the sake of 
larity,we re
all �rst the de�nition of the fun
tion µ given in (2.18):

µ([t1, t2]) := ∆+(t1) + ∆−(t2) +
∑

t∈ ]t1,t2[∩J(s)

(∆+(t) + ∆−(t)),where for ea
h jump time t ∈ J(s) we de�ned in (2.17) the nonnegative quantities ∆+(t)and ∆−(t) by
∆+(t) :=

∫ s(t+)

s(t)

[G(t, σ) − κ(σ)]dσ and ∆−(t) :=

∫ s(t)

s(t−)

[G(t, σ) − κ(σ)]dσrespe
tively. We observe that µ is a nonnegative set fun
tion de�ned on 
losed subintervalsof [0, T ], that it is �nite and additive, so that
µ([t1, t2]) = µ([t1, t3]) + µ([t3, t2]) ∀0 ≤ t1 < t3 < t2 ≤ T.Lemma 5.5 Every lo
al energeti
 solution t 7→ s(t) asso
iated with I and R0 satis�esthe following extended energy balan
e: for every 0 ≤ t1 < t2 ≤ T we have

I(t2, s(t2)) +

∫ s(t2)

s(t1)

κ(σ)dσ + µ([t1, t2]) = I(t1, s(t1)) +

∫ t2

t1

∂tI(τ, s(τ))dτ, (5.8)where the fun
tion µ is given by (2.18).Proof: The proof is essentially an appli
ation of the 
hain rule in BV. Indeed, we havethat I(·, s(·)) ∈ BV([0, T ]) and
DI(·, s(·)) = ∂tI(·, s(·))dt+ ∂sI(·, s(·))D̃s+

∑

t∈J(s)

[
I(t, s(t+)) − I(t, s(t−))

]
δt (5.9)28



where J(s) ⊂ [0, T ] is the set of dis
ontinuity points of s, and D̃s = ṡdt + Dcs is thedi�use part of the derivative Ds (for a proof see, e.g., [AFP00, Theorem 3.96℄).We note that
∂sI(·, s(·))D̃s = −κ(s(·))D̃ssin
e by 
onditions (b) and (
) we have (κ(s(·)) − G(·, s(·)))D̃s = 0. On the other hand,for the jump part of the derivative we have

DjI(·, s(·)) = −
∑

t∈J(s)

∫ s(t+)

s(t−)

G(t, σ)dσ δt.Now, by (2.14) we derive
I(t2, s(t2)) − I(t1, s(t1)) =

∫

]t1,t2[

DI(·, s(·)) −
∫ s(t2)

s(t2−)

G(t2, σ)dσ −
∫ s(t1+)

s(t1)

G(t1, σ)dσ.Therefore, (5.9) and
∫ s(t+)

s(t−)

G(t, σ)dσ = ∆+(t) + ∆−(t) +

∫ s(t+)

s(t−)

κ(σ)dσyield
I(t2, s(t2)) − I(t1, s(t1)) =

∫ t2

t1

∂tI(t, s(t))dt− µ([t1, t2]) −
∫

]t1,t2[

κ(s(·))D̃s

−
∫ s(t2)

s(t2−)

κ(σ)dσ −
∫ s(t1+)

s(t1)

κ(σ)dσ −
∑

t∈J(s)∩]t1,t2[

∫ s(t+)

s(t−)

κ(σ)dσ δt,whi
h is equal to (5.8), and the proof is 
omplete.This proves also (2.19).Now the usual energy inequality turns out to be a dire
t 
onsequen
e of the previousresult, (simply by using the fa
t that µ([t1, t2]) ≥ 0).Corollary 5.6 Every lo
al energeti
 solution t 7→ s(t) asso
iated with I and R0 satis�esthe following simpli�ed energy inequality: for every 0 ≤ t1 ≤ t2 ≤ T we have
I(t2, s(t2)) +

∫ s(t2)

s(t1)

κ(s)ds ≤ I(t1, s(t1)) +

∫ t2

t1

∂tI(t, s(t)) dt.This gives energy inequality (2.16).6 ExamplesHere we present a few examples, whi
h highlight the features of the fun
tionals andsolutions 
onstru
ted above. Throughout we restri
t to the 
ase of linearized elasti
ity,su
h that the energy E is quadrati
 in u. For Diri
hlet boundary 
onditions and loadingof the form (uDir(t, ·), ℓ(t)) = a(t)(u0Dir, ℓ0) the redu
ed energy I takes the form I(t, s) =

a(t)2Î(s). Moreover, we will assume that the 
ra
k path is the straight line C := [0, L]×{0}and that the fra
ture toughness is 
onstant, i.e., κ(s) ≡ κ.29



