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Abstract

In this paper, a homogenization problem for an elliptic system with non-periodic,
state-dependent coefficients representing microstructure is investigated. The state func-
tions defining the tensor of coefficients are assumed to have an intrinsic length scale
denoted by € > 0. The aim is the derivation of an effective model by investigating
the limit process ¢ — 0 of the state functions rigorously. The effective model is inde-
pendent of the parameter € > 0 but preserves the microscopic structure of the state
functions (¢ > 0), meaning that the effective tensor is given by a unit cell problem
prescribed by a suitable microscopic tensor. Due to the non-periodic structure of the
state functions and the corresponding microstructure, the effective tensor turns out
to vary from point to point (in contrast to a periodic microscopic model).

In a forthcoming paper, these states will be solutions of an additional evolution
law describing changes of the microstructure. Such changes could be the consequences
of temperature changes, phase separation or damage progression, for instance. Here,
in addition to the above and as a preparation for an application to time-dependent
damage models (discussed in a future paper), we provide a I'-convergence result of
sequences of functionals being related to the previous microscopic models with state
dependent coefficients. This requires a penalization term for piecewise constant state
functions that allows us to extract from bounded sequences those sequences converging
to a Sobolev function in some sense. The construction of the penalization term is
inspired by techniques for Discontinuous Galerkin methods and is of own interest. A
compactness and a density result are provided.

1 Introduction

In this paper, microstructure is understood as the heterogeneity of a material occupied
body © C R? The heterogeneity is modeled by a forth order tensor C and either arises
from one material in different phases or from several materials that may appear in different
phases, too. In experiments, it is observed that microstructures often have an intrinsic
length scale. Descriptively this length scale is related to the smallest homogeneous set of
material being part of the microstructure. According to the huge variety of heterogeneity
appearing in nature, modeling of microstructure in this general setting is hopeless and
some approximation is needed.

One very common kind of such an approximative microstructure is the periodic one. Here,
the intrinsic length scale, denoted by ¢ > 0, is associated to the size of cells e(A+Y)
occupying a bounded open domain € C R?, where ) is an element of a given periodic lattice
A and Y is the so called unit cell (for instance Y = [0,1)%). All cells with e(A4+Y)NQ #
contain the same specific distribution of the appearing materials and their phases.

Naturally, the size of the intrinsic length scale is very small compared to the size of the
considered body ). Together with the possibly complicated shape of the microstructure
this leads for instance to problems in the numerical investigation of such microstructures.
Moreover, typically the main interest is in macroscopic quantities instead of microscopic
ones. Thus, looking for effective descriptions capturing the macroscopic behavior of such
microstructures is a meaningful task. We are interested in the homogenization of the fol-
lowing elliptic boundary value problem:

{ —div(C.Vue) = f in Q, (1.1)

C.Vusii=h onT'y:=09Q\ I'pi, Ue € H%Dir(Q)",



with volume forces f, surface forces h, and where 7 denotes the unit normal vector on
the Neumann boundary I'y. The tensor C. reflects possibly non-periodic microstructure
on the length-scale €. The task is the performance of the limit passage € — 0 in a rigorous
way and to identify the limit tensor Cy such that the sequence of solutions (u.)->¢ of (1.1)
converges in a suitable sense to the solution wug of the following elliptic boundary value
problem:

{ —div(CoVug) = f  in €, (1.2)

CoVupii=h onTIy, up € Hp (Q)".

To allow for a larger amount of applications fitting into this theory, we assume the existence
of a linear projection B : R"*% — R™*4 gatisfying for all u € H%Dir(Q)" and some positive
constant Cp the inequality

[BVul[L2qpnxa = CBHUHH;D (@n- (1.3)

For example, in the case of linear elasticity one sets n = d, B : R¥*¢ — R4*? is chosen
as B(¢) = 3(¢+¢T) and (1.3) is guaranteed by Korn’s inequality. Throughout the whole
paper let 0 < a < 3 denote fixed constants. We define

M(a, 8) == {A € Lingym(Im(B); Im(B)) | V¢ € Im(B) : a|C[7q < (A, Onxa < BICRxals
(1.4)
where Im(B) denotes the image of the operator B : R"*¢ — R"*4 (linear elasticity: Im(B) =
ngxrg) For an open set @ C R? the tensors considered in this paper are elements of the space

M(O;a, B) = L®(O;Mg(a, 3)), where Mp(a, 8) is the subset of Lingyy,(R™*4;R"*4)
satisfying the following condition:

VD € Mg(a, 8) A € M(a, 8) : V€, € R™ (DE, N)nng = (ABE, BN .

Regarding the classical homogenization considering periodic coefficients, a rigorous result
is gained via the two-scale convergence introduced by G. Nguetseng in [17]|. This result
was generalized by G. Allaire in [1] to a special non-periodic case which is stated in the
following theorem:

Theorem 1.1. Given a tensor C € M(QxY;q,3) being continuous (in some sense)
with respect to the first variable and being periodic with respect to the second variable
let the sequence (Cgleso C M(Q;a, ) of tensors for almost every x € Q be defined via
Co(x) = C(x,%). Ifu. € H%Dir(Q)” is the weak solution of (1.1), then there exists a
function uy € HILD“(Q)" such that

U — Up mn H%Dir(Q)”,
C.Vu, — CyVuyg mn LQ(Q; R"Xd),

and ug € HILD“(Q)" is the weak solution of (1.2). Moreover, the tensor Co € M(Q, a, 3)
s given by

(Col@)é. o= _min [ (Cx.1)(E+Vyo0).€ + Vyp@)usady.  (15)

We refer to Section 2 for a definition of the space HL ()".
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Figure 1: Example for d = 2 where m = 1 and the parameter r(z.) describes the radius of
the Ball B,.(..) having the same center as Y’

Besides providing the convergence of the e-dependent solutions of (1.1) to the solution of
the effective problem (1.2), this result yields an explicit structure of the macroscopic tensor
Cp. This is different in the more general theory of G-convergence allowing for arbitrary
microstructures. The homogenization result of this general theory only states the existence
of an effective problem.

Theorem 1.2. [7, Theorem 6.3] Given a sequence (Cc)eso C M(Q;a,5) let (us)eso C
H%Dir(Q)" be the weak solution of (1.1). Then there exist a subsequence (¢')o~q of (€)e>0,
a function ug € H%Dir(Q)" and a tensor Co € M(Q; , B) such that

U — UQ mn HIl‘Dir(Q)n’
CoVuos — CoVug  in LA(Q; R™?),

where ug € H%Dir(Q)" is the weak solution of (1.2).

The result we are going to present in this paper is in between these two extreme cases
(Theorem 1.1 and Theorem 1.2). Starting with a sequence of non-periodic tensors (Ce)e>0
the limit is performed in the sense of G-convergence. Under suitable continuity assumptions
on the structure of C. being more general than in Theorem 1.1 we identify the limiting
effective tensor Cy and show that it is given by a cell formula similar to (1.5).

