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1 Introduction

In [20], A. P. Magnus introduced a class of polynomialsorthogonal with respect to a positive

measure u(z), consisting of those for which the corresponding Stieltjes function S

S(z) = /S dp(t) )

upp.pp T~

satisfies a general Riccati equation

S((s+35)) =S (@(s—3))

Py PR Y pa _ Bo(m(s))5<x<s+%>> S<x<s—%)> 2)

S(x(s+1) b (= =3) | poas)).

Ao (x(s))

+ Co(x(s))

Here Ag, By, Cp and Dy are polynomials of maximum degree k+2, k+2, k+1 and k (k € Z),

respectively, and x(s) is a complex-valued discrete variable function satisfying the relation

F (ac(s),x (s— %)) _F (x(s),x (s+ %)) —0, s €7, ()

where F' is a two variable quadratic polynomial
F(z,y) =az>+2bxy+cy? +2dx+2ey+ f (4)

with a, b, ¢, d, e, f € C.
From (3) and (4) it follows that

o(s+3) = Pal)+ VDI, 2 (s - 3 ) = Plats) - VAE), 5)

where P and @) are polynomials of degree at most 1 and 2 respectively.
From (5) one derives the following most important canonical forms for z(s) by order of

increasing complexity:

"(s) = (0] ©)
os) = s )
os) = g ®
o) = L2 )

They correspond to

12
Q) = 0.P(s) =i Q) = 1. Pla) = i Q) = Ut Pl = U5 s ()
_(@—1) _(@+1)
Q) = L @ 1), Py = s

respectively.



This class of orthogonal polynomials is called Laguerre-Hahn (LH) orthogonal polynomi-
als (OP) of class k on special nonuniform lattices [20] (to mean here the discrete set of points
(z(s),z(s— %)), (x(s),z(s+3)), s € Zy, lying on the conic F(z,y) = 0).

According to that the form of z(s) is given by (6)-(9), one distinguishes the continuous
LH polynomials and the LH polynomials on linear (uniform), g-linear and g-nonlinear lattices
respectively. Clearly, in the continuous case, corresponding to (6), the Riccati equation (2) reads
[19] (see also [7])

Ao(z) - Sor) = Bo() §3(2) + Colz) So(a) + Do(). ()

The class of LH polynomials contains as a particular case, the important subclass of the semi-
classical orthogonal polynomials when By = 0 [20, 22, 23, 24].

The Laguerre-Hahn orthogonal polynomials on the special nonuniform lattices appear to
be a natural generalization of the “classical” orthogonal polynomials (from the “very classical”
orthogonal polynomials -Hermite, Laguerre and Jacobi - up to the Askey-Wilson polynomi-
als[1]). More precisely, when By = 0 and & = 0, the LH polynomials are essentially the
polynomials introduced by R. Askey and J. Wilson [1] and their particular limiting cases in the
Nikiforov-Suslov-Uvarov tableau [27]: Classical orthogonal polynomials of continuous, discrete
and g¢-discrete variables.

Nowadays most of known orthogonal polynomials are classified in the LH group. Let us
note that despite the undeniable importance of this class of orthogonal polynomials, not much
analytic properties are known for them.

Among known properties, we can firstly state the invariance of the class in rapport with the
r-association operation as was proved by A. P. Magnus [20]. Difference-recurrence relations for
the LH polynomials were also derived in [20].

The fourth-order difference equation (FODE) satisfied by the polynomials of the LH class
and the polynomials r-associated to them can be found in [2] (see also [10, 11] for the particular
cases x(s) = s and z(s) = ¢°). Also, the factorization and the solution of the fourth-order
differential, difference and ¢-difference equations satisfied by the LH orthogonal polynomials
obtained by the association operation or the finite modification of the recurrence coefficients of
classical orthogonal polynomials were recently obtained [12, 14, 15].

The so-called Laguerre-Freud (LF) equations for the recurrence coefficients (that is two
nonlinear difference equations for those coefficients), were given for the semi-classical orthogonal
polynomials of class one in [5, 8, 9] for continuous, discrete and g-discrete variables respectively.
Also, these equations for the LH orthogonal polynomials were given in [6] for & = 0 and for
continuous variable, and more recently in [2] for k =1, z(s) = s.

As far as we are aware of, all contributions in deriving the LF equations for the LH poly-

nomials, existing in the literature, are limited to the cases k = 1 and z(s) = z(0), z(s) = s or

x(s) = ¢°.



In this work, we derive the LF equations for the LH orthogonal polynomials in the most
general cases that is for k general and x(s) general. More precisely, in section 2, we give an
algorithm which allows to derive the equations for any nonnegative integer k and any function
x(s) satisfying (3) and (5) and then we deduce an upper bound for the order of these equations
and finally in section 3, we give illustrative applications.

The Laguerre-Freud equations provide a systematic way to compute recursively the recur-
rence coefficients and can be used to analyze the asymptotic behavior of these coefficients [16, 30].
From the asymptotic behavior of the coefficients, one can deduce the asymptotic zero distribu-
tion of the corresponding orthogonal polynomials using for example results from [18] and can

also obtain information about the largest zero of these polynomials.

2 The Laguerre-Freud equations

Let {P,(z)} be a family of orthogonal polynomials. They satisfy a three-term recurrence relation
x Pp(x) = ant+1 Poy1(x) + by, Po(x) + ap Pr—i1(x), n > 1, P_1(z) =0, Py(x) =1, (12)

where b, and a,, are complex numbers with a,, # 0, n > 1.
For the corresponding monic orthogonal polynomials (i.e. ]5”(33) =z +...), the recurrence

relation is

xﬁ’n(:z) = Pn+1($) + Bn Pn(x) + M ﬁnfl(@a n=1, ]5,1(30) =0, Py(z) =1, (13)
where (3, = by, Vn = a2 and .:f’n(:c) =ajag ... ayPy(z).
We assume that {P,(z)} belongs to the LH class, that is, its formal Stieltjes function S(x)
given in (1) satisfies (2). The family of polynomials r-associated to { P,,(x)} is the family denoted
by {PT(LT) (z)} and satisfying

¢ P(2) = tnirer PO () 4 boger PSO(@) + e POy (2), 0> 1, P (2) = 0, B{P(@) = 1.
(14)
The polynomials {P7(f) ()}, according to Favard’s Theorem are orthogonal. Let S,(z) be its
corresponding Stieltjes function. One verifies easily that {qu,r) (x)} is of LH class if {P,(z)} is.
In fact, let’s first recall that {P,(x)} which is the 0-associated of {P,(z)} is a LH polynomials
family. Next we assume that for given nonnegative integer r, {PTET) (z)} is a LH polynomials

family; therefore, S, (x) satisfies

A(a(s) 2 (:Ux(z:fi; :jr(i‘”_(;_ 2)) _ B, (x(s)) Sy <m <s+ %)) S, (x (s— %)) (15)
Sr(z(5+3)) —;Sr (@ (s—3

+ Cr(z(s))

where A,, B, C; and D, are polynomials in x of maximum degree k 4+ 2, k+ 2, kK + 1 and k

respectively, for a fixed nonnegative integer k.



