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Summary: As an extension of Lagrange interpolation, we introduce a class of interpolation
formulae and study its existence and uniqueness. In the sequel, we consider some particular cases
of it and construct the corresponding weighted quadrature rules. Numerical examples are finally
given and compared.

1 Introduction
Let {xj}nj=0 ∈ [a, b] and {fj}nj=0, which may be samples of a function, say f , be
given. If Ψ(x; a0, . . . , an) is a family of functions of a single variable x with n + 1
free parameters {aj}nj=0, then the interpolation problem for Ψ consists of determining
{aj}nj=0 so that for n+ 1 given real or complex pairs of distinct numbers {(xj , fj)}nj=0

we have
Ψ(xj ; a0, . . . , an) = fj , j = 0, 1, . . . , n. (1.1)

Relation (1.1) leads to a linear interpolation problem if Ψ depends linearly on the param-
eters ai, i.e.

Ψ(x; a0, . . . , an) = a0Ψ0(x) + · · ·+ anΨn(x).

For a comprehensive discussion see [1, 4, 7, 13, 19, 20].
For a polynomial type interpolation problem, various classical methods such as La-

grange, Newton and Hermite interpolations are used to determine the associated param-
eters {aj}nj=0. Lagrange’s interpolation which is a classical method for approximating a
continuous function f : [a, b]→ R at n+ 1 distinct nodes a ≤ x0 < · · · < xn ≤ b is ap-
plied in several branches of numerical analysis and approximation theory [2, 14, 16, 17].
Let

Ln(f ;x) =

n∑
j=0

f(xj)`
(n)
j (x),
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be the Lagrange polynomial of degree n which interpolates a given function f at the
knots {xj}nj=0, where

`
(n)
j (x) =

wn(x)

(x− xj)w′n(xj)
, (1.2)

are the fundamental Lagrange polynomials with the node polynomial

wn(x) =

n∏
j=0

(x− xj).

Ln(f ;x) is a unique element in the space of all polynomials of degree at most n, say
Pn, which solves the interpolation problem

Ln(f ;xj) = f(xj), j = 0, 1, 2, . . . , n.

Lagrange interpolation polynomials are easily computable and therefore they are use-
ful tools for approximating smooth functions and their derivatives, numerical integration
and projection methods for numerical treatment of functional equations.

For non-polynomial type interpolation problems, Sloan introduced an interpolating
function of the form [18]

ψn(x) =

n∑
j=0

ajuj(x),

where {uj(x)}nj=0 is a set of linearly independent real-valued continuous functions on
[a, b] and {aj}nj=0 are determined by the interpolation conditions

ψn(xj) = f(xj), j = 0, 1, . . . , n.

The function ψn(x) exists and is unique in the space of span{uj}nj=0 for all f ∈ C[a, b]

if and only if the matrix {uj(xk)}nj,k=0 is nonsingular. It is clear that the problem is
reduced to a polynomial interpolation if uj(x) = xj .

In [3, p. 62] the authors discuss a more general definition. With prescribed nodes
x0, . . . , xn in X , where X is an arbitrary set, they define

vj(x) =

n∏
k=0
k 6=j

ϕ(x, xk)

ϕ(xj , xk)
, j = 0, 1, 2, . . . , n,

where ϕ : X ×X → R is a function that

ϕ(x, y) = 0 ⇔ x = y.

Therefore

vj(xk) = δj,k =

{
1, k = j,

0, k 6= j,

and the interpolating function is defined by p(x; f) =
n∑
j=0

f(xj)vj(x).
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As a special case of the above-mentioned extension, Dişibüyük has recently consid-
ered an interpolation problem to the space πn(f1, f2), which is spanned by the basis{
fn−k1 fk2

}n
k=0

, where f1 and f2 are two linearly independent functions. Then, he intro-
duces the function [6]

lj(x) =

n∏
k=0
k 6=j

d(xk, x)

d(xk, xj)
, j = 0, 1, 2, . . . , n,

as a generalization of Lagrange polynomial (1.2) in which

d(x, y) = f1(x)f2(y)− f1(y)f2(x).

By noting these assumptions, the interpolating function takes the form

p(x) =

n∑
j=0

f(xj)lj(x),

so that lj(xk) = δj,k.
The aim of this paper is to introduce a unified class of interpolating functions, which

generalizes Lagrange interpolating polynomials. The paper is organized as follows.
Hence, next Section contains the definition and the main properties of such interpolat-
ing systems with an estimate for the remainder term. Section 2.1 is devoted to study
some special cases. In Section 3, we construct weighted quadrature rules corresponding
to the introduced interpolation formulas and in Section 4 we present several numerical
examples and compare them with standard cases.

