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Abstract

The recurrence coefficients of generalized Charlier polynomials satisfy a system of non-
linear recurrence relations. We simplify the recurrence relations, show that they are
related to certain discrete Painlevé equations, and analyze the asymptotic behaviour.

1 Introduction

Orthogonal polynomials on the real line always satisfy a three-term recurrence relation.
For monic polynomials Pn this is of the form

Pn+1(x) = (x − βn)Pn(x) − γnPn−1(x), (1.1)

with initial values P0 = 1 and P−1 = 0. For the orthonormal polynomials pn the recurrence
relation is

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x), (1.2)

where a2
n = γn and bn = βn. The recurrence coefficients are given by the integrals

an =
∫

xpn(x)pn−1(x) dµ(x), bn =
∫

xp2
n(x) dµ(x)

and can also be expressed in terms of determinants containing the moments of the orthog-
onality measure µ [11]. For classical orthogonal polynomials one knows these recurrence
coefficients explicitly, but when one uses non-classical weights, then often one does not
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know the recurrence coefficients explicitly. When the weight satisfies a first order differ-
ential equation with polynomial coefficients, then one can use a technique developped by
Laguerre, Shohat and Freud [1, 4] to obtain non-linear recurrence relations for the recur-
rence coefficients. The most famous example is the Freud weight w(x) = exp(−x4) on the
real line [4, 9], for which βn = 0 and γn satisfies

γn+1 + γn + γn−1 =
n

4γn
,

which is a special case of the discrete Painlevé equation d-PI [11]. In this paper we
will investigate similar non-linear recurrence relations for discrete orthogonal polynomials
which are non-classical extensions of the Charlier polynomials.

2 Generalized Charlier polynomials

Charlier polynomials [2, 12] are the orthogonal polynomials with respect to the Poisson
distribution on the non-negative integers:

wk =
ak

k!
, k = 0, 1, 2, . . .

with a > 0. They are usually denoted by Cn(x; a) and the orthogonality conditions are
∞∑

k=0

Cn(k; a)Cm(k; a)
ak

k!
= n!a−neaδm,n.

The three-term recurrence relation for these polynomials is

−xCn(x; a) = aCn+1(x; a) − (n + a)Cn(x; a) + nCn−1(x; a).

For the monic polynomials Pn(x) = (−a)nCn(x; a) the three-term recurrence relation is

xPn(x) = Pn+1(x) + (n + a)Pn(x) + anPn−1(x),

so that

βn = n + a, γn = an.

Generalized Charlier polynomials were introduced in [6]. These are discrete orthogonal
polynomials on N with weights

wk =
ak

(k!)N
, k = 0, 1, 2 . . . ,

where N ≥ 1 and a > 0. For N = 1 one deals with the ordinary Charlier polynomials.
For N = 2 the recurrence coefficients βk, γk+1 (k = 0, 1, 2, . . .) satisfy the Laguerre-Freud
equations

γn + γn+1 = −
(

n

2

)
− β2

n + nβn +
n−1∑
i=0

βi + a (2.1)

(βn + βn+1)γn+1 = −n
n∑

i=0

βi + nγn+1 +
(

n + 1
3

)
+

n∑
i=0

β2
i + 2

n∑
i=1

γi + γn+1 (2.2)
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with initial values

β0 =
√

aI1(2
√

a)
I0(2

√
a)

, γ0 = 0,

where I0 and I1 are the modified Bessel functions of order 0 and 1 [6].
We will now simplify this system of recurrence relations:

Proposition 1. Let βn = n + bn, then the recurrence coefficients for generalized Charlier
polynomials (for N = 2) satisfy

(n + bn + bn−1)γn = na (2.3)
na(bn−1 − bn) = γn(γn+1 − γn−1), (2.4)

with initial conditions

b0 =
√

aI1(2
√

a)
I0(2

√
a)

, γ0 = 0, γ1 = a − b2
0. (2.5)

Proof. If we put βn = n + bn, then we have

n−1∑
i=0

βi =
(

n

2

)
+

n−1∑
i=0

bi,
n∑

i=0

β2
i =

n∑
i=0

b2
i + 2

n∑
i=1

ibi +
n3

3
+

n2

2
+

n

6
.

If we insert this into (2.1), then this gives

γn+1 + γn =
n−1∑
i=0

bi − b2
n − nbn + a, (2.6)

and (2.2) becomes

(2n+1+bn +bn+1)γn+1 = (n+1)γn+1−n
n−1∑
i=0

bi +nbn +2
n−1∑
i=1

ibi +
n∑

i=0

b2
i +2

n∑
i=1

γi. (2.7)

Summing both sides of (2.6) gives

γn+1 + 2
n∑

i=1

γi = −2
n−1∑
i=1

ibi − nbn −
n∑

i=0

b2
i + n

n−1∑
i=0

bi + (n + 1)a, (2.8)

and if we use this in (2.7) then we find (2.3). Next, we apply the difference operator to
both sides of (2.6) to find

γn+1 − γn−1 = (bn−1 − bn)(n + bn + bn−1). (2.9)

If we now use (2.3), then this gives (2.4). �

The equations can be put into a somewhat more pleasing form, involving a special case
of the discrete Painlevé II equation.
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Proposition 2. For every n ≥ 1 we have 0 < γn < a and bn > 0. If we put γn = a(1−c2
n)

then (2.3)–(2.4) can be written as

bn =
√

acncn+1 (2.10)
ncn =

√
a(cn+1 + cn−1)(1 − c2

n), (2.11)

with c1 = I1(2
√

a)/I0(2
√

a) and c0 = 1.