To be more precise, let z: : § — R™ be a function that is piecewise constant with respect
to the grid eA N Q and defines the microscopic states of the system. Given C : R™ —
M(Y;a, 8), we define C. € M(Q;«, 8) by

Ce(z) = Cl:(2))({Z}y), (1.6)

where {-}y : R? — Y is given by {2}y := 2—\ for x € (A+Y). Considering a sequence of
state functions (z:)s>0, we are interested in the effective behavior of the system (1.1) as ¢
tends to zero (see Figure 2) and obtain:

Theorem 1.3. Let C : R™ — M(Y;a, ) be continuous with respect to the strong L!-
topology and let (z¢)->0 be given such that z. : Q — R™ is piecewise constant with respect
to the grid eA N Q and 2. — z in L1(Q)™ for some function zo € L1(Q2)™. Moreover, let



Figure 2: Schematic representation of the limit passage of the microscopic model to the
effective model, where C is assumed to be as in Figure 1

C. € M(Q; 0, B) be defined as explained in (1.6). If u. € H%‘Dir(Q)" is the weak solution of
(1.1), then there exists a function ug € Hf._ (Q)" such that

Us — U in H%Dir(ﬂ)"

and ug € Hy_ (Q)" is the weak solution of (1.2). Moreover, the tensor Cy = Cet(20) €
M(Q, a, B) for almost every x € Q and all £ € R™? is given by

Cen(z0) @6 a = _min [ (@)W)€ + Vyo®).€ + Tyo(@)uxady.  (L7)

This paper is the basis for the homogenization of an evolutionary problem studied in a
forthcoming paper [10], where for fixed £ > 0 the piecewise constant function z. (collecting
the parameters of all cells e(A+Y) N Q # () is given by an evolution law, i.e. the state
functions z. have to be considered as unknown and the microstructure is described by the
z.-dependent tensor C. = (Ee(ze). For this reason, the second part of this paper is devoted
to the I'-convergence of a sequence of energy functionals (€;).~o defined via

E(ue, ) = %(@Q(ZE)VUE7VUQ>L2(Q)nXd + ”R%(ZE)”ZEP(Q;)d —{l,ug). (1.8)
Here, [|R< (zg)\|ip(ﬂ+)d for p € (1,00) denotes a penalty term (being a discrete gradient

for piecewise constant functions), where QF D € is a slightly larger domain than €. This
penalty term fixes the topology used to gain the I'-limit &y, which is

Eo(uo, 20) = ${Cefr(20) Vg, Vatg)y 2 (ynxa + IV 20l[7p (qya — (£ 00)

with Ceg(20) from (1.7). Since the I'-convergence is investigated with respect to the two
variables ue and z, the penalty term || R< (z)II7, (@ 18 introduced to enforce compactness
that is strong enough to keep track of the simple geometry of the microstructure.

Basically, the introduction of the penalty term is motivated by the aim of an explicit formula
for the limit tensor of the sequences ((Ee(za))€>o, and the following observation shows that
the natural candidate of topology (neglecting the penalty term) seems to be too weak, in
general. Assume that C(z) is a mixture of two constant tensors C; and Cy for any z € R™
(see Figure 1 for example), which is defined as follows: For a given piecewise constant



function z, let 1(z.) € L®(Q;{0,1}) denote the geometry of the mixture C.(z.), i.e.
1(z)(x) = 1 if Co(z.)(z) = C; and 1(z.)(x) = 0 otherwise. Assuming $o L(z:)(z)dx = 6
for all ¢ > 0, the limit tensor of (C.(2:))eso is an element of the so called G-closure
of {Cy,Ca} with fixed volume fraction . In general, the determination of this G-closure
is very difficult and no explicit formula is available (see [14, 16, 19, 20| for details). In
particular, information on the original geometry of the microstructure in general will be
lost, see also the discussion in [8].

The paper is structured as follows: Section 2 is devoted to the theory of two-scale conver-
gence developed by G. Nguetseng in [17] and states the notations, the definitions and the
results needed in the following. Note, although this theory was introduced to gain homog-
enization results for periodic problems, it is possible to apply this theory in our particular
non-periodic case. Here, in this paper we use the so called unfolding technique introduced
in [4], which is a dual formulation of the two-scale convergence theory.

The types of microstructure we are searching homogenized descriptions for are introduced
in Section 3. They give rise to non-periodic coefficients entering into an e-dependent bound-
ary value problem. Then the limit passage € — 0 is preformed in a rigorous way. The main
techniques used to identify the homogenized problem are the calculus of variation and the
theory of two-scale convergence.

In Section 4, a discrete gradient for piecewise constant functions on lattices is introduced
relying on the theory for broken Sobolev spaces, see for instance [3]. The aim is to construct
the discrete gradient in such a way that from sequences of piecewise constant functions on
finer and finer lattices, for which the discrete gradient is bounded in LP(2), one can extract
a subsequence that converges strongly in LP(£2) to a limit function in W?(Q) and where
the corresponding discrete gradients converge weakly to the gradient of the limit function.
For that purpose, the original definition of a discrete gradient from [3] had to be modified,
see also the example at the beginning of Section 4.

Section 5 is basically in preparation for the evolution model mentioned above. It is de-
voted to the I'-convergence of the sequences of functionals (& )c>0 from (1.8). Thanks to
the compactness enforced by the discrete gradient we are able to identify the I-limit &, pre-
serving the information captured in the microstructure. This compactness also motivates
the assumptions made on the sequence (z:):~o describing the microstructure in Section 3.

2 Notation and two-scale convergence

This section introduces everything needed in the following sections concerning the nota-
tion and the theory of folding/unfolding and two-scale convergence and does not claim
completeness. For further details we recommend to |1, 4, 5.

Let d € N be the space dimension and {by, b, ...,bg} an arbitrary basis of R%, with no
need of orthonormality. Furthermore, let

d
A:{AeRd P A= kb, kiez} (2.1)
=1



be a periodic lattice and
d
y = {:c ERY:a =3 Ui I € [_%,%)}
i=1

the associated unit cell. In particular, the unit cell Y is the d-parallelotope whose axis are
the basis vectors {by,ba,...,bq}. The only restriction on the basis {b1,bs,...,bq} is that

vol(Y) =1

is satisfied to make the following statements valid without any normalization coefficients.
Due to this definition there is only one vertex contained in €(A+Y") so that each of these
cells is uniquely determined by € > 0 and the associated vertex e\.

Finally, for an open set  C R? the set of piecewise constant functions is given by
Koa() := {v € L'(Q)[ 37 € Kaa(RY) : 0lg = v},
where

KA (R?) := {5 e LYRY) VA € A Ule(x+y) = const}.

As already mentioned in Section 1 we are interested in microstructures varying from cell to
cell. For this purpose 2 is decomposed in small cells e(A+Y") and we introduce the subsets

A ={AeA:e(M+Y) CQ} and  AF={ e A:e(A+Y)NQ#D}
of A to define the sets Q2 and QF via

OF = J e(\+Y). (2.2)
AEAT

Observe that Qz is a compact subset of Q. The set 2} is introduced in order to avoid
problems with cells having a non empty intersection with 2 but which are not completely
contained in it, i.e. all cells containing a part of the boundary 9f). From now on we will
assume that

Q is an open and bounded subset of R? having a Lipschitz boundary 9. (2.3)

This guarantees that vol(9€2) = 0 and that vol(Q1\Q) + vol(Q\Q7) — 0 for € — 0, which
will be used later. In particular, this is crucial when introducing the two-scale convergence
with the help of the so called periodic unfolding operator (see [15] Section 2).

Before defining the two-scale convergence with the help of the so called periodic unfolding
operator we start by introducing the mappings [], and {-},- on R%.

[y :RE= A, {}y:R'=Y, and z=[z], + {z}, forallze R

Let A € A and let x € R? be in the cell A+Y, then [z]y = A and {x}, is determinable as
{z}y =2 — [z]s. For ¢ > 0 and = € R? we have the following decomposition:

T

o= Nele) + Vile), with Nofo) =2 [2] and vi() = {Z}

6



where M (x) denotes the macroscopic center of the cell Nz(z) 4+ €Y that contains = and
V.(z) is the microscopic part of x in Y. At last, we want to distinguish the unit cell Y
from the periodicity cell ) := R%/,. Following Ref. [22], we introduce the mappings D,
and S; as follows:

R — RIx)Y, Rix)Y — R,
D, : S

r = (N(2),V(x)),
where in the last sum y € ) is identified with y € Y ¢ R%.

Two-scale convergence is linked to a suitable two-scale embedding of LP(€2) in the two-scale
space LP(R¢xY). Such an embedding is called periodic unfolding operator. The following
definition of a periodic unfolding operator was given in Ref. [4].

Definition 2.1. (Ref. [4]) Let Q C R be open, ¢ > 0 and p € [1,00]. Then the periodic
unfolding operator 7; is defined via:

T: - LP(Q) = LP(RYXY); v = v™ 0 S.,
where v°* € LP(R?) is the extension of the function v by 0 to all of R?.