Use of the relation
1

r—by — a%H Sr41(x)

as well as (5) transforms the Riccati difference equation (15) for S,(z) into a Riccati difference

Sp(z) = , >0, (16)

equation for S,4;(x)

ot SRS s () (-2

#Crfatey) TN IS CZD) ), (7)
with
Ara(e) = Ar(x) ~2Q() Dila): (18)
Bri(z) = alyy Dp(); (19)
Crirl@) = ~Colw) = 2(P() — by) Dy (a); (20)
@aDrsa(@) = Aw) + (P(2) = b) Co(e) + 2Dy s (2) + (P(2) ~ be)? — Q@) Dyla), v > 1

Note that the previous equation for r = 0 reads
ai Di(z) = Ao(z) + (P(x) — bo) Co(x) + Bo(z) + (P(z) — bo)* — Q(x)) Do(z).  (22)

From (18)-(21), it follows that, like A,, B,, C, and D,, the functions A,;1, By41, Cr41 and
D,.11 are polynomials in x of degree at most k+ 2, k+ 2, k+ 1 and k respectively, which proves
that the {Py)} are polynomials of the Laguerre-Hahn type.

The equations (18)-(21) (obtained at first in [20]) which initially constitute an iteration
relation for the association operation, play a central role in the LH theory. Starting from
them, one derives the difference-recurrence relations for the LH polynomials [20] and then the
fourth-order difference equation that they satisfy [2]. Interesting interconnection between the
LH polynomials and the factorization method are also deduced from (18)-(21) (see [3]).

In the following, we analyze the previous equations in order to derive the two nonlinear
difference equations for 3, and ~, (the Laguerre-Freud equations).

From now on, we will use the following notations:

Br =br, = a,%. (23)
Moreover, for clarity, we write n instead of r since they both take the same values: 1, 2, 3, .. ..

This allows to encounter the usual index representation for the recurrence coefficients.

2.1 Difference equations for the coefficients of A,,, C,, and D,

First write

) k41 k
An(x) =) ai(n)a’, Cu(x) =) ci(n)a’, Du(x) = di(n)a’, P(x) = pra+po, Q(x) = q22°+q1 2440,
i=0 i=0 i=0

(24)



in equations (18), (20) and (21) respectively. Then we collect the coefficients of the monomials

2’ in each equation and get respectively three families of difference equations (Af)g§i§k+2,

(CF)o<ick+1 and (DF)o<icpio

A¥ain+1)—ai(n) +2qdi—2(n) +2q1 di—1(n) +2qodi(n) =0, 0 < i < k +2; (25)
CF:cin+1)+ci(n)+2p1di—i(n) +2(po— Bn)di(n) =0, 0<i < k+1; (26)

D+ ai(n) +p1cioi(n) + (po — Bn) ci(n) = g1 di(n + 1)+ di(n — 1) + (p — g2) di—a(n)
+(2p1po — 21 B — @1) di—1(n) + ((po — Bn)?* — q0) di(n) =0, 0 < i < k+2. (27)

Here, it is understood that

0 if n>1and i < 0;
ciln)=0fori<Oori>k+1; and v, di(n—1) = 0 if n>1andi>k; (28)
bi(0) ifn=0and0<i<k+2.

The equations (25)-(27) form a system of 3k + 8 equations in 3%k + 8 unknowns which are
the 3k + 6 coefficients of A, (z), Cy,(x) and D,,(z) and the recurrence coefficients (3, and ~,.
The leading idea consists in eliminating successively the first 3k + 6 unknowns (coefficients of
Ap(z), Cp(z) and Dy,(x)) so that the remaining two equations, containing only the 3, and -y,
will provide the desired Laguerre-Freud equations. But besides the algebraic character of the
equations, we need to consider also the difference one (in n and 7). The clue of the solution

carries in a permanent combination of techniques of both kinds.

2.2 Elimination of the a, and ¢;

In the first step, we take the difference derivative of (27) (to mean here: subtract (27) from the
equation obtained from it by replacing n by n + 1) and use (25) to eliminate a; and next (26)

to eliminate ¢;(n + 1) and ¢;—1(n + 1)

—(=2po + Brt1 + Bn) ci(n) +2p1ci—1(n)

+ (—Ynt1 + 0 +3P0> — 4D0 B + Bn® — 2 Bnt1P0 + 2 Bt1 Br) di(n) + Y di(n — 1)

+ (=po® + 2 Bnt1 00 — Bur1® + 0 — Yny1) di(n + 1) + Ynya di(n + 2) (29)
+ (6p1po — 4p1 Bn + @1 — 2p1 Bpt1) di—1(n) + (=2p1po + 2p1 Boy1 + 1) dima1(n+ 1)
+3p1® + @) dia(n) + (—p1” + q2) di2(n+1) = 0.

In the second step, we solve the previous equation in terms of ¢;(n) and replace the expression
of ¢;(n) obtained in (26) for n and n+ 1. We then get an equation without ¢;(n) but containing
¢i—1(n) and ¢;—1(n + 1). Next, we eliminate the term ¢;_1(n + 1) in this equation by using (26)

for ¢ — 1, and get an equation which can be written as

(Bnt2 — Bn) ci—1(n) = ei(n), (30)



where e;(n) is function of the 8,, v, and the d;.
Finally, using the previous equation for ¢ and i + 1 in (29), we get the following equation

without the ¢; (after some computations with Maple 8 [26]),

EFY . —(2p0 — Bus1 — Bn) sz disi(n+3)

+(=2po + Btz + Bnt1) Y dix1(n — 1) + (2yn+2 po

— Ynt2 Brt1 — Ynt2 Bn + Q0 Bn + Brt2 Bt + 2Vn41 0 — Ynt1 Bnt2 — Ynt1 Bnrt — 400
+ G0 Btz + 290 Bntt + 3p0” Btz + 60° Bus1 + 310 B — 2 Bs1” Po + Brt1” Bn

— 481190 Btz + 2 Brt1 B Btz — 490° — 290 B Btz — 400 B Bng1)dip1(n + 1) +

(2P0° = Po” Brt1 — Po” Brn — 490” Brs2 + 2 Bt Po Btz + 2P0 Bn Bntz + 2 Brr2” po

— B2 Bt — Bns2® Bn — 200 p0 + 40 Brt1 + 40 B — v B + Ytz Bng2)dig1(n + 2) +
(—Ynt1 Bntz — 200 P0 + Q0 Brs2 + 40 Bt — Po” Bnt2 — Po° Brt1 — 410° Bn + 2 B po

