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Introduction

Ordinary differential equations have always been of interest since they occur in
many applications. Yet, there is no general algorithm solving every equation.
There have been developed various methods for different classes of differential
equations and functions. Apart from those there are methods using symmetry
properties, the computation of integrating factors and there certainly are many
more.

A special class of ordinary differential equations is the class of linear differ-
ential equations Ly = 0, for a linear differential operator

L =
n

∑
i=0

ai∂
i

with coefficients in some differential field K, e.g. K = Q(x) and ∂ = d
dx . The

algebraic properties of those operators and their solutions spaces are studied very
well, e.g. in [22].

Solutions that correspond to an order one right factor can always be found by
Beke’s algorithm but also with algorithms described in [8] and [18]. Each of those
factors corresponds to a hyperexponential solution. This is a solution of the form
exp(

∫
r) for a rational function r. In general, one can also factor L into factors of

lower degree [23].
From this point on, one will have to consider special functions, which are

functions defined by a differential operator. The question of solving an equating
in terms of a special function is equivalent to the question whether two differ-
ential operators can be transformed into each other by certain transformations.
We will consider a change of variables x → f , exp-products y → exp(

∫
r)y and

gauge transformations y → r0y + r1y′. The parameters f ,r,r0 and r1 are rational
functions.

There are several algorithms solving special cases of the transformation men-
tioned above. If one just allows exp-products and gauge transformations, the prob-

ix



x INTRODUCTION

lem is also called the equivalence of differential operators, which is solved in [3].
The problem for a given rational function f is described in [5] and [25]. And
finally, the algorithm in [7] is restricted to exp-products and Möbius transforma-
tions f = αxk+β

γxk+δ
in the change of variables.

The approach we develop in this thesis will be restricted to Bessel functions
but there will be no restrictions on the rational parameters. We will solve whether
an operator can be obtained from the Bessel operator by a change of variables,
and exp-product and a gauge transformation.

The idea for this algorithm is by Mark van Hoeij, teaching at Florida State
University in Tallahassee, FL, USA. During my visit in Tallahassee from August
to December 2006 we implemented the whole algorithm in Maple.

This thesis will explain all the main ideas and illustrate the algorithm by exam-
ples. However, there are still some more details in the algorithm which could not
be described here because it would go beyond the scope of a master thesis. But
these details are all speed-ups or Maple addicted aspects which are not necessary
for the algorithm to work.

After introducing some preliminaries we will describe the transformations that
we use in Chapter 2. We will introduce the exponent-difference which allows us
to solve the change of variables apart from the other two transformations. Chapter
3 will describe the change of variables in the Bessel case and will also handle
the constant parameter ν of the Bessel function. Furthermore, we will handle
the algorithm case by case and give examples to each of the cases. We finally
also show how we can apply the same algorithm to solve differential equations in
terms of Whittaker functions.

The Maple source for the examples in this thesis can be downloaded from my
website1 or on the enclosed CD. There you will also find the Maple implementa-
tion of the algorithm.

1http://www.mathematik.uni-kassel.de/∼debeerst/master/
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Preliminaries

We will first introduce some facts about differential equations, their correspond-
ing differential operators and singularities which are well known to many readers.
After an overview over hypergeometric functions we will deal with formal solu-
tions and generalized exponents. For the proofs of the statements given in this
chapter we will refer to other sources.

1.1 Differential Operators
Definition 1.1 Let K be a field. A derivation on K is a linear map D : K →K such
that all a,b ∈ K satisfy the product rule

D(ab) = aD(b)+bD(a).

A field K with a derivation D is called differential field.

In our context we will consider functions in terms of the variable x with the
“normal” derivation ∂ := d

dx . If k is a field, then K = k(x) with ∂ is a differential
field. Another derivation that is often used is δ := x∂ .

Definition 1.2 Let K be a differential field with derivation ∂ , then

L =
n

∑
i=0

ai∂
i,ai ∈ K (1.1)

is called differential operator. The coefficient an 6= 0 and n is the degree of L,
denoted by deg(L). The leading coefficient of L refers to the coefficient an.

The set of differential operators with coefficients in K, denoted by K[∂ ], is a
ring. The addition is canonical, i.e. a∂ i +b∂ i = (a+b)∂ i, and the multiplication
is defined by ∂a = a∂ +a′.

11



12 CHAPTER 1. PRELIMINARIES

Remarks 1.3
1. In general there exists a ∈ K with a′ 6= 0 and K[∂ ] is not commutative.
2. The ring K[∂ ] is an euclidean ring. For two operators L1,L2 ∈ K[∂ ],L2 6= 0

there are unique operators Q,R∈K[∂ ] such that L1 = QL2 +R and degR < degL2.
This operation is called left division. If R = 0, then Q is called left divisor of L1.
Similarly there exists a right division on K[∂ ].

An euclidean ring is also a principal ideal ring. Hence, we can define the least
common left multiple LCLM(L1,L2) as the unique monic generator of K[∂ ]L1 ∩
K[∂ ]L2 and the greatest common right divisor GCRD(L1,L2) as the unique monic
generator of K[∂ ]L1 + K[∂ ]L2. When working with right ideals we can similarly
define the least common right multiple and the greatest common left divisor.

Note that every differential operator L corresponds to a homogeneous differ-
ential equation Ly = 0 and vice versa. We will always assume that L 6= 0.

Example 1.4
In Maple we can compute the corresponding equation with the following com-
mands:

> with(DEtools):

> L:=Dˆ2-x:

> eq:=diffop2de(L,[D,x],y(x));

eq :=−xy(x)+
d2

dx2 y(x)

The second parameter [D,x] introduces the variable x and the variable D used
for the derivation ∂ . We can define these variables globally:

> Envdiffopdomain:=[D,x]:

Then this parameter can always be omitted, e.g. when computing the correspond-
ing operator:

> de2diffop(eq,y(x));

∂
2− x

From now on we will always assume that the DEtools package is loaded and
that the differential domain [D,x]= [∂ ,x] is defined.

Definition 1.5 By the solutions of L we mean the solutions of the homogeneous
linear differential equation Ly = 0. They are denoted by V (L).

When talking about differential equations, the term order is commonly used
for the degree of the corresponding operator.

Considering the solutions of Ly = 0 for L∈K[∂ ] a constant factor in K does not
change the solution space V (L). Thus, we can always work with monic operators.
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A linear differential equation is commonly solved by transforming it into a
matrix equation of order one.

Theorem 1.6 The set V (L) is a vector space of dimension deg(L).

Proof. [15, Chapter 5]. �

We will later give an algebraic definition of V (L).

Definition 1.7 A set of deg(L) linearly independent solutions of L is called fun-
damental system of L.

1.2 Singular Points
Let y(x) be a function with values in C.

Definition 1.8 (Solutions and singular points) A function y(x) is called

(i) regular at p ∈ C if there exists a neighborhood U of p such that y(x) is
continuous on U,

(ii) regular at ∞ if y(1
x ) is regular at 0.

A point p is called singular or a singularity if it is not regular.

Two equivalent terms holomorphic points and analytic points often occur with
regular points.

A holomorphic point is a point, where y is differentiable in a open set around
the point, an analytic point p is a point, where the function y can be represented
as a power series

y(x) =
∞

∑
i=0

ai(x− p)i, ai ∈ C.

The three terms arose in different contexts and therefore they are all still being
used.

An important fact of the one-dimensional case is that singularities are always
isolated. At those isolated singularities we need a Laurent series to represent y(x)
at a point p.

Theorem 1.9 Let y(x) be holomorphic around p such that p itself may be a sin-
gularity. Then y(x) can be written as a Laurent series

y(x) =
∞

∑
i=−∞

ai(x−a)i, ai ∈ C. (1.2)
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Proof. [9, Theorem 10.6.2]. �

The next definition will give a classification of singularities.

Definition 1.10 Let y(x) be of the form (1.2) and let p be a singularity of y(x).
Then p is called

(i) a removable singularity if ai = 0 for i < 0,
(ii) a pole if there exists N ∈ N such that ai = 0 for i≤−N, or

(iii) an essential singularity otherwise.

From this definition we see that an analytic point is almost equivalent to a reg-
ular point. Therefore, one often introduces ordinary points which include regular
points and removable singularities. Then ordinary points and analytic points are
equivalent. However, we will only use the fact that every regular point is analytic
in the majority of cases and we will not confuse with another term.

For the rest of this section we define the fields k = C and K = k(x) = C(x).
Furthermore, let L ∈ K[∂ ] be a differential operator of the form (1.1).

Definition 1.11 (Operators and singular points) A point p is called a singular
point of the operator L ∈ K[∂ ] if p is a zero of the leading coefficient of L or if p
is a pole of one of the other coefficients. All other points are called regular.

If y(x) is a solution of the differential operator L, every singularity of y(x)
must be a singularity of L. But the converse is not true, i.e. a singularity of L can
be a regular point of y(x). At all regular points of L we can find a fundamental
system of power series solutions.

In our context a regular or singular point will usually refer to a differential
operator.

Definition 1.12 Let L = ∑
n
i=0 ai∂

i ∈ K[∂ ] with an = 1. A singularity p of L is
called

(i) apparent singularity if all solutions of L are regular at p,
(ii) regular singular if (x− p)ian−i is regular at p for 1≤ i≤ n, and

(iii) irregular singular otherwise.

If L has apparent singularities we can always remove these singularities from
L, i.e. we can find another operator L′ ∈ K[∂ ] with V (L) ⊂ V (L′) which has no
apparent singularities (see appendix of [1]). However, the degree of L′ can be
higher than the degree of L.

Now let L be a differential operator of degree deg(L) = 2. We can then find
the following solutions.
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Theorem 1.13 Let L = ∂ 2 + p(x)∂ +q(x) ∈ K[∂ ].

(i) If L is regular at p, there exists a unique solution y(x) = ∑
∞
i=0 ai(x− p)i

of L satisfying the initial conditions y(p) = c0 and y′(p) = c1, where c0
and c1 are arbitrary constants.

(ii) If L is regular singular at p, there exist the two linearly independent
solutions

y1(x) = (x− p)e1
∞

∑
i=0

ai(x− p)i (1.3)

and y2(x) = (x− p)e2
∞

∑
i=0

bi(x− p)i + cy1(x) ln(x− p), (1.4)

where e1,e2,ai,bi,c ∈ k are constants and c = 0 if e1− e2 /∈ Z.
(iii) If p is an irregular singularity, two linearly independent solutions are

y1(x) = (x− p)e1
∞

∑
i=−∞

ai(x− p)i (1.5)

and y2(x) = (x− p)e2
∞

∑
i=−∞

bi(x− p)i + cy1(x) ln(x− p), (1.6)

with constants e1,e2,ai,bi,c ∈ k and c = 0 if e1− e2 /∈ Z.

Proof. [24, Chapters 2.1-2.4]. �

Remarks 1.14
1. The constants e1 and e2 are called exponents, and in the regular singular

case they can be determined solving the indicial equation

λ (λ −1)+ p0λ +q0 = 0

which can be obtained by taking the constant coefficients p0 and q0 from the
power series expansion of (x− p)p(x) and (x− p)2q(x) at the point p, respectively.

2. When working with a differential operator L one will hardly work with
k = C. One would rather define k to be the smallest field extension of Q such that
L ∈ k(x)[∂ ] and move on to bigger fields when it is required.

1.3 Hypergeometric Series
This section should give a short overview about hypergeometric series and hyper-
geometric functions, especially for differential equations of order two which we
are most interested in. For details we refer to [24] and a lot of identities can also
be found in [19].
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Definition 1.15 A generalized hypergeometric series pFq is defined by

pFq

(
α1,α2, . . .αp
β1,β2, . . .βq

∣∣∣∣ x
)

:=
∞

∑
k=0

(α1)k · (α2)k · · ·(αp)k

(β1)k · (β2)k · · ·(βq)kk!
xk, (1.7)

where (λ )k denotes the Pochammer symbol

(λ )k := λ · (λ +1) · · ·(λ + k−1).

The function is also denoted as pFq
(
α1,α2, . . .αp;β1,β2, . . .βq;x

)
.

Example 1.16
Many special functions can be written as a generalized hypergeometric series.
Some well-known series are the exponential and trigonometric series

exp(x) =
∞

∑
k=0

xk

k!
= 0F0(x),

cos(x) = 1− x2

2!
+

x4

4!
−·· ·= 0F1

(
−
1
2

∣∣∣∣ −x2

4

)
,

sin(x) = x− x3

3!
+

x5

5!
−·· ·= x0F1

(
−
3
2

∣∣∣∣ −x2

4

)
Furthermore, if one of the upper parameters is a negative integer, the series breaks
into a polynomial. But we won’t consider that case.

Theorem 1.17 The generalized hypergeometric series pFq defined in (1.7) satis-
fies the differential equation

δ (δ +β1−1) · · ·(δ +βq +1)y(x) = x(δ +α1) · · ·(δ +αp)y(x) (1.8)

where δ = x d
dx .

Proof. This can easily be seen if we plug the series pFq into (1.8) and equate
coefficients. �

Remarks 1.18
1. For p ≤ q the series pFq is convergent for all z. For p > q+1 the radius of

convergence is zero, and for p = q+1 the series converges for |z|< 1.
2. For p ≤ q + 1 the series and its analytic continuation is called a hypergeo-

metric function.
3. There are identities connecting several hypergeometric functions. A lot

of these formulas can be found in [19] but they can contain typing errors. An
algorithmic approach to check these identities is presented in [17].
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1.3.1 Hypergeometric Differential Equation
We will now consider the more special case where the differential equation has
order two. From Theorem 1.17 we know that we can have at most three parameters
α = α1,β = α2 and γ = β1, which turns (1.8) into

x(1− x)∂ 2y(x)+(γ− (α +β +1)x)∂y(x)−αβy(x) = 0. (1.9)

This equation is called the hypergeometric differential equation. It has regular sin-
gular points at 0,1 and ∞, and the solutions can all be expressed by 2F1 functions
which are also called Gauss’ hypergeometric functions.

An important equation that appears in this context is the Riemann P-equation

y(x) = P


a b c

α1 β1 γ1
α2 β2 γ2

, x


which represents a solution of (1.9). The constants a,b and c are the three regular
singularities and α1,2,β1,2 and γ1,2 are their corresponding exponents.

We also receive a second order differential equation in the cases 1F1, 2F0 and
0F1. In those cases the equations we obtain have a regular singularity at 0 and an
irregular singularity at ∞. These equations are also called confluent hypergeomet-
ric equation because they can be obtained from (1.9) by the confluence of two of
its singularities. This creates an irregular singularity. The equation in the 1F1-case
is

x
d2

dx2 F(x)+(γ− x)
d
dx

F(x)−αF(x) = 0 (1.10)

and is called the Kummer equation. The solution M(α,γ,x) := 1F1 (α;γ;x) is
called Kummer function. A second independent solution is defined as

U(α,γ,x) :=
π

sin(πγ)

(
M(α,γ,x)

Γ (1+α− γ)Γ (γ)
− x1−γ M(1+α− γ,2− γ,x)

Γ (α)Γ (2− γ)

)
,

where Γ (x) denotes the Gamma function

Γ (x) :=
∫

∞

0
tx−1 exp(−t)dt.

It is called the second Kummer function and satisfies the relation

U(α,γ,z) = x−α
2F0

(
α,1+α− γ

−

∣∣∣∣ − 1
x

)
.
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The solutions in the case 0F1 can also be expressed in terms of Kummer func-
tions with the Kummer formula:

exp
(
−x

2

)
1F1

(
α

2α

∣∣∣∣ x
)

= 0F1

(
−

1
2 +α

∣∣∣∣ x2

16

)
.

Concluding, we can separate the hypergeometric functions that satisfy a sec-
ond order differential equation, into two classes. The 2F1 functions with three
regular singularities and the Kummer functions with one regular and one irregular
singularity.

The 0F1-functions are a special case of the Kummer functions. They are close
to the Bessel functions, which we will deal with in the following section.

1.3.2 Bessel Functions
Definition 1.19 The solutions V (LB1) of the operator

LB1 := x2
∂

2 + x∂ +(x2−ν
2) (1.11)

with the constant parameter ν ∈ C are called Bessel functions. The two linearly
independent solutions

Jν(x) :=
∞

∑
k=0

(−1)k

k!Γ (ν + k +1)

(x
2

)2k+ν

(1.12)

and Yν(x) :=
Jν(x)cos(νπ)− J−ν(x)

sin(νπ)
(1.13)

generate V (LB1) and they are called Bessel functions of first and second kind
respectively.

Similarly the solutions of

LB2 := x2
∂

2 + x∂ − (x2 +ν
2) (1.14)

are called the modified Bessel functions of first and second kind and they are
generated by

Iν(x) :=
(x

2

)ν ∞

∑
k=0

1
k!Γ (ν + k +1)

(x
2

)2k
(1.15)

=exp
(
−νπi

2

)
Jν

(
exp
(

πi
2

)
x
)

and Kν(x) :=
π(I−ν(x)− Iν(x))

2sin(νπ)
(1.16)
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Remarks 1.20
1. If 2ν /∈ Z, then Jν(x) and J−ν(x) also generate V (LB1). This is proven in

[24, 7.2].
2. In terms of hypergeometric functions, the Bessel functions of the first kind

are given by

Jν(x) =
(x

2

)ν 1
Γ (ν +1)0F1

(
−

ν +1

∣∣∣∣ − 1
4

x2
)

(1.17)

and Iν(x) =
(x

2

)ν 1
Γ (ν +1)0F1

(
−

ν +1

∣∣∣∣ 1
4

x2
)

. (1.18)

Lemma 1.21 Replacing x by ix where i =
√
−1 reduces LB2 to LB1 and vice versa.

Proof. That this is true for Bessel functions of the first kind can easily be seen
when comparing the hypergeometric representations (1.17) and (1.18). There we
get Iν(x) = iνJν(ix), so there only remains a constant coefficient iν . That the
statement for the corresponding operators is also true can be seen as follows.

Let y(x) be a solution of LB2 and consider g = g(x) = y(ix), then

g′(x) = i
d
dx

y(x)
∣∣∣∣
x=ix

and g′′(x) =− d2

dx2 y(x)
∣∣∣∣
x=ix

=
1

(ix)2

(
ix

d
dx

y(x)
∣∣∣∣
x=ix

− ((ix)2 +ν
2)y(ix)

)
.

A general differential operator for g(x) is L = ∂ 2 +a1∂ +a0. Using the equations
for g′ and g′′ we can transform Lg = 0 into(

1
ix

+ ia1

)
d
dx

y(x)
∣∣∣∣
x=ix

+
(
−1
x2 (x2−ν

2)+a+0
)

y(ix) = 0.

If we equate coefficients we obtain a1 = 1/x and a0 = (x2− ν2)/x2. Then L =
1/x2LB1 and g(x) ∈V (L) = V (LB1). So g(x) is a solution of LB1.

The reverse works similarly. �

Since LB1 and LB2 are so closely connected we just need to consider one of
the two in later issues. From now on LB will refer to the modified Bessel operator
LB2. The modified Bessel operator is easier to handle in some cases, as we will
see in Example 1.32.

There are various recurrence equations and relationships for the Bessel func-
tion and its derivative.
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Lemma 1.22 The Bessel functions satisfy

Jν+1(x) =
2ν

x
Jν(x)− Jν−1(x), J′ν(x) =

ν

x
Jν(x)− Jν+1(x) (1.19)

and similarly the modified Bessel functions satisfy

Iν+1(x) = Iν−1(x)−
2ν

x
Iν(x), I′ν(x) =

ν

x
Iν(x)+ Iν+1(x). (1.20)

Moreover, Yν(x) satisfies the same equations as Jν(x) and (−1)νKν(x) satisfies
the same equations as Iν(x).

