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Abstract. By using Bell polynomials, we introduce an extension of Taylor

series expansion and consider some of its special cases leading to new series
and identities. We also apply the extended expansion for generating functions

of some famous sequences of numbers.

1. Introduction

Let {xj}nj=0 ∈ [a, b] and {fj}nj=0, which may be samples of a function, say f(x),
be given. The main aim of interpolation is to find an appropriate model to ap-
proximate f(x) at any arbitrary point of [a, b] other than xj . In other words, if
Ψ(x; a0, . . . , an) is a family of functions of a single variable x with n+1 free param-
eters {aj}nj=0, then the interpolation problem for Ψ consists of determining {aj}nj=0

so that for n + 1 given real or complex pairs of distinct numbers {(xj , fj)}nj=0 we
have

(1.1) Ψ(xj ; a0, . . . , an) = fj .

For a polynomial type interpolation problem, various classical methods such as
Lagrange, Newton and Hermite interpolations are used. Lagrange’s interpolation
as a classical method for approximating a continuous function f : [a, b]→ R at n+1
distinct nodes a ≤ x0 < · · · < xn ≤ b is applied in several branches of numerical
analysis and approximation theory. It is expressed in the form [16, pp. 39–40]

Ln(f ;x) =

n∑
j=0

f(xj)`
(n)
j (x),

for

`
(n)
j (x) =

wn(x)

(x− xj)w′n(xj)
,

where wn(x) =
n∏
j=0

(x − xj) is the node polynomial and `
(n)
j (x) as the Lagrange

polynomials.
Ln(f ;x) is a unique element in the space of all polynomials of degree at most n,

say Pn, which solves the interpolation problem

Ln(f ;xj) = f(xj) (j = 0, 1, 2, . . . , n).
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For non-polynomial type interpolation problems, an interpolating function of the
form

ψn(x) =

n∑
j=0

ajuj(x),

is usually considered [17] where {uj(x)}nj=0 is a set of linearly independent real-
valued continuous functions on [a, b] and {aj}nj=0 are determined by the initial
conditions

ψn(xj) = f(xj) (j = 0, 1, . . . , n).

The function ψn(x) exists and is unique in the space of span{uj}nj=0 for all f ∈
C[a, b] if and only if the matrix {uj(xk)}nj,k=0 is nonsingular.

The general case of an interpolation problem was proposed by Davis [10] contain-
ing all above-mentioned cases. It is indeed concerned with reconstructing functions
on a basis of certain functional information, which are linear in many cases. Hence,
one can construct new interpolation formulae using linear operators [15]. He also
mentioned that the expansion of a function based on a series of predetermined (ba-
sis) functions can be interpreted as an interpolation problem with infinite number
of conditions. See also [14] in this regard. The problem of the representation of
an arbitrary function by means of linear combinations of prescribed functions has
received a lot of attention. It is well known that a special case of this problem
directly leads to Taylor’s series [19].

The main aim of this paper is to introduce a class of interpolation formulas which
leads to a generalization of Taylor series expansion. In this direction, we define a
certain space of functions as the base of constructing such a class. In the next
section, we introduce an extension of Taylor series expansion and consider some
interesting cases of it leading to new series and identities. Also, some applications
are presented for obtaining generating functions of some famous numbers.

2. a class of interpolation formulas

Let Λn−1 := {λk}n−1k=1 be a sequence of continuous functions defined on [a, b] such
that λk(xi) 6= λk(xj) for any i 6= j and {xk}nk=1 are n distinct points in [a, b]. We
define the functions

(2.1) Φ(x;xk,Λn−1) :=
∏

(i,j)∈I∗n,k

λi(x)− λi(xj)
λi(xk)− λi(xj)

(k = 1, . . . , n),

where

I∗n,k := {(r, r)| r = 1, . . . , k − 1, k > 1} ∪ {(r, r + 1)| r = k, . . . , n− 1, k < n} .

It can be directly verified that these functions (2.1) satisfy the biorthogonality
relation

Φ(xl;xk,Λn−1) = δk,l.

Moreover, {Φ(x;xk,Λn−1)}nk=1 are linearly independent on [a, b]. So, by considering
the space

Πn := span {Φ(x;x1,Λn−1), . . . ,Φ(x;xn,Λn−1)} ,
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the explicit solution of the interpolation problems of type (1.1) is as
n∑
k=1

f(xk)Φ(x;xk,Λn−1).

Now, suppose that

G(x; f ; Λn−1) = a1Φ(x;x1,Λn−1) + . . .+ anΦ(x;xn,Λn−1),

denotes an interpolating function. By imposing the initial conditions, we reach a
system of linear equations as

a1Φ(xk;x1,Λn−1) + . . .+ anΦ(xk;xn,Λn−1) = f(xk) k = 1, . . . , n,

which has a unique solution, because∣∣∣∣∣∣∣
Φ(x1;x1,Λn−1) · · · Φ(x1;xn,Λn−1)

...
...

Φ(xn;x1,Λn−1) · · · Φ(xn;xn,Λn−1)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 O

. . .

O 1

∣∣∣∣∣∣∣∣ 6= 0.