With this definition the following product rule is valid: Let p,q,r € [1,00] such that
1,1 _ 1 7
> + q o en

v € LP(Q),v9 € LI(Q) = T (v1v2) = (Tev1)(Tevs) € LT (RIXY).

Note that [2xY], := S 1(Q) = {(z,9)[S:(z,y) € Q} is the support of Tzv, and this is not
contained in 2xY, in general.

Following the lines in Ref. [15] we now will use this periodic unfolding operator to intro-
duce the kind of two-scale convergence, which is used here; the strong and weak two-scale
convergence, respectively. But before that, we define the folding operator F.. For details
see [15].

Definition 2.2. (Ref. [15]) Let © C R be open, ¢ > 0 and p € [1,00). Then the folding
operator JF is defined via:

Fo: LP(RIXY) = LP(Q); V — (P-(Liaxy].V) © De) o,

where (P€V)($, y) = tFNE(:v)JreY V(Ca y)dC

Definition 2.3. (Ref. [15]) Let p € (1,00) and let (v:)e>0 be a sequence in LP(2). Then

(a) wve converges strongly two-scale to V € LP(QxY) in LP(QxY),v. = V in LP(Q2xY),
if Tve — Vo in LP(RxY).

(b) w. converges weakly two-scale to V € LP(QxY) in LP(QxY),v. = V in LP(QxY), if
Tev. — Ve in LP(RIxY).

Referring to (2.2) we have that for all € > 0 the support of the function 7:v. is contained in

[QxY], C ﬁ: xY which results in the fact that the support of a possible accumulation point
U of the sequence (7-v¢)e>0 has to be in QxY, since vol(Q27\Q) — 0. Due to vol(99Q) = 0
we also have LP(QxY) = LP(QxY) and so every accumulation point of (Tzv:)e>0 can



be uniquely identified with an element of LP(2xY’). But notice that it is important to
determine the convergence in LP(R?xY") and not in LP(Q2xY). We refer to Ref. [15], where
it is shown in Example 2.3 that convergence in LP(£2xY") is not sufficient.

Note, that according to the definition of the two-scale convergence in LP(2xY") via the
convergence of the unfolded sequence in LP(R?xY) all convergence properties known for
LP-convergence are transmitted. For a summary of those properties we refer to Proposition
2.4 in [15]. For the convenience of the reader we state here only those properties used in
the following.

Proposition 2.4 ([15]). Let p € (1,00) and setp’ := ;L5 Furthermore, let Vo € LP(QxY),

Wo € LY (QxY) and My € LY(QxY) be given. Then for sequences (v:)eso C LP(Q) and
(we)eso C Lp/(Q) the following conditions hold.

(a) Ifv. 22V in LP(QXY) and w.>Wy in Lpl(QXY) then (ve, we)y2(0)—(Vo, Wo)12(0xv)-

(b) If ve — vg in LP(Q) then v. > Euvg in LP(QxY), where E : LP(Q) — LP(QxY) for
v € LP(Q) and (z,y) € QXY is defined via Ev(z,y) := v(z).

(c) If v > Vp in LP(QXY) and if (me)eso is a bounded sequence of L°(Q) such that
Teme(x,y) — Mo(z,y) for almost every (z,y) € QxY. Then mov. = MyVy in
LP(QOXY).

The following corollary extends property (c) of Proposition 2.4 to a special case appearing
when applying the two-scale theory to (1.1) for a tensor C. given by (1.6). The proof is
done via a standard contradiction argument.

Corollary 2.5. For p € (1,00) let (ve)eso C LP(Q) and Vi € LP(QXY') be given such
that v. > Vy in LP(QXY). Moreover, let (mg)e>o be a bounded sequence in L°(Q) satis-
fying me > Mgy of LY(QxY) for some function My € LY(QxY). Then m.v. = MyVy in
LP(QXY).

In Section 5, we are going to prove I'-convergence results with respect to the weak two-
scale topology for functionals being related to the boundary value problems mentioned in
Section 1. There, the following integral identity for v € L!(Q2) will be central.

/v(m)dx:/ Tev(x,y)dyde (2.4)
Q [QxY]e

Moreover, this identity immediately gives us the norm-preservation of the periodic unfold-
ing operator 7. and it is proved by decomposing R? into cells e(A+Y) for A € A.

Since the models introduced in Section 1 contain gradients we now will consider bounded
sequences of W1P(Q) and state the main two-scale convergence results for these. In par-
ticular we will need the function space

Wi ) = {v e Wiam)| [ oy = o

To describe the weak two-scale convergence of gradients we introduce the function space
LP(Q; WLP())), which is the space of functions V' € LP(QxY) = LP(£; LP(Y)), having the



same traces on opposite faces of Y and satisfying [,- V(z,y)dy = 0 for almost every z € Q
and V,V € LP(QxY)? in the sense of distributions. We equip this space with the norm

HVHLp(Q;w;’VP(y)) = HvyVHLP(QxY)d'
With this, we have the following compactness result used for the convergence of the dis-

placement component of the microscopic models in Section 3, cf. [18, Theorem 3.1.4]:

Proposition 2.6. Let (v:)eso be a bounded sequence in WYP(Q). Then there ervists a
subsequence (ver)ero of (Ve)eso and functions vy € WHP(Q) and Vi € LP(; WLP(Y)) so
that:
Ver — Vg in WhHP(Q),
ver > B in LP(QxY),
Voo 2V Evg+V, Vi in LP(QxY)?,

where E : LP(Q) — LP(QXY) is defined via Ev(z,y) := v(z).

For the construction of the displacement component of the joint recovery sequence the
following density result is important, cf. [9, Proposition 2.11].

Proposition 2.7. Let (wo, W1) € WP (Q)xLP(Q; WLP(V)) be given. Moreover, for every
e >0 let we € Wé’p(Q) be the solution of the following elliptic problem:

/Q (w2 — Fx(Bwo)™)w + (Ve — Fe (Vo Ewgt V, W)™, Volg)de =0 Yo € WEP (Q).

Then

we — wWo in Wy (Q),
w. = Ewyp in LP(QxY),
Vw: % V,Bwy+V, Wy in LP(QxY)<,

3 Homogenization of non-periodic coefficients

In this section, the non-periodic microstructures having some intrinsic length scale denoted
by € > 0 are introduced. These microstructures are modeled by non-periodic coefficients of
an elliptic boundary value problem. The aim is to find a homogenized description of this
boundary value problem preserving the microstructure in some sense but being independent
of the small parameter € > 0.

The microstructure is based on a tensor C : R™ — M(Y; a, 5) where a and f3 are positive
constants independent of the parameters z € R™ (m € N fixed). In contrast to the periodic
case, this tensor is allowed to vary with respect to the parameters z € R™. The crucial
assumptions on C : R™ — M(Y;a, ) are the following:

Measurability: For every measurable function z : R* — R™ the mapping

_ RYXY — Mg(a, 8),
: { n(ef) is measurable on RIxY. (3.1)

C(z())(- C
GO0 E )



Continuity: For every sequence (z5)s>o C R™ satisfying lims_,o2zs = z for z € R™ we
have N _
lim [[C(z5) — C(2)llL1 (v s (@,8)) = 0 (3:2)

Given z. € K 5 (2)™, the tensor C. := @e(ze) € M(Q;a,B) for almost every z €  is
defined by N _

Cel(ze)(@) := Clze () {Z }y)- (3-3)
Having such microstructures in mind we are interested in the limit passage ¢ — 0 in the

following elliptic boundary value problem:
Given a function z. € K. (2)™ let u. € HILD“(Q)" be the weak solution of

(Celz:) Ve, Vo) 2 (qyuxa = (€,v)  for all v € Hp (Q)", (3.4)
where ¢ € (Hp_()")*.
Our first result is the following theorem, where we study the limit passage of solutions of
(3.4) for converging sequences (z¢)e>0:

Theorem 3.1. Let C : R™ — M(Y;a, ) satisfy the conditions (3.1) and (3.2) and
let (22)e>0 be given such that z. € Kopa(Q)™ and z. — zo in LY(Q)™ for ¢ \, 0 with
some function zy € LY(Q)™. Moreover, let C.(z.) € M(Q;a,B) be defined by (3.3). If
Us € H%Dir(Q)" is the solution of (3.4), then there exists a function uy € H%Dir(Q)" such
that

Us — Ug in H%Dir(Q)”,

where ug € HE_ (Q)" satisfies
(Ceft (20) Vo, V) 2qynxa = (£,v)  for all v € H%Dir(Q)". (3.5)

The tensor Ceg(20) € M(Q, ., B) for almost every z € Q and all € € R™ is given by

(Ceneo) (@6 o= _min | ©o@)W)(E + Vo). € + Vyr@)husady.  (36)

The proof of this theorem is split into the following three propositions. Observe first, that
by standard arguments (cf. for instance [9]) it follows that the minimization problem in
(3.6) indeed defines a quadratic expression in £. We summarize this in

Proposition 3.2. For every z € R™ there exists Cef(2) € Lingym (R™*%, R™*4) such that

VECRM: (Ca()6 ua= _min [ EE@EE+ V). €+ Vyom)hady.

In Proposition 3.3 below the convergence of the sequence (ug)e>0 C H%Dir(ﬂ)” of solutions
of (3.4) to the unique solution of the following two-scale problem is proven:

For a given function zg € L*(Q)™ let (ug,Us) € H%Dir(Q)"XLQ(Q;H;V()}))" be the unique
solution of the two-scale equation

<@0(Zo)(V$EuO +V,U1), V. Ev + VyV>L2(QXY)n><d = (L, v), (3.7)

where

Co(z0)(z,y) := C(z0(x))(y) for almost every (z,y) € QxY. (3.8)
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Proposition 3.3. Let C : R — M(Y;a, 8) satisfy the conditions (3.1) and (3.2) and let
(ze)es0 be given such that z. € KQA(Q)m and z. — zg in LY(Q)™ for e \, 0 with some func-
tion zg € LP(Q)™. Moreover, let Co(z:) € M(Q; o, B) be defined by (3.3). If u. € H%Dir(Q)"
is the solution of (3.4), then there exists a function (ug,Uy) € HILD“(Q)"XLQ(Q; HL ()"
such that

Us — Ug n H%Dir(Q)”,

ue = Euyg m L2(Q><Y)”,

Vaue 2V, Eug+V, Uy in LP(QxY)"*4,

Moreover, (ug,Ur) € Hp ()" xL?(Q; HL, (V)" is the unique solution of (3.7).

Proof. Let (2:)->0 be given such that z. € K. (Q)™ and z. — 2o in L'(Q2)™ for some
function zp € LP(Q2)™ and € \, 0.

1. Since C.(z) € M(Q;a,f) for all € > 0 according to assumption (1.3), we have the
following a priori estimate for the solutions u. € H%Dir(Q)” of (3.4)

HueHH;Dir(Q)n <G,

where C = C(a,Cp,¢) > 0 is independent of ¢ > 0. Hence, according to Proposi-
tion 2.6 there exist a subsequence (¢’).~q of (€)e=0 and functions ug € H%Dir(Q)” and
U € L2(Q; HL,())" such that
Uer — U in H%Dir(Q)”,
Ug! i) EUQ in L2(QXY)n,
Vuz 2V, Eug+V,U;  in L*(QxY )4,
2. We now investigate the convergence of the coefficient tensor @;(ze) and prove @E(zg) 5

Co(z0) in LY (Q2xY; Mg (v, 3)). For this purpose, we rewrite T:C.(z.) according to Defini-
tion 2.1.

The case z € R4\ Q:

For fixed z € R\ Q due to (2.3) there exists £g > 0 such that x € R¥\ QF for all € € (0, ).
Hence, TC.(2:)(x,-) =0 on Y for all € € (0,¢p). Moreover, the extension C&*(z) trivially
fulfills C&*(20)(z, -) = 0 for all # € R%\ Q by definition. Altogether, this shows that for all
r € R\ Q we have

ToCe(z:)(x,-) = C§(20)(x,-) in LY(Y;Mg(a, 8)). (3.9)

The case © € Q:

Since €2 is assumed to be open for fixed = €  due to (2.3) there exists 9 > 0 such that
z € Q for all ¢ € (0,e0). Note, that for (z,y) € Q- xY we have z.(z) = 2. (N:(2)),
Ne(Ne(2) + ey) = Ne(z) and {W}y = y. Keeping this observation in mind when
applying 7; to the tensor C.(z.) given by (3.3) results in

ToCe(2:)(x,y) = C(ze())(y) for all (x,y) € QxY. (3.10)
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According to z. € K A (2)™ and 2. — 2o in L}(Q)™, there exists a subsequence (&)./~¢ of
(€)e>0 such that
zer(x) = zo(x) for almost every x € . (3.11)

Exploiting the continuity of C combining (3.10) and (3.11), for almost every = € € results
in

ToCo(z)(,-) = Clao(@))() 2 Colz0)(@,) in L (Y; Mg(a, 8)). (3.12)

Here, we have applied the Theorem of dominated convergence and the fact that for 0 <
£ < g¢ the coefficients T.C.(z:) and Cy(2¢) are uniformly bounded on Q.,xY by a constant
depending on 3, see (1.4).

Combining (3.9) and (3.12) and exploiting pq(992) = 0 (see (2.3)) we finally showed for
almost every z € RY

TorCor(2er) () = C(20)(z,-) in L'(Y; Mg(e, B)). (3.13)

Applying once more the Theorem of dominated convergence, for N = n?+d? we finally
arrive at

ITerCor(ee) = CF Go)llr s = [

R4

|72 Cor (2 ) (2, -) — C§(20)(x, WMLty dz— 0

for ¢/ — 0, which is nothing else but

Cor(ze) = Co(z0) in LYQXY; Mg(a, B8)). (3.14)
Via a standard contradiction argument we finally conclude the strong two-scale convergence
of the whole sequence (Cc(2:))e>0 to Co(z0) with respect to the L!-topology.
3. For (v, V) € HE_ (Q)"xL*(%; H, (Y))" arbitrary but fixed choose (ve)es0 C Hf ()"
as in Proposition 2.7, such that Vv, > V,Ev + V,V in L2(QxY)"x4,

4. Choose a further subsequence (£”)zrsq of (€')ers0 such that (7zrCer(zen)))enso converges
almost everywhere in R?xY (available due to (3.14)). Then, according to Corollary 2.5
combining the results of step 2 and 3 leads to

Con(2en) Vo = Col20) (Vo B +V,V)  in L2(QxY )™, (3.15)

5. Considering the left hand side of the weak formulation of (3.4) gives us

(Ce(z:) Vg, VU5>L2(Q)n><d = (Vug, Cg(ZE)VU5>L2(Q)n><d,

where we already plugged in the particular test function v, € H%Dir(Q)" chosen in step 3.
According to Proposition 2.4(a), the convergence result of step 1 and (3.15) we have

El//iglo<(~:€u(z€u)vu6n, Vv€//>L2(Q)nxd == <((~:0(ZQ)(VIEU0 + val), V;,;Ev + vyV>L2(QXy)n><d.
Since v. — v in H%Dir (€)™ (see Proposition 2.7), the right hand side of the weak formulation

of (3.4) converges to (¢,v). Hence, for all (v,V) € H%Dir(Q)"XLQ(Q;H;V()}))" the function
(uo,Ur) € HILD“(Q)"XLQ(Q; H. (V)" is the unique solution of

(Col20)(VaEug + VyU1), Vo Ev + Vy V)2 gryynxa = (€, 0),

which is the two-scale equation stated in (3.7). Due to the uniqueness of the solution
(uo,Uy) € H%Dir(Q)"XLQ(Q;H;V()}))" a contradiction argument yields the convergence of
the whole sequence (uc)e>o C Hp_ (Q)". O
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Finally, we show that the two-scale equation (3.7) can be identified with a one-scale prob-
lem. For given functions ug € H%Dir(Q)" and zp € LP(Q)™ we now consider the unique
solution Uy € L2(£; HL (V)™ of the corrector equation

(Co(20)(VaEug + VyUi), VyV)z(axyyexe = 0 YV € LA(QHL (D))" (3.16)

The next proposition yields a crucial property of Uy € L2(€; HL ()))" enabling us to prove
the equivalence of the limit systems given by (3.5) and (3.7). For this purpose, we introduce
one more operator. For z € R™, ¢ € R"*% and v € HL () let

Lgw) = [ CEW)E +V,00).€ + Ty0(w)neady.