Example 6.1 In this example we treat a toy problem, whi
h 
an be 
onsidered as asingular limit of a very thin body Ω = ]0, L[ × ]−h, h[ with 0 < h ≪ 1. The pres
ribed
ra
k path is γ(s) = (s, 0) and the displa
ement u is restri
ted to be symmetri
 withrespe
t to the x-axis, i.e., u(t, x, y) = diag(1,−1) u(t, x,−y). Moreover, for very small h, itis reasonable to assume that the displa
ement has the form u(t, x, y) = (0, v(t, x)sign(y)),where v(t, x) = 0 for x > s(t) (ahead of the 
ra
k). The purpose of the resulting toy modelis to show that we are able to generate a large 
lass of possible release rate fun
tionals
G in the form G(t, s) = a(t)2Ĝ(s). Moreover, we �nd the asymptoti
s for 
ra
k lengthgoing to 0. In our toy problem we have Ĝ(s) ∼ s2 whi
h indi
ates that we are not ableto des
ribe 
ra
k initiation.Under these assumptions the PDE problem redu
es to the following ODE problem. Forany s ∈ ]0, L[ we set
Vs := { v ∈ H1

0([0, L]) | spt(v) ⊂ [0, s] } and E(t, v) :=

∫ L

0

[1
2
v′(x)2 + a(t)f̂(x)v(x)]dx.With Î(s) := min{ E(1, v) | v ∈ Vs }/a(1)2 we �nd

I(t, s) = a(t)2Î(s) and G(t, s) = a(t)2Ĝ(s),where Ĝ(s) = −Î ′(s) ≥ 0. In fa
t, Î 
an be determined expli
itly using F (x) =
∫ x

0
(x −

ξ)f̂(ξ)dξ, i.e., we have F (0) = 0 = F ′(0), F ′′ = f̂ . The unique minimizer v = Vs ∈ Vs of
E(1, ·) reads

Vs(x) =




F (x) − F (s)

s
x for x ∈ [0, s],

0 otherwise.Some expli
it 
al
ulations yield
Î(s) =

F (s)2

2s
− 1

2

∫ s

0

F ′(x)2 dx and Ĝ(s) = −Î ′(s) =
1

2

(
F ′(s) − F (s)

s

)2 ≥ 0.From the last expression we see that every Ĝ in the form Ĝ(s) = s2

2
γ(s)2 with γ ∈

W1,1([0, L]) 
an be realized as a release rate by taking F (s) = s
∫ s

0
γ(x) dx, i.e., f̂(s) =

sγ′(s)+2γ(s).Example 6.2 Let us re
all the example proposed in [ToZ06, Se
tion 7℄: there, a(t) = t,
ℓ(t) = 0, and E(t, u, s) =

∫
Ωs

|∇u(x)|2 dx for u = tu0Dir on ΓD. The redu
ed energyfun
tional then takes the form I(t, s) = t2Î(s). The authors fo
us on the shape ofthe graph of Î (instead of Ĝ) and provide an expli
it example in whi
h Î is 
on
aveon some subinterval of [s0, s1]. A
tually the 
onstru
tion goes by approximation, and adomain Ωε ⊂ R
2 and a pres
ribed boundary displa
ement uεDir, both dependent on a smallparameter ε, are provided.Spe
i�
ally Ωε 
onsists of two dis
s B−2 and B2 of radius 1 
entered at (−2, 0) and (2, 0)respe
tively, 
onne
ted by a re
tangle Tε of height ∼ 2ε. The boundary displa
ement uεDiris su
h that on half part of Tε (the left one) the body experien
es some �
losing� for
e,30
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Figure 6.1: The set Ωε and the e�e
t of the pres
ribed boundary displa
ement.while on the other half part (the right one), the body experien
es some �opening� for
e(see Figure 6.1).Then, the limit of the energy
Îε(s) := min{

∫

Ωε\Cs

|∇u|2dx | u ∈ H1(Ωε \ Cs; R), u = uεDir on ∂Ωε \ Cs }as ε → 0 is 
onsidered. Note that here the pres
ribed 
ra
k path is C = [−3, 3] × {0}.As s 7→ Îε(s) is a C2-fun
tion, in order to obtain that the map is not 
onvex on thewhole interval [−2, 2] the following three fa
ts are established: lim supε→0+ Îε(2) is �nite,
lim infε→0+ Îε(−2) = +∞; while lim supε→0+ Î ′