2 A Class of Interpolation Formulas
Let Λn−1 := {λl(x)}n−1l=1 be a sequence of continuous functions defined on [a, b] such
that λl(xi) 6= λl(xj) for any i 6= j and {xk}nk=1 are n distinct points in [a, b]. We define
the functions Φk(x,Λn−1) for k = 1, 2, . . . , n respectively as follows

Φ1(x,Λn−1) :=
(λ1(x)− λ1(x2)) (λ2(x)− λ2(x3)) . . . (λn−1(x)− λn−1(xn))

(λ1(x1)− λ1(x2)) (λ2(x1)− λ2(x3)) . . . (λn−1(x1)− λn−1(xn))
,

Φ2(x,Λn−1) :=
(λ1(x)− λ1(x1)) (λ2(x)− λ2(x3)) . . . (λn−1(x)− λn−1(xn))

(λ1(x2)− λ1(x1)) (λ2(x2)− λ2(x3)) . . . (λn−1(x2)− λn−1(xn))
,

...
...

Φn(x,Λn−1) :=
(λ1(x)− λ1(x1)) (λ2(x)− λ2(x2)) . . . (λn−1(x)− λn−1(xn−1))

(λ1(xn)− λ1(x1)) (λ2(xn)− λ2(x2)) . . . (λn−1(xn)− λn−1(xn−1))
.

They can also be represented as

Φk(x,Λn−1) :=
∏

(i,j)∈I∗n,k

λi(x)− λi(xj)
λi(xk)− λi(xj)

, k = 1, . . . , n, (2.1)
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where

I∗n,k := {(r, r)| r = 1, . . . , k − 1, k > 1} ∪ {(r, r + 1)| r = k, . . . , n− 1, k < n} .

One can directly verify that the functions introduced in (2.1) satisfy the relations

Φk(xl,Λn−1) = δk,l, l, k = 1, 2, . . . , n.

{Φk(x,Λn−1)}nk=1 is a linear independent system on [a, b]. Now, by considering the
space

Πn := span {Φ1(x,Λn−1), . . . ,Φn(x,Λn−1)} ,

denote by G(x; f ; Λn−1) the unique element in Πn interpolating f for which the follow-
ing interpolation conditions at n given points (interpolation nodes) are satisfied:

G(xk; f ; Λn−1) = f(xk), k = 1, 2, . . . , n.

It is easy to see that the mentioned interpolation function exists uniquely, because∣∣∣∣∣∣∣
Φ1(x1,Λn−1) · · · Φn(x1,Λn−1)

...
...

Φ1(xn,Λn−1) · · · Φn(xn,Λn−1)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 O

. . .
O 1

∣∣∣∣∣∣∣∣ 6= 0.

Indeed, {Φk(x,Λn−1)}nk=1 is a Chebyshev system [10].
Evidently, the interpolation function can be represented as

G(x; f ; Λn−1) :=

n∑
k=1

f(xk)Φk(x,Λn−1). (2.2)

Note that to construct the basis functions {Φk(x,Λn−1)}nk=1, we first need to have
a sequence of numbers {λi(xk)} for i = 1, 2, . . . , n − 1 and k = 1, 2, . . . , n. These
quantities and subsequently the basis functions Φk(x,Λn−1) do not depend on the data
f(xk) and it is not required to recompute the basis functions to interpolate each new
function.

Remark 2.1 Let Λn,1 = {λl(x)}nl=1 and Λn,2 = {alλl(x) + bl}nl=1 be two given se-
quences of continuous functions, where al, bl are real numbers and al 6= 0 for every l.
It can be verified that Λn,1 and Λn,2 eventually lead to one result with respect to distinct
points {xk}n+1

k=1 provided that λl(xi) 6= λl(xj), ∀ i 6= j.

Remark 2.2 Given n distinct points {xk}nk=1 in [a, b], assume that Λn−1 = {lx}n−1l=1

and then consider the functions

Φk
(
x, {lx}n−1l=1

)
=

∏
(h,j)∈I∗n,k

hx− hxj
hxk − hxj

.
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Now assume that ∆n−1 = {x+ l}n−1l=1 and consider the functions

Ψk

(
x, {x+ l}n−1l=1

)
=

∏
(h,j)∈I∗n,k

(x+ h)− (xj + h)

(xk + h)− (xj + h)
.