The operator £, : R"*? — HL () is defined as £,(£) = Argmin{ I, (&,v); v € HL, () }.

Proposition 3.4. For every uy € HILD“(Q)", 20 € LY Q)™ and Uy € L2(Q,HL, (D))" the
following statements are equivalent:

(i) Uy is the unique solution of (3.16).
(ii) U1 = ﬁzo()(vgguo())
(iii) For all v € HILD“(Q)" and V € L2(Q; HL (D))", Uy satisfies

(Cetr(20) Vo, Vo) 2(yn = (Col20)(VaEuo + VyUi), Vo Ev + Vy V)12 gy ynxa-

Proof. (ii)=(i): Observe first that by basic density properties for Bochner spaces the linear
span of {(fiv1,..., favn)T | fi € L2(Q),v; € HL (D)} is dense in L%(Q;HL, ()))". Hence,
it is sufficient to prove that Uy := L, .y(Vzuo(-)) satisfies (3.16) for every V = fv with
f € L*(Q) and v € HL (V). By definition, for almost every z € Q and all v € HL ()" the
function v} := L, ) (Vauo(z)) = Ui(z, ") € H., () fulfills the Euler-Lagrange equation

0 = Dyl (z)(Vauo(x),vy)[v] = <@(zo(x))(V$Euo(x) + V,u3), Vyv>L2(y)nxd.

After multiplication with f € L2(Q) and integrating with respect to Q we obtain (3.16).

(i)=(ii): For given (uq,20) € Hp_ (Q)"xLP(Q)™ let Uy € L?(Q;HL,(Y))" be the unique
solution of the two-scale equation (3.16). As already proven in the first step Uf (z,y) :=
L) (Vzuo())(y) is also a solution of equation (3.16). According to the uniqueness of
solutions this results in Uy = U7.

(1),(ii) < (iii): The prove of the equivalence with statement (iii) relies on the following
identity for the derivative of the mapping & — (Ceg(2)€, E)gnxa: For all £, € R™? and
z € R™ it holds

(Cett(2)€ Mnxa = <@(Z)(§ + vy£Z(§))=77>L2(Y)nxd- (3.17)

Assume that Uy = L,)(Vuo(")) € H., (¥) and hence satisfies (i). Then for all v €
HE,, ()" and V € L2(Q; Hy, (V)" Un satisfies

(C(20)(VaEug + VyU1), Vo Ev + Vi V)2 axy)nxd

3.16) ,~ 3.17
CL9 (€ (20) (Vo Bug + VyUn), Vo o2y yca = (Cofi(20) Vo, Vo) s
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On the other hand assume that U; € L2(Q, HL, ())))" satisfies (iii). Then, again by (3.17),
for all v € H%Dir(Q)" and V € L2(Q; HL, ()™ it holds
(C(20)(VaEBug + VyU1), Vo B + Vy V)12 y)nxa
3.17)
— (Cett(20) Vtg, Vo) 2gqyixa = (€(20)(VaEug + VyUt), Va Bhya sy yica,

which implies (3.16) and (i). O
We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. According to Proposition 3.3, there exist functions ug € H%Dir(Q)”
and U; € L2(Q; HL, ()))"™ written as a 2-tuple being the unique solution of (3.7) satisfying
uc — ug in HE_ (Q)". Choosing v = 0 in (3.7) shows that U satisfies (3.16). Exploiting
Proposition 3.4(iii), this finally implies that ug satisfies (3.5). O

Example 3.5. Here we are going to consider a linear elastic model, where for fixed € > 0
the piecewise constant function z. € K. (£2)™ describes the distribution of two different
types of material. This example is related to the time-dependent damage model investigated
in the forthcoming paper [10], where for every ¢ € [0,7] the function z.(t) € K.p(2)™
will be given by a flow rule modeling the evolution of damage. There, by the decrease
of z. : [0,T]xQ — R™ with respect to time the decrease of the amount of undamaged
material is modeled.

Let m =1, n=d and let B() := %(£+§T) for £ € R¥9. Moreover, for Cy,Cy € Mg(a, )
we define

_ B ]lY\B(r(z))(y)(Cl + ]lB(r(z))(y)(CQ if z € [Oa 1]
C:R—=>M(Y;0,8), C(2)(y) = Iy\Beo) ®C1 + L) (¥)Ce if 2 <0
Iy\Bera) W)C1 + Ipray(y)Ce if 2> 1

Here, 14 denotes the indicator function of the set A and B(r(z)) is the closed ball with
radius r(z) := Ry(1—z) and the same center as Y (see Figure 1). The maximal radius
Ry > 0 is chosen such that B(Ry) C Y.

To apply the convergence theory of this section to this example we have to verify the
measurability condition (3.1) and the continuity condition (3.2). For C: R — M(Y;a, )
defined as above the assumption (3.2) is fulfilled trivially. But note, that for fixed y € Y
the mapping z — C(z)(y) is not continuous and hence does not satisfy the Carathéodory
condition, which would imply measurability of the composed function C(z(-))(-).

To verify (31~) let z : R — R be an arbitrary measurable function. According to the
definition of C : R — M(Y;q, ), the mapping C(2(-))(-) : RIXY — Lingyy (R¥4; RI*d)
is constant on M := |J,cpa ({x}xB(r(z(x)))) and on (R¥xY)\ M. Hence, (3.1) is proven
by showing that M is a measurable subset of R¢xY .

To show the measurability of M we start by choosing a countable sequence (2’5)(5>0) of
simple functions approximating z from below, i.e. z5(x) = chvi 1 A8 (z)2) with 29 = const,

A2 C R? measurable and U]kvilAk = R? with z5(x) 7 z(x) for all z € R%. Let M; :=
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Uzera ({ﬂ:}xB(r(zg(:c)))) Note that Mjs is measurable for all § > 0, since due to

M5 = Uy (U abxBOGs)) = U, (ATxBOGD)

5
a:eAk

it is the disjoint union of finitely many measurable sets and ergo measurable. By definition,
M C M; for every 6 > 0. The opposite relation (5o Ms C M is shown by the following
contradiction argument:

Let (*,y") € Ns>o Ms but (*,y*) ¢ M. Then for all 6 >0
y* € B(r(zs(z"))) (3.18)
but dist(y*, B(r(z(z*)))) =: 2A > 0 since B(r(z(z*))) was assumed to be closed. Hence,
y* ¢ B(r(z(z")) + A) (3.19)

Since zs(x*) — z(x*) by assumption, there exists dyp > 0 such that for all § € (0,dp) we
have |r(zs(z*)) — r(z(z*))| < A. Hence, by (3.18),

y* € B(r(z(27))) C B(r(z(z%)) + A),

which is a contradiction to (3.19). Altogether we proved M = N5+ Ms. Since the countable
intersection of measurable sets is measurable again, this shows the measurability of M.

Given a sequence (z¢)e>o with z. € Koa(2), 22 € [0,1] a.e. in Q and z. — zg strongly in
LY(Q), according to Theorem 3.1 the effective tensor is given as follows: for all ¢ € ngxrff
and almost all x € Q we have

(Cer(20(2))€, &) axa

= vefrlr;lvil(ly)d /Y <(]1Y\B(r(zo(ar)))(cl + ]lB(r(zo(a:)))(C2) €+ Vyu(y)), (€ + Vyv(y))>dxd dy.