ε(−2) is �nite.We note here in addition that it is possible to prove that lim supε→0+ Î ′
ε(2) is �nite, too.The proof follows the lines of the one proving that lim supε→0+ Î ′

ε(−2) is �nite, for whi
hwe refer to [ToZ06, Se
tion 7℄.Thus, we 
an 
on
lude that the pro�le of Î(s) is 
on
ave in a �rst subinterval of [−2, 2]and it is 
onvex in the last part.Example 6.3 We dis
uss here the di�erent behavior of our lo
al energeti
 solution de-�ned in De�nition 2.3, the global energeti
 solution (GES), and a �generi
� lo
al solution(LS) de�ned in De�nition 2.5, in the parti
ular 
ase of a(t) = t, ℓ(t) = 0, and
Ĝ(s) =

{
s− s0 + 1 if s0 ≤ s ≤ 2s0

3s0 + 1 − s if 2s0 ≤ s ≤ L.Thanks to our Example 6.1 su
h a 
hoi
e for Ĝ(s) is admissible.In general, we have to 
ompare the position of Ĝ(s(t)) with the line κ
t2
, whi
h is movingdown as time in
reases. A

ording to Gri�th, we distinguish between three di�erentsituations (see also Figure 6.2):(1) Regime I: no 
ra
k growth in the region stri
tly above the graph of Ĝ, sin
e therewe have κ

t2
− Ĝ(s(t)) > 0;(2) Regime III: jumps in the region stri
tly below the graph of Ĝ, where κ

t2
−Ĝ(s(t)) < 0;(3) Regime II: slow 
ra
k propagation when κ

t2
− Ĝ(s(t)) = 0.31
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Figure 6.2: Interplay between Ĝ(s(t)) and κ/t2.Let us start with the global energeti
 solution (GES), that we denote here by sG(t).A

ording to the stability 
ondition (S), we have

t2Î(sG(t)) ≤ t2Î(ŝ) + κ(ŝ− sG(t)) ∀ŝ ≥ sG(t), ∀t ∈ [0, T ]whi
h is equivalent to
∫ ŝ

sG(t)

(
Ĝ(σ) − κ

t2
)
dσ ≤ 0 ∀ŝ ≥ sG(t), ∀t ∈ [0, T ].On the other hand, energy balan
e 
ondition (E) gives

(
− Ĝ(sG(t)) +

κ

t2
)
ṡG(t) = 0.Therefore, assuming sG(0) = s0, we expe
t that sG will start to propagate (with a jump)at the �rst time t = t1 su
h that the following equal-area rule is satis�ed:

∫ sG(t)

s0

(
Ĝ(σ) − κ

t2
)
dσ = 0. (6.1)This behavior is represented in pi
ture (GES) of Figure 6.3. At time t1 we have (6.1)satis�ed, so that the two triangles denoted by Λ in the pi
ture have the same area. For

t ∈ ]t1, T ], the global energeti
 solution will grow 
ontinuously.In our spe
i�
 example, we get
sG(t) =




s0 if 0 ≤ t <

√
κ(1+

√
2)

1+
√

2(1+s0)
=: t1

3s0 + 1 − κ
t2

if t1 < t ≤ T.We 
ontinue now with the lo
al energeti
 solution s(t). As already dis
ussed, a

ordingto the De�nition 2.3, we expe
t that for any time t, s(t) will belong to the epigraph of
Ĝ. By 
ondition (
) s(t) will remain 
onstantly equal to s0 until some time t2 ≥ t1 forwhi
h κ

t22
− Ĝ(s0) = 0. The lo
al energeti
 solution has then to move, and a

ording to
ondition (d) it will jump to the next point at whi
h κ

t22
− Ĝ(s(t2+)) = 0. From this timeon, the solution will grow 
ontinuously. See pi
ture (LES) of Figure 6.3.32
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ture (GES) 
orrespondsto the global energeti
 solution, pi
ture (LES) to the lo
al energeti
 solution, and pi
ture(LS) to a possible lo
al solution.In this spe
i�
 example, it turns out that approximable solution (AS), weak solution(WS) and BV-solution introdu
ed in subse
tion 2.4 
oin
ide with the lo
al energeti
solution. To be pre
ise, here we get:
s(t) =

{
s0 if 0 ≤ t <

√
κ =: t2 > t1

3s0 + 1 − κ
t2

if t2 < t ≤ T.Finally, 
on
erning the lo
al solution (LS), denoted here by sL(t), from the energyinequality (2.22), we derive
t2
(
Î(sL(t+)) − Î(sL(t+))