So there exists a unique function G(x; f ; Λn−1) ∈ Πn such that

G(xk; f ; Λn−1) = f(xk) k = 1, . . . , n.

Also it can be verified that if f ∈ Cn−1 ([a, b]), f (n) exist at any point of (a, b)
and G (·; f ; Λn−1) ∈ Cn−1 ([a, b]), then there exists a point ξx ∈ (a, b) depending on
x such that

f(x)−G(x; f ; Λn−1) =
f (n)(ξx)−G(n)(ξx; f ; Λn−1)

n !

n∏
k=1

(x− xk).

Notice that if λl(x) = λ(x) for every l = 1, . . . , n, with λ(xi) 6= λ(xj) for i 6= j,
then

G(x; f ; {λ(x)}nl=1) =

n+1∑
k=1

f(xk)Φ(x;xk, {λ(x)}nl=1),

interpolates f at {xk}n+1
k=1 , where

Φ(x;xk, {λ(x)}nl=1) =

n+1∏
j = 1
j 6= k

λ(x)− λ(xj)

λ(xk)− λ(xj)
.

In this case, we have

span {Φ(x;xk, {λ(x)}nl=1)}n+1
k=1 = span{1, λ(x), λ2(x), . . . , λn(x)},

and G(x; f ; {λ(x)}nl=1) can be therefore represented as

(2.2) G(x; f ; {λ(x)}nl=1) = A0 +A1λ(x) +A2 (λ(x))
2

+ . . .+An (λ(x))
n
,

in which {Aj}nj=0 are obtained by the given interpolation conditions.
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3. An extension of Taylor Series Expansion

In (2.2), we assumed that {xk}n+1
k=1 are distinct. Now, let {xk}n+1

k=2 coincide

with x1 together with the corresponding values {f (k)(x1)}nk=0. If f, λ ∈ Cn[a, b]

and f (n+1), λ(n+1) exist on (a, b) and λ(j)(x1) 6= 0 for any j = 1, . . . , n, then the
interpolating function (2.2) changes to

(3.1) G∗(x; f ; {λ(x)}nl=1) = f(x1) +

n∑
l=1

(−1)l−1D(l−1,l)Nl(x)
l∏

j=1

j!
(
λ′(x1)

)j ,

where

(3.2) Nl(x) =

l∑
k=0

(−1)l−k
(
l

k

)(
λ(x1)

)l−k
λk(x) l ≥ 1,

and

D(m,k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′(x1) N ′1(x1) 0 0 . . . 0

f ′′(x1) N ′′1 (x1) N ′′2 (x1) 0 . . . 0
...

...
...

. . .
...

f (m−1)(x1) N
(m−1)
1 (x1) N

(m−1)
2 (x1) N

(m−1)
3 (x1) . . . 0

f (m)(x1) N
(m)
1 (x1) N

(m)
2 (x1) N

(m)
3 (x1) . . . N

(m)
m (x1)

f (k)(x1) N
(k)
1 (x1) N

(k)
2 (x1) N

(k)
3 (x1) . . . N

(k)
m (x1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

for m ≥ 1, k > m such that

D(0,k) = f (k)(x1) k ≥ 1.

According to (3.2), it is clear that (3.1) can be written as

(3.3) G∗(x; f ; {λ(x)}nl=1) =

n∑
j=0

cj
(
λ(x)

)j
.

Notice that (2.2) interpolates f at {xk}n+1
k=1 while (3.3) interpolates f at x1 for n+1

times, i.e.

(3.4)
dk

dxk
G∗(x; f ; {λ(x)}nl=1) = f (k)(x1) (k = 0, 1, . . . , n).

In this sense, the coefficients {cj}nj=0 can be directly computed by equating (3.3)
with (3.1), or by considering the conditions given in (3.4). However, if λ(x) is an
invertible function, {cj}nj=0 can be derived by an easier method. For this purpose,
without loss of generality and just for simplicity in the symbolic representations,
we consider λ−1(x) instead of λ(x) in (3.3), i.e.

(3.5) f(x) '
n∑
j=0

cj
(
λ−1(x)

)j
.
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If djf(λ(x))
dxj exist for any j = 0, 1, . . . , n at x = 0, then from (3.5) one can

respectively conclude that

(3.6) f
(
λ(x)

)
'

n∑
j=0

cjx
j ,

and

(3.7) cj =
1

j!

djf
(
λ(x)

)
dxj

∣∣
x=0

(j = 0, 1, . . . , n).

Moreover, if n→∞, relation (3.6) reads as

(3.8) f(x) =

∞∑
n=0

cn
(
λ−1(x)

)n
,

which is equivalent to

f
(
λ(x)

)
=

∞∑
n=0

cnx
n,

and {cn}∞n=0 are given by (3.7).
Note that the convergence radius of the series (3.8) depends on λ(x) and is

directly derived by using the ratio test, so that if

ρ = lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ ,
then (3.8) converges for all x satisfying the inequality

∣∣λ−1(x)
∣∣ < 1

ρ .