For every x € , this corresponds to the cell formula for periodic homogenization with
respect to the geometry defined by zo(z), see also Figure 2. This example is a first step to
give some mathematical background to the two-scale damage models investigated in [21].

4 Discrete gradients of piecewise constant functions

As already mentioned in the introduction, the second part of this paper is devoted to the
I-convergence of a sequence of functionals (&;)c~o being related to the homogenization
result of Section 3. Additionally to u, in these functionals z. is considered as an additional
unknown and we are interested in the I'-convergence of &.(-,-) with respect to the weak
topology induced by the functional, see Section 5. A major assumption of Theorem 3.1 is
the strong convergence in L!(£2) of the sequence (z:)e>0 to some limit function zp. One
could enforce this strong convergence by assuming that the sequence (z;)c>o is uniformly
bounded in some Sobolev space WP(Q2) and add corresponding gradient terms to the
energy functionals £.. However, in view of Example 3.5 with piecewise constant z., this
assumption is not suitable for the application we have in mind.
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Hence, this section is about the definition and the properties of a discrete gradient for
piecewise constant functions z. and related weak compactness results. Note, that this
section is independent of the homogenization results of the previous one. That means that
this calculus first of all stands on its own concerning the notation and, probably more
important, it is not restricted to the application presented in Section 5.

The aim of this section is the definition of a discrete gradient for piecewise constant func-
tions on a lattice in such a way that only an overall constant function has gradient zero.
Furthermore an in some sense bounded sequence of those piecewise constant functions,
where the spacing of the lattice tends to zero, should lead to a limit belonging to a Sobolev
space WP Roughly spoken we want to introduce a penalty term, extracting those se-
quences of BV-functions that converge strongly in LP to a Sobolev function, so that the
discrete gradient of these sequences converge weakly in L? to the gradient of this Sobolev
function.

For technical reasons we now assume that the periodic lattice A defined by (2.1) is based
on the orthonormal basis {e1,ea,...,eq} of RZ Moreover, let the associated unit cell be
given by Y = [0,1)?%. According to this choice of the periodic lattice A we have eA C SA
and due to the choice of the associated unit cell Y for every A € A there exist exactly 2¢
elements A, Ao, ..., Aoa € %A so that

9d
c+Y) = | g(AjJrY). (4.1)
j=1
Note, that this property (which would not be valid with ¥ = [—3, 2)¢ for instance) makes

the definition of our discrete gradient less technical. Moreover, we introduce the extension
operator Ve : K A () = K. () extending a piecewise constant function v € K 5 (Q) for
every A € AT\AZ on e(A+Y)\Q constantly by the (constant) value of v on e(A+Y) N Q.

With all this, K.A(©2) € BV(Q), and we introduce the discrete gradient in the following

way:

R ) (Vow), (4.2)

TR

£
2

d
KA ()™ — K%A(Qj)mx‘i; v ZR
i=1
where ﬁg) KA (D)™ — K%A(Qj)de is defined via

{ %(ﬁ(x—i—%ei) —(z—5e;)) Qe if x+5e; € QF and r—5e; € Qr, (4.3)

0 otherwise.

This construction of the discrete Gradient is inspired by the so called lifting operator
introduced by A. Buffa and C. Ortner in [3] defined via

REQ: WIP(@Q)™ — ST ()™ (4.4)
[ REQ@)@) @) == [ [w(@)] s fols)fds Vo e STy (@),

with [w(s)] = wh(s) @ n* +w™(s) @n~ and {¢(s)}} = 2(¢1(s) + ¢~ (s)), where w* and

¢* are the traces of w and ¢ with respect to the outward normals n* for s € I ==Qn

Usen €(A+0Y). Here, Wif(Q) = {w e LY(Q) : wl.(pyv)ne € WH(e(A+Y)NQ) VA e A}
is the so called broken Sobolev space and S, (€2) denotes the set of all piecewise polynomial
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functions (in the same sense as in the piecewise constant case) with a degree n € Ny.
Observing K. (RH)™ C Wi}{’(Rd)m one very important difference between our definition
(4.2) and the definition (1.5) from [3] is that for n = 0 in (4.4) the definition in [3] leads
to the following discrete gradient for piecewise constant functions:

RED : KA (RY)™ — Koy (R4 (4.5)
d
Rgg(v)(x) = Z 2—16(’0(56—{—661') —v(r—ce)) ®e;
i=1

Here, we replaced by R such that we do not have to care about what is happening in cells
e(A+Y) intersecting the boundary 9. Observe that for v € K. (R%)™ the function REOO (v)
is piecewise constant with respect to the lattice €A, while R%(v) is piecewise constant on
the finer lattice $A. According to (4.5), the value of the discrete gradient (REG (v)(2)),,
Ee{l,....,m}, 1 € {1,...,d}, is defined by the values of the function v in the “next”
(v(z+ee;)) and in the “previous” (v(z—ee;)) cell, but is independent of the value of the
“actual” cell (v(z)). This leads to the following problems:

1. Considering a periodic piecewise constant function satisfying v(z+ee;) = v(z—ee;) and
v(x) # v(z+ee;) for every i € {1,...,d} we obtain Rgg(v) = 0 for v # const.
2. For d = m = 1 the sequence (v:)(c>0) C Kerp(R) of piecewise constant functions (k € Z)
with
2 ifxe P2k, 2+ 1)
ve(z) =4 =2 if x € —P[(2|k| + 1),2|k|) (4.6)
0 if x € eP[(2|k| +1),2|k]|)

converges weakly in L (R) due to its periodicity to the Heaviside function H(z) =1 for
xz > 0 and H(z) = 0 otherwise. But H does not belong to Wll(;’C’(R). According to the
definition of the lifting operator we have |R£8(v€)(x)| = % for x € [0,eP) and Rgg(vg) =0
otherwise. This gives ||RE§ (ve)||1s®) = 1 which shows that this lifting operator is not the
right penalty term in the sense mentioned in the beginning of this section. There is another
comment on that in Remark 4.2.

As opposed to this, the discrete gradient defined in (4.2) evaluated for v, from (4.6)

gives us |Re(ve)(z)| = g for x < % and |Rg (ve)(2)| = % otherwise, which leads to

| Rs (vg)Hip(Q) > vol(€2)(2)" for any bounded subset © of R. This shows that this term
along (v:)e>0 is unbounded, which correlates with the fact that this sequence does not
have a limit belonging to VVI1 JP(R). This indicates that the LP-norm of the discrete gradient
defined in (4.2) is suitable as a penalty term filtering out sequences of piecewise constant
functions converging to elements of WHP(Q)™ as it is stated in the following theorem:

Theorem 4.1 (Compactness result). For p € (1,00) and every sequence (ve)eso of func-
tions belonging to K p(2)™ and satisfying

S‘ilo) (HUSHLP(Q)’” + HRg (Ua)HLp(Qj)mxd) <C<oo (4.7)
€
there exist a function vg € WHP(Q)™ and a sub-sequence (ver)erso of (V)0 with

ver = vg in LYQ)™  and Rz (ver) = Vg in LP(Q)m*4,

where 1 < g < p*, and p* denotes the Sobolev conjugate of p.
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Remark 4.2. Our Theorem 4.1 is a modification of Theorem 5.2 from [3|. There, condition
(4.7) is formulated with the penalty term [r. e'7P|[v:(s)]|’,, 4ds instead of our regular-
int

ization term ||R%(v€)||Lp(Q;)mxd. The authors of [3] end up with a similar convergence

result with respect to their discrete gradient R?g. But due to this procedure a regularized
(e-dependent) model based on functionals depending on K_j-functions has to contain two
ingredients to arrive at a limit model described by functionals depending solely on Sobolev
functions. First, the penalty term fFiEm el 7P| [ve(s)]F,« 4ds forcing the sequence (ve):>q of

K, a-functions to converge to a Sobolev function, and second, the lifted function Rgg (ve)
to find a gradient in the limit. Thereby a further issue arises, namely, the identification and
interpretation of the penalty term after passing to the limit. Clearly, due to our replace-
ment this problem is solved. Since the proof of our Theorem 4.1 is based on |3, Theorem
5.2], we need the estimate of Lemma 4.3 below to adapt the proof from [3].