Proof. [2, Equations 9.1.27 and 9.6.26]. �

The following result will be important to find solutions of differential opera-
tors.

Corollary 1.23 Consider

S := C(x)Bν +C(x)B′ν (1.21)

where B′ν = d
dxBν and Bν is a linear combination of either Jν and Yν or Iν and

(−1)νKν . The space S is invariant under the substitution ν → ν +1.

Proof. It follows from the last lemma that this is true for each Bessel function on
its own. A linear combination of Jν and Yν does no harm since they satisfy the
same equations. The same holds for a linear combination of Iν and (−1)νKν . �

1.4 Formal Solutions and Generalized Exponents
In this section we will study differential operators with power series coefficients
in K = C((x)). In this context the derivation that is usually used is δ = x d

dx .

Definition 1.24 A universal extension U of K is a minimal (simple) differential
ring in which every operator L ∈ K[∂ ] has precisely deg(L) C-linear independent
solutions.

Theorem 1.25 The universal extension U of K is unique and has the form

U = K[{xa}a∈M,{e(q)}q∈Q, l], (1.22)

where M ⊂ C is such that M⊕Q = C and Q := ∪m≥1x−1/mC[[x−1/m]]. Here K
denotes an algebraic closure of K and the following rules hold:
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(i) The only relations between the symbols are x0 = 1,xa+b = xaxb,e(0) = 1
and e(q1 +q2) = e(q1)e(q2).

(ii) The differentiation is given by δxa = axa,δe(q) = qe(q) and δ l = 1.

Proof. To give a complete proof we would have to introduce to many details
about differential rings. This is why we sketch the idea here only and refer to [22,
Chapter 3.2] for more details. �

In order to get an intuitive idea of the structure above, we will use the following
statement from [22]:

To get a differential ring where all equations y′ = Ay with a matrix A over K
have a fundamental system it is sufficient that all equations

δy = ay, a ∈ K (1.23)

and δy = 1 have a solution.
Hence, to give a structure of U , we need to classify order one differential

equations of the form (1.23) and define a solution of each of them in U . Doing this,
we need to take care about equations that have the same solution. The function
exp(

∫ a
x dx) is a solution of (1.23). So two equations δy = ay and δy = by with

a,b ∈ k̄ have the same solutions if exp(
∫ a

x dx) = cexp(
∫ b

x dx) for some constant
c ∈ K. This is exactly the case, if b = a+ δ f

f for some f ∈ K, f 6= 0.

Thus, if I := {δ f
f | f ∈ K, f 6= 0}, then K/I gives us a classification of all the

equations δy = ay with different solutions.
We know that the algebraic closure consists of series with fractional expo-

nents, i.e. K = C((x)) = ∪n∈NC((x1/n)). The degree of the lowest monomial in
f ∈ K and δ f are the same. Thus, taking the quotient will give a series starting
with a rational constant and we get the representation

I =

{
c+

∞

∑
k=1

ckzk/n
∣∣∣ c ∈Q,ck ∈ C,n ∈ N

}
.

Then, of course, the elements in K/I are series in K which have a non-rational
constant term. In Theorem 1.25 this was denoted by M⊕Q.

We conclude that it is sufficient if the universal extension U has solutions of
(1.23) for all a ∈M and all a ∈ Q. These are the elements {xa}a∈M and {e(q)}q∈Q

respectively and finally, the symbol l is the solution to δy = 1.
The interpretation of the symbols in the universal extension is the following:

1. xa is the function exp(a ln(x)),

2. l is the function ln(x), and
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3. e(q) is the function exp(
∫ q

x dx).

Note that this construction at the point x = 0 can also be performed at other
points x = p by replacing x with the local parameter tp which is tp := x− p for a
point p ∈ C and tp = 1

x for p = ∞.

Remark 1.26 (Logarithmic solutions)
A solution whose formal representation in the universal extension U involves l =
ln(x) is called a logarithmic solution.

An important fact about logarithmic solutions is that we get other solutions of
the differential equation if we replace ln(x) by ln(x)+c, where c is some constant.
This is due to the fact that the derivation of ln(x)+ c does not depend on c. So if
we have a solution of the form f (x) ln(x) and replace ln(x) by ln(x)+ 1, we get
another solution f (x)+ f (x) ln(x). Since the difference will also be a solution we
get the non-logarithmic solution f (x).

If the degree of the operator is two, the highest power of a logarithm that can
appear is one. Assume we have ln(x)2 in a solution, then sending ln(x) to ln(x)+1
successively will give a solution involving ln(x)2 + 2ln(x)+ 1 and one involving
ln(x)2 + 4ln(x) + 4. These solutions are independent, so the dimension of the
solution space V (L) is at least 3. This can only happen if deg(L)≥ 3.

A more detailed structure of the universal extension is given by the following
lemma.

Lemma 1.27 The universal extension U of K is a K[δ ]-module which can be
written as a direct sum of K[δ ]-modules:

U =
⊕
q∈Q

e(q)K[{xa}a∈C/Q, l] (1.24)

=
⊕
q∈Q

⊕
a∈C/

(
1
rq Z
)e(q)xaC((x1/rq))[l], (1.25)

where, in the latter equation, rq is the ramification index of q, i.e. the smallest
number such that q ∈ C[[x−1/rq]].

Proof. Equation (1.24) is proven in [22, Chapter 3.2] and for equation (1.25) we
refer to [23, Chapter 2.8]. �

Definition 1.28 Let L ∈ K[∂ ] and let p be a point with local parameter tp. An
element e ∈C[[t−1/r

p ]],r ∈N is called a generalized exponent of L at the point p if
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there exists a formal solution of the form

y(x) = exp
(∫ e

tp
dtp

)
S, S ∈ C((t1/r

p ))[ln(tp)], (1.26)

where the constant term of the Puiseux series S, i.e. the coefficient of t0
p ln(tp)0, is

non-zero. For a given solution this representation is unique.
The set of generalized exponents at a point p is denoted by gexp(L, p).
Similarly, we call e a generalized exponent of the solution y at the point p if

y = y(x) has the representation (1.26) for some S ∈ C((t1/r
p ))[ln(tp)].

The series s in (1.26) is also called a Puiseux series with coefficients in C.

Example 1.29
Generalized exponents can be computed in Maple with the command gen exp,
which belongs to the package DEtools. An explanation of the algorithm is given
in [23].

The input is an operator L, a variable t to express the generalized exponent and
a point at which we want to compute the generalized exponent. The output is a
list of pairs [g,eq] which each represent a generalized exponent at the given point.
In this pair the equation eq describes the variable t which is used to express the
generalized exponent g.

Let’s take the Kummer operator:
> LK:=x*Dˆ2+(nu-x)*D-mu:

> gen exp(LK,t,x=infinity);

[[µ, t =
1
x
], [−1

t
−µ +ν , t =

1
x
]]

The equation t = 1
x indicates that t is the local parameter. The algorithm com-

putes two generalized exponents µ and − 1
t∞
−µ +ν . They each belong to a local

solution.
A second example is the following operator:
> L:=Dˆ2-x:

> gen exp(L,t,x=infinity);

[[
1
t3 +

1
4
, t2 =

1
x
]]

Here t is a square root of the local parameter. The pair in the output now represents
two generalized exponents: (

√
t∞)−3 + 1

4 and (−
√

t∞)−3 + 1
4 .

In both cases the point x = ∞ is an irregular singularity, since at least on of the
generalized exponent is not a constant.
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If generalized exponents are equal modulo 1
r Z, where r is the ramification

index, the pairs are combined in the output of gen exp. At a regular point this is
always the case:

> gen exp(L,t,x=1);

[[0,1, t = x−1]]

Since the decompositions in Lemma 1.27 are direct sums one can derive the
following statement for the solution space V (L).

Theorem 1.30 Let L ∈ K[∂ ], d = deg(L) and let r ∈ N. Suppose that the rami-
fication indices of the generalized exponents divide r. Then there exists a basis
y1, . . . ,yn of V (L) which satisfies the condition

yi = exp
(∫ ei

x
dx
)

Si for some Si ∈ C((x1/r))[ln(x)] (1.27)

where e1, . . . ,en ∈ C[[x−1/r]] are generalized exponents and the constant term of
Si is non-zero.

Proof. [23, Chapter 4.3.3, Theorem 5]. �

Remarks 1.31
1. Again, replacing x by tp for some point p, results in a fundamental system

of formal solutions at the point p.
2. For a given generalized exponent there is a unique solution of the form

(1.26) if we require the constant term of the series in to be one.
3. The set of generalized exponents is unique modulo 1

r Z, where r is the ram-
ification index (see [23]).

Furthermore, with the use of generalized exponents we also get such a repre-
sentation in the irregular singular case, i.e. we do not need a Laurent series for the
representation as we had in Theorem 1.13 (iii).

Example 1.32
1. Let’s compute the generalized exponents for the Bessel functions. The differ-
ential operator we consider is

L = x2
∂

2 + x∂ +(x2−ν
2),

which has singularities at 0 and ∞. Therefore the generalized exponents at any
point p other than 0 and ∞ are 0 and 1. For p = 0 we compute with Maple:

> L:=xˆ2*Dˆ2+x*D+(xˆ2-nuˆ2):
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> gen exp(L,t,x=0);

[[ν , t = x], [−ν , t = x]]

Since ν is a constant the point p = 0 is a regular singularity. Furthermore, we
can express the fundamental system of solutions at p = 0 in the form xνS1 and
x−νS2, where S1,S2 ∈ C[[x]][ln(x)].

For the point p = ∞ we do the same computation:
> gen exp(L,t,x=infinity);

[[
RootOf

(
1+ Z2)
t

+
1
2
, t = x−1]]

The RootOf in the output indicates that algebraic extensions are involved. The
gen exp command will always pick the field of the input as the base field. In our
case L is defined over Q(x), so the field of constants is Q. If we do a computation
at the point p 6= ∞ the gen exp command will take Q(p) as the field of constants.
In order to distinguish between the two generalized exponents we have to consider
the algebraic extension of Q obtained by the irreducible polynomial Z2 +1∈Q[Z].
Taking Q(i) as the field of constants we get a fundamental system of solutions at
p = ∞:

exp
(

i
t
+

1
2

)
S1 and exp

(
− i

t
+

1
2

)
S2,

where t = 1
x and S1,S2 ∈ C[[t]][ln(t)].

2. For the modified Bessel functions the situation is similar. Let L be the
modified Bessel operator. The singular points are at 0 and ∞. Again, at p = 0 the
generalized exponents are ν and −ν :

> L:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):

> gen exp(L,t,x=0);

[[ν , t = x], [−ν , t = x]]

At the point p = ∞ we compute the generalized exponents:
> gen exp(L,t,x=infinity);

[[
1
t

+
1
2
, t =

1
x
], [−1

t
+

1
2
, t =

1
x
]]

They correspond to the solutions

exp
(

1
t

+
1
2

)
S1 and exp

(
−1

t
+

1
2

)
S2,

with t = 1
x and S1,S2 ∈ C[[t]][ln(t)]. We see that the modified Bessel operator

is easier to handle since the generalized exponents do not create new algebraic
extensions.
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The Puiseux series S1,S2 of these examples are not important for us. The
important thing is that the generalized exponents can be expressed with the local
parameter in all cases. We never need a root of it. Hence, the ramification index
is r = 1. So the series S1 and S2 will not contain fractional exponents.

3. Formal solutions can be computed with the command formal sol in
Maple. Let L be the modified Bessel operator with ν = 0. Then we get the fol-
lowing local solutions at x = 0:

> L:=subs(nu=0,L):

> formal sol(L,t,x=0);

[[ ln(t)+
(
−1

4
+1/4 ln(t)

)
t2 +

(
1
64

ln(t)− 3
128

)
t4 +O

(
t6
)

,

1+
1
4

t2 +
1

64
t4 +O

(
t6
)

, t = x]]

If we just want to know whether the operator L has logarithmic solutions at
x = 0, we can also use the command:

> formal sol(L,‘has logarithm?‘,x=0);

true

Here, formal sol will make sure that enough terms of the Puiseux series are
computed such that we know whether a logarithm appears in the formal solution.

Remark 1.33
Let us finally summarize what we learn from this section for operators of degree
two:

• At every point p there are two generalized exponents e1 and e2 such that the
solution space is generated by two solutions of the form (1.26).

• If e1 and e2 are both non-negative integers the local solutions are power
series and p is either a regular point or an apparent singularity.

• If p is a non-apparent singularity and e1,e2 ∈ C are both constants, p is
regular singular. If e1,e2 /∈ C, p is irregular singular.

• Each generalized exponents e is unique modulo 1
re

Z, where re is the ramifi-
cation index of the generalized exponent e.

• If e1 6= e2 modulo 1
re1

Z, the generalized exponents belong to different sub-
modules of the universal extension. It follows from Remark 1.26 that there
are no logarithmic local solution at the point p.
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• If e1 = e2 modulo 1
re1

Z, there can be logarithmic solutions.

Especially for the Bessel operator we know:

• The ramification index is always 1.

• At p = ∞ the two generalized exponents belong to different submodules and
there are no logarithmic solutions.

• At p = 0 there can be logarithmic solutions only if ν =−ν modulo Z.
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2

Transformations

From now on we will only work with differential operators of degree two.

2.1 Operators of Degree Two
Let k be a field and let K = k(x) be the field of rational functions in x.

Definition 2.1 A transformation between two differential operators L1,L2 ∈ K[∂ ]
is a map from the solution space V (L1) onto the solution space V (L2).

The transformation is invertible if there also exists a map from V (L2) onto
V (L1).

For us the following transformations will be important.

Definition 2.2 Let L1 ∈ K[∂ ] be a differential operator of degree two.
We define for y = y(x) ∈V (L1) the following transformations:

(i) change of variables: y(x)→ y( f ), f ∈ K,
(ii) exp-product: y→ exp(

∫
r)y,r ∈ K, and

(iii) gauge transformation: y→ r0y+ r1y′,r0,r1 ∈ K.

For the resulting operator L2 ∈ K[∂ ] we write L1
f−→C L2, L1

r−→E L2, and
L1

r0,r1−→G L2, respectively. Furthermore, we write L1 −→ L2 if there exists a se-
quence of those transformations which transforms L1 into L2.

The rational functions f ,r,r0 and r1 will be called parameters of the transfor-
mation and the function exp(

∫
r) in case (ii) is called a hyperexponential function.

Note that the parameters of a transformation do not uniquely define the opera-
tor L2. Actually, the existence of such an operator for given parameters is not yet
assured.

29
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Theorem 2.3 Let L1 ∈ K[∂ ] be a differential operator of degree two. If the pa-
rameters of the transformations above are given, we can always find L2 ∈ K[∂ ]
with deg(L2) = 2 that satisfies the conditions.

Proof. 1. Let L1 = a2∂ 2 +a1∂ +a0 be a differential operator with a2 6= 0 and let
y = y(x) be a solution of L1, i.e. a2y′′(x)+a1y′(x)+a0y = 0.

Let f ∈ K and z = y( f ). Then

z = (y( f )),

z′ =
d
dx

y( f ) =
d
dx

y(x)
∣∣∣∣
x= f

f ′

and z′′ =
d2

dx2 y( f ) =
d2

dx2 y(x)
∣∣∣∣
x= f

( f ′)2 +
d
dx

y(x)
∣∣∣∣
x= f

f ′′

=−
(

a1

a2

d
dx

y(x)+
a0

a2
y(x)

)∣∣∣∣
x= f

( f ′)2 +
d
dx

y(x)
∣∣∣∣
x= f

f ′′.

We can rewrite the equation

z′′+b1z′+b0 = 0 (2.1)

in terms of y( f ) and d
dxy(x)

∣∣
x= f using the equations above and get

y( f )

(
− a0

a2

∣∣∣∣
x= f

( f ′)2 +b0

)
+

(
d
dx

y(x)
∣∣∣∣
x= f

)(
− a1

a2

∣∣∣∣
x= f

( f ′)2 + f ′′+b1 f ′
)

= 0.

Equating coefficients finally yields

b0 =
a0

a2

∣∣∣∣
x= f

( f ′)2 and b1 =
1
f ′

(
a1

a2

∣∣∣∣
x= f

( f ′)2 + f ′′
)

. (2.2)

Thus, we have found a differential equation for z = y( f ) which has order two.
Similarly we can prove the statement for exp-products and gauge transforma-

tions.
2. Let z = exp(

∫
(r))y and r ∈ K. Then

z′ = exp
(∫

r
)(

ry+ y′
)

and z′′ = exp
(∫

r
)(

r2y+2ry′+ r′y−a1y′−a0y
)
.

We rewrite the equation
z′′+b1z′+b0 = 0 (2.3)
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in terms of y and y′:

y
(
r′+ r2−a0−b1r +b0

)
+ y′ (2r−a1 +b1) = 0.

Equation coefficients yields

b1 =−2r +a1 and b0 =−r′− r2 +a0 +b1r.

3. Let z = r0y+ r1y′ and r0,r1 ∈ K. The derivations are

z′ =yr′0 + y′(r0 + r′1)+ y′′r1

=y(r′0−a0r1)+ y′(r0 + r′1−a1r1)
and z′′ =y(r′′0 −2a0r′1−a0r0−a′0r1−a0a1r1)

+ y′(2r′0−a0r1 + r′′1 −2a1r′1−a′1r1−a1r0 +a2
1r1).

Again, we rewrite (2.1) and solve the equations for the coefficients. This yields

b0 =−
(
− r1a0r′′1 −3r1a0r′0 + r2

1a0a′1− r1a0a1r0 + r′0r1a2
1−2r′0r′1a1

− r′0r1a′1 + r′0r′′1 − r′0a1r0 +2r′20 +a0r2
0− r′′0r0− r1a0r′1a1

+ r1a′0r0 +3a0r0r′1 +a2
0r2

1− r′′0r′1 +2r′21 a0 + r1a′0r′1 + r′′0r1a1

− r2
1a′0a1

)
/
(
− r2

0− r0r′1 + r0r1a1 + r1r′0− r2
1a0
)

and b1 =(r0r′′1 +2r0r′0 + r0r1a2
1−2r0r′1a1− r0r1a′1−a1r2

0−a0r2
1a1

+ r2
1a′0− r1r′′0 +2r1r′1a0)/(−r2

0− r0r′1 + r0r1a1 + r1r′0− r2
1a0).

Concluding, if we apply an exp-product or a gauge transformation to a solu-
tions y of a differential equation of order two, we will find a differential equation
for the resulting function z. Furthermore the coefficients are determined by the
formulas given above.

We can also avoid denominators in the formulas if we start with the equation
b2z′′+ b1z′+ b0 = 0. This will then result in two equations with three variables
and there will always be a non-trivial solution. �

Example 2.4
From the proof we can directly derive algorithms to compute the resulting oper-
ator. They are called changeOfVar, expProduct and gauge and take an
operator L and the parameters, respectively, f or r or r0,r1.

We apply x→ x2 to the modified Bessel operator LB:
> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):

> L:=changeOfVars(LB,xˆ2);

x2
∂

2 + x∂ −4x4−4v2
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Maple will still be able to find solutions:
> dsolve(diffop2de(L,y(x)),y(x));

y(x) = C1 Iν

(
x2)+ C2 Kν

(
x2)

We apply a gauge transformation with parameters 0 and 1 to LB with ν = 0:
> L:=gauge(subs(nu=0,LB),0,1):

It follows from Lemma 1.22 that I′0(x) = I1(x) and K′
0(x) = K1(x) so Maple will

express the solutions by I1(x) and K1(x):
> dsolve(diffop2de(L,y(x)),y(x));

y(x) = C1 I1(x)+ C2 K1(x)

An interesting question is always whether we can to a reverse operation. In
this case:

> gauge(L,1/x,1);

x∂
2 +∂ − x

The result differs from LB
∣∣
ν=0 by a factor x ∈ K. Since such a factor doesn’t

change the solution space those operators are considered to be equal. So we found
a reverse operation.