)
+ κ(sL(t+) − sL(t−)) ≤ 0or, equivalently, ∫ sL(t+)

sL(t−)

(
− Ĝ(σ) +

κ

t2
)
dσ ≤ 0.Hen
e, a lo
al solution 
an also jump at some time t3 ∈ ]t1, t2] in the region above thegraph of Ĝ, then remaining 
onstant up to time t4 at whi
h equality κ

t24
− Ĝ(s(t4)) = 0holds, and hen
e growing 
ontinuously.A possible lo
al solution is represented in pi
ture (LS) of Figure 6.3. Starting from

s0, a lo
al solution sL(t) 
an jump at any time t3 in the interval [t1, t2]. The maximalrea
hable position of sL(t3+) is the one su
h that the sum of the areas of the triangles 1and 2 is equal to the area of the triangle 3.In our spe
i�
 
ase, for any y ∈ [0,
√

2
1+

√
2
s0] and any s̃ ∈ [3s0−y, 3s0−y+

√
2(s0 − y)2 − y2]we obtain the following lo
al solution

s(t) =





s0 if 0 ≤ t ≤
√

κ
1+y

=: t3

s̃ if t3 < t <
√

κ
1+3s0−es

=: t4

3s0 + 1 − κ
t2

if t4 < t ≤ T.An example using full two dimensional elasti
ity and showing the di�erent behaviorof the global energeti
 solution (GES) and the approximable solution (AS) is already33



present in [ToZ06, Se
tion 4℄. However, our Example 6.3, whi
h is 
onstru
ted followinga 
ompletely di�erent approa
h, provides some geometri
al 
hara
terization of the twosolutions, and, additionally, it also gives a des
ription of the general behavior of the lo
alsolution (LS), whi
h was not dis
ussed in [ToZ06, Se
tion 4℄.7 Dis
ussion and outlookWe have shown that the rate-independent limit problem and its solutions are quite dif-ferent from other solutions suggested in the literature. However, they essentially 
oin
idewith the �weak solutions� of [NeO07℄ and the BV-solutions in [MRS07℄. This 
oin
iden
emay be lost if we generalize the model.First 
onsider a situation where the 
ra
k tip may move ba
kward and forward. Thismay model the delamination of a tape that is originally glued to a glass plate. Afterpulling it o� it is possible to glue it again by pushing hard onto the plate again. In this
ase, the surfa
e energy is not totally dissipated and part of it is stored. Hen
e, to modelthis situation we need to 
onsider a new (redu
ed) energy fun
tional obtained by addingto the previous one a nonnegative term representing the 
reated surfa
e energy:
I(t, s) := E(t,U(t, s), s) +

∫ s

s0

a(σ)dσwhere E and U are de�ned in (2.4) and (2.5), respe
tively, and a ∈ C0([0, L]) is positive.The dissipation metri
 takes the form
R0(s, ṡ) =

{
κ+(s)ṡ for ṡ ≥ 0,

κ−(s)|ṡ| for ṡ ≤ 0,with κ± ∈ C0([0, L]) positive. Note that the 
ase of nonde
reasing 
ra
k tip studiedin this paper 
orresponds to the 
hoi
e κ = κ+ + a and κ− = ∞. Then, the vis
ousproblem 0 ∈ ∂ṡR0(s, ṡ) + νṡ + ∂sI(t, s) 
an be still solved by the same in
rementalmethod developed in Se
tion 4 and the extra
tion of a limit pro
ess still works. To haveglobal existen
e of solutions, we make the following assumptions on κ+ and κ−. Let usdenote Jmax = max(t,s) ∂sI(t, s) and Jmin = min(t,s) ∂sI(t, s). To prevent the 
ra
k tip fromrea
hing the endpoint s1 we assume κ+(s1) > −Jmin whi
h 
orresponds to (2.9), while todo not returning to the starting point s0 we assume κ−(s0) > Jmax. Moreover, in orderto obtain a nontrivial solution we assume κ+(s0) < −∂sI(t, s0) for some t ∈ [0, T ] (whi
h
orresponds to (2.10)), while for allowing the 
ra
k tip to move ba
kward we assume thatthere exists (t, s) ∈ [0, T ] × [s0, s1] su
h that κ−(s) < ∂sI(t, s). The 
orresponding limitproblem then reads(a) s ∈ BV([0, T ]; [s0, s1]);(b) for all t ∈ [0, T ]\J(s) we have ∂sI(t, s(t)) ∈ [−κ+(s(t)), κ−(s(t))];(
) if ∂sI(t, s(t)) ∈ ]−κ+(s(t)), κ−(s(t))[, then t ∈ D(s) and ṡ(t) = 0;(d) for t ∈ J(s) and s∗ between s(t−) and s(t+) we have ∂sI(t, s∗) 6∈ ]−κ+(s∗), κ
−(s∗)[.34