We observe that both Λn−1 and ∆n−1 have the same result as

Φk
(
x, {lx}n−1l=1

)
= Ψk

(
x, {x+ l}n−1l=1

)
=

n∏
j=1
j 6=k

x− xj
xk − xj

,

and therefore the corresponding interpolating function is the Lagrange polynomial of
degree n− 1 as

G
(
x; f ; {lx}n−1l=1

)
= G

(
x; f ; {x+ l}n−1l=1

)
=

n∑
k=1

f(xk) `
(n)
k (x).

Remark 2.3 If λl(x) = λ(x) for every l = 1, . . . , n, with λ(xi) 6= λ(xj) for i 6= j, then

G(x; f ; {λ(x)}nl=1) =

n+1∑
k=1

f(xk)Φk(x, {λ(x)}nl=1),

interpolates f at {xk}n+1
k=1 , where

Φk(x, {λ(x)}nl=1) =

n+1∏
j=1
j 6=k

λ(x)− λ(xj)

λ(xk)− λ(xj)
.

In this case, we have

span {Φk(x, {λ(x)}nl=1)}n+1
k=1 = span{1, λ(x), λ2(x), . . . , λn(x)},

and G(x; f ; {λ(x)}nl=1) can be therefore represented as

G(x; f ; {λ(x)}nl=1) = A0 +A1λ(x) +A2 (λ(x))
2

+ · · ·+An (λ(x))
n
,

in which {Aj}nj=0 are obtained by the given interpolation conditions. Also, the general-
ized Newton representation of G(x; f ; {λ(x)}nl=1) is given in [12], where a generaliza-
tion of divided differences is introduced for constructing some interpolation formulas.

Theorem 2.4 Consider a sequence of continuous functions Λn−1 = {λk}n−1k=1 on [a, b]
and n distinct points {xk}nk=1such that λk (xi) 6= λk (xj) when i 6= j. Let f ∈
Cn−1 ([a, b]) and f (n) exist at any point of (a, b). Suppose that G (·; f ; Λn−1) inter-
polates f at {xk}nk=1, G (·; f ; Λn−1) ∈ Cn−1 ([a, b]), and G(n)(·; f ; Λn−1) exist at any
point of (a, b). Then, there exists a point ξx ∈ (a, b) depending on x such that

f(x)−G(x; f ; Λn−1) =
f (n)(ξx)−G(n)(ξx; f ; Λn−1)

n !

n∏
k=1

(x− xk). (2.3)
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Proof: Define

F (x) = f(x)−G(x; f ; Λn−1)− γ(x̄)

n∏
k=1

(x− xk),

where γ(x̄) is defined in such a way that F (x̄) = 0 for any arbitrary point x̄ 6= {xk}nk=1

in [a, b]. In this case, we have

γ(x̄) =
f(x̄)−G(x̄; f ; Λn−1)

n∏
k=1

(x̄− xk)
.

Since F (x) has at least n + 1 distinct roots in [a, b], i.e. x1, . . . , xn, x̄, applying Rolle’s
theorem successively n times, we find out that the function F (n)(x) has at least one zero
in (a, b), say ξx. Hence F (n)(ξx) = 0 and

γ(x̄) =
f (n)(ξx)−G(n)(ξx; f ; Λn−1)

n !
.

This means that

f(x̄)−G(x̄; f ; Λn−1) =
f (n)(ξx)−G(n)(ξx; f ; Λn−1)

n !

n∏
k=1

(x̄− xk),

which also holds for any x̄ = x. 2

Remark 2.5 Notice that if λk (x) = akx+ bk, 1 ≤ k ≤ n− 1, with ak 6= 0, then

G(x; f ; {akx+ bk}n−1k=1),

is a polynomial of degree at most n− 1 and G(n)(x; f ; {akx+ bk}n−1k=1) = 0. Therefore

f(x)−G(x; f ; {akx+ bk}n−1k=1) =
f (n)(ξx)

n !

n∏
k=1

(x− xk),

which is the remainder term of Lagrange interpolation for functions f ∈ Cn([a, b]).

Remark 2.6 Since Λn−1 = {λk(x)}n−1k=1 are not fixed, it is clear that we cannot discuss
about the convergence and stability of the introduced interpolations in a general case
unless {λk(x)}n−1k=1 are explicitly specified.