Lemma 4.3. Let p € [1,00). Then there exist constants C > 0 and C > 0, such that for
every € > 0 and for all v € K A (Q)™ it holds

1
~ p ~
Dul(@ < C( [ P ads) < CONRS ) ag s

int

where Dv is the measure representing the distributional derivative of v and |Dv|(2) its
total variation. Moreover, I'{ i := QN Uyep (A+0Y).

Proof. The proof of the first inequality is a straight forward generalization of Theorem
3.26 from [13] to the case of p # 2 and can be found in [3| (Lemma 2) as a brief sketch,
for example.

The second inequality results from the special structure of the discrete gradient. For a better
understanding the calculations are split up so that the left hand side of every numbered
equations is the same (starting point) and the only changes are on the right hand side.
First of all (4.8) is valid since every face of the cell e(A+Y) is taken twice when summing
up on the right hand side:

[ @ ds =53 [ ()] ta()ds (4

s, Sea Je(+aY)

Since the integrand contains the characteristic function 1g, the function v € K.z (2)" can
be replaced by any extension v € L'(Q}) satisfying t|q = v. We choose v := (V-(v)) €
KA ()™ and exploit that due to decomposition (4.1) for every cell e(A+Y) C QF we
have [0(s)] = 0 for s € §(A\;+0Y)\e(A+9Y), since U € K. ()™ is constant on e(A+Y).
Hence, the following equahty is valid, since there only zeros are added:

l—=p — 1-p T p
€ v ds = € / (s 1q(s)ds. 4.9
e O AZAZ o rom FOWnsalale)ds. (49
Now we first of all increase the domain of integration in (4.9) by replacing 1q by 15

and then calculate the integral by splitting §(A\;+0Y") into its 2d faces of 5(A\;+Y). For

s € 9QF the jump term [0(s)] is not well-defined since supp(v) C ﬁ: Therefore, we set
[o(s)] := 0 for s € 907 . Since the integrand is constant on every face, the integral gives
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the constant multiplied with (%)d_l, which is just the volume of one face. Moreover, the

jump term of ¥ is replaced by its definition, where v™ = ¥(5);), v~ = v(5(\j+€;)) and

nt = —n~ = ¢; is used for one face of 5(\;+Y) and vt =0(5);), v = 0(5(\j—e;)) and
nt = —n~ = —e; for the opposite one. Altogether, we obtain:

[ @ ds <3 Y Zal pZ (35N — (5 e) ) ze| oY

T )\EA+] 1 mxd
(4.10)
VI (GE(h—e)) — s
+ (3G —e) —BA))ve] 8,

where
ij (2%

50\) . {O if %()‘j+ei) ¢ Q;r g()\) o {O if £ ( —e;) & QJF

1 otherwise 1 otherwise

As already, mentioned a lot of zeros are added in (4.9) and this results in the following:
Observe that for the A; as in (4.1) we have $\; € £(A+Y’). Moreover, either we have
S(Aj+e;) € e(A+Y) or §(Aj—e;) € e(A+Y), Wthh gives us either v(5(Aj+e;)) = v(5A;) or
(5 (\j—ei)) = B(§A;) for fixed i € {1,...,d} and j € {1,...,2%}. With this, always one
of the terms of the right hand side of (4 10) is zero and the other can be replaced in the
following way:

_ ~ p A) (A
- el 7P| [u(s)] [, 4ds < Z = Za ‘( (5(\j—ei)) —v(%()\j—i—ei))) @ei| 5(7])5;])
int )\GA+
(4.11)

The next step is interchanging the sum Y%, with the matrix norm | - |,,xq on the right
hand side of (4.11). Therefore, we set 729 (ei) == 1(0(5(\j—e€;)) — U(5(Aj+e;))) to shorten

notation and observe that for all i,k = 1,...,d we have (fg)\j(ei) ®ej)er = fg\j(ei)él-k. With
this the interchange is based on the following trivial calculation:

d

Z ‘(fe (61)@62 ek‘ i f J ZL: zd: fsj(ek)‘fn
ik=1 k=1 =
d d
1;‘; ef)], Z‘( (e)@e))e| . (412)

For A € R™*? and the orthonormal basis {ei,...,eq} of R? let | - {e1,....eq} denote the

matrix norm defined by |A|¥{’61 ea} = S°¢_, |Aex|?,. Then the following calculation yields
the desired interchange:

d d d

Z fE el ®el > Z fE el ®62 :Cl Z ‘(fa)\j(ez)(gez)ek’p
i1 mxd P €1,€d } Py m
d d
(412 Cq Z ’(ngj(e@) ® e@)ek‘p = C’l‘ ngj(el) R e; ?
k=1 =1 i=1 {e1,...eq}
d p
< CIC2‘Zf€ (el)®el )
i—1 xd
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where the norm equivalence in dimension md was exploited two times. For CP := C7C5
this estimate turns the right hand side of (4.11) into

od

) ) . SETEVIEY
() ads < €7 3 51 D2 HE(G N —e) — B(5(A+er) ) @ e Rebel
in j=1 1= m
t /\J€A+ 1 X
Replacing 53 by the integral over §(\;+Y") we finally end up with
[, &
P
<cr Z / S L(EG0 =) (5N +e)) ) @] 66 de
A i mxd
A€A+
d )\) P
=C? / 5 Lo(z—5ei) —v(z+5ei) ) @ e dx
Z (A+Y) ; 1,7 z,j s( 2 ) ( 2 )) xd
AeA+

— CPH ZR(Z

where we used U(z+5e;) = 0(5A;+5¢;) for € 5(\;+Y) C QF, which is valid for all func-
tions belonging to K. (27)™ due to their special structure. Replacing v by Vv concludes
the proof. O

P Q+)m><d

Since for v € KA ()™ C Wif(Q) the proof of compactness Theorem 5.2 in [3| relies on
the definition of REOO(U) € K.A(Q2)™*9 by the identity (4.4), in the next lemma we state
that the discrete gradient Re(v) € Ks A(QF)™*4 of ¢ fulfills a similar relation.

Lemma 4.4. For e >0 and for all v € K ()™ and every o € K o (Q7)™*? it holds

| Re@)@) ¢ @pda = = [ [os)] : o™ (), (4.13)

int

where ** € LY(R?) is the extension with 0 to R of the function ¢ € K (97 )™*4.

Proof. We start with rearranging the right hand side of (4.13). Since we are only testing
with functions ¢ € KA (Q7 )@ analogously to the proof of Lemma 4.3 the function
v € KA (Q)™ can be replaced by the extension v := (Vz(v)) € K.p(Q5)™

Let A € A and s € ¢(A+9Y). Then {{¢*™(s)}} # 0 implies s € I'f,, which is why the
domain of integration can be increased to Uyepe(A+9Y). Therefore, v € Koz ()™ needs
to be replaced by its extension 7 € K.z (RY)™ extending it with 0 to R?. Note, that
according to {{p®™(s)}} = 0 for s € 9QF the additional jump [0°%(s)] # 0 does not play
any role in the following calculations. On the right hand side of (4.14) below, every face of
a cell e(A+Y) is taken twice when summing up which is why this is an equality:

Jo BT s =3 3 [ (@ (o) hds. (419

NeA ()\+8Y)
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Analogously to the proof of Lemma 4.3 we calculate the integral which gives the factor
£9=1. Furthermore, the jump term of 7 and the mean value term of ¢ are replaced by
(0> (eX) — ~eX( ()\—}—ei))) ® €; and (9 (eX) + ¢ (e(A+e;))) for one face of e(A+Y) and
by (7°%(eA) — 0%(e(A—e;))) @ (—e;) and 3 (0™ (eX) + ™ (e(A—e;))) for the opposite one:

o BT s

=32 & Z( T(eN) = 0% (e(Mre:))) @ei : 5(9™(eN) + 9™ (e(A+er)))  (4.15a)