A se
ond generalization 
on
erns the modeling of several, nonintera
ting 
ra
k paths
C1, . . . , CN . Let s = (s1, . . . , sN) ∈ Σ ⊂ R

N denote the N-tuple 
ontaining the position ofea
h 
ra
k tip. As above we obtain a redu
ed energy fun
tional I : [0, T ] × Σ → R, su
hthat Gj(t, s) = −∂sj
I(t, s) denotes the energy release rate for the j-th 
ra
k tip if all theothers stay �xed. Moreover, we de�ne the dissipation fun
tional
R0(s, ṡ) =

{ ∑N
j=1 κj(sj)ṡj for ṡ ∈ [0,∞[N ,

∞ otherwise.Introdu
ing the ve
tor G(t, s) = (G1(t, s), . . . , GN(t, s)) of all release rates, the vis
ousapproximation takes the form
R

N ∋ 0 ∈ ∂ṡR0(s, ṡ) + νṡ − G(t, s).Again the methods in Se
tions 4 and 5 provide vis
ous solutions s
ν ∈ H1([0, T ]; RN) whi
hare bounded in BV([0, T ]; RN), independently of ν. Hen
e, Helly's sele
tion prin
iplestill allows us to sele
t a subsequen
e that 
onverges pointwise to a limit fun
tion s ∈

BV([0, T ]; RN).However, it is not so easy to see what problem the limit solutions have to satisfy.The problem is that some 
ra
ks may behave well while others jump. In parti
ular, oneshould expe
t that a jump in one 
ra
k path 
hanges the other release rates signi�
antlyand hen
e generates jumps at these 
ra
ks as well. One way of obtaining a limit problemis to use the ar
length parameterization introdu
ed in [EfM06℄. We will not give thedetails here but just state the result if we transform ba
k the limiting equation from thereinto the original time setting. For this we introdu
e the dissipation potential
R∞(s, ṡ) =

{
R0(s, ṡ) for |ṡ|2 ≤ 1,

∞ otherwise.Here the Eu
lidian norm |v|2 = (v · v)1/2 
orresponds to the vis
ous dissipation potential
Rvis
(s, ṡ) = ν

2
|ṡ|22.Now the limit fun
tions s satisfy(a) s ∈ BV([0, T ]; RN) with s(t) ∈ Σ;(b) for t ∈ D(s) we have 0 ∈ ∂ṡR0(s(t), ṡ(t)) − G(t, s(t));(
) for ea
h t∗ ∈ J(s) there exists σ∗ ∈ W1,∞([0, 1]; RN) with(
1) σ∗(0) = s(t∗−), σ∗(1) = s(t∗+), and(
2) σ′

∗(τ) 6= 0 and 0 ∈ ∂ṡR∞
(
σ∗(τ),

σ′
∗(τ)

|σ′
∗(τ)|2

)
− G(t, σ∗(τ)) for a.e. τ ∈ [0, 1].Note that s has at most a 
ountable number of jump points in J(s). The fun
tion σ∗may be 
onsidered as 
onne
ting the point s(t∗−), where the jump starts, with the point

s(t∗+) where the jump ends. Condition (
2) says that along the whole 
urve σ∗ at leastfor one of the 
ra
k tips the energy release rate has to rea
h the 
orresponding fra
turetoughness. 35



Thus, this type of solution is 
lose to the notion of BV-solutions in [MRS07℄, but therethe vis
osity norm Rvis
(s, ṡ) = ν
2
R0(s, ṡ)2 is used instead of ν

2
|ṡ|22. This simpli�es thetheory but seems less physi
al.To 
on
lude, we point out that our model is not suitable to des
ribe 
ra
k initiationunless the 
ra
k toughness vanishes in a similar fashion at the proposed 
ra
k tip or stress
on
entrations make the release rate mu
h bigger. Example 6.1 shows that the releaserate Ĝ tends to 0 for the 
ra
k length s tending to 0. In that toy problem the de
ay islike O(s2), while for the full 
ra
k problem we expe
t O(s) only. This behavior is justi�edin [DTV07℄.Referen
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