The following lemma will prove that a reverse operation always exists for exp-
products and gauge transformations.

Lemma 2.5 The operations −→C,−→E and −→G are reflexive and transitive.
The operations −→E and −→G are also symmetric.

Proof. 1. We can derive the reflexivity by of −→C,−→E and −→G using the
parameters f = x,r = 0,r0 = 1 and r1 = 0 in the definition of the transformations.

2. Let L1,L2 and L3 be differential operators. If L1
f1−→C L2

f2−→C L3 for

f1, f2 ∈ K, then L1
f3−→C L3 where f3 = f1( f2(x)).

If L1
r1−→E L2

r2−→E L3 for r1,r2 ∈ K, then L1
r3−→E L3 where r3 = r1r2.

Let L1 = a2∂ 2 +a1∂ +a0. If L1
r0,r1−→G L2

s0,s1−→G L3 for r0,r1,s0,s1 ∈ K, then a
solution y ∈V (L1) is mapped to

s0(r0y+ r1y′)+ s1(r0y+ r1y′)′

= s0(r0y+ r1y′)+ s1(r0y′+ r′0y+ r1y′′+ r′1y′)

= y
(

r0s0 + r′0s1−
a0

a2
r1s1

)
+ y′

(
r1s0 + r0s1 + r′1s1−

a1

a2
r1s1

)
. (2.4)

As a result, L1
t0,t1−→G L3 where t0 and t1 are the coefficients of y and y′ in equation

(2.4), respectively.
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3. If L1
r−→E L2, then L2

−r−→E L1 since exp(
∫

r)exp(−
∫

r) = 1. Depending
on the constant we choose in the integration of r we can get any other result exp(c)
for a constant c. But since exp(c)V (L) = V (L) the solution space is not changed
by any constant parameter in the exp-product.

The proof of the symmetry of −→G is more technical. Let L1,L2 ∈ K[∂ ] with
L1

r0,r1−→G L2, then we have an operator R = r1∂ + r0 ∈ K[∂ ] of degree one that
satisfies R(V (L1)) = V (L2). Since the dimensions of R(V (L1)) and V (L2) are
both two we must have V (R)∩V (L1) = 0. Otherwise R maps some solutions of
L1 to 0 and the dimension of V (L2) is at most one.

From V (R)∩V (L1) = 0 is follows that GCRD(L1,R) = 1. Because if there
was G = GCRD(L1,R) with deg(G) > 0, there would exist M1,M2 ∈ K[∂ ] with
M1G = L1 and M2G = R. Hence, Ry = L1y = 0 for all y∈V (G). Since deg(G) > 0
this would also be true for some y 6= 0 and then y ∈ V (R)∩V (L1), which is a
contradiction.

So we find S,T ∈ K[∂ ] such that SL1 + T R = 1. Let U = SL1 + T R. For a
solution y ∈ V (L1) we get y = U(y) = S(L1(y)) + T (R(y)) = S(0) + T (R(y)) =
T (R(y)). As a result, T is the inverse operator of R. There are always infinitely
many tuples S,T that solve SL1 + T R = 1 and there will also be a solution with
deg(T ) < deg(L1) = 2. This T is the inverse gauge transformation that makes
−→G symmetric. �

Remarks 2.6
1. The operators calculated in Theorem 2.3 are not unique.
2. The change of variables is not symmetric because that would require alge-

braic functions as parameter. For example, to cancel the operation x → x2, we
would need x→

√
x.

3. The relation −→ is reflexive and transitive since it is defined as a composi-
tion of −→C, −→E and −→G.

An important question when searching for transformations between two op-
erators L1 and L2 is whether we can restrict our search to a specific order of the
transformations −→C, −→E and −→G.

Lemma 2.7 Let L1,L2,L3 ∈K[∂ ] be three differential operators such that L1−→G
L2 −→E L3. Then there exists a differential operator M ∈ K[∂ ] such that L1 −→E
M −→G L3.

Similarly, if L1 −→E L2 −→G L3 we find M such that L1 −→G M −→E L3.

Proof. Let r0,r1 ∈ K be the parameters of the gauge transformation and let r ∈ K
be the parameter of the exp-product. If y ∈ V (L1), then z = exp(

∫
r)(r0y+ r1y′)
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is a solution of L3 which can also be rewritten:

z = r0 exp
(∫

r
)

y+ r1 exp
(∫

r
)

y′

= (r0− r′)exp
(∫

r
)

y+ r1

(
exp
(∫

r
)

y
)′

. (2.5)

Hence, L1
r−→E M

s0,s1−→G L3 for some M ∈ K[∂ ] with s0 = r0− r′ and s1 = r1.
The reverse can be derived from equation (2.5) by starting with the right-hand

side. �

Definition 2.8 The relation −→EG on two differential operators L1,L2 ∈ K[∂ ] is
defined by

L1 −→EG L2 ⇔∃M ∈ K[∂ ] : L1 −→E M −→G L2.

It follows from Lemma 2.5 and Lemma 2.7 that −→EG is an equivalence re-
lation. The problem whether two operators are connected through an exp-product
and a gauge transformations is also called the equivalence of differential opera-
tors.

The equivalence of a two operators can equivalently be defined as follows.

Lemma 2.9 Let L1,L2 ∈ K[∂ ] be given, then the following statements are equiv-
alent

(i) ∃r0,r1 ∈ K : L1
r0,r1−→G L2

(ii) ∃G ∈ K[∂ ],deg(G) = 1 : L2G = QL1 for some operator Q.

Furthermore, if an exp-product with parameter r∈K is involved such that L1 −→G

M r−→E L2 for some M ∈ K[∂ ] then the same statement is true for G = exp(
∫

r)Ḡ
with Ḡ ∈ K[∂ ].
Proof. Let (i) be given and let G = r1∂ + r0. Then all solutions y ∈ V (L1) are
solutions of L2G since L2Gy = L2(r1y′+r0y) yields zero by assumption. Thus, L1
is a right factor of L2G, which proves (ii).

If (ii) is given and y ∈V (L1), then 0 = QL1y = L2Gy. Let G = r1∂ + r0. Then
each solution y of L1 gives a solution Gy = r1y′+ r0y 6= 0 of L2. Moreover, L1 and
L2 both have degree two. Hence, L1 −→G L2. �

We will come back to the equivalence of operators at the end of this chapter.
Now we consider the more general question whether L1 −→ L2 for two operators
L1 and L2.
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Theorem 2.10 Let L1,L2 ∈ K[∂ ] such that L1 −→ L2. Then there exists an oper-
ator M ∈ K[∂ ] such that

L1 −→C M −→EG L2.

Proof. To prove the theorem it is sufficient to show that for three operators
L1,L2,L3 ∈ K[∂ ] the following holds:

(i) L1 −→E L2 −→C L3 ⇒∃M ∈ K[∂ ] : L1 −→C M −→E L3, and
(ii) L1 −→G L2 −→C L3 ⇒∃M ∈ K[∂ ] : L1 −→C M −→G L3.

The rest follows from Lemma 2.7 and the definition of −→EG.
(i) Let r and f be the parameter of the exp-product and the change of variables

respectively, and let R = R(x) =
∫

r dx. Then the solution space of L3 is:

V (L3) = {exp(R( f ))g( f ) | g(x) ∈V (L1)} .

This solution space also arises from L1 by a change of variables x → f and an
exp-product with ∂R( f ).

(ii) Let r0 and r1 be the parameters of the gauge transformation and let f the
parameter of the change of variables. Then the solution space of L3 is:

V (L3) =
{

r0( f )g( f )+ r1( f )g′(x)
∣∣
x= f

∣∣ g(x) ∈V (L1)
}

.

Now g′(x)
∣∣
x= f = g( f )′

f ′ and so the solution space

V (L3) =
{

r0( f )g( f )+
r1( f )

f ′
g( f )′

∣∣∣ g(x) ∈V (L1)
}

arises from L1 by a change of variables x → f and a gauge transformation G =
r1( f )

f ′ ∂ + r0( f ). �

Note that the converse of (i) and (ii) is not generally true. The reason for
this is the same reason why −→C is not symmetric. We have to do the reverse
operation of r(x)→ r̃(x) = r( f (x)), which may need algebraic functions. So we
would have to allow algebraic functions as parameters in the exp-product and the
gauge transformation.

The knowledge of transformations between two differential operators L1 −→
L2 reduces the problem to solve L2 to the problem to find V (L1). If we know the
transformations involved we can simply express V (L2) in terms of two indepen-
dent solutions y1,y2 ∈V (L1).

The main problem we consider in this thesis is the following: given an operator
L ∈ K[∂ ] find transformations that send the modified Bessel operator LB to L if
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they exist. If we found those transformations, we also found V (L). Note that we
also need to find the parameter ν of the Bessel functions involved.

We know from the previous theorem that if those transformations exist, there
exists M ∈ K[∂ ] such that

LB −→C M −→EG L.

We will address those two parts separately.
But first we will clarify the next steps using some examples.

Example 2.11
1. We consider the modified Bessel operator LB with ν = 2:

L = x2
∂

2 + x∂ −
(
x2 +4

)
.

Using the results of Example 1.32 we know that the generalized exponents at x = 0
and x = ∞ are

gexp(L,0) = {2,−2} (2.6)

and gexp(L,∞) =
{

1
T

+
1
2
,− 1

T
+

1
2

}
.

Now we apply a change of variables

x→ f (x) =
2(x−1)(x−2)2

(x−3)2

to L:
> L:=xˆ2*Dˆ2+x*D-(xˆ2+2ˆ2):

> f:=2*(x-1)*(x-2)ˆ2/(x-3)ˆ2:

> M:=changeOfVars(L,f);

M :=(x−2)3 (x2−7x+8
)
(x−3)6 (x−1)3

∂
2+(

x4−14x3 +55x2−84x+46
)
(x−3)5 (x−1)2 (x−2)2

∂−

4
(
x2−7x+8

)3
(

x6−10x5 +42x4−100x3 +158x2−172x+97
)

(x−2)(x−1)

We will now assume that M is given. We want to find the parameter of the
change of variables that sends L to M, i.e. we want to find f using only the operator
M.
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The zeros of the leading coefficient of M are 1,2,3, 7
2 + 1

2

√
17 and 7

2 −
1
2

√
17.

The generalized exponents of the latter two points are 0 and 2:

> gen exp(M,t,x=RootOf(xˆ2-7*x+8));

[[0,2, t = x−RootOf ( Z2−7 Z +8)]]

Hence, all local solutions can be expressed as power series. These points are
apparent singularities and are not considered in the following.

The other singular points are exactly the zeros and poles of f . It is not amazing
that the function I2( f (x)) has singularities at those points since f sends those
points to 0 and ∞, which are singularities of I2(x).

Another point we have to consider is x = ∞. If we apply a change of variables
x → 1

x to M, we get an operator which has a singularity at x = 0. Hence, x = ∞ is
also a singularity of M.

We compute the generalized exponents of M at the points x = 1 and x = 2 with
Maple:

> gen exp(M,t,x=1);

[[2,−2, t = x−1]]

> gen exp(M,t,x=2);

[[4,−4, t = x−1]]

These points turn out to be regular singular since their generalized exponents are
constants. Comparing the exponents with those of L at x = 0 in equation (2.6)
we see that they were multiplied by the multiplicity of the zero x = 1 and x = 2,
respectively.

The generalized exponents at x = 3 are the following:

> gen exp(M,t,x=3);

[[−8 t−2−10 t−1 +1, t = x−3], [8 t−2 +10 t−1 +1, t = x−3]] (2.7)

Hence, x = 3 is irregular singular. We compare the coefficients that appear in the
generalized exponents with the partial fraction decomposition of f :

> convert(f,parfrac);

4
(x−3)2 +

10
x−3

+2+2x (2.8)

We observe that the coefficients of (x−3)− j = t− j in (2.8) multiplied by the cor-
responding exponent − j appear in the first generalized exponent of (2.7). These
are 4 · (−2) =−8 and 10 · (−1) =−10.

Similarly, we can find the coefficient of x = 1
t∞

in (2.8) by computing the gen-
eralized exponent of M at x = ∞:
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> gen exp(M,t,x=infinity);

[[−2
t

+
1
2
, t =

1
x
], [

2
t

+
1
2
, t =

1
x
]]

Again the coefficient of the partial fraction decomposition appears in the gen-
eralized exponent.

Concluding, we see that if LB
∣∣
ν=2

f−→C M, the singularities and the general-
ized exponents of M have a lot in common with the parameter f . All this infor-
mation can be used to find f . Yet, we didn’t consider the constant term 2 in (2.8).
We will study these facts in detail in Chapter 3.

2. Now we further apply an exp-product with parameter r = ((x−5)(x−2))−1

to M and get:

> M2:=expProduct(M,((x-5)(x-2))ˆ(-1));

M2 =(x−2)2 (x2−7x+8
)
(x−1)2 (x−3)6 (x−5)2

∂
2+(

x5−21x4 +147x3−437x2 +572x−278
)

(x−3)5 (x−5)(x−1)(x−2)∂

−4x14 +164x13−3032x12 +33505x11−247557x10 +1297816x9−
5006810x8 +14568502x7−32519034x6 +56185848x5−74866424x4+

75029073x3−53284469x2 +23749732x−4945502

So we are considering

LB
∣∣
ν=2

f−→C M r−→E M2

and want to find f by looking at M2.
Comparing the leading coefficient of M2 with the one we had in M we observe

that there is a new singularity at x = 5. The generalized exponents at this point
are

> gen exp(M2,t,x=5);

[[
1
3
,
4
3
, t = x−5]]

Hence, x = 5 is another regular singular point and we lost the one–to–one corre-
spondence between regular singularities and zeros of f , which we had before.
The exp-product also created apparent singularities at the zeros of x2−7x+8:

> gen exp(M2,t,x=RootOf(xˆ2-7*x+8));

[[0,2, t = x−RootOf( Z2−7 Z +8)]]

Furthermore, the other generalized exponents were changed by the transfor-
mation, e.g. at x = 2 we have:
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> gen exp(M2,t,x=2);

[[−13
3

,
11
3

, t = x−2]]

Here we cannot read off the multiplicity of the factor (x−2) directly.
Concluding, if an exp-product is involved, the zeros of the parameter f in the

change of variables do not correspond to regular singularities and the multiplicity
of the zeros can not be derived from the generalized exponents.

3. The zeros and poles of f were still among the regular and irregular sin-
gularities of M2. But if we apply a gauge transformation to M2 with parameters
r0 = (x−1)2 and r1 = (x−1)3, the resulting operator M3 loses also this property.

> M3:=gauge(M2,(x-1)ˆ2,(x-1)ˆ3):

Now we consider

LB
∣∣
ν=2

f−→C M r−→E M2
r0,r1−→G M3.

The generalized exponent of M3 at x = 1 is:

> gen exp(M3,t,x=1);

[[0, t = x−1], [4, t = x−1]]

Hence, x = 1 becomes an apparent singularity of M3. But we don’t consider
apparent singularities because there exists an operator M̃3 which has the same
solutions as M3. There also might exist such an operator M̃3 which has degree
two. Moreover, we have seen that a change of variables and an exp-product can
create apparent singularities. Therefore, apparent singularities are not taken into
account. Thus, we cannot find all zeros of f by only looking at the singularities
of M3. But we will soon see that we can use a similar approach.

From the first part of the example we see that we can find the parameter f of
the change of variables by looking at singularities and generalized exponents. But
if exp-products and gauge transformations are involved, this is not so easy. In the
next section we will develop a property which is invariant under exp-products and
gauge transformations, which can then be used to find f .

2.2 The Exponent Difference

In this section we will study how exponents behave in exp-products and gauge
transformations.
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Lemma 2.12 Let L,M,∈ K[∂ ] be two differential operators such that M r−→E L
and let e be an exponent of M at the point p. Furthermore, let r have the series
representation

r =
∞

∑
i=m

rit i
p, m ∈ Z.

Then e+∑
−1
i=m rit i+1

p is an exponent of L at p.

Proof. Let t be the local parameter tp. Since e is an exponent, M has a solution of
the form

y = exp
(∫ e

t
dt
)

S,

for some Puiseux series S ∈ k((t))[ln(t)]. The exp-product converts this solution
into

z = exp
(∫

rdt
)

exp
(∫ e

t
dt
)

S.

In order to determine the exponent at p we have to rewrite this expression into
the form (1.26). We have to handle the positive and negative powers of t in r
separately. For the power series part r̄ = ∑

∞
i=0 rit i we get

exp
(∫

r̄ dt
)

= exp

(
∞

∑
i=0

ri

i+1
t i+1

)
.

With exp(x) = ∑
∞
i=0

xi

i! we can rewrite this as a power series in t:

exp
(∫

r̄ dt
)

=
∞

∑
i=0

1
i!

(
∞

∑
j=0

r j

j +1
t j+1

)i

=
∞

∑
i=0

ait i with ai ∈ k,a0 = 1.

The negative powers of t in the series expansion of r become a part of the
exponent:

exp

(∫ −1

∑
i=m

rit i dt

)
= exp

(∫ 1
t

−1

∑
i=m

rit i+1 dt

)
.

Combining the two results we get

z = exp

(∫ 1
t

(
e+

−1

∑
i=m

rit i+1

)
dt

)
S̄,
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where S̄ ∈ k((t))[ln(t)] has a non-zero constant term. �

Note that the result of this lemma depends only on r. Hence, each generalized
exponent at a point p is shifted by the same amount.

Definition 2.13 Let L ∈ K[∂ ] be a differential operator, let p be any point, and let
e1 and e2 be two generalized exponents of L at p. Then the difference e1− e2 is
called an exponent difference of L at p.

If deg(L) = 2 there exist just two generalized exponents at each point and we
define

∆(L, p) :=±(e1− e2).

We define ∆ modulo a factor −1 to make it well-defined because we have
no ordering in the generalized exponents we compute. It follows from Lemma
2.12 that ∆(L1, p) = ∆(L2, p) for L1 −→E L2, i.e. ∆(L1, p) is invariant under exp-
products.

Lemma 2.14 Let L,M ∈ K[∂ ] be two differential operators such that M −→G L
and let e be a generalized exponent of M at the point p. The operator L has a
generalized exponent ē such that ē = e mod Z.

Proof. Let y be a solution of M with generalized exponent e at p and let t = tp.
Then y has the form

y = exp
(∫ e

t
dt
)

S

with S ∈ k((t))[ln(t)].
Let r,s ∈ K be the parameters of the gauge transformation that send M to

L. Then z = ry + sy′ is a solution of M. Let ē be the exponent of M, then our
statement follows from the following facts, which are simple consequences of
standard calculation rules and the series representation that we use:

1. The exponents er and es of the rational functions r and s at the point p are
integers.

2. The generalized exponent of y′ differs from e by an integer.

3. The generalized exponent of ry is the sum of the exponents of r and y (same
holds for sy′).

Then the generalized exponents of ry and sy′ both differ from e by an integer, i.e.

ry = exp
(∫ e+λ1

t
dt
)

S1 and sy′ = exp
(∫ e+λ2

t
dt
)

S2,
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where λ1,λ2 ∈ Z and S1,S2 ∈ k((t))[ln(t)]. Thus,

ry+ sy′ = exp
(∫ e+λ3

t
dt
)

S3,

where λ3 ∈ Z depends on λ1 and λ2 and is such that the Puiseux series S3 ∈
k((t))[ln(t)] starts with a non-zero constant term. Hence, ē is a generalized expo-
nents of L and ē = e+λ3 = e mod Z. �

The exponent difference ∆ has the following property.

Corollary 2.15 Two operators L1,L2 ∈K[∂ ] with L1 −→EG L2 satisfy ∆(L1, p) =
∆(L2, p) mod Z for each point p, i.e. ∆(L1, p) mod Z is invariant under −→EG.