— Bn” Bz = Bn” Bt + Ynt1 B+ 200° + 200 B Bz + 200 Bn Bnt1)dir1(n)

— 2p1 Vs di(n + 3) + (6 p1 po” — 8110 B — 21 Brt1 Po — 291 Po Bnt2 — 21 Do

+ @1 Bt + 291 Bn Btz — 201 Q0 + 291 Bn® + @1 Bntz + 21 Brs1 B)di(n)

— 279, p1di(n — 1) + (=121 po® + 6 p1 Po Brt2 + 12p1 Bas1Po + 6p1po B — 4110 (31)
+2q1 Bnt1 — 21 Bn Bnv2 — 4P1 Bt B + @1 Btz — 401 Bnt1 Bny2 + 201 Y42 — 401 qo
—2p1 Brg1” 4 21 g1 + @1 Ba)di(n+ 1) + (6p1 po” — 2p1 By1 10 — 2p1 Po B — 8110 Buya
—2q1P0 + @1 Bnt1 + 201 Bn Btz + 291 Bt Butz — 291 Qo + 21 Bur2® + a1 Bn)di(n + 2)
+(6p1°po — 2q2p0 — P1° Bt — 4p1° Brg2 + @2 Bn + @2 Bnr1 — 211 — p1” Br) dica(n + 2)
+ (6p1%P0 —2q2p0 — 2P1 @1 — P1° Bt — P17 B2 + @2 B — 4p12 Bu + 42 But2) di—1(n)
+ (=4 q2p0 — 12p1° po + 6 p1° Brg1 +2¢2 Bt + G2 B + 3p1” B — 4p1 g1 + 3p1” Brsa

+ @2 Bng2)dic1(n 4+ 1) — 2 (=p1® + q2) p1 di—a(n + 2) — 2(—p1® + q2) p1 di—2(n)

—4(p1® + q2) prdi—a(n+1) = 0.

The previous equation, which we call Ezk %' is valid for 0 < i < k+2 and contains only the terms
Brs Brtts Brt2s Yy Yntl, Ynt2s Tnt3s di—2(n), di—a(n+ 1), di—2(n + 2),
di,l(n), difl(n + 1), difl(n + 2), dz(n — 1), dl(n)7 dl(n + 1), dz(n + 2), dl(n + 3),
diy1(n —1), dit1(n), dit1(n+ 1), diy1(n +2), dip1(n + 3).

When i takes the values 0, 1,..., k+2in Ef 0 we get k+ 3 equations for k+ 3 unknowns which
are Oy, vn, and the dj(n), 0 < j < k.

2.3 Derivation of the Laguerre-Freud equations for k£ =1

We write and analyze the equations Eil’0 for 0 <4 < 3. Taking &k =1 in (31) and taking into
account (28), equations Eil’0 for 0 <i < 3 read



By (p2— @) di(n+2) —2(pi2 + @) di(n+ 1) + (p1% — g2) di(n) = 0; (32)

Ey°: (6p1%po —2a2p0 — p1% Bt — 4917 Basz + @2 Bar1 — 212 B + @2 B — 2p1 1) di(n + 2)
+(6p1%po — 2200 — P1° Brs1 + @2 Bnt1 — P1° Btz + @2 Bvz — 4p1° B — 2p1 1) d1(n)
+(—4a2p0 — 12p1% po — 4p1 @1 + 3p1% Btz + @2 Bata + 3912 Ba (33)
+2¢2 Bt1 + @2 Bn + 617 Brr1)di(n + 1) — 2 (—p1® + g2) p1 do(n + 2)

—2(=p1® + @2) p1do(n) — 4 (p1* + @2) prdo(n + 1) = 0;

B —2p1ynysdi(n43) + (6p1 po? — 2p1 o Btz — 89100 Bn — 241 Do — 21 Bas1 Do
+2p1 Bn” + 21 B Btz + @1 Brt2 + @1 Bt — 2P1 Qo + 21 Br1 B)da(n)
—2p1 Y di(n — 1) + (=12p1 po® + 6 p1 po Bnta + 61 Po B — 4 q1 Po
+ 121 Brs1P0 — 291 Brs1® — 201 B Buvz + @1 B — 491 Bt Bns2
+2p1Ynr1 + @1 Bnr2 +2¢1 Bnr1 + 2p1 Ynr2 — 40190 — 4p1 Bug1 Bu)di(n + 1) (34)
+ (610> — 8P1D0 Btz — 2¢1 o — 21 Brt1 Po — 2P1 1o Bn
+ 1 Brt1 + 41 B — 2P1 Q0 + 21 Brt1 Bz + 201 B Btz + 2p1 Bng2’)di(n + 2)
+ (6p1°po — 2q2p0 — P1° Bra1 — 4P1° Brta + @2 Bt — P17 B + @2 B — 2p1 1) do(n + 2)
+ (6p1°po — 2q2p0 — P1° Brs1 + 42 Bt — P1” Brt2 + @2 Btz — 4p1° B — 2p1 q1)do(n)
+ (=4 q2p0 — 12p1° po — 4p1 @1 + 3p1” Btz + @2 Bngz + 3p1” Br
+ 22 Brs1 + @2 Bn + 691 Brg1)do(n + 1) = 0;

Ey”: —Yn+3 (200 = Bt — Bn) di(n +3) + 9 (=20 + Bz + Bos1) di(n — 1)
+(—2P0 Bn Btz + 2 Bt Bn Btz + Bs1” B — 2 Bns1” Po — 4 Bnt1 Po Bnsa
—4p0° + 2V 4120 = Ynt1 Btz — Y1 Bur1 — 44010 + Q0 Bur2 + 240 B
+3p0% Bntz + 600° Bt +3p0” B — 490 B Bt — Ynt2 Brt1 + 0 B
+ Bnt2 Bnt1”® = Ynt2 Bn + 2mr2po)di(n+ 1) + (2po° — po® Bur1 —po° B (35)
— 4p0° Btz + 2 But1 Do Bntz + 210 B Brsz + 2 Bnt2’ Po — Buta® Bnt
— Bnt2” Bn — 2000 + G0 Brt1 + 40 B — Ynt2 B + Ynt2 Bny2)di(n + 2)
+ (2P0 B Btz + Ynt1 Bn — B Brtt +2D0° — Ynt1 Bnrz — 20 po + @0 Btz
+ G0 Bt — P0° Brsz — P0” Bt — 4D0° B + 2 80 po — Bn” Brra
+2p0 Bn Brt1)di(n) — 2p1 Yngs do(n + 3) + (6 p1po” — 2p1 o Bt



— 8p110Bn — 2100 — 291 Bas1D0 + 201 Bn” + 291 Bn Brrz + @1 Bnt

+ 1 Bnt1 — 2p1 G0 + 21 Bnt1 Bu)do(n) — 2p1 v do(n — 1) + (=12 p1 po?
+ 6190 Btz +6P1P0 B — 4q1p0 + 121 Brs1P0 — 21 Brs1”

— 21 Br Brt2 + @1 Bn — 4P1 Bt B2 + 201 Vo1 + @1 Brte +2¢1 Bt
+2p1Ynr2 — 4p1go — 4p1 By Bn)do(n + 1) + (6 p1 po* — 8p1 po Bure
—2q1po — 2p1 Br+1P0 — 2p1P0 Bn + @1 Brt1 + @1 Bn — 2190

+2p1 But1 Brra + 21 B Brya + 21 Bry2’)do(n +2) = 0.