2.1 Some Particular Examples of Formula (2.2)
Example 2.7 Let

λl(x) = xbl for l = 1, . . . , n− 1,
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where b1 < b2 < · · · < bn−1 are nonzero real values. For given distinct points
{xk}nk=1 in (0,∞), and distinct values {wk}nk=1 there exists a Müntz polynomial of

order ≤
n−1∑
l=1

bl, which is the unique solution of the interpolation problem

f(xk) = wk, k = 1, . . . , n, (2.4)

and can be represented as

G
(
x; f ;

{
xbl
}n−1
l=1

)
=

n∑
k=1

wkΦk

(
x,
{
xbl
}n−1
l=1

)
,

in which

Φk

(
x,
{
xbl
}n−1
l=1

)
=

∏
(i,j)∈I∗n,k

xbi − xbij
xbik − x

bi
j

.

For instance, for n = 4 and the parameters b1 = 1
3 , b2 = 1

2 , b3 = 1, the basis func-

tions Φk

(
x,
{
xbl
}3
l=1

)
with nodes {1, 2, 3, 4} are displayed in figure 2.1 and labeled as

phi1, phi2, phi3, phi4, respectively.

1 1.5 2 2.5 3 3.5 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

phi1

phi2

phi3 phi4

x

 P
H

I(
x)

 

Figure 2.1 The basis functions introduced in example 2.7 (n = 4)

Example 2.8 Let

λl(x) =
1

x− βl
for l = 1, . . . , n− 1,

where β1 < β2 < · · · < βn−1 are real values. For given distinct points {xk}nk=1 in
(βn−1,∞) first we have

Φk
(
x, { 1

x− βl
}n−1l=1

)
=

∏
(i,j)∈I∗n,k

1
x−βi

− 1
xj−βi

1
xk−βi

− 1
xj−βi

=
∏

(i,j)∈I∗n,k

xk − βi
xk − xj

x− xj
x− βi

.
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Then, the unique solution of the interpolation problem (2.4) in the space generated by

span
{

Φk(x, { 1
x−βl
}n−1l=1 )

}n
k=1

can be represented as

G
(
x; f ; { 1

x− βl
}n−1l=1

)
=

n∑
k=1

wkΦk

(
x, { 1

x− βl
}n−1l=1

)
.

For n = 4 and the parameters β1 = −4, β2 = −3, β3 = −2, the basis functions
Φk(x, { 1

x−βl
}3l=1) with nodes xk = cos (2k−1)π

8 , k = 1, 2, 3, 4, are displayed in figure
2.2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

phi1

phi2

phi3
phi4

x

 P
H

I(
x)

 

Figure 2.2 The basis functions introduced in example 2.8 (n = 4)

Example 2.9 Given n distinct points −π2 ≤ x1 < . . . < xn ≤ π
2 , assume that

λl(x) = sin
x

l
for l = 1, . . . , n− 1,

and then construct the functions

Φk

(
x, {sin x

l
}n−1l=1

)
=

∏
(h,j)∈I∗n,k

sin x
h − sin

xj

h

sin xk

h − sin
xj

h

.

As before, the final interpolating function is given by

G
(
x; f ; {sin x

l
}n−1l=1

)
=

n∑
k=1

f(xk)Φk

(
x, {sin x

l
}n−1l=1

)
.

For n = 4 the basis functions Φk

(
x, {sin x

l }
3
l=1

)
with equally spaced nodes {xk}4k=1

on [−π2 ,
π
2 ] are displayed in figure 2.3.
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Figure 2.3 The basis functions introduced in example 2.9 (n = 4)

The next case emphasizes that it is not necessary for {λl(x)} to be just a homoge-
neous sequence of functions. In other words, for given distinct points {xk}nk=1 ∈ [a, b],
one can choose any arbitrary set of continuous functions Λn−1 = {λl(x)}n−1l=1 provided
that λl(xi) 6= λl(xj), ∀ i 6= j.

Example 2.10 Consider the non-homogeneous set

Λ5 =
{
x, e−x, ex, cosx, sinx

}
.