This result will be used in the following theorem.

Theorem 2.16 Let L ∈ K[∂ ] be a differential operator and let p be a fixed point.
Then the following statements are equivalent:

(i) There exists an operator M ∈K[∂ ] where p is regular such that M −→EG
L.

(ii) The solutions of L are not logarithmic and ∆(L, p) ∈ Z.

We will only prove the implication (i)⇒(ii). Above, we stated the equivalence for
the sake of completeness. More details can be found in [21] and the appendix of
[1].
Proof. Assume that (i) is given. Then there exist rational functions r0,r1,r2 ∈ K
and M̃ ∈ K[∂ ] such that

M
r0−→E M̃

r1,r2−→G L.

Furthermore, let p be a regular point of M. The generalized exponents at p are
0 and 1. Hence, ∆(M, p) ∈ Z and from the previous corollary it follows that
∆(L, p) ∈ Z.

Let

y1 =
∞

∑
i=0

ait i
p,a0 6= 0 and y2 =

∞

∑
i=1

bit i
p,b1 6= 0

be linear independent local solutions of M at the point p, i.e.

V (M) = {c1y1 + c2y2 | c1,c2 ∈ K}.

After the exp-product the solution space is

V (M̃) =
{

exp
(∫

r0

)
(c1y1 + c2y2)

∣∣∣c1,c2 ∈ K
}
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and the gauge transformation changes this into

V (L) =
{

r1z+ r2z′ | z ∈V (M̃)
}

.

Since we have no logarithms in V (M) we will also have none in V (M̃) or V (L).
Therefore, the solutions of L are not logarithmic and we have proven (ii). �

For us the important direction is (i)⇒ (ii). Consider the situation M −→EG L
with fixed M. We are interested in the singularities of M. The theorem tells us that
the points p where (ii) does not hold are singularities of M.

Note that we do not know all singularities of M. Assume that (ii) holds at a
point p. From the theorem we know the existence of some M̃ such that M̃−→EG L
and M̃ is regular at p. However, we can not make a choice for M in our situation.
Hence, we can not say whether p is regular point of M or not.

Definition 2.17 The singular points of an operator L where (ii) of the last theorem
holds are called exp-apparent singularities.

Considering LB
f−→C M −→EG L this means that all singularities of L which

are not exp-apparent are singularities of M which can be used to compute f . Once
we found f , we can compute M. The remaining problem is the equivalence be-
tween M and L.

2.3 Equivalence of Differential Operators
The problem whether two operators are equivalent can be solved for example us-
ing the algorithm by Barkatou and Pflügel described in [3] which is implemented
in the ISOLDE package for Maple.

In this section we want to introduce a simpler algorithm through an example,
which is called the cyclic vector method.

But before be can apply this method we need to reduce our problem to a system
of linear differential equations.

Theorem 2.18 The question whether two operators L1,L2 ∈ K[∂ ] are equivalent
can be reduced to a system of linear differential equations with hyperexponential
solutions.

Proof. From Lemma 2.9 we know that the operators satisfy L1 −→G L2 if and
only if there exists an operator G ∈ K[∂ ] of order one such that L1 is a right factor
of L2G.

If L1 −→EG L2, then the same is true for an operator G = exp(
∫

r)Ḡ with r ∈K
and Ḡ ∈ K[∂ ] of order one.



44 CHAPTER 2. TRANSFORMATIONS

We start with an operator G = r1∂ + r0, where r0 = exp(
∫

r)s0 and r1 =
exp(

∫
r)s1. So in both cases we search for hyperexponential functions r0 and

r1. Then the rest R after a right division of L2G by L1 must be zero. The operator
R is a operator of degree one and the coefficients are a K-linear combination of
r0,r′0,r

′′
0 ,r1,r′1 and r′′1 . Equating these coefficients with zero yields a system of two

differential equations of order two with two variables.
Furthermore, replacing r′0 and r′1 by two new variables r̄0 and r̄1 transforms this

system into a system of differential equations of order one. We add two equations
r′0− r̄0 = 0 and r′1− r̄1 = 0 and finally get a system of four order one equations in
four variables. In matrix representation such a system is written as Y ′−AY = 0,
where A is a 4×4 matrix and Y is the vector including the undetermined functions
r0,r1, r̄0 and r̄1. �

These hyperexponential solutions can be found with the cyclic vector method.

Definition 2.19 Let V be a n-dimensional vector space and ∂ : V → V an endo-
morphism. A vector v ∈V is called a cyclic vector of V if

{z,∂ z,∂ 2z, . . . ,∂ n−1z}

is a basis of V .

Definition 2.20 Let

L = an∂
n +an−1∂

n−1 + · · ·+a0∂
0

be a differential operator. We define the adjoint operator

L∗ := (−1)n ((−∂ )0a0 + . . .+(−∂ )n−1an−1 +(−∂ )nan
)
.

The adjoint operator satisfies L∗∗ = L and (L1L2)∗ = L∗2L∗1.
The cyclic vector method works as follows.

Theorem 2.21 Let A be the 4× 4 matrix of the equation Y ′− AY = 0 and let
∂y = y′−Ay. Then we can compute a hyperexponential solution by the following
steps:

1. Pick a random element v ∈ K4.
2. Check whether v is cyclic, otherwise repeat step one and two.
3. Compute L = a0 +a1∂ +a2∂ 2 +a3∂ 3 +∂ 4 such that Lv = 0.
4. Compute a hyperexponential solution s of L∗ (e.g. use expsols in Maple).
5. Compute R such that L =

(
∂ + s′

s

)(1
s R
)
.
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6. Let R = y0 + y1∂ + y2∂ 2 + y3∂ 3 and y = y0v+ y1∂v+ y2∂ 2v+ y3∂ 3v.

Then y is a hyperexponential solution of Y ′−AY = 0.

Proof. Let v be a cyclic vector, then v,∂v,∂ 2v and ∂ 3v are a basis of K4. Adding
the vector ∂ 4v this set is linear dependent and we can find a linear combination
a0v+a1∂v+a2∂ 2v+a3∂ 3v+a4∂ 4v with coefficients in K which is zero. We can
also find a combination with a4 = 1 and the corresponding coefficients define the
operator L = a0 +a1∂ +a2∂ 2 +a3∂ 3 +∂ 4.

A solution of the matrix equation is a vector y = exp(
∫

r)ȳ with ȳ ∈ K4,r ∈ K
for which ∂y = 0. The vector ȳ can be represented with the basis of the cyclic
vector v such that

ȳ = b0v+b1∂v+b2∂
2v+b3∂

3v

and y = c0v+ c1∂v+ c2∂
2v+ c3∂

3v (2.9)

with bi ∈ K and ci = exp(
∫

r)bi. The coefficient c3 cannot be zero. If it is zero,
the equation ∂y = 0 is a differential equation of order < 4 for v, which is zero.
Since we can divide by the exponential part exp(

∫
r) this also yields a differential

equation of order less than four with coefficients in K. But then v would not be
cyclic. Hence, c3 6= 0 and we factor out c3 in (2.9). We can also rewrite ∂y:

0 = ∂y = c3(d0v+d1∂v+d2∂
2v+d3∂

3v+∂
4v) = c3L̃v

where L̃ = d0 + d1∂ + d2∂ 2 + d3∂ 3 + ∂ 4 and di ∈ K. The equations Lv = 0 and
L̃v = 0 both are a linear combination of v,∂v, . . . ,∂ 4v that is zero. The leading co-
efficients are both one and therefore L = L̃ and ∂y = c3Ly. For the corresponding
operator we obtain

∂ (c0 + c1∂ + c2∂
2 + c3∂

3) = c3L.

The left-hand side of this equation can be rewritten as

∂c3

(
c0

c3
+

c1

c3
∂ +

c2

c3
∂

2 +∂
3
)

= c3

(
∂ +

c′3
c3

)(
c0

c3
+

c1

c3
∂ +

c2

c3
∂

2 +∂
3
)

.

Hence, ∂ + c′3
c3

is a left factor of L and
(

∂ + c′3
c3

)∗
= ∂ − c′3

c3
is a right factor of L∗.

This factor has a hyperexponential solution c3 which is also a solution of L∗.
Thus, the solution s that is computed in step four is in fact s = c3. The fifth

steps yields R = c0 + c1∂ + c2∂ 2 + c3∂ 3 and from (2.9) we know that the vector y
in step six must be a solution of the matrix equation. �
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Example 2.22
Let L1 = ∂ 2 + x and L2 = x2∂ 2− 2x∂ + 2 + x3. We want to compute the gauge
transformation that sends L1 to L2.

> L1:=Dˆ2+x:

> L2:=xˆ2*Dˆ2-2*x*D+2+xˆ3:

At first, we transform this problem into a system of differential equations.
Let G = r1∂ + r0, we compute the rest R of the right division of L2G by L1 and
introduce new variables r2 = r′0 and r3 = r′1.

> R:=numer(op(2,rightdivision(mult(L2,G),L1))):

> R:=subs({diff(r0(x),x)=r2(x),diff(r1(x),x)=r3(x)
},R);(

2r1(x)−2r0(x)x+
(

d
dx

r3(x)
)

x2 +2r2(x)x2−2r3(x)x
)

∂+(
d
dx

r2(x)
)

x2 + r1(x)x2 +2r0(x)−2r2(x)x−2r3(x)x3

Hence, we have differential equations

0 = x2r′3 +2r1−2xr0 +2x2r2−2xr3,

0 = x2r′2 + x2r1 +2r0−2xr2−2x3r3,

0 = r′0− r2,

and 0 = r′1− r3,

which can be written as Y ′−AY = 0 with

A =


0 0 1 0
0 0 0 1

2x−1 −2x−2 2x−1 −2
−2x−2 −1 2x 2x−1

 and Y =


r0
r1
r2
r3

 .

Next, we will use the cyclic vector method as described in Theorem 2.21. Let
v0 = [1,0,0,0] and vi = v′−Av for 1≤ i≤ 3. We compute L:

> s:=solve({add(a[i]*V[i],i=0..4),a[4]=1},{a[0]
,a[1],a[2],a[3],a[4]}):

> L:=eval(add(a[i]*Dˆi,i=0..4),s);

10x−1 +6

(
−1+3x3)∂

x3 +2

(
3+2x3)∂ 2

x2 +7
∂ 3

x
+∂

4

The vector v must be cyclic since the general solution s gave no further choice for
the coefficients.
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Now we compute one exponential solutions of the adjoint operator L∗.
> La:=adjoint(L);

∂
4−7

∂ 3

x
+

(
27+4x3)∂ 2

x2 −10

(
6+ x3)∂

x3 +10
6+ x3

x4

> c[3]:=op(1,expsols(diffop2de(La,y(x)),y(x)));

c[3] := x

Finally, we compute the operator R
> R:=collect(c[3]*op(1,leftdivision(L,
adjoint(D-normal(diff(c[3],x)/c[3])))),D,normal);

R := x∂
3 +6∂

2 +2

(
3+2x3)∂

x
+10x

and the solution y:
> y:=normal(expand(add(coeff(R,D,i)*v[i],i=0..3)));

y := [6x,0,6,0]

We are just interested in the first two components of y, r0 = 6x and r1 = 0.
Hence, G = 0 ·∂ +6x. Since we can change G by a constant factor we get

L1
0,x−→G L2.

We can verify this by:
> gauge(L1,x,0);

x2
∂

2−2x∂ +2+ x3

This result is equal to L2, so if y ∈V (L1), then xy ∈V (L2).

There are faster methods to compute hyperexponential solutions than the cyclic
vector method. But this gets more important if the systems are bigger. A prob-
lem is that the direct algorithm by Barkatou and Pflügel just works with Q as the
field of constants. Therefore, our equiv implementation uses the cyclic vector
method with some more modifications that we will not consider here.

Example 2.23
We can use equiv to compute the reverse transformations from Example 2.4:

> LB:=xˆ2*Dˆ2+x*D-(xˆ2+vˆ2):

> L:=gauge(subs(v=0,LB),0,1):

> equiv(L,subs(v=0,LB));

−1
x
,x∂ +1
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The output r,G represents an operator of the form exp(
∫

r)G. Hence, the reverse
transformation to ∂ is exp(−

∫ 1
x dx)(x∂ +1) = 1∂ +1/x. Note that this result de-

pends on LB, which can be seen from the formulas derived in the proof of Theorem
2.3.



3

Solving in Terms of Bessel Functions

Let Lin be a differential operator. In this chapter we will solve the question whether
there exist transformations such that LB −→ Lin. Using the results of the last
chapter we just have to consider

LB
f−→C M −→EG Lin. (3.1)

The operator Lin is the only input to the algorithm. We define k to be the field such
that Lin is defined over K = k(x), i.e. Lin ∈ K[∂ ].

In the next section we will take a closer look at the part LB −→C M. Once we
found the Bessel parameter ν and the parameter f we can obtain M from LB. For
fixed M ∈ K[∂ ] we can already solve the question of equivalence between M and
Lin. We can then finally solve (3.1).

3.1 Change of Variables
Let M ∈ K[∂ ] be given. We want to know whether there exists f = f (x) ∈ K and
ν ∈ C such that

LB
f−→C M (3.2)

holds.
Let us assume that Bν(x) is a solution of LB. Then Bν( f (x)) is a solution of

M. Since Bν(x) has singularities at 0 and ∞ it is obvious that the singularities of
Bν( f (x)) are at those points p were f (p) = 0 or f (p) = ∞, i.e. at the zeros and
poles of f (x).

We will now analyze ∆(M, p) because we can then apply results not only to
(3.2) but also to (3.1).

Theorem 3.1 Let LB be a Bessel operator and let M ∈ K[∂ ] be such that LB
f−→C

M, f ∈ K.

49
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(a) If p is a zero of f with multiplicity m ∈ N, then p is a regular singularity
of M and ∆(M, p) = 2mν .

(b) If p is a pole of f with multiplicity m ∈ N such that

f =
∞

∑
i=−m

fit i
p, (3.3)

then p is an irregular singularity of M and

∆(M, p) = 2
−1

∑
i=−m

i fit i
p. (3.4)

Proof. Let t be the local parameter tp.
(a) Let p be a zero of f with multiplicity m > 0, then f has the representation

f = tm
∑

∞
i=0 fit i with fi ∈ k and f0 6= 0. Furthermore, let y ∈ V (LB) be a local

solution at x = 0 of the form

y = xν
∞

∑
i=0

aixi, ai ∈ k,a0 6= 0.

If we now replace x by f , we get

z = f ν
∞

∑
i=0

ai f i (3.5)

which is a local solution of M at p. Hence, we can rewrite z as a series in t, i.e.

z = te
∞

∑
i=0

bit i, bi ∈ k,b0 6= 0 (3.6)

and e is the exponent of z. Now f i = tmi f̄ where the constant coefficient of f̄ ∈
k[[t]] is non-zero and comparing the representations (3.5) and (3.6) of z yields
e = mν .

Similarly, for the second independent local solution of LB at x = 0, which has
exponent −ν , we obtain the generalized exponent e =−mν . Hence, the singular-
ity p is regular and ∆(M, p) = 2mν .

If ν ∈Z the second independent solution contains a logarithm ln(x). However,
we can still do the same computations. The solution z would then involve ln(t)
and the result for the exponent is still true.

(b) A similar approach works in second case. Let p be a pole of f with multi-
plicity m∈N. Then representation (3.3) can also be written as f = t−m

∑
∞
i=0 fi−mt i

with fi ∈ k, f−m 6= 0.
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We start with a local solution y of LB at x = ∞ corresponding to the exponent
1
t∞

+ 1
2 . There exists a series S ∈ k[[t∞]] such that

y = exp
(∫ 1

t2
∞

+
1

2t∞
dt∞

)
S = exp

(
− 1

t∞

)
t1/2
∞ S (3.7)

is a solution of LB. In order to get a solution z of M we have to replace x by f , i.e.
t∞ = 1

x by 1
f . Hence, we do the following substitutions:

t∞ −→
1
f

= tm
∞

∑
i=0

f̃it i, f̃i ∈ k, f̃0 6= 0

1
t∞
−→ f , (3.8)

and t1/2
∞ −→ 1

f 1/2 = tm/2
∞

∑
i=0

f̄it i, f̄i ∈ k, f̄0 6= 0.

We apply these substitutions to (3.7) and get a local solution z of M at x = p:

z = exp(− f ) tm/2S̃, S̃ ∈ k[[t]],

where S̃ combines all the new series that we obtain from (3.8). As we did in
the proof of Lemma 2.12 we can rewrite exp(∑∞

i=0 fit i) as power series in t. The
negative powers of t remain in the exponential part, which then is

exp

(
−

−1

∑
i=−m

fit i

)
tm/2 = exp

(
−

−1

∑
i=−m

fit i +
m
2

ln(t)

)

=exp

(∫ ( −1

∑
i=−m

−i fit i−1 +
m
2t

)
dt

)
= exp

(∫ 1
t

(
−1

∑
i=−m

−i fit i +
m
2

)
dt

)
.

Thus, z has the generalized exponent ∑
−1
i=−m−i fit i + m

2 .
If we start with the second independent solution with generalized exponent

− 1
t∞

+ 1
2 we similarly get ∑

−1
i=−m i fit i + m

2 . Hence, p is an irregular singularity of
M and ∆(L, p) = 2∑

−1
i=−m i fit i. �

Now we apply this result to (3.2) where the rational function f is unknown.
The theorem tells us that we find the poles and zeros of f by looking at the sin-
gularities of M. For each pole p we can find the negative coefficients in the series
representation (3.3) of f . And the exponent difference of the other singularities
will give us the multiplicities of the zeros of f . All this information together will
almost completely give f .



52 CHAPTER 3. SOLVING IN TERMS OF BESSEL FUNCTIONS

Example 3.2
As in Example 2.11 we start with the modified Bessel operator LB with ν = 2. We
do the same change of variables with

f =
2(x−1)(x−2)2

(x−3)2 =
2x3−10x2 +16x−8

x2−6x+9

and get the operator
> LB:=xˆ2*Dxˆ2+x*Dx-(xˆ2+2ˆ2):

> f:=2*(x-1)*(x-2)ˆ2/(x-3)ˆ2:

> L:=changeOfVars(LB,f);

L :=(x−2)3 (x2−7x+8
)
(x−3)6 (x−1)3

∂
2+(

x4−14x3 +55x2−84x+46
)
(x−3)5 (x−1)2 (x−2)2

∂−

4
(
x2−7x+8

)3
(

x6−10x5 +42x4−100x3 +158x2−172x+97
)

(x−2)(x−1)

The singularities of this operator are 1,2,3,∞, 7
2 + 1

2

√
17 and 7

2 −
1
2

√
17. We al-

ready discovered in Example 2.11 that the latter two singularities are apparent, 1
and 2 are the regular singularities, and 3 and ∞ are irregular singularities.

We will now use part (b) of the theorem to find f . In order to do this we
compute the generalized exponent at x = 3 using Maple:

> gen exp(L,t,x=3);

[[− 8
t2 −

10
t

+1, t = x−3], [
8
t2 +

10
t

+1, t = x−3]] (3.9)

The exponent difference is

∆(L,3) =−16
t2
3
− 20

t3
.

If we divide ∆(L,3) by two and each coefficient by its corresponding degree we
get

f3 =− 4
t2
3
− 10

t3
.

This will be the polar part corresponding to t3 in the partial fraction decomposition
of f .

We do the same computations at the point x = ∞:
> gen exp(L,t,x=infinity);

[[−2
t

+
1
2
, t =

1
x
], [

2
t

+
1
2
, t =

1
x
]] (3.10)
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⇒ ∆(L,∞) =−4t−1
∞ .

Hence, f∞ =−2t−1
∞ =−2x is the polar part corresponding to t∞.