2.3.1 Elimination of d;(n)

From the expressions of polynomials P and @ (see (10)), one remarks that (32) determines
uniquely the coefficient d;(n) in terms of the two initial values d;(0) and d;(1). The term d;(1)
is obtained by taking i = 1, n = 0 in (27) and using (22) and (23)

vdi(1) = a1(0) + b1(0) + p1co(0) + (po — Bo) e1(0) + ((po — Bo)*> — qo) d1(0)  (36)

+(2p1po — 2p1 o — q1) do(0).

Remark 1 In the following, we use the notation

Fik’s (n, {dr(n + J) }jmur orr=i—2,i41 {Bntiti=usswes {Mn+jtizuses) , 0 < s <2,0<i <k +2

to mean that Fik’s is a function of n and the variables d,(n 4+ j),u1 < j < wv,i—2 < r <
i+ 15 Bntg, uz < J <02, Yoty uz < J < vz, where uq, ug, uz, v1, v2 and vy are well specified

integers. Also, the Fik’s is supposed linear in the variables d,(n+j), u1 < j <wq, i—2 <r <i+1.

2.3.2 Elimination of dy(n — 1) and dy(n + 3)

Equation (35) contains the terms dog(n — 1) and dy(n + 3) which we would like to eliminate in
order to keep only n, n + 1 and n + 2 as arguments of dy. To do so, we proceed as follows.

Equation (33) can be written as (assuming that dj(n) is known)

T(do(n)) = Fy (n, {Busj}j=oz2), (37)

where T is the second-order difference operator acting on a function f(n) as

T(f(n)) = (T — a2) f(n +2) = 2(p + @2) f(n+1) + (T — @2) f(n). (38)

From (37), we express do(n — 1) and do(n + 3) in terms of the f,,, and do(n +j), 7 =0,1,2 (by
replacing n by n — 1 and n + 1 respectively in (37))

do(n—1) = Fy' (n,{do(n+j)}j=01, {Bnsitie—1,1); (39)
do(n+3) = Fy?*(n,{do(n+5)}j=12, {Busj}i=13)- (40)



Equation (34) can be written as

FI (n, {do(n + )} j=0.2, {Bntiti=02s {n+i}i=03) =0, (41)

and (35) as
Fy ¥ (n, {do(n + §)}j——1,3+ {Bnts}i—02s {9nss}jm03) = 0. (42)

The previous equation contains dg(n — 1) and dy(n + 3), terms which we eliminate by putting
(39) and (40) in (42) to obtain

Ey® (n, {do(n + ) }j=02, {Bnts}ti=13, {Its}i=03) = 0. (43)

2.3.3 Elimination of dy(n), do(n + 1) and dy(n + 2)

In the final step, to eliminate the variables dy(n), do(n+1) and dp(n+2) and obtain the desired

Laguerre-Freud, we proceed as follows. We write equations (37), (41) and (43) respectively in

the forms
f3(n)do(n +2) + fi(n) do(n +1) + f3(n) do(n) = ga(n), (44)
f2(n)do(n+2) + fi(n) do(n+ 1) + f5(n) do(n) = g1(n), (45)
f2(n) do(n+2) + f7(n) do(n+ 1) + f3 (n) do(n) = go(n), (46)

where f;(n) and g;(n) are functions of the variables {3,+;}j=—1,3, and {Vn4;}j=0,3

Next, we solve the last three equations with respect to the unknowns do(n + j), 7 =0, 1, 2

do(n+2) = Ga(n, {Bntjli=—13 {Tn+i}i=03); (47)
do(n+1) = Gi(n, {Bn+j}ti=—13, {In+jtj=03); (48)
do(n) = Go(n, {Bn+j}j=—13, {Tn+j}i=03) - (49)

Finally, comparison of (47) with (48), and (48) with (49) leads to the Laguerre-Freud equations

for class k = 1:
Gi(n+1, {Bntjtj=045 {mntjtj=14) = Ga(n, {Bnijti=—13, {1m+i}j=03); (50)
Go (n+ 1, {Bn+jtj=04: {m+iti=14) = G1(n, {Bntjti=13: {Mn+s}i=03) - (51)

Remark 2 From the two last equations and the above procedure, one remarks that the order of

the difference equations (50) and (51) are at most 5 and 4 for the variables (3, and ~y, respectively.

2.4 Derivation of the Laguerre-Freud equations for generic &

2.4.1 Formalization of the difference equations Ef’o, 0<i<k+2

Taking into account (28), one remarks that equation (31) takes one of the five following forms:
Form 1: i =k+2
k,0
By T(de(n)) =0, (52)
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where T is given by (38). Equation (52) is identical to (32); therefore, similarly to what was
mentioned in subsection 2.3.1, di(n) is uniquely determined in terms of the initial values di(0)

and dg(1). The last term being obtained by taking i = k, n = 0 in (27) and using (22) and (23)

Y de(1) = ar(0) + b(0) + p1 ck—1(0) + (po — Bo) e (0) + (po — Bo)* — q0) di(0)  (53)
+(2p1po — 2p1 Bo — q1) dk—1(0) + (pT — g2) dx—2(0).

Form 2: i=k+1

EPY s T(dio1(n) = Fp0 (ny (Buti)i—o2) » (54)

where T is given by (38). It should be noticed that we don’t mention dg(n) because it is assumed
to be known.

Form 3: 2 <3 <k

EM . T(di—a(n)) = (55)

EPY (n, {dici(n+ 7)Y j=o.2, {di(n+ 5)}j=—13, {dis1(n + )} jmm13, (Buti)jm02s {7nti}im0.3) -

Form4: i=1

EFY . BP0 (n, {do(n + 5)}j=02, {di(n+ j)}jm—13, {da(n+ )} j=—13, {Bnss}j=0.2, {nri}j=03) = 0.
(56)

Form 5: 1=0

EYY: FyO (n, {do(n+ )} jm—13, {di(n+ 5)}i=—13, {Bnti}im02s {nts}i—03) = 0. (57)

Remark 3 Equations (54), (55) for 2 < i < k, (56) and (57) constitute a system of k + 2
equations for k + 2 unknowns which are d;(n), 0 < i < k—1 and B, and 7,. Also, equations
(55)-(57) contain the terms d;(n + j) and diz1(n+j) forj=—1o0rj=3,0<i<k—1. The

next subsection is devoted at eliminating these terms.