AEA =1

+ (=€) — TH(eN)®e; : 5 (¢ (e(A—es)) + ¢™(e))) ). (4.15b)

Now, the sums are interchanged and the translation A\* = A—e; is applied to line (4.15b)
for every ¢ = 1,...,d, such that we end up with

/FE [o(s)] : ™ (5) s

int

d
7 Z Z (U (eX) — 0™ (e(A+e€))) @ e (™ (eN) + ™ (e(M+ey))).  (4.16)

For rearranging the left hand side of (4.13) We introduce Y, = {y € Y : y—3¢; € Y}
(Y - [0, 1) = Ye, = [2’ ) [0’1)d_1) and f€ ( ) = 5( ($+262) _v(x__ez)) ® e; to

shorten notation. Since supp(¢) C Qz, again v can be replaced by ¥ := V.v on the left
hand side of (4.13), which leads to

R x)dr = / 4.17

| R:@@) =3 o ng dr, (417
AEAL

where we already used ¢(z) = p(e)) for z € e(A+Y) and A € AZ. Observing that

( (e(M+e;)) —0(eN)) ®e; if z € e(AYe,),
$ (@A) —O(e(A—ei))) ® e if 2 € e(A+Y\Ye,)

we are able to reformulate the right hand side of (4.17) by interchanging integration and
summation in the following way:

/ Re( % (x)dw
3 (@) ()
p Z (Lo oot [ 100 elerjae)
d
> 3L (B(e(Mren) — 5(eX) @ et p(eN) (4.184)
AeA; =1
+ 3L (B(eN) — Ble(\—ey))) @ € : p(eN). (4.18D)

Here, we already used, that fg(z) is constant on the domain of integration. Since p**(e\) = 0
for all A € A\A_, the first sum in (4.18) can be replaced by the sum of A € A. Afterwards,
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again the sums are interchanged and the translation A* = A—e; is applied to line (4.18b)
for every ¢ = 1,...,d, such that we end up with

/ Ry (v)(@) : ¢ (a)d
d 1 d
= e(Ae)) — 0 (eN)) @ e 1 (pF(eN) + ™ (e(A+e5))).  (4.19)
i=1 )\EA
Comparing (4.19) and (4.16) we find that (4.13) is valid. O

Now we are in the position to prove Theorem 4.1.

Proof. Here, we mainly follow the steps of the proof of Theorem 5.2 of [3| and explain the
main differences.

As already mentioned in [3], the distributional derivative Du of a broken Sobolev function
u € Wif(Q)m is given by

(Du, ) :/QVuzi/)dx—/Fg [u] : 9ds Vi € CR(Q)m7d, (4.20)

int
This can be seen by using integration by parts on each cell (A+Y).
Now, let (ve)eso C KA ()™ satisfy condition (4.7) of Theorem 4.1. Since L? is reflexive
(p € (1,00)), there exists a subsequence and limit elements vy € LP(Q)™, V € LP(Q)™*¢
such that vo — vg in LP(Q)™ and Rov. — Vp in LP(Q)™*9. The goal is to show that
2

vg € WHP(Q)™ with Dy = Vp. Using (4.20) for v. € Ko ()™ we find with ¢ € C°(Q)m*4
arbitrary but fixed

(Due, ) = —/FE [v] : wds. (4.21)

int

Choosing €9 > 0 so small such that supp(y)) C Q—ZO we are able to find a sequence
(9e)(0<e<ey) With o € Koa(Q7 )™*? such that |jth—¢S HLoo(Q mxda — 0 for e — 0. By
adding and subtracting ¢ we find with (4.21)

(Do) = = [ lolif{o—e s — [ [oel:fleepds

mt int
[ e s+ [ By (v)ede

int

_ /F [0 f{w— P ds + / R (v.): (¢ —v)da + / R:(v-)de  (4.22)

int

As we will see below, the first two terms of (4.22) are bounded by C|[t)— @ |y e (ymxa and
hence tend to 0 as € — 0. Therefore, since R, v — Vp in LP(Q)™*¢, we end up with
2

lim (Du., ) — / Vo:yds Ve € Co()md, (4.23)
e'—0 Q
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To show the boundedness of the first two terms of (4.22) we use Holder’s inequality to
conclude with Lemma 4.3

|- /F el s e Des| < el g ymeal K90 Bl (g o

int
int

p—1 1
<ev’ HRg(Ue)HLp(Qj)mxd”w_SOgX”LOO(Q)mxdarea(ant)p/

1
< 1R (00) | gy a 0= 6 I oy (Aol (2 )7

and
| /Q Rs(ve) : (¢ = )da| < [ Ry () ooty |68 =0

1
7

< ||R% (UE) ||Lp(gj)m><d HSDgX—T,Z)HLoo(Q)mxdvol(Q) P,

Here, we already used area(I,,) < dvol(Q)e~!, which is valid since area(I'%,,) is bounded

int
by the product of the number of cells contained in QF, which is vol(2)e~¢, and the volume

of the part of I'f,, contained in one cell, which is de¢~!. With this, the assumed uniform

bound of the term || Rz (v5)|]Lp(QE+)mxd yields the result.

On the other hand using the definition of the distributional derivative of v € K. (£2)™
and vy — v in LP(Q)™, we have

lim (Do, 9) = lim — [ v - divide = — / vo-divgpdzr Vo € CR(Q)ML (4.24)
e’—0 0 0

e’'—=0
Now, combining (4.23) and (4.24) we obtain
/ Vo : dodz = —/ v - divibde Vb € CR(Q)™<,
Q Q

which gives us vg € WHP(Q2)™ and Dy = V.

Finally, we use the fact that v — vg in BV(Q)™ implies v — wvo in LY(Q)™ in or-
der to conclude v.r — wvg in LI(Q)™ for every ¢ € [1,p*). Thereby we use the following
interpolation inequality obtained by Holder’s inequality for every 6 € (0,1):

—0 0
l[ve—vollLa(@ym < Hve—voHiP* (Q)m ”Ua—UOHLl(Q)m

and the term |[ve—vo||p* (q)m is bounded due to the following Sobolev-Poincare inequality
proved in Theorem 4.1 of [3] and Lemma 4.3:

1
p
[0l (@ym < Cs (Hvellum)m + </F 61p|[[vs(8)]]lpd8> ) :

This finishes the proof. U

Definition 4.5 (Projector to piecewise constant functions). Let ¢ > 0 and p € [1,00).
The projector P. : LP(R%) — K. (R?) to piecewise constant functions is defined via

Pow(z) = J§f5<x>+€yw<5)d5’

where f, g(a)da := VO+(A) [ 9(a)da is the average of the function g over A and A : RY —
e\ maps every point z € e(A+Y) C RY to the lattice point eX € eA.
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Remark 4.6. Note, that the mapping AV : R* — A is well-defined for arbitrary choices of
Y, as long as Uyea(A+Y) =R% and (A1 +Y) N (A2 +Y) = 0 for all A\; # Ay are fulfilled.
In this way N: : R? — A does not depend on the choice of Y, so we do not need to worry
about it in the following sections.

Moreover note, that Vo ((P.w™)[q) = (P-w™)|q+ for w € LP(Q).

Theorem 4.7 (Approximation result). For every function vy € WHP(Q)™ there exists a
sequence (Vz)e>0 C KA (2)™ so that

1 (o —ve @y + 1(20)™ = Rs (06 ) = 0. (4.25)

Proof. Choose g9 > 0 and § > 0 such that for all ¢ € (0,e9) we have QF C Bs(Q).
Here, Bs(f2) denotes a é-neighborhood of Q. Let vy € C*®(Q)™ N WIP(Q)™ and vy €
W(l]