Maple’s output in (3.9) and (3.10) is not ordered. Therefore, we defined ∆

modulo a factor −1. So, we don’t know whether the coefficients of f3 and f∞ are
1 or −1 and we also don’t know the constant part of f . But we know that the
regular singularities 1 and 2 must be zeros of f . So we compute:

f3 + f∞|x=1 = 6, f3 + f∞|x=2 = 10,

f3− f∞|x=1 = 2, f3− f∞|x=2 = 2.

We do not need the possibilities− f3 + f∞ and− f3− f∞ since LB
−x−→C LB. In other

words, if we find a solution were f̃ is the parameter of the change of variables, we
will also find a solution if we take the parameter − f̃ in the change of variables.

In the first possibility f3 + f∞ we would need two different constants in order
to make both x = 1 and x = 2 a zero of f . So the only possibility that remains is

f̃ = f3− f∞−2 =− 4
(x−3)2 −

10
x−3

−2x−2 =−2
x3−5x2 +8x−4

(x−3)2

which, in fact, is equal to − f .
As a result we can represent the solutions of L with the modified Bessel func-

tions I2( f̃ ) and K2( f̃ ).

At the end of the last chapter we defined exp-apparent points. These are sin-
gularities p of an operator L where ∆(L, p) ∈ Z and the solutions at p are not
logarithmic. We will now distinguish between two more cases which will corre-
spond to zeros and poles of f .

Definition 3.3 Let p be a singularity of the operator L ∈ K[∂ ] which is not exp-
apparent. Then p is called

(i) exp-regular ⇔ ∆(L, p) ∈ C,
(ii) exp-irregular ⇔ ∆(L, p) ∈ C[1/tp]\C.

We denote the set of singularities that are exp-regular by Sreg and those that are
exp-irregular by Sirr.

In situation (3.2) this would mean that all poles of f become exp-irregular
points of M. Since we will look at the exponent differences modulo Z, we might
lose some information about the zeros of f . Depending on ν and the multiplicity
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of the zero, their exponent difference can be an integer. Hence, the zeros of f can
become either exp-regular or exp-apparent points of M. However, we know that
each exp-regular point of M corresponds to a zero of f .

We now consider the situation (3.1) again, where LB
f−→C M −→EG Lin. Since

∆(L, p) modulo Z is invariant under exp-products and gauge transformations we
get ∆(M, p) = ∆(Lin, p) mod Z. As a result, what was said about zeros and poles
of f concerning M now also holds for Lin.

Corollary 3.4 In situation (3.1) the following holds:

(i) p ∈ Sirr ⇔ ∆(Lin, p) ∈ C[1/tp]\C ⇔ p is a pole of f , and
(ii) p ∈ Sreg ⇔ ∆(Lin, p) ∈C\Z or Lin is logarithmic at p ⇒ p is a zero of f .

Remarks 3.5
1. The important fact that gives this result is that for the irregular singularity

∞ of the Bessel operator, we have not only e1,e2 ∈ C[t−1
p ]\C but also e1− e2 ∈

C[t−1
p ]\C. Thus, the exponent difference depends on the local parameter and this

fact is finally used to separate Sreg and Sirr.
2. Since we have equivalence in (i) we can always find possibilities for the

parameter f using Sirr up to a constant.
3. In some cases, when all exponent differences are integers, we have no exp-

regular points. These cases will be very hard because we then have no information
about the zeros of f .

We have already seen in the last example that we can find the polar part of f
and will now summarize this in the following algorithm.

Algorithm 1: BesselSubst
Input: A differential operator Lin ∈ K[∂ ]

Output: A list F for which the following holds: If LB
f−→C M −→EG Lin for some

ν ∈ C, f ∈ K and M ∈ K[∂ ], there exists a constant c ∈ C such that f − c ∈ F.
1 compute singularities S of L and extract Sirr
2 for each s ∈ Sirr
3 ds := ∆(Lin,s)
4 let ds = ∑

−1
i=−m ait i

s

5 ps := 1
2 ∑

−1
i=−m

ai
i t i

s
6 F = {∑s∈Sirr ±ps}
7 return F
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Example 3.6
Actually, in the implementation we do not return a list of possibilities since this
list can easily become huge. Instead a list of the polar parts is returned from which
we can create the possibilities.

We take the operator L from the last example:
> LB:=xˆ2*Dxˆ2+x*Dx-(xˆ2+2ˆ2):

> f:=2*(x-1)*(x-2)ˆ2/(x-3)ˆ2:

> L:=changeOfVars(LB,f):

First we compute the irregular singularities and their exponent differences with
the function irreguarSing. It takes the operator L, a variables t and a list of
roots that generate the field of constants. In our example this list is empty:

> Sirr:=irregularSing(L,t,{});
Sirr := [[∞,x−1,−4 t−1], [3,x−3,−16 t−2−20 t−1]]

The output is a list of elements of the form (p, tp,dp)), where each element con-
tains a irregular singularity p, the local parameter tp, and the exponent difference
dp = ∆(L, p).

This result can now be passed to the besselsubst algorithm:
> besselsubst(Sirr,t,{});

[− 4
(x−3)2 −

10
x−3

,−2x]

The list contains f3 and f∞ and now any combination± f3± f∞ is a possibility in F.
Nevertheless, such a list of polar parts will be considered as a list of possibilities.

3.2 Finding the Parameter ν

Lemma 3.7 Let L ∈ K[∂ ] be a differential operator. Assume that there are trans-
formations such that LB −→ L. Then the following statements are equivalent:

(a) The Bessel parameter is an integer, i.e. ν ∈ Z.
(b) There is an exp-regular singularity p of L such that L is logarithmic at p.

Proof. (a) ⇒ (b) It follows from Corollary 1.23 that the solutions of LB with
ν ∈ Z are gauge transformations of the solutions of LB with ν = 0. So, we can
assume that ν = 0 and compute the local solutions of LB at x = 0. We have
already seen in Example 1.32 that LB has a local solution y at x = 0 which is
logarithmic. Since LB −→ L there are three transformations connection LB and L,
i.e. LB −→C M1 −→E M2 −→G L. These transformations will send y to a solution
of L.
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Initially, we apply a change of variables to y as we did in the proof of Theorem
3.1. For a fixed zero p of the parameter f we get a local solution y1 of M1 at x = p
which is logarithmic. This solution is obtained by taking y, substituting x → f ,
and writing everything locally at x = p. This has already been done in the proof
of Theorem 3.1. The logarithm changes as follows:

ln(x)→ ln( f ) = ln

(
tm
p c

∞

∑
i=0

fit i
p

)
, where c ∈ k is such that f0 = 1

= ln(c)+m ln(tp)+ ln

(
1+

∞

∑
i=1

fit i
p

)
.

The last logarithm can then be rewritten as a power series in tp and the only log-
arithm that remains is ln(tp). Hence, the local solution y1 of M1 at x = p is loga-
rithmic.

The exp-product and the gauge transformation transform the solution y1 into
a solution y2 of M2 and a solution y3 of L. These two transformations will not
change the logarithm which appeared in y1, and y3 is still logarithmic. Moreover,
y3 will be a local solution at x = p. So we have found a logarithmic solution of L
at x = p. Hence, p is not a regular point of L and p cannot be exp-apparent since
L is logarithmic at p. Furthermore, we know that p was a zero of f , which makes
p an exp-regular point of L.

(b) ⇒ (a) Assume that ν /∈ Z. Then LB has the exponents ν and −ν at the
point x = 0. Since these two exponents are different modulo Z the solution space
breaks down into two spaces. From Remark 1.26 we know that we can not have
logarithms in the solutions. So there are two independent local solutions y1,y2 of
LB at the point x = 0 without logarithms.

Let p be an exp-regular point of L. Then p is also a zero of f . As before, we
can now apply the three transformations to y1 and y2. This gives two independent
solutions z1 and z2 of L which are local solutions at p. These solutions are not
logarithmic, since they are obtained from y1 and y2. The solutions space of L at p
will thus not contain any logarithmic solution. Hence, L is not logarithmic at p.

This is true for any exp-regular point p of L, which proves the statement. �

Remark 3.8
The proof showed that in situation (3.1) the local solutions of the exp-regular
points arise from the local solution of LB at the point x = 0. As a result, if there
is one exp-regular point p at which Lin is logarithmic, then Lin is logarithmic at
every exp-regular point.

The case where there are logarithmic solutions in Lin has been solved with
Lemma 3.7 and Corollary 1.23. We will always find a solution if we take ν = 0.
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If there are no logarithmic solutions, we can still distinguish between different
cases for ν . They are summarized in the following lemma.

Lemma 3.9 The following statements are true for all s ∈ Sreg:

(a) Lin logarithmic at s ⇔ ν ∈ Z
(b) Sreg = /0 ⇒ ν ∈Q\Z
(c) ∆(Lin,s) ∈Q ⇒ ν ∈Q\Z
(d) ∆(Lin,s) ∈ k\Q ⇔ ν ∈ k\Q
(e) ∆(Lin,s) /∈ k ⇔ ν /∈ k

Here we exclude logarithmic solutions from cases (b) to (e) so that we are al-
ways in exactly one of the cases. And k is the field such that Lin ∈ k(x)[∂ ] as we
introduced in the beginning of this chapter.

Proof. Case (a) has already been proven in Lemma 3.7
Let s be a zero of the parameter f of the change of variables, then

∆(Lin,s) = 2msν + z (3.11)

where ms is the multiplicity of the zero s and z ∈ Z is some arbitrary integer. If
Sreg = /0, then ∆(Lin,s) ∈ Z for all zeros s. Therefore ν ∈Q in case (b).

In the other cases equation (3.11) still holds. Since ms and z are rational num-
bers, it follows that ν is always in the same field that ∆(Lin,s) is in and vice versa.

From the logarithmic case (a) it follows that ν /∈ Z in cases (b) and (c).
Note that in cases (d) and (e) it is enough to check the exponent difference at

one point s0 ∈ Sreg, to know whether ν ∈ k or not. �

In the following we will separate the five cases from the previous lemma:

(a) logarithmic case,
(b) integer case,
(c) rational case,
(d) base field case, and
(e) irrational case.

The base field refers to the field of constants k which is defined by the coef-
ficients of Lin. Note that the integer case does not imply ν ∈ Z. It only implies
ν ∈ Q but unlike the rational case we have Sreg = /0, i.e. ∆(Lin,s) ∈ Z for all
s /∈ Sirr. This means that there can not be any exp-regular point.

The integer case is the only case where we have no information about the zeros
of f . In all other cases there exists at least one s0 ∈ Sreg which must be a zero of f .
We can use it to compute the constant part c of the partial fraction decomposition
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of f . With the other points s ∈ Sreg we can verify the constant or exclude some
possibilities for f .

In the logarithmic case nothing else has to be done since we already know
ν = 0. In cases (c), (d) and (e) we will use the exponent difference of each s∈ Sreg
to compute possibilities for ν . In the integer case we need a different approach
since Sreg = /0.

Definition 3.10 Consider (3.1) and let s ∈ Sreg. Then s is a zero of the parameter
f ∈ K. Let ms be the multiplicity of s. We define

Ns :=
{

∆(Lin,s)+ i
2ms

∣∣∣ 0≤ i≤ 2ms−1
}

(3.12)

and N :=
{

ν ∈ C/Z
∣∣∣ ∀s ∈ Sreg∃zs ∈ Z : ν + zs ∈Ns

}
.

We will now prove the following statements. For every singularity s the Bessel
parameter ν appears in Ns modulo some integer. But it is enough if ν is correct
modulo some integer. So every set Ns is a set of possibilities for ν . The solution,
of course, must appear modulo an integer in every set Ns. These possibilities are
combined in N. Therefore, the set N can be regarded as the intersection of all Ns
modulo Z.

Lemma 3.11 Consider (3.1) and assume Sreg 6= /0. Then there exists some integer
z ∈ Z such that ν + z ∈N.

Proof. Let s ∈ Sreg be a zero of f . Then there is some integer ` ∈ N such that
∆(Lin,s) = 2msν + `, i.e. ν = ∆(Lin,s)−`

2ms
. We can always write −`

2ms
= zs + i

2ms
with

i,zs ∈ Z and 0≤ i≤ 2ms−1. Thus, ν = ∆(Lin,s)+i
2ms

+ zs and ν− zs ∈Ns.
That way, we find such an integer zs for every singularity s ∈ Sreg. From the

definition of N it follows that ν + z ∈N for some z ∈ Z. �

Since we only need to find ν modulo an integer we can regard N as a set of
possibilities for ν . However, this does not work in the integer case because then
the condition in the definition of N is empty, which gives an infinitely large set
N = C/Z.

If we are not in the integer case, we already know the constant part of every
possibility f ∈ F. We can compute all multiplicities, all the sets Ns, and finally
also N. We then have to try all possibilities of ν ∈N. If there is a solution to (3.1),
it must be among them.
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3.3 The Algorithm
The input of our algorithm is a differential operator Lin and we want to know
whether the solutions can be expressed in terms of Bessel functions. We assume
that we are in situation (3.1). If we find a solution to that problem, then we also
find the solution space of Lin. If we do not succeed, we know that the solutions of
Lin can not be expressed with Bessel functions.

We will first assume k = C and will deal with more general fields k in the
next section. Let Lin be a differential operator of degree two with coefficients in
K = C(x).

Let’s summarize the steps of the algorithm that we know from previous results:

A. We can compute the singularities S of Lin by factoring the leading co-
efficient of Lin and the denominators of the other coefficients into linear
factors.

B. For each s∈ S we compute ds = ∆(Lin,s), isolate exp-apparent points with
ds ∈ Z, and differ between exp-regular singularities Sreg with ds ∈ C and
exp-irregular singularities Sirr with ds ∈ C[t−1

s ]\C.
C. We can use the exponent differences ds for s∈ Sirr to compute possibilities

F for the parameter f up to a constant c ∈ k.
D. In all cases but the integer case we know at least one zero of f by picking

some s0 ∈ Sreg. So we can also compute the missing constant c for each
f̃ ∈ F.

E. The set N is a set of possibilities for ν . When not being in the integer case,
this set is finite. But the set might depend on the possibility f ∈ F.

F. For each pair (ν , f )∈N×F we can compute an operator M = M(ν , f ) such

that LB
f−→C M.

G. For each M we can decide whether M −→EG Lin and compute the trans-
formations.

Steps D and E have to be done by case differentiation. The basic procedure
will look like this.

Algorithm 2: dsolveBessel
Input: An operator Lin ∈ K[∂ ].
Output: V (Lin) when it can be represented in terms of Bessel functions and FAIL

otherwise.
1 compute singularities S of Lin and Sreg,Sirr
2 F = besselSubst(Sirr)
3 P = {}
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4 for each f ∈ F

5 P = P∪findBesselνf( f ,Sreg)
6 for each (ν , f ) ∈ P
7 M = changeOfVar(LB, f )
8 if ∃r0,r1,r2 ∈ K : M

r0−→E M̃
r1,r2−→G Lin for some M̃ ∈ K[∂ ] then

9 return V (Lin)
10 return FAIL

The steps A and B are done in line 1, step C is done in line 2, steps D and E
are separated in the function findBesselνf, and step F is done in line 7. The first
solution to step G in line 8 yields a representation of the solutions of Lin. If at the
end no pair (ν , f ) ∈ P gave an operator M that was equivalent to Lin, then FAIL is
returned.

We will now focus on how we compute the possibilities (ν , f ) in the procedure
findBesselνf using the case differentiation of Lemma 3.9. Particularly the integer
case is still a problem. In the other cases we are going to try to reduce the number
of possibilities in P since step G is the bottleneck of the algorithm.

Note that there will be no irrational case since k = C is the base field.
For each case we describe the algorithm findBesselνf which will take a possi-

bility f ∈ F and the exp-regular points Sreg, and will return a set of pairs (ν , f ).

3.3.1 Logarithmic Case

The logarithmic case is the easiest one because without loss of generality we can
assume ν = 0. We only use Sreg to reduce the possibilities F.

Take a fixed possibility f ∈ F. We can compute the constant by taking one
s0 ∈ Sreg. But the other points in Sreg must also be zeros and if they are not we can
exclude f . This condition can also be used in the other cases where Sreg 6= /0. In
the logarithmic case this condition is very strong because we know that the zeros
of f are exactly the singularities Sreg.

This case can be summarized as follows:

Algorithm 3: findBesselνf logarithmic case
1 pick one s0 ∈ Sreg
2 c :=solve( f |x=s0 +c = 0,c)
3 if f |x=s +c = 0 for all s ∈ Sreg then
4 return {(0, f + c)}
5 else
6 return {}
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Example 3.12
We start with the modified Bessel operator LB with ν = 0 and apply a change of
variables

x→ f =
(x+2)2(x−2)2

(x−1)(x−3)(x−4)
.

to get the operator L:
> LB:=xˆ2*Dˆ2+x*D-(xˆ2+0ˆ2):

> f:=(x+2)ˆ2*(x-2)ˆ2/((x-1)*(x-3)*(x-4)):

> L:=changeOfVars(LB,f):

Now we compute the exp-irregular singularities and their corresponding parts:
> Sirr:=irregularSing(L,t,{}):
> besselsubst(Sirr,t,{});

[
3

2(x−1)
,

25
2(x−3)

,
48

x−4
,x]

This yields the polar parts f1, f3, f4 and f ∞ corresponding to the exp-irregular
singularities 1,3,4 and ∞. Thus, we have a set of 16 possibilities for f . Since we
just need one possibility of a pair f ,− f there remain 8 possibilities.

We check whether the formal solutions at x = 2 and x =−2 are logarithmic:
> formal sol(L,‘has logarithm?‘,x=2);

true

> formal sol(L,‘has logarithm?‘,x=-2);

true

Hence, x = 2 and x =−2 are exp-regular and must be zeros of f . We evaluate the
possibilities at these points to compute the constant part:

possibility f̃ f̃
∣∣
x=2 f̃

∣∣
x=−2

f1 + f3 + f4 + f∞ −13 −33
f1 + f3 + f4− f∞ −9 −37
f1 + f3− f4 + f∞ 3 15
f1 + f3− f4− f∞ 7 11
f1− f3 + f4 + f∞ −12 −36
f1− f3 + f4− f∞ −8 −40
f1− f3− f4 + f∞ 4 12
f1− f3− f4− f∞ 8 8

The only possibility which has both zeros is

f̃ = f1− f3− f4− f∞−8 =− f .
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Hence, the algorithm findBesselνf returns only one pair (0,− f ) from which we
can compute the solution space V (L).

If ν 6= 0, then guessing ν = 0 can generate gauge transformations which may
not be needed. In order to simplify the output of the algorithm we can take the
average of exponent differences each divided by the corresponding multiplicity. If
there is no gauge transformation needed to transform LB into Lin this average will
give the correct ν so that no gauge transformation will appear in the output.

Example 3.13
We consider the operator L that is obtained from LB with ν = 2, a change of
variables x→ f = (x+1)2(x−5)3, and a gauge transformation G = ∂ +1:

> f:=(x+1)ˆ2*(x-5)ˆ3:

> M:=changeOfVars(xˆ2*Dˆ2+x*D-(xˆ2+2ˆ2),f):

> L:=gauge(M,1,1):

Since the only pole of f is at ∞ there is only one exp-irregular singularity of L
at x = ∞. This gives us just one possibile f ∈ F:

> Sirr:=irregularSing(L,t,{}):
> f:=besselsubst(Sirr,t,{})[1];

f := x5−13x4 +46x3 +10x2−175x

Since we are in the logarithmic case the zeros −1 and 5 will be exp-regular points
of L. Evaluating the possibility f ∈ F at either of this points yields 125. So the
parameter of the change of variables is f = x5−13x4 +46x3 +10x2−175x−125.