For 6 distinct points 0 ≤ x1 < · · · < x6 ≤ π
2 and given values w1, . . . , w6, the unique

solution of the interpolation problem (2.4) is represented by

G(x; f ; Λ5) =

6∑
k=1

wkΦk(x,Λ5),

where

Φ1(x,Λ5) =
(x− x2)(e−x − e−x3)(ex − ex4)(cosx− cosx5)(sinx− sinx6)

(x1 − x2)(e−x1 − e−x3)(ex1 − ex4)(cosx1 − cosx5)(sinx1 − sinx6)
,

Φ2(x,Λ5) =
(x− x1)(e−x − e−x3)(ex − ex4)(cosx− cosx5)(sinx− sinx6)

(x2 − x1)(e−x2 − e−x3)(ex2 − ex4)(cosx2 − cosx5)(sinx2 − sinx6)
,

...
...

Φ6(x,Λ5) =
(x− x1)(e−x − e−x2)(ex − ex3)(cosx− cosx4)(sinx− sinx5)

(x6 − x1)(e−x6 − e−x2)(ex6 − ex3)(cosx6 − cosx4)(sinx6 − sinx5)
.

The basis functions Φk
(
x,Λ5

)
with equally spaced nodes {xk}6k=1 on [0, π2 ] are dis-

played in figure 2.4.
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Figure 2.4 The basis functions introduced in example 2.10 (n = 6)

3 Quadrature Rules Based on the Introduced Interpola-
tion Formulas

A general n-point quadrature formula is denoted by∫ b

a

f(x)ω(x)dx =

n∑
k=1

wk,nf(xk) +Rn[f ], (3.1)

where {xk}nk=1 and {wk,n}nk=1 are respectively nodes and weight coefficients andRn[f ]
denotes the corresponding error ([5, 8]). Here ω(x) is also a nonnegative weight function
on the interval [a, b]. This formula has degree of exactness d if for every polynomial
p ∈ Pd we have Rn[p] = 0. In addition, if Rn[p] 6= 0 for some Pd+1, formula (3.1) has
precise degree of exactness d.

The convergence order of formula (3.1) depends on the smoothness of the function
f as well as on its degree of exactness ([11]). It is well known that for given mutually
different nodes {xk}nk=1 we can always achieve a degree of exactness d = n − 1 by
interpolating at these nodes and integrating the interpolated polynomial instead of f .

Namely, taking the node polynomial wn(x) =
n∏
k=1

(x− xk), multiplying the Lagrange

interpolation formula by ω(x) and then integrating gives (3.1) with

wk,n =
1

w′n(xk)

∫ b

a

wn(x)

x− xk
ω(x)dx, k = 1, 2, . . . , n, (3.2)

and

Rn[f ] =

∫ b

a

rn(f ;x)ω(x)dx,

where rn(f ;x) denotes the error function of the Lagrange interpolation formula.
In this sense, if f ∈ Cn[a, b], then (see, e.g., [5])

Rn[f ] =
1

n !

∫ b

a

f (n)
(
ξ(x)

)
wn(x)ω(x)dx, where ξ(x) ∈ (a, b).
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Now, by considering the interpolating function (2.2), we can follow the above ap-
proach and construct a quadrature rule as∫ b

a

f(x)ω(x)dx =

n∑
k=1

w∗k,nf(xk) +R∗n[f ],

where

w∗k,n =

∫ b

a

Φk(x,Λn−1)ω(x)dx

=
1∏

(i,j)∈I∗n,k

(λi(xk)− λi(xj))

∫ b

a

ω(x)
∏

(i,j)∈I∗n,k

(
λi(x)− λi(xj)

)
dx, (3.3)

and

R∗n[f ] =
1

n !

∫ b

a

(
f (n)(ζ(x))−G(n)(ζ(x); f ; Λn−1)

)
wn(x)ω(x)dx, a < ζ(x) < b.

(3.4)

Remark 3.1 Relation (3.4) shows that there might be a sequence of functions for Λn−1 =
{λl(x)}n−1l=1 such that f (n)(ζ(x))−G(n)(ζ(x); f ; Λn−1)→ 0 for any ζ(x) ∈ (a, b).

Example 3.2 Let

Λ4 = {λl(x)}4l=1 =
{
x+ 1 , x2 + 5x , x3 + 5.1774x , x3 − 0.4851x2 − 6x− 3

}
,

be a sequence of polynomial functions which is not homogeneous and

{xk}5k=1 = {0.1 , 0.3 , 0.5 , 0.7 , 0.9} ∈ [0, 1].