For illustration, below we give explicitly equations (54), and (55) for i = k.

E,]jfl : (=6p1°po+2q2p0 + 2p1 @1 + P12 Bt — @2 Bat1 + P12 Btz — @2 Btz + 4p12 Ba) di(n)
+(12p1° po +4q2p0 — 6p1° Bus1 — G2 Bntz — @2 B — 242 Bns
+4p1 g1 — 3p1? Busz — 3p1° Bu)die(n + 1) (58)
+(=6p1°po + 2q2p0 + 21 q1 + P1° Bn + 4017 Btz — @2 Bt + 17 Bs1 — @2 Bn) di(n + 2)
—2(p1® — @) prdi—1(n) +4 (g2 + p1°) prdp—1(n+ 1) = 2(p1* — q2) p1 de—1(n + 2) = 0;
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EX%: (=6 p1po + 8190 Bn + 201 Bt Po + 291 Po Btz + 24190 — 2D1 Bt Bn + 2D1 G0 — 41 Bus
—2p1 B0® — @1 Bnt1 — 21 Bn Brt2)die(n) + 29m p1 di(n — 1) + (12 p1 po® — 6 p1 po Fns2
— 121 But1po + 44110 — 6110 B — ¢t B + 21 Bt — 21 Bt + 411 q0
—2p1 V1 +2p1 B Bora + 41 Batt Brrz + 401 Brt1 Bn — @1 Butz — 21 Ynt2) (59)
di(n+ 1) + (=6 p1 po® + 8p1 Po Btz + 211 Brg1 Po + 211 D0 Bn + 261 o — 21 B Bnta
—q1 B0 +2p1 G0 — 2P1 Bnt2” — q1 Bt — 291 Butt Bnt2)de(n +2) + 2p1 Yy di(n + 3)
+ (=6p1*po+2q2p0 + 2p1 @1 + P1° Bt — @2 Bngt + P17 Btz — @2 Bnta + 4p1” Bn)
dp—1(n) + (12p1° po + 42 po — 6p1° Brs1 — @2 Bnr2 — ¢2 Bn — 202 Bnr1 + 41 @1
—3p1° Bt — 3p1% Bu)dr—1(n + 1) +
+(=6p1°po + 24210 + 2p1 q1 + P1° Bn + 4017 Btz — @2 Bug1 + D17 Brst — @2 Bn)di—1(n + 2)
—2(p1® — q2) prdi—2(n) + 4 (g2 + p1*) prdig_a(n+1)
—2(p1® — q2) p1dj—2(n+2) = 0.

2.4.2 Elimination of d;(n — 1) and d;(n+3) for 0 <i <k —1
Step 1: Elimination of d;_1(n — 1) and dj_1(n + 3)
Starting from (54), we express dx_1(n—1) and di_1(n+3) in terms of the 3, and di_1(n+7), j =
0,1,2 (by replacing n by n — 1 and n + 1 respectively in (54) )
dia(n=1) = Fy (0 {dea(n+ D=0, (Buishi=-11); (60)
dio1(n+3) = F2 (0 {dei(n+5)}jm12, {Batiti=1)-

Step 2: Elimination of di_s(n — 1) and dy_2(n + 3)
Equation (55) for i = k

T(dj—2(n)) = F*° (n, {dk—1(n + j)}i=02: (Butj)j=0.2s {¥nri}i=03) (61)

contains no term d; with the arguments n — 1 or n + 3. Use of this equation with n replaced by

n — 1 and n + 1 gives respectively

di—2(n—1) = (62)
FPY (n, {d—a(n + 5)} =01, {dr1(n + 7)Y j=—11, {Bntjtie—11s { g tim—12);
dg—2(n+3) =

FP? (n, {di—a(n + )} je1.2, {de1(n + §) =13, {Bntsbim1,30 (Vs bim1,4) -

3

We eliminate the terms di_1(n — 1) and di_1(n + 3) in the previous equations using (60)

and get
dg—2(n—1) = (63)
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P (n, {dp—a(n+ ) }imo,1, {dk—1(n + §)}j=0.1, {Bnsstim=—1,1 {Mntstim—12) 3
dk,g(n + 3) =
EF2 (n, {dp—o(n + ) }jm12, {di1(n+ 3)}jm13, {Bnsitimss {nsstim1a) -

Step 3: Elimination of d;_3(n — 1) and di_3(n + 3)
Equation (55) for i =k —1

T(dp—3(n)) = Fp° (n, {dp—a(n + 5)}j—0.2, {dn-1(n + §)}j——13, (Bnss)jm02: {Tn+i}ti=03)
(64)

contains the terms dy_1(n — 1) and di_1(n + 3) and is transformed using (60) into

T(di—3(n)) = F") (n, {dp—2(n+ 5)}j=02, {dr-1(n + 3)}j=0.2, (Bnts)j=—13, {n+s}i=03) -
(65)
In a similar way as in the step 2, we derive from the previous equation using (60) and (63)
dk,g(n - 1) = (66)
M (n, {di—s(n + §) Y=ot {di—a(n + §) im0, {dk-1(n+ ) }imo,1s {Butitim—2.2, {ntitim—12)
dk_g(n + 3) =
EP? (ny{di—3(n + 5)}j=1,2, {di—a(n+ §)}jmr20 {de—1(n + 5)}im1.2, {1Bntsbicoas {vntitizia) -
Step 4: Elimination of d;_4(n — 1) and dj_4(n + 3)
Similar approach transforms equation (55) for i = k — 2 into the equations
T(dp-a(n)) = F%(n, {di-s(n+5)}j=02, {dk—2(n+j)}j=02, {di1(n+j)}j=op2,
{Brtiti=—13 {¥ntiti=—14) (67)

which when used together with (60), (63) and (66) yields

dy—a(n—1) = E7 (n, {dp_a(n+ 5)}i—01, {dr—s(n+ §)}jmo1. {dk—2(n + §)}j=0.1, {di—1(n + 5)}=0,1,
Brtjti=—2.2{m+jti=—23); (68)
dr_a(n+3) = E° (n,{dp_a(n+ j)}jm12, {drs(n+ 5)}j=12, {de2(n+ ) }im12, {de1(n+ 5)}j=1.2,