We can assume ν = 0 and compute M such that LB
∣∣
ν=0

f−→C M. The equiva-
lence between M and L then yields:

> M:=changeOfVars(xˆ2*Dˆ2+x*D-(xˆ2+0ˆ2),f):

> r,G:=equiv(M,L);

r,G :=− 55x2−160x+73
5x3−27x2 +3x+35

,
(
−109393−228097x+21873x2 +245625x3

+14250x4−100290x5 +15558x6 +15762x7−7707x8 +1487x9−137x10

+5x11)
∂ +(5x−7)

(
x2−14x+9

)
(x+1)3 (x−5)5

This represents the exp-product and gauge transformation exp(
∫

r)G.
If we look at the exponent differences of the exp-regular points me might be

able to specify ν more exactly:
> gen exp(L,t,x=-1);

[[−5,3, t = x+1]]
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> gen exp(L,t,x=5);

[[−7,5, t = x−5]]

Hence, ∆(L,−1) = 8 and ∆(L,5) = 12. Using the multiplicity of the correspond-
ing zero we get 8 = 2 ·2 ·ν and 12 = 2 ·3 ·ν and therefore we take ν = 2. So let

M be such that LB
∣∣
ν=2

f−→C M and compute the equivalence:
> M:=changeOfVars(xˆ2*Dˆ2+x*D-(xˆ2+2ˆ2),f):

> r,G:=equiv(M,L);

r,G := 0,∂ +1

This result is not only much simpler than the result we obtained before but it is
also computed much faster.

3.3.2 Integer Case
This is the only case where Sreg = /0. Here we have absolutely no information
about the zeros of f . We know, however, that in general the multiplicity of a zero
of f divides the degree of the numerator of f . For m ∈ N we can define

N(m) :=
{

i
2m

, i = 1, . . . ,2m−1
}

, (3.13)

which is similar to Ns in Definition 3.10. If s is a zero of f with multiplicity m
and ∆(Lin,s) ∈ Z, then N(m) = Ns modulo Z.

The following lemma will help us to find ν .

Lemma 3.14 Consider the situation (3.1). Let ν ∈ Q and ∆(Lin,s) ∈ Z for all
s /∈ Sirr, i.e. Sreg = /0. Let n be the degree of the numerator of f . Then there exists
p, ` ∈ Z such that p | n and ν + ` ∈N(p).

Proof. Let ν ∈Q, then we can find z ∈ Z and ν1, p ∈ N such that

ν = z+
ν1

2p
, 0 < ν1 < 2p,gcd(ν1, p) = 1. (3.14)

So ν− z ∈N(p).
Let s be a zero of f with multiplicity m, then the exponent difference ∆(Lin,s)=

2mν is an integer by condition. Using the representation (3.14) of ν we get

2mν = 2mz+
mν1

p
∈ Z.

Since z,m ∈ Z and p - v1 this is equivalent to p | m. So p divides all multiplic-
ities of the zeros of f . The degree of the numerator of f is equal to the sum of
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these multiplicities and we get p | deg(numer( f )), where numer( f ) denotes the
numerator of f .

Hence, p and ` =−z satisfy the statement. �

The purpose of the lemma is the following. Assume that we know the degree
of the numerator n = deg(numer( f )). We can then take a divisor p of n and check
whether for certain constants c the monic part of the numerator of f becomes a
p-th power. This can simply be done with linear algebra1 and leads to a nonlinear
system of equations for the constant c. Solving these equations gives us a set C of
possible values for c. At the end for each p | n we get a finite set Np and a finite
set Cp. We define the sets N and C to be the union of those sets, respectively. If
there is a solution of (3.1), there must also be a solution corresponding to a pair
(ν ,c) ∈N×C.

If p = 1, we cannot do this because every polynomial is a first power of itself.
Hence, we do not get any equation for c. In this case we have ν ∈ N(1) = {1

2}.
For ν = 1

2 the solutions of LB are hyperexponential solutions and V (Lin) can be
found by using DFactor or dsolve but not with our algorithm.

Example 3.15
Let L be the modified Bessel operator with parameter ν = 1

2 :
> L:=xˆ2*Dˆ2+x*D+(xˆ2-(1/2)ˆ2);

L := x2
∂

2 + x∂ + x2− 1
4

We can factor this operator with Maple
> L2:=DFactor(L);

L2 := [∂ +
RootOf

(
Z2 +1

)(
2x−RootOf

(
Z2 +1

))
2x

,

∂ −
RootOf

(
Z2 +1

)(
2x+RootOf

(
Z2 +1

))
2x

]

and compute the solutions
> dsolve(diffop2de(op(1,Lfactorized),y(x)),y(x));

y(x) =
C1 exp(−RootOf

(
Z2 +1

)
x)

√
x

> dsolve(diffop2de(op(2,Lfactorized),y(x)),y(x));

y(x) =
C1 exp(RootOf

(
Z2 +1

)
x)

√
x

1see appendix for details on the algorithm ispower
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We can also find the solutions of L directly

> dsolve(diffop2de(L,y(x)),y(x));

y(x) =
C1 sin(x)√

x
+

C2 cos(x)√
x

For all ν = n + 1
2 with n ∈ Z we can compute such elementary solutions, see

[24, 7.3] for more details.

The problem remains how to find the degree n of the numerator of f without
knowing the constant part c.

Lemma 3.16 Consider the integer case of (3.1), where ∆(Lin,s) ∈ Z for all sin-
gularities s /∈ Sirr and 2ν = ν1

p for some ν1 ∈ Z, p ∈ N and gcd(ν1, p) = 1.

(a) If ∞ ∈ Sirr, then deg(numer( f )) = deg(numer( f + c)) for all c ∈ C.

(b) If ∞ /∈ Sirr, then p | deg(numer( f ))⇔ p | deg(denom( f )).

Here, denom( f ) denotes the denominator of f .

Proof. After using the exp-irregular points Sirr to find the polar parts f has the
form

f =
f1

f2
+ c+ f3, (3.15)

where f1, f2, f3 ∈ k[x] and deg( f1) < deg( f2) or f1 = 0. The polar parts for s ∈
Sirr\{∞} are combined in f1

f2
. The polynomial f3 is the polar part of ∞ ∈ Sirr.

(a) In this case ∞ ∈ Sirr and hence f3 6= 0. So c does not effect the degree of
the numerator of f .

(b) Since ∞ /∈ Sirr, f3 = 0 in equation (3.15) and f = f1
f2

+ c with deg( f1) <

deg( f2).
Case 1: If c 6= 0, then deg(numer( f )) = deg(denom( f )) and nothing remains

to be proven.
Case 2: If c = 0, then ∞ is a zero of f . The multiplicity m must be a multiple

of p. Otherwise ∆(Lin,∞) /∈ Z since ∆(Lin,∞) = 2mν + z for some z ∈ Z and
2ν = ν1

p . Hence, m = kp for some k ∈ N.
This multiplicity of the point ∞ is m = deg(denom( f ))−deg(numer( f )). This

can be seen if f (1
x ) is written as power series at the point 0. In total we get

deg(numer( f )) = deg(denom( f ))− kp for some k ∈ N and this proves (b). �
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Algorithm 4: findBesselνf integer case
1 P := {}
2 if ∞ ∈ Sirr then
3 n := deg(numer( f ))
4 else
5 n := deg(denom( f ))
6 for each p | n
7 g := ispower(numer( f + c),x, p) (here c is a variable)
8 C := solve(numer( f + c)−gp = 0,c) (find solutions c ∈ k)
9 for each c ∈ C

10 P := P∪{(ν , f + c) | ν ∈N(p)}}
11 return P

Example 3.17
1. Let L be such that LB

∣∣
ν= 1

4

f−→C L with f = 3(x−2)2.

> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2);

> f:=3*(x-2)ˆ2:

> L:=changeOfVars(subs(nu=1/4,LB),f:

The only exp-irregular singularity is ∞ ∈ Sirr so we get just one possible f ∈ F:
> Sirr:=irregularSing(L,t,{}):
> F:=besselsubst(Sirr,t,{});

F := [3x2−12x]

Hence, f = 3x2− 12x + c for some constant c. Since the degree n of f is 2 the
only divisor we have to check is p = 2. The monic part of f is x2−4x + c

3 and it
must be a power of x−2:

> g:=ispower(xˆ2-4x+c/3,x,2);

g := x−2

Hence, we get f + c−3gn = c−12 and therefore c = 12. The possible pairs that
the algorithm returns are{(

1
4
,3x2−12x+12

)
,

(
1
2
,3x2−12x+12

)
,

(
3
4
,3x2−12x+12

)}
.

The second pair can be excluded since our algorithm doesn’t work for ν = 1
2 . In

the remaining two cases we can find a solution. For ν = 1
4 no gauge transformation

or exp-product is needed:
> M:=changeOfVars(subs(nu=1/4,LB),f):
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> equiv(L,M);

0,1

Therefore,

V (L) =
{

C1 I1/4(3x2−12x+12)+C2 K1/4(3x2−12x+12)
∣∣∣C1,C2 ∈ C

}
.

For ν = 3
4 the solution is:

> M:=changeOfVars(subs(nu=3/4,LB),f):

> equiv(L,M);

−2 (x−2)−1 ,(2x−4)∂ +1

Although the second solution is more complex, we get solutions in terms of Bessel
functions in both cases.

2. We consider a second operator L:
> f:=(x-2)ˆ4/(x-1):

> L:=changeOfVars(subs(nu=1/4,LB),f):

Since 1 is a pole of f and the degree of the numerator if greater than the degree
of the denominator we have irregular singularities at 1 and ∞ with the following
polar parts:

> Sirr:=irregularSing(L,t,{}):

> besselsubst(Sirr,t,{});

[x3−7x2 +17x,− 1
x−1

]

Hence, we have two possibilities

f1 = x3−7x2 +17x− 1
x−1

+ c =
x4−8x3 +24x2−17x−1+ cx− c

x−1

and f2 = x3−7x2 +17x+
1

x−1
+ c =

x4−8x3 +24x2−17x+1+ cx− c
x−1

.

The degree of the numerator of both possibilities is n = 4. For the possibility
f1 there will be no constants c ∈ k satisfying the conditions. So we only do the
computations for f2. We first check p = 2:

> f2:=xˆ3-7*xˆ2+17*x+1/(x-1)+c:

> g:=ispower(numer(f2),x,2);

g := x2−4x+4
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> factor(expand(numer(f2)-gˆ2));

(15+ c)(x−1)

So C2 = {−15}. This will also work for p = 4:
> g:=ispower(numer(f2),x,4);

g := x−2

> factor(expand(numer(f2)-gˆ4));

(15+ c)(x−1)

Therefore, we also have C4 = {−15} and every ν ∈
{1

8 , 1
4 , 3

8 , 5
8 , 3

4 , 7
8

}
gives a pos-

sible pair (ν , f2−15). From these six possibilities only ν = 1
4 and ν = 3

4 will lead
to a result. As in the previous example we will need a gauge transformation and
an exp-product to represent the solutions of L with ν = 3

4 :
> M:=changeOfVars(subs(nu=3/4,LB),subs(c=-15,f2)):

> equiv(L,M);

− 12x2−21x+10
(x−2)(x−1)(3x−2)

,4 (x−1)(x−2)∂ +3x−2

For ν = 1
4 no gauge transformation needed and we get the solution space:

V (L) :=
{

C1 I1/4

(
(x−2)4

(x−1)

)
+C2 K1/4

(
(x−2)4

(x−1)

) ∣∣∣C1,C2 ∈ C
}

.

3.3.3 Rational Case
In the rational case we can use some of the results of the integer case to exclude
some possibilities (ν , f ). From Lemma 3.9 we know that ν ∈Q.

Let a possible f ∈ F be fixed. The constant part of f can be computed using
one exp-regular point and, as in the logarithmic case, we can check if all exp-
regular points become zeros of f . We can then also determine the multiplicity ms
of each exp-regular point s ∈ Sreg.

Since ν is rational the exponent difference ∆(Lin,s) = 2msν can be an integer
for some zero s if the corresponding multiplicity ms is a multiple of the denomi-
nator of 2ν .

Let h = numer( f )/∏s∈Sreg(x− s)ms . The exp-apparent zeros of f are zeros of
this polynomial. Now similar arguments as in the integer case are used.

Consider the case deg(h) > 0 and let z be a zero of h which is also a zero of f .
Since z /∈ Sreg we know for the exponent difference ∆(Lin,z) = 2mzν ∈ Z. So mz
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must be a multiple of p = denom(2ν). Since this is true for all zeros the monic
part of the polynomial h must be a p-th power.

This information is used in the following algorithm.

Algorithm 5: findBesselνf rational case
1 P := {}
2 c :=solve( f |x=s0 +c = 0,c)
3 if f |x=s +c = 0 for all s ∈ Sreg then
4 h := numer( f + c)
5 for each s ∈ Sreg
6 h := h/(x− s)ms

7 N := ∩s∈SregNs mod Z
8 for each ν ∈N

9 p := denom(2ν)
10 if h = gp for some g ∈ k[x] then
11 P := P∪{(ν , f + c)}
12 return P

Example 3.18
Let L be such that LB

∣∣
ν=2/3

f−→C L with f = (x−2)2(x−3)3(x−5).

> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):

> f:=(x-2)ˆ2*(x-3)ˆ3*(x-5):

> L:=changeOfVars(subs(nu=2/3,LB),f):

Then L has one exp-irregular singularity from which we get one possible f ∈ F:
> Sirr:=irregularSing(L,t,{}):

> besselsubst(Sirr,t,{}):
[x6−18x5 +132x4−506x3 +1071x2−1188x]

The generalized exponents at the points 2, 3 and 5 are:
> gen exp(L,t,x=2);

[[−4
3
, t = x−2], [

4
3
, t = x−2]]

> gen exp(L,t,x=3);

[[−2,2, t = x−3]]

> gen exp(L,t,x=5);

[[−2
3
, t = x−5], [

2
3
, t = x−5]]
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So the point 3 is exp-apparent since ∆(L,3) ∈ Z. The other two points are exp-
regular and the differences are ∆(L,2) = 8

3 and ∆(L,5) = 4
3 . One of these two

points can be used to find the constant part of the possibility which becomes

f1 = x6−18x5 +132x4−506x3 +1071x2−1188x+540.

To compute the multiplicities of the zeros 2 and 5 we divide f1 by x− 2 and
x−5 successively until the remainder is non-zero. That way we find m2 = 2,m5 =
1 and the remainder

> h:=normal(f1/(x-2)ˆ2/(x-5));

h := x3−9x2 +27x−27

With ∆(L,2) = 8
3 and ∆(L,5) = 4

3 we can determine the sets N2 and N5 with
equation (3.12):

N2 =
{

2
3
,
11
12

,
7
6
,
17
12

}
and N5 =

{
2
3
,
7
6

}
.

The intersection is N = {2
3 , 7

6} and we get two possibilities ν ∈ N. In both cases
the denominator of 2ν is 3. Since h = (x− 3)3 the alogrithm returns two pairs:
(2

3 , f ) and (7
6 , f ).

For ν = 7
6 the operator M with LB

∣∣
ν= 7

6

f−→C M is not equivalent to L:

> M:=changeOfVars(subs(nu=7/6,LB),f):

> equiv(L,M);

0

The first pair with ν = 2
3 will certainly be a solution since it matches the values

we started with.

3.3.4 Base Field Case
Let ν ∈ k,ν /∈Q, then for all zeros z of f we have ∆(Lin,z) ∈ k\Q, i.e. z ∈ Sreg. In
this case we know all the zeros of f and we have the following statement for their
multiplicities.

Lemma 3.19 Consider (3.1). Let ν ∈ k\Q, Sreg = {s1, . . . ,sn} and di = ∆(Lin,si).
Then we can do the following steps:

1. Compute ri, ti ∈Q such that di = rid1 + ti.
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2. Let ai,bi ∈ Z be such that ri = ai
bi

and gcd(ai,bi) = 1.

3. Let ` = lcm(bi,1≤ i≤ n).

Then the monic part of the numerator of f is a power of h ∈ k[x] where

h =
n

∏
i=1

(x− si)`ri. (3.16)

Proof. Let mi be the multiplicity of si as a zero of f . Since a gauge transformation
can change the exponent difference by an integer we know

di = 2miν + zi for some zi ∈ Z. (3.17)

This equation yields for i = 1 the equation

ν =
d1− z1

2m1
.

Plugging this into (3.17) we get

di =
mi

m1
d1 + zi−

miz1

m1
.

So the numbers

ri =
mi

m1
and ti = zi−

miz1

m1
(3.18)

satisfy the equation in step 1. Since di /∈Q the rational factor ri is unique.
Now let ai,bi ∈ Z be such that ri = ai

bi
and gcd(ai,bi) = 1. Then mi = ai

bi
m1.

Since mi ∈ Z and bi - ai we obtain bi | m1. Then also ` := lcm(bi,1 ≤ i ≤ n) | m1.
We use mi = rim1 and finally get `ri | mi. So the exponents in (3.16) each divide
the multiplicity in the numerator of f .

Let pi ∈ N be such that `ri pi = mi. To prove (3.16) we have to see that all pi
are equal. Using the equation for ri in (3.18) yields `pi = m1. So p = pi = m1

` is
independent of i and the numerator of f must be a scalar multiple of a p-th power
of h. �
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Algorithm 6: findBesselνf base field case
1 P := {}
2 let Sreg = {s1, . . . ,sn}
3 for i = 1, . . . ,n
4 di := ∆(Lin,si)
5 compute ri, ti, such that di = rid1 + ti
6 l := lcm(denom(ri), i = 1, . . . ,n)
7 h := ∏

n
i=1(x− si)lri

8 c :=solve( f |x=s0 +c = 0,c)
9 if f |x=s +c = 0 for all s ∈ Sreg

and numer( f + c) = hp for some p ∈ N then
10 N := ∩s∈SregNs mod Z
11 for each ν ∈N

12 P := P∪{(ν , f )}
13 return P

Note that h only has to be computed once, and is independent of the possibility
f that we are dealing with.

Example 3.20
Let L be the operator that we obtain from LB with the change of variables

x→ f =
(x−1)2 (x−2)4

(x+3)(x+4)

and the undetermined constant Bessel parameter ν .
> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):

> f:=(x-1)ˆ2*(x-2)ˆ4/((x+3)*(x+4)):

> L:=changeOfVars(LB,f):

Since ν will occur in L the field of constants we work with ist k = Q(ν). From
the exp-irregular singularities we get the polar parts f∞, f4 and f3:

> Sirr:=irregularSing(L,t,{}):
> besselsubst(Sirr,t,{});

[x4−17x3 +148x2−920x,−32400
x+4

,−10000
x+3

]

Thus, we get the four possibilities

f1 = f∞ + f4 + f3, f2 = f∞ + f4− f3,

f3 = f∞− f4 + f3, and f4 = f∞− f4− f3.
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The exp-regular singularities 1 and 2 have the following generalized exponents:
> g:=gen exp(L,t,x=1);

g := [[2ν , t = x−1], [−2ν , t = x−1]]

> g:=gen exp(L,t,x=2);

g := [[4ν , t = x−2], [−4ν , t = x−2]]

Hence, ∆(L,1) = 4ν and ∆(L,2) = 8ν . From ∆(L,2) = 2∆(L,1)+0 we get

h = (x−1)(x−2)2 = x3−5x2 +8x−4.

The only possibility where both exp-regular points become a zero and the numer-
ator is a power of h is f2 +4768. From the sets

N1 =
{

ν ,ν +
1
4
,ν +

1
2
,ν +

3
4

}
and N2 =

{
ν ,ν +

1
8
,ν +

1
4
,ν +

3
8
,ν +

1
2
,ν +

5
8
,ν +

3
4
,ν +

7
8

}
we finally get the possibilities for ν :

N =
{

ν ,ν +
1
4
,ν +

1
2
,ν +

3
4

}
.