By noting remark 3.1, we can construct a five-point interpolatory quadrature with e.g.
the constant weight function ω(x) = 1 on [0, 1] as follows∫ 1

0

f(x) dx ≈
5∑
k=1

w∗k,5f(xk),

where according to (3.3) the coefficients are computed as

w∗1,5 = 0.23810506, w∗2,5 = 0.08965330, w∗3,5 = 0.34395356,

w∗4,5 = 0.09043601, w∗5,5 = 0.23792545.

For instance, substituting f(x) = 1
x+1 in the above quadrature gives

ln 2 =

∫ 1

0

1

x+ 1
dx ≈

5∑
k=1

1

xk + 1
w∗k,5

∼= 0.693147180511734,
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and the corresponding error (3.4) is estimated as R∗n[f ] = 4.8210× 10−11.
On the other hand, by considering the classical Lagrange case Λ4 = {λl(x)}4l=1 =

{x} , which leads to the quadrature formula with weighting coefficients (3.2) in which
ω(x) = 1, we have

w1,5 = 0.23871527, w2,5 = 0.08680555, w3,5 = 0.34895833,

w4,5 = 0.08680555, w5,5 = 0.23871527,

and therefore ∫ 1

0

1

x+ 1
dx ≈

5∑
k=1

1

xk + 1
wk,5 ∼= 0.693127993437590.

In latter case, the corresponding error is estimated as Rn[f ] = 1.9187× 10−5.

4 Numerical Examples
Example 4.1 Let us choose a sequence of polynomial functions as

Λ4 = {2x3 + 3x2 − 6x+ 6, x2 + 2x− 2, x2 + 1, x+ 10},

and interpolating points as

{xk}5k=1 = {1

2
(1+cos

(11− 2k)π

10
)}5k=1

∼= {0.0245, 0.2061, 0.5000, 0.7939, 0.9755} .

According to formula (2.2), the function f(x) = log(1+x)
(1+x2)6 e

x2

, x ∈ [0, 1] taken from [15]
can be approximated by a polynomial of degree 8 as follows

log(1 + x)

(1 + x2)6
ex

2

≈ 0.1514x8 + 0.3449x7 − 1.3336x6 − 1.1887x5 + 4.6404x4

− 2.1424x3 − 1.5700x2 + 1.1280x− 0.0025.

In this sense, the error norm

En = max
tj
|f(tj)−G(tj ; f ; Λn−1)| , (4.1)

is estimated as E5 = 0.0025 in which {tj} have been considered as 100 equidistant
points of [0, 1]. Moreover, figure 4.1(b) shows the interpolation error for n = 5 and the
graph of exact and approximate functions are displayed in figure 4.1(a).
Now, let us consider the Lagrange case ∆4 = {δl(x) = x}4l=1 to construct the interpo-
lating function with the previous given points. In this case, the function is approximated
by a polynomial of degree 4 as follows

log(1 + x)

(1 + x2)6
ex

2

≈ −0.8577x4 + 2.9169x3 − 3.3745x2 + 1.3522x− 0.0070,

which is indeed the Lagrange interpolating polynomial of f , and the error norm is esti-
mated as E5 = 0.0070. Figure 4.1(d) shows the interpolation error when ∆4 is applied
and the graph of exact and approximate functions are displayed in figure 4.1(c).
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Figure 4.1 Plots of example 4.1

Example 4.2 We consider the function f(x) = 1
1+25x2 given by Runge. Figure 4.3

shows interpolation errors on [−1, 1], where the interpolating points are roots of the first
kind of Chebyshev polynomials up to degree 80, i.e.

xk = cos
(2k − 1)π

2n
, k = 1, 2, . . . , n = 80,

and interpolating functions (2.2) are computed in different ways by considering various
sequences of functions Λn−1 = {λl(x)}n−1l=1 , which are specified in table 4.1. In this
table, we have computed En where tj are 200 equidistant points of [−1, 1]. Finally,
graphs of exact and approximate functions are displayed in figure 4.2.
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Table 4.1 Interpolation errors for f(x) = 1
1+25x2

case λl(x), l = 1, 2, . . . , n− 1 En

(a) sin x
l 2.1873× 10−7

(b) exp x
l 2.0590× 10−7

(c) 1
x−(2l−81) 3.0918× 10−7

(d) x 2.2986× 10−7
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Figure 4.2 Comparison of exact and approximate functions for n = 80
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Figure 4.3 Interpolation errors for f(x) = 1
1+25x2 and n = 80