Proof. Since γn are recurrence coefficients of orthogonal polynomials, it follows that γn >
0 for n ≥ 1. Summing (2.4) gives

a

(
n−1∑
k=0

bk − nbn

)
= γnγn+1,

but on the other hand (2.6) gives
n−1∑
k=0

bk − nbn = γn+1 + γn + b2
n − a.

Combining both results gives

a(γn+1 + γn + b2
n − a) = γnγn+1.

This can be written as

(γn − a)(γn+1 − a) = ab2
n,

hence γn − a and γn+1 − a have the same sign. The initial condition γ1 = a − b2
0 hence

implies that γn − a < 0 for every n ≥ 1. Therefore we can write γn = a− ac2
n and we find

(2.10). If we insert this into (2.3), then we find

a(1 − c2
n)(n +

√
acncn+1 +

√
acncn−1) = na,

which can easily be reduced to (2.11). �

Recall that the discrete Painlevé II equation d-PII is given by [5]

xn+1 + xn−1 =
xnzn + γ

1 − x2
n

,

where zn = αn + β. The equation (2.11) for cn is of this form with β = γ = 0 and
α = 1/

√
a.

We now have the following asymptotic behaviour of the recurrence coefficients.

Theorem 1. For the recurrence coefficients (βn, γn) of generalized Charlier polynomials
we set βn = n + bn. Then

lim
n→∞ γn = a, lim

n→∞ bn = 0.

Proof. If we write γn = a(1 − c2
n), then 0 < γn < a implies that 0 < c2

n < 1 for n ≥ 1.
This mean that the right hand side of (2.11) remains bounded as n → ∞. But then ncn

remains bounded as well, which implies that cn → 0, and hence γn → a. The asymptotic
behavior of bn then easily follows from (2.10). �

The asymptotic behaviour given in the previous theorem was already suggested by the
remarks in [6, p. 364].
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3 Concluding remarks

We have found that the recurrence coefficients of generalized Charlier polynomials with
N = 2 are given by the equations (2.10)–(2.11). The original Laguerre-Freud equations
(2.1)–(2.2) are more complicated and some work was needed to find the underlying discrete
Painlevé equation. It would be more convenient to have a method that gives the simple
equations (2.10)–(2.11) directly.

The asymptotic behaviour of the recurrence coefficients allows us to obtain the asymp-
totic zero distribution of the generalized Charlier polynomials, using the results from [7].
If x1,n < x2,n < · · · < xn,n are the zeros of Pn, then the contracted zero distribution

µn =
1
n

n∑
j=1

δxj,n/n,

where δc is a Dirac probability measure concentrated at c, converges weakly to the uniform
distribution on [0, 1], just as in the case of the usual Charlier polynomials [7, p. 190]. This
result can also be obtained from the behaviour of the orthogonality weights w(k) = wk =
ak/(k!)2, for which

log w(k) = k log a − 2 log k! ∼ k log a − 2(k +
1
2
) log k + 2k.

The growth of this weight is dominated by the term k log k, which grows faster than the
rate k at which the points in the support tend to infinity. Following remarks in [8, p. 197],
we see that the asymptotic zero distribution is indeed given by the uniform distribution
on [0, 1], as is the case for the usual Charlier polynomials [8, p. 200]. The asymptotic
behaviour of the recurrence coefficients also gives information about the largest zero xn,n.
In the formula

βn =
∫

xp2
n(x) dµ(x)

we can compute the integral exactly using Gauss quadrature at the n + 1 zeros of the
orthogonal polynomial Pn+1, so that

βn =
n+1∑
j=1

xj,n+1p
2
n(xj,n+1)λj,n+1,

where λj,n+1 > 0 are the Christoffel numbers [2]. Since xj,n+1 ≤ xn+1,n+1 for every j, we
easily find

βn ≤ xn+1

n+1∑
j=1

p2
n(xj,n+1)λj,n+1 = xn+1,n+1,

so that βn is a lower bound for the largest zero xn+1,n+1. The results in [7] and [8] show
that limn→∞ xn,n/n = 1.

The recurrence coefficients of generalized Meixner polynomials [13], which are the or-
thogonal polynomials on the linear lattice with orthogonality weight

wk =
(α1)k(α2)k

(k!)2
ck, k = 0, 1, 2, 3, . . .
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with α1, α2 > 0 and 0 < c < 1 satisfy recurrence relations [3] which are somewhat similar
to (2.1)–(2.2), but now with three parameters α1, α2 and c:

(1 − c)(γn + γn+1) = −(1 − c)
(

n

2

)
− (1 − c)β2

n + [(1 + c)n + c(α1 + α2)]βn

+ (1 + c)
n−1∑
i=0

βi + c(α1 + α2)n + cα1α2 (3.1)

(1 − c)(βn + βn+1)γn+1 = −n
n∑

i=0

βi + [(1 + c)n + c(α1 + α2) + 1]γn+1

+
(

n + 1
3

)
+

n∑
i=0

β2
i + 2

n∑
i=1

γi, (3.2)

with initial values

β0 = cα1α2
2F1(α1 + 1, α2 + 1; 2; c)

2F1(α1, α2; 1; c)
, γ0 = 0,

where 2F1 is Gauss’ hypergeometric function. The analysis of these equations is more
involved and will be presented in another paper, where we will show that the asymptotic
behaviour conjectured in [14] indeed holds.
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