Hence, we have four pairs we have to try using equiv. The only possibility that
yields a solution is (ν , f2 +4768).

The condition that the numerator of f is a power of h didn’t really help in
the last example since the other possibilities could already be excluded due to the
other condition. In the following example with just one exp-regular point this is
not the case.

Example 3.21
Let L be the operator that we obtain from LB with the change of variables

x→ f =
(x−2)2

x−1

and ν =
√

2+ 1
2 . We obtain:

> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):

> f:=(x-2)ˆ2/(x-1):
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> L:=changeOfVars(subs(nu=sqrt(2)+1/2,LB),f);

L :=4x(x−2)2 (x−1)4
∂

2 +4
(
−2+ x2)(x−2)(x−1)3

∂

− x3
(

4x4−32x3 +105x2−146x+73+4
√

2x2−8
√

2x+4
√

2
)

Therefore the field of constants is k = Q(
√

2). The exp-regular singularity at x = 2
has the generalized exponents:

> g:=gen exp(L,t,x=2);

[[1+2
√

2, t = x−2], [−1−2
√

2, t = x−2]]

Since this is the only exp-regular singularity there is just one factor in (3.16) and
we get h = x−2.

From the exp-irregular points we get F:
> Sirr:=irregularSing(L,t,{}):
> besselsubst(Sirr,t,{});

[−x,− 1
x−1

]

Since x = 2 must be a zero we get the two possibilities

f1 =−x2−4x+4
x−1

and f2 =−x(x−2)
x−1

.

Now f2 can clearly be excluded because the numerator is not a power of h = x−2.
In f1 the multiplicity of the zero at 2 is m2 = 2.

Finally, we divide ∆(L,2) = 2+4
√

2 by 2m2 to get

ν ∈N = N2 =
{√

2+
1
2
,
√

2+
3
4
,
√

2+1,
√

2+
5
4

}
.

So there are four pairs (ν , f ) from which just (
√

2 + 1
2 , f1) will yield a solution

with equiv.

3.4 Solving Over a General Field k

For now, we were just working over the constant field C and we haven’t thought
of the speed of the algorithm yet. We started by computing all the singularities
of L and did some computations with them. So what we actually did is factor the
leading coefficient l(x) of L into linear factors. This can be very expensive and
will lead to a huge (but finite) extension of Q, in which all the other computations
take place.
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But this is not necessary. In this section we will discuss how we can work over
a finite extension of Q, which is much smaller than the earlier one.

We will use the following setting. Let k be a finite extension of Q such that
the input operator L is defined over K = k(x). So k is the field of constants and
L has coefficients in K. Let ∏

n
i=1 li(x) be a factorization of l(x) over K. For each

li(x) we pick one zero pi. Furthermore, let σ ∈ Homk(k(s), k̄) be an embedding
of k(p) in k̄ that keeps k fixed and we define the trace of a element a ∈ k(s):

Tr(a) := ∑
σ∈Homk(k(s),k̄)

σ(a).

We will now focus on each step of the algorithm and the changes that have to
be made.

A. Singularities
When we factor the coefficients of L in k[x] we get irreducible factors
whose degree can be greater than one. For each irreducible factor, we
fix one zero. The singularities then are

S = {σ(s)
∣∣ s zero of irred. factor,σ ∈ Homk(k(s), k̄)}.

Now fix a factor q(x) = ∑
n
i=0 qixi, and let s be a zero of q(x) and σ ∈

Homk(k(s), k̄).

B. Generalized exponents
In the computation of the generalized exponent at the point x = s the field
k(s) is taken as the field of constants. An important fact that we will use is

gexp(L,σ(s)) = σ(gexp(L,s)). (3.19)

Similarly, if y is a local solution at the point x = s, then σ(y) is a local
solution at x = σ(s) because the operator cannot distinguish between the
points s and σ(s). Hence, ∆(L,σ(s)) = σ(∆(L,s)).

Since all our results were based on generalized exponents and exponent
differences we can use (3.19) to transfer results for s to σ(s). The sets Sreg
and Sirr always just contain one zero for each irreducible factor q(x).

C. besselSubst
Let s ∈ Sirr. We can compute the polar part fs corresponding to s. The
polar part corresponding to σ(s) is fσ(s) = σ( fs). The reason is obvious:
if f ∈ k(x) and s /∈ k, then the series expansion of f at s and at σ(s) are
equal modulo σ . This also follows from (3.19) since the polar parts depend
on the generalized exponents.
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There was a factor −1 allowed for every polar part. We had to do this,
because we have no ordering in the output of gen exp. But now we use
σ and the factor is the same for fs and fσ(s). So we can simply apply trace
to fs:

Tr( fs) = ∑
σ∈Homk(k(s),k̄)

σ( fs) = ∑
σ∈Homk(k(s),k̄)

fσ(s).

The result is the polar part of f corresponding to the irreducible polyno-
mial q(x).

D. Compute constant of f
Let f = f̃ + c for some f̃ = f̃ (x) ∈ F be a possibility for the parameter in
the change of variables. If Sreg 6= /0, then we know at least one zero of f .
Assume s ∈ Sreg, then we compute c such that f (s) = 0. If s /∈ k, we would
get c /∈ k in general. But, we also know that f (σ(s)) = σ( f (s)), so all σ(s)
must be zeros of f . Thus, Tr( f (s)) must be zero. Since Tr( f (s)) ∈ k(c),
we can compute a constant c ∈ k that satisfies the conditions.

When we have computed the constant, we always check whether another
point s ∈ Sreg is also zero. All σ(s) have to be zeros of f , so the minimal
polynomial minpol(s) of s has to be a factor of the numerator of f .

E. The set N

For these computations we only used exp-regular points s ∈ Sreg with ex-
ponent difference ∆(Lin,s) = 2msν . Since mσ(s) = ms, we have not only
∆(Lin,σ(s)) = σ(∆(Lin,s)) but also ∆(Lin,σ(s)) = ∆(Lin,s) for all s ∈
Sreg. So Ns = Nσ(s) and we do not need the other zeros to compute N.

F, G. Compute M, exp-product and gauge transformation
When we have computed the parameter ν and parameter f of the change
of variables, we can determine M and decide whether there exists an exp-
product and a gauge transformation of the desired kind. So, from here,
everything works as before.

3.4.1 Changes in the Case Separation
We will now focus on the changes that have to be done during the case separation.

1. Logarithmic case
It has already been said, that we compute the constant c ∈ k by taking the
trace Tr( fs) for some s ∈ Sreg and that we can determine whether s ∈ Sreg is
a zero, by checking whether minpol(s) is a factor of f .
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2. Integer case
This case does not use Sreg, so we do not have to make a change.

3. Rational case
After computing the constant c, we used the multiplicities ms. Let h be the
numerator of f . The multiplicity ms can be defined as the biggest ms ∈ N
such that minpol(s)ms | h and we can compute h/minpol(s)ms , which is a
polynomial2.

Since Ns = Nσ(s), the rest of the algorithm does not depend on s.

4. Base field case
The steps that were explained in Lemma 3.19 were based on the relation
between two singularities. So the results will still be true if just a subset of
the singularities is used and we can take one singularity for each irreducible
factor. Since s and σ(s) have the same multiplicity and numer( f )∈ k[x], we
get

h | numer( f ) ⇔ N(h) | numer( f )

for any h ∈ C[x]. Here, N(a) is the norm of an element a such that N(a) =
∏σ∈Homk(k(s),k̄) σ(a) for any a ∈ k(s). Both divisions should be considered
in C[x]. But since N(h) and numer( f ) both are polynomials in k[x] the right-
hand division can be done in k[x].

So, we only have to take the norm in line 7 of Algorithm 6 and the rest will
work as before.

3.4.2 Irrational Case

As in Lemma 3.19 of the base field case we can find rational factors connecting
the exponent differences.

Lemma 3.22 Let ν ∈ k̄ and ν2 ∈ k, Sreg = {s1, . . . ,sn} and di = ∆(Lin,si). Then
we can find ri, ti ∈Q such that di = r1d1 + ti and the numerator of f has the form

h =
n

∏
i=1

(x− si)`ri,

where ` = lcm(bi,1≤ i≤ n) for ri = ai
bi

.

2compare with line 6 in Algorithm 5
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Proof. The proof is an analogue to the proof of Lemma 3.19. We only compute
the rational number ri differently:

We know that the exponent difference di = ∆(Lin,si) satisfies di = 2miν + zi
for some zi ∈ Z. The integer part zi can easily be removed from di since it is the
only constant c such that di−c is a zero of a polynomial of the from x2− pi ∈ k[x].
We compute those pi = 4m2

i ν2.
Finally ri =

√
pi
p1

= mi
m1

and the rest works as in the base field case. �

The algorithm we obtain is very similar to the algorithm in the base field case.
The two differences are the computation of the rational factor r1 and that we can
directly specify ν .

Algorithm 7: findBesselνf irrational case
1 P := {}
2 let Sreg = {s1, . . . ,sn}
3 di := ∆(Lin,si)
4 for i = 1, . . . ,n
5 compute polynomial x2− pi

6 ri :=
√

pi
p1

7 l := lcm(denom(ri), i = 1, . . . ,n)
8 h := ∏

n
i=1(x− si)lri

9 c :=solve( f |x=s0 +c = 0,c)
10 if f |x=s +c = 0 for all s ∈ Sreg

and numer( f ) = hp for some p ∈ N then
11 ν :=

√
p1

2m1
12 P := P∪{(ν , f )}
13 return P

3.4.3 Constant Factor of f

Remember that in general we allow any f ∈ C(x). In the steps we listed above
we will only find this parameter if f ∈ k(x). Yet, we didn’t prove that this is
enough. We do not know whether there exist an operator Lin ∈ k(x)[∂ ] which can
be derived from LB with a parameter f /∈ k(x) in the change of variables.

Example 3.23
We take the Bessel operator LB. We apply a change of variables with f = cx,
where c is some constant:

> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):
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> L:=changeOfVars(LB,c*x);

L := x2
∂

2 + x∂ − c2x2−ν
2

We see that the constant c appears squared in the operator L. So if k is the field
over which L is defined, then c2 ∈ k.

This example shows that we have to consider constant factors of f which are
not in k. We will restrict the parameter of the change of variables to c f with c2 ∈ k
and f ∈ k(x). However, it is still to prove that this is sufficient.

We have seen in Algorithm 1 that we find the parameter f up to some signs
and a constant. So one would assume that this still works with a constant factor.

The constant c appears in the generalized exponent of L at x = ∞:
> gen exp(L,t,x=infinity);

[[−c
t
+

1
2
, t =

1
x
], [

c
t
+

1
2
, t =

1
x
]]

Excluding the constant term 1
2 , c is a factor of each monomial in the generalized

exponents. So c will also be a factor of ∆(L,∞) and also a factor of every possi-
bility f ∈ F. But unfortunately this is not always the case.

Next we consider the operator L which is obtained from LB with ν = 2 and the
change of variables

x→ f =
√

2
(x2−2)(x−1)

.

> L:=changeOfVars(subs(nu=2,LB),f):

L :=
(
3x2−2x−2

)(
x2−2

)4
(x−1)4

∂
2+(

3x4−4x3 +2x2−8x+8
)(

x2−2
)3

(x−1)3
∂−

2
(

9+2x6−4x5−6x4 +16x3−16x
)(

3x2−2x−2
)3

Note that the field of constants, which is always defined by the constants in L, is
k = Q, but f /∈Q(x). The generalized exponent at the root

√
2 of x2−2 is:

> g:=gen exp(L,t,x=sqrt(2)):

[[− 1
2t
−
√

2
2t

+
1
2
, t = x−

√
2], [

1
2t

+
√

2
2t

+
1
2
, t = x−

√
2]]

Although we would expect a constant factor, the first term of each generalized
exponents does not have a factor

√
2.

More importantly, fσ(s) = σ( fs) does not hold for the exp-irregular singularity
s =

√
2 and σ ∈ Homk(k(s),k) since f /∈ k(x). This can be seen from the series

expansion of f at those points:
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> series(f,x=sqrt(2),0);
1
2

(√
2−1

)−1(
x−

√
2
)−1

+O(1)

> series(f,x=-sqrt(2),0);

−1
2

(
−
√

2−1
)−1(

x+
√

2
)−1

+O(1)

Here f
σ(
√

2) = −σ

(
f√2

)
for σ :

√
2 →−

√
2. Hence, one of the polar parts

has the coefficient 1 while the other coefficient is−1. So in part C of the algorithm
we cannot work with trace in this case.

If the other computations should still work correctly we have to find the con-
stant factor before we start the algorithm and divide all generalized exponents by
this factor.

There might be points were the constant factor is a factor of the exponent
difference. But in the example above we have seen that this factor cannot always
be determined easily.

Let c be the constant factor we search for and let p be a singularity. For
each point we have the constant fields k ⊂ k(c) ⊂ k(c, p) = kp. The generalized
exponent at the point p will be represented in kp. So we have to find a algebraic
extension k̃ of k of degree two such that k̃ ⊂ kp for all p. All the constants c ∈ k̃
for which c2 ∈ k are possible values for the constant factor.

In most cases we can read off the constant factor and in other cases there is
just one possibility for k̃ and we just need one of a pair c,−c. But very rarely
there might be more than one possibility for k̃ and in that case we have to start the
algorithm with a modified list of generalized exponents for each possibility. At
the end the result is just a longer list of possibilities for f .

Example 3.24
Let L be the operator obtained from LB with undetermined parameter ν and a
change of variables

x→ f =
√

5
x2 +3x−2

.

> LB:=xˆ2*Dˆ2+x*D-(xˆ2+nuˆ2):

> f:=sqrt(5)/((xˆ2+3*x-2)):

> L:=changeOfVars(LB,f);

L :=(2x+3)
(
x2 +3x−2

)4
∂

2 +
(
2x2 +6x+13

)(
x2 +3x−2

)3
∂−(

5+ν
2x4 +6ν

2x3 +5ν
2x2−12ν

2x+4ν
2)(2x+3)3
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The field of constants defined by L is k = Q(ν) and c =
√

5 /∈ k is the constant we
need to find from the singularities of L.

The zeros of q1 = x2 + 3x− 2 are exp-irregular singularities of L. Their gen-
eralized exponent is

> q1:=xˆ2+3*x-2:

> gen exp(L,t,x=RootOf(q1));

[[
RootOf

(
−5+17 Z2)

t
+

1
2
, t = x−RootOf

(
Z2 +3 Z−2

)
]]

Let p be a zero of q1. Then

dp := ∆(L, p) =
2
√

85
17t

=
1
t

√
20
17

.

So the exponent difference dp is defined over the field of constants generated by
q2 = 17x2 − 20. To get a description of the field kp = k(c, p) we also need the
point p. This is done with the command Primfield in Maple:

> q2:=17*xˆ2-20:

> r:=evala(Primfield({RootOf(q1),RootOf(q2)})):

> r:=sub( Z=x,op(1,lhs(r[1,1])));

r := 289x4 +1734x3 +765x2−5508x−2864

Now kp is generated over k = Q(ν) by one of the zeros of r. We finally
compute the subfields of kp which have degree 2 over k:

> evala(Subfields({r},2,{},x));{
RootOf

(
Z2−85

)
,RootOf

(
−5+ Z2) ,RootOf

(
Z2−17

)}
So the constant factor c might be either

√
85,

√
5 or

√
17. For each of these

possibilities we divide the exponent differences at the exp-irregular points by this
constant c and compute possibilities for ν and f . Afterwards each f ∈ F is multi-
plied by c again. Luckily, there will be no pairs with c =

√
17 and c =

√
85 that

satisfy all the conditions. So there are not too many possibilities we have to check
with equiv. At the end we find the solutions

V (L) =

{
C1 Iν

( √
5

x2 +3x−2

)
+C2 Kν

( √
5

x2 +3x−2

) ∣∣∣C1,C2 ∈ C

}
.
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Remark 3.25
The change of variables x →

√
x applied to the Bessel operator still creates an

operator L ∈ K[∂ ]:
> LB:=xˆ2*Dˆ2+x*D-xˆ2-nuˆ2:

> L:=changeOfVars(LB,sqrt(x));

L := 4x2
∂

2 +4x∂ − x−ν
2

This operator L will still have solutions which can be expressed with Bessel func-
tions. But we don’t consider algebraic functions as parameters.

3.5 Whittaker Functions
The algorithm can easily be adapted to Whittaker functions. The Whittaker func-
tion are defined by the differential operator

LW := D2− 1
4

+
µ

x
+

1
4 −ν2

x2

which has the two independent solutions

Mµ,ν(x) = exp
(
−1

2
x
)

x
1
2 +νM

(
1
2

+ν−µ,1+2ν ,x
)

Wµ,ν = exp
(
−1

2
x
)

x
1
2 +νU

(
1
2

+ν−µ,1+2ν ,x
)

,

where M(µ,ν ,x) and U(µ,ν ,x) are the Kummer functions. The following exam-
ple will show how closely related Whittaker and Bessel functions are.

Example 3.26
Consider the Whittaker operator with parameter µ = 0:

> L:=Dˆ2-1/4+0/x+(1/4-nuˆ2)/xˆ2;

L := ∂
2− 1

4
+

1
4 −ν2

x2

The solutions of L can be expressed by Bessel functions:
> dsolve(diffop2de(L,y(x)),y(x))

y(x) = C1
√

xIν

(x
2

)
+ C2

√
xKν

(x
2

)
This is also true for any µ ∈ Z.

The generalized exponents also remind of Bessel functions. The Whittaker
operator has two singularities, x = 0 and x = ∞.
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At x = 0 the generalized exponents are
> LW:=Dˆ2-1/4+mu/x+(1/4-nuˆ2)/xˆ2;

> gen exp(LW,t,x=0);

[[
1
2
−ν , t = x], [

1
2

+ν , t = x]]

and the exponent difference is

∆(LW ,0) = 2ν .

At x = ∞ we have the generalized exponents
> gen exp(LW,t,x=infinity);

[[
1
2t
−µ, t =

1
x
], [− 1

2t
+ µ, t =

1
x
]]

and the exponent difference is

∆(LW ,∞) =
1
t
−2µ.

If ν = 1
2 , then LW has a logarithmic solution at x = 0:

> formal sol(subs(nu=1/2,LW),‘has logarithm?‘,x=0);

true

If ν /∈ 1
2Z, then the generalized exponents at x = 0 already tell us that we cannot

have logarithmic solutions because the exponents are different modulo Z.

We now want to apply the same or a similar algorithm that we developed for
Bessel functions to Whittaker functions.

Remember that we just had to find ν modulo Z for Bessel functions since a
shift ν → ν + 1 just changed the gauge transformation involved. Similar state-
ments also hold for Whittaker functions.3 If either µ → µ + 1 or ν → ν + 1 the
solution space changes by a gauge transformation. The same is true for the simul-
taneous shifts µ → µ + 1

2 and ν → ν + 1
2 .

Hence, it is sufficient to compute one of the parameters modulo 1
2Z and the

other modulo Z. And as another consequence LW has logarithmic solutions at
x = 0 for all ν ∈ 1

2Z.
Considering the change of variables

LW
f−→C M, f ∈ K,

we can make a similar statement as in Theorem 3.1 for the Whittaker operator. In
fact, case (a) of this theorem still holds.

3Formulas are given in Exercises 6.3 to 6.7 in [24].
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Theorem 3.27 Let M ∈ K[∂ ] be such that LW
f−→C M, f ∈ K.

(a) If p is a zero of f with multiplicity m, then p is a regular singularity of M
and ∆(M, p) = 2mν .

(b) If p is a pole of f with multiplicity m such that

f =
∞

∑
i=−m

fit i
p, (3.20)

then p is an irregular singularity of M and

∆(M, p) = 2mµ +
−1

∑
i=−m

i fit i
p. (3.21)

Proof. The proof is analogous to the proof of Theorem 3.1.
The constant 1

2 in the generalized exponent of LW at x = 0 disappears when
we take the exponent difference and thus we have the same result as in the Bessel
case.