{Bn+sti=0.a: {1n+sti=05) -
Step 5: Elimination of d;(n — 1) and d;(n+3) for 0 <i <k —2

Repeating the proceed, we get from (31) two different generalizations:

First case:

For given integer [ satisfying 1 < [ < [%], where [x] means the integer part of x, we have

T(dp—2:(n)) = EF%, 0 (n {dk—2ii1(n+5)}jm02, {dk—2ira(n+j)}j—02, {dr—2ir3(n+j)}j=02,

{Bnriti=1-t140 {mritj=1-1241) 5 (69)
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and

dp—21(n—1) = F;f’_lgprg (n, {dk—21(n 4+ 7)}j=0,1 {dk—2141(n + j) }j=0,1, {dr—2112(n+7)}i=0,1,
{dr—2143(n 4 5)}j=0,15 {Bnvitim=—10s {Vntiti=—1,141) ; (70)
dg—21(n+3) = F;fi22l+2 (n, {dk—21(n + j) =12 {dk—2141(n + ) }j=1,2, {dk—2142(n + j)}j=1.2,

{dk—2113(n + j)}j=12, {Bn+jti=2—12+1, {Vn+jti=2-13+1) -

Second case:

For given integer [ satisfying 1 < [ < [%], we have

T(dk—2i-1(n)) = F:’,OQ[H (n, {dr—21(n + J) }j=02, {dk—2141(n+ j)}j=0.2, {dk—2142(n + 7)}j=0.2,

{Brtjti=—1240 {m+itj=1-1211) ; (71)
and
dp—21-1(n—1) = F;f’_lglﬂ (n, {dk—21-1(n + J) }i=01 {dk—21(n + J) }i=01, {dr—2141(n + j)}j=01,
{di—2112(n + j)}i=0,1s {Brtjtj=—1-10+0 {ntstj=—1040) 3 (72)
dy—21-1(n+3) = F,ffglﬂ (n, {dr—21-1(n + j)}j=12 {dr—21(n + 7) }j=1,2, {dr—2041(n+ J)}j=1,2,

{di—2142(n + J) }i=1,2, {Bn+j}ti=1-1341, {Vn+j}i=2—1,3+1) -

Step 6: Transformation of the equations Ef 0 and Eg 0
Elimination of do(n+j), di(n+7) and da(n+j) for j = —1 or j = 3 in (56) and (57) using (70)
and (72) yields respectively (depending on the parity of k)

0 (n, {do(n + ) }i=o02: {di(n+§)}j=0: {da(n+ j)}im02, {Buts}ye b prns sty s ars) = 0
(73)

Ey° (n, {do(n +j)}j=0.2, {di(n+J)}j=0.25 {Pntitjm o1k, {’Yn+j}j:_§,3+g) =0, (74)

29

for k even, and,

B (n, {do(n +7)}j=02, {di(n+j)}j=0.2, {do(n + j)}j=02, {Bntjljm o1 5 an,  (75)

{’Yn+j}j:_%73+%> = 0;

~ . . .
Fy” (“ {do(n +7)}j=02, {di(n+7)}j=0.2y {Pnjbjmq_ts1 g acn, {’Vn+j}j:,k%1,3+%> =0,
(76)
for k odd.

Remark 4 After eliminating all d;(n—1) and d;(n+3), we obtain a system of k+2 equations,
namely (54), (69) for 1 <1 < [&], (71) for 1 <1 < [%52], (73) and (7}) for k even (or (75)
and (76) for k odd); for k+ 2 unknowns which are d;(n), 0 <i <k—1, 8, and v,. This system
is linear in di(n+7),0<7 <2 0<i<k—1 (see Remark 1). Moreover, its order in (3, and
Yn 18 at most k + 2 and k 4+ 3 respectively for k even, and k + 3 and k + 2 for k odd.
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2.4.3 Elimination of d;(n+7),0<;<2,0<i<k-1

In the first step, we rewrite equations (54), (69) for 1 <1 < [£], (71) for 1 <1 < [E5L], (73)
and (74) for k even (or (75) and (76) for k£ odd) respectively as

2
> e (n) di—1(n + §) = s (n);

2

ef(n)dp—1(n+j7) + Z £5 () dy—a(n + j) = tr(n);
0 =0

2
) dia(n+ )+ D T ) dea(n+5) + Y gf T () dis(n + ) = tia (n);
=0 j=0 j=0
2 2 2

fin)ydi(n+5) + > gj(n)do(n + j) = tr(n);

2
j=0 7=0
2

f7(n) do(n + j) = to(n),

where eé(x), fjl(x), g}(m), hé(x) and tj(x) for 0 <1 < k+1,0 < j < 2 are functions of the
variables
/Bn-i-ja -

for k even; and
k-1 | k—1 k-1 .
Brtj, —1——F5—<J<3+—F—, Yatjp 5 <J<3+—F—,
2 2 2
for k£ odd. Note that the two previous equations can be summarized as
Brtj, —k1 — ko <j <24 ki +ka, Yntj, —k1 <Jj<3+k,

with
-1
k1= g, ko =0, if kis evenand ki = kT, ko =1, if k is odd. (78)

In the second step, since our objective is to eliminate all the d;(n + j) in the previous equation,
we will from now consider all d;(n+j), 0 <i<k—1,0 < j <2 as unknowns. In this case, we
have a system of k + 2 equations with 3 & unknowns.

Solving (77) in terms of the unknowns di_1(n +2), dx—1(n+ 1), di—1(n) and d;(n+2), 0 <
1 < k—2 we get

15



dr—1(n+2) = Hy (n, {di(n + j) }o<i<k—2,0<j<15 {Bn+j }jm—ky—ko,24k1 ks 1 Vnts}j=—ha,34k1) 5
(79)
dp—1(n+1) = Hy (n, {di(n + 7) Yo<i<k—2,0<j<1> {Bn+j}im—ki—ko,24k1+ko» {Vn+j}jm—ki,3+k1) i
(80)
dp—1(n) = Ho (n, {di(n + j) Yo<ick—2,0<j<1: {Bntjtim—ki—ko 24ki+kos {ntjtim=—ki3400) 5 (81)
di(n +2) = Ji (n, {di(n + j) Yo<i<k—2,0<j<15 {Bntjbi=—ki—ka 24k ko {Vntiti=—ki3+k) 5 (82)
0<i<k-2,

where the integers ki and ky are given by (78).
In the third step, we compare equations (79) with (80), and (80) with (81) and obtain a new
system of equations without di_1(n 4 j), 0 < j < 2, namely:

Hy(n+1, {di(n + j) Yo<i<k—2,1<j<2, {Bntsbim1—ki—ka 34k +hos {Vntsbim1—k1 atke) = (83)
Hy (n, {di(n + j) Yo<i<k—2,0<i<1s 1Bntjti=—ki—ko 24k +has {Vnti ti=—k1 34+k1) 5
Ho (n+ 1, {di(n + j) Yo<i<i—2,1<j<2: {Bntitimi—ki—ko 3+ki4hkas {Vntsbim1—kia4k) = (84)
Hy (n, {di(n + j)Yo<i<k—2,0<i<1, {Bntj b im—ki—ka 24k1 +has {Vnts tim—hi 34k ) 5
di(n +2) = Ji (n, {di(n + j) o<i<k—2,0<j<1s {Bntsti=—ki—ko24+ki+hes {Vntsti=—ki3+k1) » (85)
0<i<k-—2.