Example 4.3 We consider the function f(x) = 3
5−4 cos x taken from [9]. By choosing

the roots of Chebyshev polynomials on [0, 2π] as interpolating points, i.e.

xk = π
(

cos
(2k − 1)π

2n
+ 1
)
, k = 1, 2, . . . , n,

interpolating functions (2.2) are computed in different ways by considering various se-
quences of functions Λn−1 = {λl(x)}n−1l=1 , which are specified in table 4.2. In this table,
En defined in (4.1) is computed for tj which are 100 equidistant points of [0, 2π]. Also,
figure 4.4 shows interpolation errors for n = 30.
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Table 4.2 Interpolation errors for f(x) = 3
5−4 cos x

case (a) (b) (c) (d)
XXXXXXXXXXn

λl(x)
x 1

0.1x+10nl exp( 1
x+10nl )

(
exp( 0.1x

l )
) 0.1

l

5 0.3957 0.3979 0.4195 0.3996
10 0.0322 0.0322 0.0322 0.0322
15 0.0036 0.0036 0.0037 0.0036
20 3.9404× 10−4 3.9404× 10−4 3.9395× 10−4 3.9404× 10−4

25 2.1924× 10−5 2.1992× 10−5 2.2365× 10−5 2.2280× 10−5

30 2.3871× 10−6 2.3871× 10−6 2.4084× 10−6 2.3838× 10−6
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Figure 4.4 Interpolation errors for f(x) = 3
5−4 cos x

and n = 30
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[6] C. DISIBÜYÜK: A functional generalization of the interpolation problem. Appl. Math.
Comp. 256 (2015), 247–251.

[7] W. GAUTSCHI: Interpolation before and after Lagrange. Rend. Sem. Mat. Univ. Politec.
Torino 70 (4) (2012), 347–368.

[8] W. GAUTSCHI: Numerical Analysis: An Introduction. Birkhauser, Boston, 1997.

[9] J. S. HESTHAVEN, S. GOTTLIEB, D. GOTTLIEB: Spectral Methods for Time-Dependent
Problems . Cambridge University Press, New York, 2007.

[10] S. KARLIN, W. J. STUDDEN: Tchebycheff systems: with applications in analysis and statis-
tics. John Wiley & Sons, New York, 1996.

[11] M. MASJED-JAMEI: New error bounds for Gauss-Legendre quadrature rules. Filomat. 28
(6) (2014), 1281–1293.
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[13] G. MASTROIANNI, G. V. MILOVANOVIĆ: Interpolation Processes – Basic Theory and
Applications. Springer Monographs in Mathematics, Springer – Verlag, Berlin – Heidelberg,
2008.

[14] G. MASTROIANNI, J. SZABADOS: Barycentric interpolation at equidistant nodes. Jaen J.
Approx., 9(1) (2017), 25–36.

[15] D. OCCORSIO: Extended Lagrange interpolation in weighted uniform norm. Appl. Math.
Comp. 211 (2009), 10–22.

[16] D. OCCORSIO, M. G. RUSSO: Extended Lagrange interpolation on the real line. J. Comput.
Appl. Math. 259 (2014), 24–34.



18 Masjed-Jamei–Moalemi–Koepf

[17] D. OCCORSIO, M. G. RUSSO: The Lp-weighted Lagrange interpolation on Markov-Sonin
zers. Acta Math. Hungar. 112 (12) (2006), 57–84.

[18] I. H. SLOAN: Nonpolynomial interpolation. J. Approx. Theory. 39 (1983), 97–117.

[19] J. STOER, R. BULIRSCH: An Introduction to Numerical Analysis. Springer-Verlag, New
York, 2002.

[20] J. SZABADOS, P. VERTESI: Interpolation of Functions. World Scientific, 1990.

Mohammad Masjed-Jamei
Department of Mathematics
K.N.Toosi University of Technology
P.O. Box 16315–1618
Tehran, Iran
Research Scholar
Alexander von Humboldt Foundation
Germany
mmjamei@kntu.ac.ir

Zahra Moalemi
Department of Mathematics
K.N.Toosi University of Technology
P.O. Box 16315–1618
Tehran, Iran
zmoalemi@mail.kntu.ac.ir

Wolfram Koepf
Institute of Mathematics
University of Kassel
Heinrich-Plett Str. 40, 34132
Kassel, Germany
koepf@mathematik.uni-kassel.de