At the point x = ∞ the results of the Bessel case can be devolved to the Whit-
taker case with some minor changes in the formula. �

If we remove the constant term 2mµ from the exponent differences at the
irregular singular points, then we have the same conditions as in the Bessel case.
Especially Corollary 3.4 holds and since there is no difference in the exponent
differences at the exp-regular points we can apply all the cases we developed in
Section 3.2.

The only problem that remains is to compute the parameter µ . But this is
easier than in the Bessel case. We know all the irregular singularities and from
each s ∈ Sirr we can determine the constant term cs of ∆(Lin,s) ∈ C[t−1]. Since
gauge transformations can change this constant by an integer we know cs = 2msµ

mod Z. We now define sets

Ms :=
{

cs + i
2ms

∣∣∣ 0≤ i≤ 2ms−1
}

which satisfy the corresponding statement for Ms to Lemma 3.11, i.e. for each
s ∈ Sreg there is an integer zs ∈ Z such that µ + zs ∈Ms. The intersection modulo
Z yields a set M of possible values for µ .

Example 3.28
Let L be the operator obtained from LW with µ = 5

8 and the change of variables
x→ f = x2 +5x+3:
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> LW:=Dˆ2-1/4+mu/x+(1/4-nuˆ2)/xˆ2;

> f:=xˆ2+5*x+3:

> L:=changeOfVars(subs(mu=5/8,LW),f):

The generalized exponent at the exp-irregular singularity x = ∞ is:
> gen exp(L,t,x=infinity);

[[t−2 +5/2 t−1−5/4, t = x−1], [−t−2−5/2 t−1 +5/4, t = x−1]]
and ∆(L,∞) = 2

t2 + 5
t −

5
2 . The constant term in ∆(L,∞) is c∞ = −5

2 and the
multiplicity is m∞ = 2. Therefore, the set of possibilities for µ is

M =
{
−5

8
,−3

8
,−1

8
,
1
8

}
.

If we then start the Bessel algorithm with modified exponent difference at x = ∞,
we also get possibilities for f and ν . If we try all combinations with µ ∈M, we
will finally find the solutions of L:

> dsolveBessel(L);

C1 M5/8,ν

(
x2 +5x+3

)
+ C2W5/8,ν

(
x2 +5x+3

)
Hence, the solutions of L can be expressed with Whittaker functions.

3.6 Two Final Examples
The following example occurred in research of W. N. Everitt [10] and was com-
pletely solved after a contribution4 of M. van Hoeij. The complete result can be
found in the follow-up [11].

Example 3.29
We consider the differential equation from [11]:(

xy′′(x)
)′′−((9

x
+

8
M

x
)

y′(x)
)′

= λ
2
(

λ
2 +

8
M

)
xy(x)

for all x ∈ (0,∞), whereas M and λ are constant parameters. The corresponding
differential operator is

> L:=x*Dˆ4+2*Dˆ3-(9*M+8*xˆ2)/(x*M)*Dˆ2-)-(-9*M+
8*xˆ2)/(xˆ2*M)*D-(lambdaˆ2*x*(lambdaˆ2*M+8))/M;

L := x∂
4 +2∂

3−
(
9M +8x2)

xM
∂

2−
(
−9M +8x2)

x2M
∂ −

λ 2x
(
λ 2M +8

)
M

We can factor5 the operator L:
4Personal contribution at the International Conference on Difference Equations, Special Func-

tions and Applications, Technical University Munich, Germany: July 2005
5you should use Maple 10 or higher
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> LL:=DFactorLCLM(L);

[∂ 2 +

(
λ 4M2x2 +8λ 2Mx2 +16x2−48M

)
∂

x(λ 4M2x2 +8λ 2Mx2 +16x2−16M)
−

4λ 4M3 +32λ 2M2 +16λ 4M2x2 +128x2 +80λ 2Mx2 + x2λ 6M3

M (λ 4M2x2 +8λ 2Mx2 +16x2−16M)
,

∂
2 +

(
λ 4M2x2 +8λ 2Mx2 +16x2−48M

)
∂

x(λ 4M2x2 +8λ 2Mx2 +16x2−16M)
+

λ 2 (−4λ 2M2−32M +16x2 +8λ 2Mx2 +λ 4M2x2)
λ 4M2x2 +8λ 2Mx2 +16x2−16M

]

Hence, L is least common left multiple of two operators of degree two. This
means that the solutions of L are generated by the solutions of these factors. The
two operators can now be solved in terms of Bessel functions:

> L2:=LL[2]:

> dsolveBessel(L2);

C1

x

(
−2λM J1 (xλ )+

(
λ

2M +4
)

xJ0 (xλ )
)
+

C2

x

(
−2λMY1 (xλ )+

(
λ

2M +4
)

xY0 (xλ )
)

The solutions of the operator L2 match the solutions (2.2) and (2.4) in [11]. And
the solutions of the operator L1 match those of (2.7) and (2.8):

> L1:=LL[1];

> dsolveBessel(L2);

C1

x

(
−2
(
λ

2M +8
)

M I1

(
x
√

λ 2M2 +8M
M

)
+

x
√

(λ 2M +8)M
(
λ

2M +4
)

I0

(
x
√

λ 2M2 +8M
M

))
+

C2

x

(
−2
(
λ

2M +8
)

M K1

(
x
√

λ 2M2 +8M
M

)
−

x
√

(λ 2M +8)M
(
λ

2M +4
)

K0

(
x
√

λ 2M2 +8M
M

))

Together V (L1) and V (L2) generate the solution space V (L).
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Since Whittaker can be written as Kummer functions and vice versa we can
also solve operators in terms of Kummer functions. A little heuristic switches to
the Kummer representation if the output is probably shorter.

Example 3.30
We consider the following operator which occurred in W. Koepf’s and M. Fou-
pouagnigni’s research about orthogonal polynomials:

> L:=(4*xˆ4-12*xˆ2+3)*Dˆ2-2*x*(4*xˆ4+4*xˆ2-21)*D+
(64*xˆ4-96*xˆ2+8*n*xˆ4-24*n*xˆ2+6*n);

L :=
(
4x4−12x2 +3

)
∂

2 +
(
−8x5−8x3 +42x

)
∂+

64x4−24nx2 +6n−96x2 +8nx4

The solutions can be expressed with Kummer functions:
> dsolveBessel(L);

C1

((
−9n−33+4x4 +4nx4−4x2−4nx2)M

(
−2− n

2
,
1
2
,x2
)
−

4
(
−3+2x2)(4+n)M

(
−1− n

2
,
1
2
,x2
))

+

C2

((
−9n−33+4x4 +4nx4−4x2−4nx2)U

(
−2− n

2
,
1
2
,x2
)

+

2 (4+n)(n+3)
(
−3+2x2)U

(
−1− n

2
,
1
2
,x2
))

For n∈ 2N the first parameter of these hypergeometric functions will be a negative
integer and the series will break down into polynomials.
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4

Conclusion

We developed an algorithm to solve differential equations Ly = 0 for an operator L
of degree two in terms of Bessel functions. If L∈ k(x)[∂ ] and the field of constants
k is defined by the coefficients in L then we will find solutions of the form

exp
(∫

r
)(

r0Bν( f )+ r1B′ν( f )
)
,

where Bν(x) is a Bessel function, r,r0,r1 ∈ k(x) and f = c · f̄ for some f̄ ∈ k(x)
and c2 ∈ k. The parameter ν can either be a constant ν ∈ C or a transcendental
symbol. For ν ∈ 1

2Z our algorithm could not find a solutions. But in that case it
turned out that L is reducible and has hyperexponential solutions.

After studying transformation of differential operators we restricted the prob-
lem to

LB
f−→C M −→EG L.

We used generalized exponents of L and their corresponding exponent differences
to make statements about zeros and poles of f . As a result we had a set F of
possibilities for f and a set N of possibilities for ν . For each pair we could then
compute the operator M and solve the equivalence between M and L.

We finally discussed how the algorithm can be extended to Whittaker functions
which also includes solutions in terms of Kummer functions.

The next step would be to extend the algorithm to all 2F1-functions. One
problem we have to handle is that the ramification index might be two, e.g. in
the generalized exponent of the irregular singularity in the 0F1-case (see Example
1.29). Hence, we also have to deal with fractional exponent in the Puiseux series.

Moreover, we have to work with different kinds of singularities. The general
2F1-function has three regular singularities and no irregular singularities. So the
idea of computing polar parts of the parameter f in the change of variables will not
work. On the other hand, 0F1-functions have just one irregular singularity and no

89
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regular singularities. This will cause difficulties in finding zeros of f . Therefore,
it seems that we will have to distinguish between several cases and it is unlikely
that we find an approach that works in every one of them.

Another interesting challenge is to prove the completeness of the algorithm. If
an operator L ∈ k(x)[∂ ] is given, we just search for solutions with r,r0,r1 ∈ k(x)
and f = c f̄ with f̄ ∈ k(x) and c2 ∈ k. However, we do not know if this operator
can be obtained from the Bessel operator if we allow other parameters. In other
words, can we apply transformations with parameters with other parameters and
still get an operator L which is defined over k(x). If this is not the case we know
that our algorithm is complete and that we will always find a Bessel solution if
such a solution exists.



A

Appendix

A.1 Transformations
Form Theorem 2.3 we can derive algorithms that apply a change of variables, an
exp-product or a gauge transformation to a differential operator.

Algorithm 8: changeOfVars
Input: operator L ∈ k(x)[∂ ] of degree two and rational function f
Output: operator L̃ ∈ k(x)[∂ ] of degree two such that y( f ) ∈V (L̃) for every

y(x) ∈V (L)
1 l :=lcoeff(L,∂ )
2 a0,a1 :=coeffs(L,∂ )/l

3 b0 := a0
a2

∣∣∣
x= f

( f ′)2

4 b1 := 1
f ′

(
a1
a2

∣∣∣
x= f

( f ′)2 + f ′′
)

5 return
(
collect

(
numer

(
∂ 2 +b1∂ +b0

)
,∂
))

Algorithm 9: expProduct
Input: operator L ∈ k(x)[∂ ] of degree two and rational function r
Output: operator L̃ ∈ k(x)[∂ ] of degree two such that exp(

∫
r)y ∈V (L̃) for every

y ∈V (L)
1 l :=lcoeff(L,∂ )
2 a0,a1 :=coeffs(L,∂ )/l
3 b1 :=−2r +a1
4 b0 :=−r′− r2 +a0 +b1r
5 return

(
collect

(
numer

(
∂ 2 +b1∂ +b0

)
,∂
))
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Algorithm 10: gauge
Input: operator L ∈ k(x)[∂ ] of degree two and two rational functions r0,r1
Output: operator L̃ ∈ k(x)[∂ ] of degree two such that r0y+ r1y′ ∈V (L̃) for every

y ∈V (L)
1 l :=lcoeff(L,∂ )
2 a0,a1 :=coeffs(L,∂ )/l
3 b0 :=−

(
− r1a0r′′1 −3r1a0r′0 + r2

1a0a′1− r1a0a1r0 + r′0r1a2
1−2r′0r′1a1−

r′0r1a′1 + r′0r′′1 − r′0a1r0 +2r′20 +a0r2
0− r′′0r0− r1a0r′1a1 + r1a′0r0 +3a0r0r′1 +

a2
0r2

1− r′′0r′1 +2r′21 a0 + r1a′0r′1 + r′′0r1a1− r2
1a′0a1

)
/
(
− r2

0− r0r′1 + r0r1a1 +
r1r′0− r2

1a0
)

4 b1 := (r0r′′1 +2r0r′0 + r0r1a2
1−2r0r′1a1− r0r1a′1−a1r2

0−a0r2
1a1 + r2

1a′0−
r1r′′0 +2r1r′1a0)/(−r2

0− r0r′1 + r0r1a1 + r1r′0− r2
1a0)

5 return
(
collect

(
numer

(
∂ 2 +b1∂ +b0

)
,∂
))

A.2 IsPower

In the integer case of the algorithm, which was discussed in section 3.3.2, we had
to determine whether a monic polynomial is a p-th power of another polynomial.

Algorithm 11: ispower
Input: a monic polynomial f ∈ K[x] and p ∈ N
Output: g ∈ K[x] with the following property: if a solution for yp = f exists, then

g is a solution.
1 if p = 1 then return f
2 d :=degree( f ,x)
3 n := d/p
4 if n /∈ Z then return FAIL
5 A := xn +∑

n
i=0 aixi

6 for i = 1 . . .n
7 an−i :=solve(coeff(Ap,x,d− i)−coeff( f ,x,d− i),an−i)

(solves a linear equation in one unknown)
Return: A

The only thing we have to prove is that the equation in line 7 introduces one
new variable each time.

Let a = ∑
n
i=0 aixi. Then the p-th power is:

ap = ap
nxnp +ap−1

n an−1xnp−1 +(ap−1
n an−2 +ap−2

n a2
n−1)x

np−2 + · · · .
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Let us take a closer look at the coefficients of ap = ∑
np
i=0 bixi. If we choose p

integers mi ∈ {0, . . . ,n} and define ci := ami , then c1 · · ·cp is part of the coefficient
of xk with k = m1 + · · ·+mp. The coefficients bi are then sums of such products.

We can express this more exactly. Let P be the power set of {0, . . . ,n} and
define Pk := {P∈P |∑ j∈P j = k and |P|= p}. So Pk contains set with p elements
whose sum is k. In the notation above we had {m1, . . . ,mp} ∈ Pk. Then

bk = ∑
P∈Pk

∏
m∈P

am.

Now fix a coefficient ak. Then there exists P ∈ Pnp− j such that k ∈ P, only
if k ≥ n− j. If k < n− j, then the highest coefficient, in which ak is involved is
b(p−1)n+k. Since (p− 1)n + k = np− n + k < np− j we get k /∈ Pnp− j and ak is
not involved in bnp− j.

Let’s look at the coefficients bnp,bnp−1,bnp−2 . . .bnp−n successively. In bnp
just an will appear, in bnp−1 we will have an and an−1 and so on. So each equation
in line 7 introduces one new variable step by step. So we can solve them one by
one to find an,an−1, . . . ,a0.

The algorithm does not check whether the solution is correct, because in the
integer case there was still a unknown constant c in the input f . The output g gives
us an equation gp− f which should be zero for some value of c.

A.3 Package Description
In this chapter we will give an overview over the functions implemented in the
package.

If the base field k is needed, it is passed through a set of RootOf -structures
which is read from the input using the indets command.

besselequiv
Input: An operator L ∈ K[∂ ], a rational function f ∈ K, and a constant ν ∈ C.
Output: A sequence M ∈K[∂ ], [y1,y2] such that y1 and y2 are the (modified) Bessel

function of the first and second kind and M(y) is a solution of L. If such a
solution does not exist 0 is returned.

besselsubst
(implementation of Algorithm 1 on page 54)
Input: Sirr and their exponent differences, local parameter t, the field k
Output: A list [ f1, . . . , fn] that corresponds to possibilities ∑

n
i=1± fi.

changeconstant
Input: A rational function f ∈ K = k(x), a point p.
Output: A rational function g = g(x) ∈ K such that g = f + c for some c ∈ k and

g(p) = 0. If p = ∞, g = f is returned.
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compare
Input: Two constants a,b ∈ k.
Output: Two rational numbers r,s ∈Q such that a = rb+ s.

dsolve bessel
Input: (i) A differential operator L ∈ K[∂ ] and optionally the domain

(ii) A differential equation and the dependent variable
Output: The solution space if it can be expressed by Bessel or Whittaker func-

tions.

equiv
Input: Two operators L1,L2 ∈ K[∂ ] of degree two.
Output: An operator M such that My ∈ V (L2) for every y ∈ V (L1). If a solution

M 6= 0 was found, a sequence r ∈ K,G ∈ K[∂ ] which satisfies M = exp(
∫

r)G
would be returned.

findBesselvf
Input: An integer that indicates the case we are in, Sirr, Sreg, the field k, and the

variable t for the local parameter.
Output: A list of pairs (ν , f ).

findBesselvfint
(implementation of Algorithm 4 on page 66)
Input: F, boolean b∞ that indicates whether ∞ ∈ Sirr, the field k, and Sreg.
Output: A list of pairs (ν , f ).

findBesselvfirrat
(implementation of Algorithm 7 on page 78)
Input: Sreg,F, b∞, and the field k.
Output: A list of pairs (ν , f ).

findBesselvfK
(implementation of Algorithm 6 on page 72)
Input: Sreg,F, b∞, and the field k.
Output: A list of pairs (ν , f ).

findBesselvfln
(implementation of Algorithm 3 on page 60)
Input: Sreg,F, and the field k.
Output: A list of pairs (ν , f ).

findBesselvfrat
(implementation of Algorithm 5 on page 69)
Input: Sreg,F, and the field k.
Output: A list of pairs (ν , f ).
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findWhittaker
Input: L,Sirr,Sreg,k, t and x
Output: The solution space of L if it can be expressed by Whittaker functions.

ispower
(implementation of Algorithm 11 on page 92)
Input: A monic polynomial f ∈ k[x] and p ∈ N
Output: g ∈ k[x] with the following property: if a solution for yp = f exists, then

g is a solution.

kummerequiv
Input: An operator L ∈ K[∂ ], two constants µ,ν ∈C, a rational function f ∈ K =

k(x), and the variable x.
Output: A sequence M ∈K[∂ ], [y1,y2] such that y1 and y2 are the Kummer function

of the first and second kind and M(y) is a solution of L. If such a solution does
not exist 0 is returned.

poly d
Input: A constant c ∈ k̄, a variable x, and the field k.
Output: A polynomial p = x2−d ∈ k[x] if the minimal polynomial of c is a shift

of p.

possibility
Input: A list [ f1, . . . , fn], and an integer m ∈ N, 1≤ m≤ 2n.
Output: The m-th possibility for ∑

n
i=1± fi. More precisely, it returns ∑

n
i=1 ai fi

where ai = (−1)bi and bi is the i-th digit in the binary representation of m.

Same 5 curvature
Input: Two rational functions a,b ∈ K, and a variable x.
Output: A boolean which indicates whether ∂ +a = ∂ +b mod 5.

Same p curvature
Input: Two rational functions a,b ∈ K, and a variable x.
Output: A boolean which indicates whether ∂ +a = ∂ +b mod 3. If the compar-

ison modulo 3 fails the comparison modulo 5 is used.

SimplifyAnswer
Input: d ∈ k(x),L and a list of functions F
Output: A list of function obtained by applying the operator exp(

∫
d)L to the

functions in F

singgenexp
Input: L ∈ k(x)[∂ ],k, a variable t, and an optional parameter to pass some infor-

mations about singularities
Output: A list of elements of the form [p, t,D, p,n] such that: p is a singularity

of L, p is a polynomial over k with zero p, n = deg(p), and D is the exponent
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difference d = ∆(L, p). If d /∈ k(p, t) then D is either a list [c,d′], if d = c
√

(d′),
or the minimal polynomial of d over k.

SqrtConst
Input: Sirr,k, t,x
Output: A set of pairs S′irr,c where

√
c is a possible constant factor of the pa-

rameter f in the change of variables and S′irr is the set of updated exponent
differences at the exp-irregular points.

testzeros
Input: f ∈ k(x) and a set of points
Output: True if all points are zeros of f and false otherwise.

whittakerequiv
Input: An operator L ∈ K[∂ ], two constants µ,ν ∈C, a rational function f ∈ K =

k(x), and a constant c.
Output: A sequence M ∈ K[∂ ], [y1,y2] such that y1 and y2 are the Whittaker or the

Kummer function of the first and second kind and M(y) is a solution of L. If
such a solution does not exist 0 is returned.
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