The previous system contains k + 1 equations with 3(k — 1) unknowns which are d;(n+ j), 0 <

1<k—2,0<j<2and can be rewritten as

S0 um)din+4) =w(n), 0< 1<k, (86)
0<j<2 0<i<k—2

where u}] (n) are functions of the variables {3,y }j=—k)—ko,3+k1+kos 1 Vn+j}j=—k1 44k, - This sys-
tem is similar to the one in (77) but with k replaced by & — 1. Hence we are doing with a
recursive algorithm. Repeating this operation k£ — 1 times one obtains a system of three equa-
tions with three unknowns which are do(n+j), 0 < j < 2. Following the procedure presented in
the Subsection 2.3.3, one deduces the two nonlinear difference equations for the (3,, and , which
are the expected Laguerre-Freud equations for the recurrence coefficients of the Laguerre-Hahn

polynomaials of generic class k.
Also, the Laguerre-Freud equations are valid for n > ki + ko (for ,) and n > ky (for ~,).

The initial values (g ... Bk +k,—1 and 71 ... Y%, —1 are computed using (25)-(27).

Remark 5 Since each iteration increases the order of the equations by one, one deduces from
Remark 4 that the order of the Laguerre-Freud equations obtained above is at most 2k + 2 and
2 k + 3 respectively for k even, and 2k + 3 and 2k + 2 for k odd.
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3 Applications
3.1 Discrete semi-classical orthogonal polynomials of class 1

Here we suppose that z(s) = s (i.e. P(z) =z, Q(z) = 7). Also, for this illustration, we will

1
4
restrict to the cases when k£ = 1 and the polynomial Ay(x) is of degree at most 2.

From equations (25)-(27), we get

as(n +1) — as(n) = 0;

2ai(n+1) —2ai(n) + di(n) = 0;

2ag(n + 1) — 2ao(n) + do(n) = 0;

ca(n) + 2y (n) = 0; (87)
ci(n+1) +c1(n) —2Bndi(n) +2do(n) = 0;

co(n + 1)+ co(n) — 2 B, do(n) = 0;

2(n) +di(n) = 0;

az(n) = Bn c2(n) + c1(n) — 2By di(n) + do(n) = 0;

co(n+1)+
_l’_

Q

di(n —1)yn + a1(n) — By c1(n) + co(n) — idl(”) +di(n) Bn® =2 Bndo(n) — di(n+1) yni1 = 0;
(88)

—Bnco(n) +do(n— 1)y, — %do(n) + do(n) Bn? — do(n + 1) Yps1 + ao(n) = 0. (89)

To obtain the Laguerre-Freud equations, we will have to eliminate all coefficients a;, ¢; and d;.
This elimination is always possible from the algorithm described in section 2. However, for
simples cases, it may be more suitable not to proceed to the elimination of all the unknowns
a;, ¢; and d; but just to solve for part of them. By doing so, one avoids to increase the order of
the final Laguerre-Freud equations, in 3,, and -,.

First, we use equations (87) and get

as\n

Q

1\n

Q

[$)

1\n

U

1\n

n

(n)
(n)
2(n) = —di
(n)
(n)
do(n)

= [n dl(O) — 61(0) — (2n + 1) CLQ(O).

Next, we eliminate ag(n) and c¢o(n) in (88) and (89) using (87) and get respectively after taking

into account the previous equations
d1(0) Bnt1® = (c1(0) + 2 a2(0) n 4 4a2(0)) Buy1 — di(0) Bn” + (c1(0) + 2 a2(0) n) 5, (90)
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+ d1(0) Ynt2 — d1(0) v — 2a1(0) + d1(0) n + d1(0) = 0;

2d1(0) Ynt2 Btz — 2a2(0) foia® (91)
+(2d1(0) Vg2 — 4d1(0) Yny1 + d1(0) n+2d1(0) — 2a1(0)) But1 + 2a2(0) B,

+ (=4d1(0) Yny1 +2a1(0) — di(0) 2+ 2d1(0) yn) Bn + 2d1(0) Y Bna

+ (=2¢1(0) — 4az(0) n — 10a2(0)) Yn+2 + (4 1(0) + 8 a2(0) n + 8 a2(0)) Yn+1

+ (=2¢1(0) —4a2(0) n + 2 a2(0)) v — 1(0) — 2a2(0) n — 2a2(0) = 0,

where Ag(z) = a2(0)2? + a1(0)z + ag(0), Co(z) = c2(0) 2% + ¢1(0)x + c(0) and Do(z) =
d1(0) x + dp(0).

The Laguerre-Freud equations (90) and (91) contain those of the recurrence coefficients of
polynomials orthogonal with respect to the discrete weight p(z) satisfying the discrete Pearson
equation A(o p) = 7 p, where o and 7 are polynomials of degree at most 2 and A the forward
difference operator Af(n) = f(n+1)— f(n). The generalized Charlier polynomials introduced in
[17], which are the nonclassical extension of Charlier polynomials, contain a particular example
of this type of polynomials. In fact, the generalized Charlier polynomials are discrete orthogonal

polynomials with the weight

Mx
p(x):W7 I':O,l,2,, (92)

where N > 1 and g > 0. For N = 1, one deals with the ordinary Charlier polynomials. When

N = 2, the generalized Charlier weight satisfies the discrete Pearson equation

Ao p) =Tp, (93)

with o(z) = 22 and 7(x) =  — 2. The previous discrete Pearson equation corresponds to the
1

Riccati difference equation [13] (Theorem 3)
o(x+1)ASy(z) = (1(x) — Ao (z)) So(z) + =+ 1 + Bo, (94)

; _ poFi(Zp)
Wlth ﬁ(] = m

Comparison of (94) and (2) for z(s) = s allows to deduce

2 x 2u—1
Co(z) = —a®>—a4p— 7 (95)

1
Do(x) = x+§ + Bo.

Substituting (95) into (90) and (91) produce the Laguerre-Freud equations for generalized Char-
lier for N = 2.

/Bn+12 - (n + 1) 6n+1 - ﬂnz - (1 - TL) ﬁn + Yn+2 — Tn +n= 05 (96)

18



2 Vn42 Brny2 — ﬁn—l—lz + (2%14-2 — 4941 +n+ 1) Brt1 + BnQ + (_47n+1 +1-—n+ 2%1) Bn
+ 27n/8n—1 + (—3 — 2n)’yn+2 + 477,"}/n+1 + (3 — 2'”) Yn — N = 0. (97)

Addition of (96) to (97) gives equation
(Bnt2 + Bny1 —n — D) Yny2 = 2(Bns1 + Bo —n) a1 + (B + Bo1 —n+ 1)1 =0, (98)
which can easily be brought to
(Bn+ Bn-1—n+ 1)y = np. (99)

Notice that equations (96) and (99) were obtained in [30] after some calculations in order to

simplify the initial Laguerre-Freud equations given in [17]

n—1
nin—1
Y1+ = —¥_@%+nﬂ+25j+m
=0
. (n+D)nn—1) . S
(Br1 +Bn) a1 = _njgoﬂj+(n+1)%+l+ e +jgoﬂj +2j;’¥j~

Also, these equations were used in [30] to show that the coefficients (3, and -, are related to
certain discrete Painlevé equation and to analyze their asymptotic behavior already suggested
in [9] (Conjecture 8.1, p. 112) and in [17]

lim (B, —n)=0, lm -~,=pu.
n—aoo n—aoo

Similar work [16] as the one done in [30] is under investigation using equations (90) and (91)
for the generalized Meixner polynomials introduced in [28], in order to prove the asymptotic

behavior of 3, and +, suggested in [8, 29].

3.2 Continuous semi-classical orthogonal polynomials of class 1

Here we suppose that z(s) = z(0) (i.e. P(x) =z, Q(z) =0), k =1 and the polynomial Ay(x)
is of degree at most 2. Following the way described in the Subsection 3.1, we obtain the two

Laguerre-Freud equations

Br1®di(0) = (c1(0) +2a2(0) 1+ 4a2(0)) But1 — B di(0) + (c1(0) + 2a2(0) n) B,
—20a1(0) — d1(0) v + d1(0) Yq2 = 0

d1(0) Yn+2 vz — a2(0) Bot1? + (=2 d1(0) ynr1 — a1(0) + di(0) vnra) Bns1 + a2(0) 5,
+(d1(0) yn + a1(0) = 2d1(0) yn+1) Bn + d1(0) yn Bn—1 + (—c1(0) — 2a2(0) n — 5 a2(0)) Ynt2
+(2¢1(0) +4a2(0)n + 4a2(0)) Vi1 + (—c1(0) — 2a2(0) n + az(0)) v, = 0,
where Ag(z) = a2(0)2? + a1(0)z + ag(0), Co(z) = c2(0)2? + ¢1(0)z + ¢(0) and Dy(z) =
d1(0) x + dp(0).
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3.3 Continuous symmetric orthogonal polynomials

Here we assume that P(z) =z, Q(x) = 0 (continuous case) and that the polynomials are semi-
classical (i.e. By(z) = Efig b;(0) 2/ = 0) and orthogonal with respect to a symmetric weight
function p(x), defined on a symmetric interval [—a, a] and satisfying p(—z) = p(z). Therefore,

Brn =0, n >0, and the equation (31) reduces to

di—2(n+2)—2d; o(n+1)+d;i—2(n)— (Y13 di(n+3)—Vnr2 di(n+1))+ynt1 di(n+1) =y, di(n—1) = 0.
(100)

The previous equation can easily be transformed into

di_g(n—f-l)—di_Q(n)—(’yn_,_g di(n+2)_’7n+1 di(n)+’yn+1 di(n—i-l)—'yn di (n—l)) = Qy, 0 <1< ]{2+2,
(101)

where «; is a constant with respect to n.

4

3.3.1 Freud weight p(z) =e™*

For illustration, we consider that the polynomials are orthogonal with respect to the Freud

weight p(x) = e~®". This weight is symmetric, semi-classical and satisfies the Pearson equation

% (o) o)) = 7(a) ),

with o(z) = 1 and 7(x) = —423. The previous Pearson equation corresponds to the Riccati

equation [24] ;
Ao(.TU) %So(a;‘) = Bo(.ilj) Sg(.%’) + C()(.%') So($) + Do(.ﬁlf),
with
Ao(z) =1, Bo(z) =0, Co(z) = —423, Do(x) = —4 (x> + \1), (102)

where \; = lﬂ;—j/;). Therefore, one remarks that the polynomials orthogonal with respect to the

Freud weight p(z) = e correspond to special case of Laguerre-Hahn orthogonal polynomials
of class k = 2.
In order to obtain the Laguerre-Freud equation (only one in this case), we consider (101) for

0 <i <4 and get, taking into account (28),

dg(n + 1) — dg(n)

dl(n —+ 1) — dl(n)

do(n +1) — do(n) = (ynr2 da(n +2) — Yny1 da(n) + g1 da(n + 1) =y da(n — 1)) = an;
(103)

Qg

as;

Ynr2 di(n+2) = Ypp1di(n) + Ynprdi(n+ 1) =y di(n — 1) = ag;
Ynt2 do(n + 2) — ypt1 do(n) + Ynt1do(n + 1) — v do(n — 1) = ao.
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First, we use equation (27) for n = 0 and 7 = 0, 1, 2 taking into account (28) and (102) (keeping

in mind that 3, =0, d;(—1) = b;(0) = 0) to get

ds(1) = do(0) = —4, dy(1) = ds(0) = 0, do(1) = —%, do(0) = —4 1.

Next, we use the three-term recurrence relation
Poyi=x2P, — Py, n>1, P0($) =1, Pl(x) =,
and the orthogonality of {P,} with respect to the weight p(z) = e~ to get

~ T%(3/4) 1 1292 —1

T , Y2 = Vi, Y3 = — .
™2 4y 41 (1 —493)

Use of equations (104) and (105) transforms (103) into equations

da(n) = —4, di(n) =0, n > 0;
do(’l’L + 1) - dO(n) + 4(’7n+2 - 'Yn) =0, n2>1;
Ynte do(n +2) = i1 do(n) + g1 do(n+1) =y do(n — 1) =0, n >0,

from which we derive using (104) and (105)

do(n) +4(Yn +Ynt1) =0, n > 1;
mt+1do(n+1) =y do(n—1) = -1, n > 1.

Combination of the previous two equations lead to the equation

4(’772L+1 - rYTQL) + 4(’7n+2 Tn+1 — ’Yn’Yn—l) =-1,n>1,

(104)

(105)

(106)
(107)
(108)

which using (105) is easily transformed into the Freud equation which is a special case of the

discrete Painlevé equation d — Py [21].

49, (V-1 + Yo + Yng1) = 0.
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