To explicitly compute the coefficients (3.7), first according to the classical Faá
di Bruno formula [8] we have

(3.9)
dn

dxn

(
f
(
λ(x)

))
=
∑
Ikn

n!

k1! k2! . . . kn−k+1!
f (k)

(
λ(x)

) n−k+1∏
j=1

(
λ(j)(x)

j!

)kj
,

where
(3.10)

Ikn =

(k1, k2, . . . , kn−k+1) :

n−k+1∑
j=1

kj = k and

n−k+1∑
j=1

jkj = n, kj ∈ N ∪ {0}

 .

Therefore, the primary form of the coefficients can be represented as

cn =
∑
Ikn

1

k1! k2! . . . kn−k+1!
f (k)

(
λ(0)

) n−k+1∏
j=1

(
λ(j)(0)

j!

)kj
.

However, still there exists an easier way to compute the coefficients. The Bell
polynomial version of Faá di Bruno’s formula (3.9) is given by [12]

dn

dxn

(
f
(
λ(x)

))
=

n∑
k=0

f (k)
(
λ(x)

)
Bn,k

(
λ′(x), λ′′(x), . . . , λ(n−k+1)(x)

)
,
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where Bn,k(.) are known as partial exponential Bell polynomials and are defined
by [11, p. 96]

(3.11) Bn,k(u1, u2, . . . , un−k+1) = n!
∑
Ikn

n−k+1∏
j=1

1

kj !

(uj
j!

)kj
,

where Ikn is the same as (3.10). Consequently, we have

cn =
1

n!

n∑
k=0

f (k)
(
λ(x)

)
Bn,k

(
λ′(x), λ′′(x), . . . , λ(n−k+1)(x)

) ∣∣
x=0

.

Note that since

I0n =

{
{(0)} for n = 0,

∅ for n ≥ 1,

we have B0,0(u) = 1 and Bn,0(u1, . . . , un+1) = 0 for n ≥ 1. Also, B1,1 = u1,
B2,1 = u2, B2,2 = u21, B3,1 = u3, B3,2 = 3u1u2, B3,3 = u31, ... , Bn,1 = un and
Bn,n = un1 . A comperehensive table of the Bn,k for k ≤ n ≤ 12 is found in [6,
p. 307].
Bn,k(.) in (3.11) with infinite number of variables can be defined by the double

series expansion [6]

Φ(t, x) = exp
(
x
∑
m≥1

um
tm

m!

)
=
∑
n,k≥0

Bn,k
tn

n!
xk(3.12)

= 1 +
∑
n≥1

tn

n!

( n∑
k=1

xkBn,k(u1, u2, . . .)
)
,

and the complete exponential Bell polynomials [2] by

(3.13) Φ(t, 1) = exp
( ∑
m≥1

um
tm

m!

)
= 1 +

∑
n≥1

Yn(u1, u2, . . .)
tn

n!
,

where

Yn(u1, u2, . . . , un) =

n∑
k=1

Bn,k(u1, . . . , un−k+1), (Y0 := 1).

Relations (3.12) and (3.13) are widely used in combinatorial analysis with numer-
ous applications in physics and mathematics. It is well-known that many special
sequences are constructed from Bell polynomials by an appropriate choice of the
variables u1, u2, . . . . For instance, we have

• Bn,k(1, 1, . . . , 1︸ ︷︷ ︸
n−k+1

) = S(n, k) (Stirling number of the second kind [6, p. 50]),

• Bn,k
(
0!, 1!, . . . , (n− k)!

)
= |s(n, k)|

(signless Stirling number of the first kind [6, p. 50]),

• Bn,k
(
1!, 2!, . . . , (n− k + 1)!

)
=

(
n− 1

k − 1

)
n!

k!
n, k ≥ 1, (Lah number [6, p. 156]),

• Bn,k
(
1, 2, . . . , n− k + 1

)
=

(
n

k

)
kn−k (idempotent number [6, p. 91]).

For more results see [6, pp. 133-137], [9], [18] and [11, pp. 95-98]. Two nice historical
surveys have appeared in [8] and [12].
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3.1. Some special cases of the expansion (3.8)

Example 1. Let λ−1(x) = cosx and consider the expansion

(3.14) f(x) =

∞∑
n=0

cn
(

cosx
)n

(0 ≤ x ≤ π),

which is equivalent to

f(arccosx) =

∞∑
n=0

cnx
n.

Since

dm
(

arccosx
)

dxm
∣∣
x=0

=


0 m = 2l,

−
l−1∏
j=1

(2j − 1)2 m = 2l − 1,
0∏
j=1

(.) = 1,

the partition set takes the form
(3.15)

Îkn =
{

(k1, k2, . . . , kn−k+1) ∈ Ikn such that k2l = 0 for all l = 1, . . . , [
n− k + 1

2
]
}
,

and therefore
(3.16)

cn =
∑
Îkn

(−1)k

k1! k2! . . . kn−k+1!
f (k)

(π
2

) [n−k
2 ]+1∏
m=1

( 1

(2m− 1)!

m−1∏
l=1

(2l − 1)2
)k2m−1

,

for n ≥ 1 and c0 = f(π2 ). Note that
0∏
l=1

(.) = 1. For instance, for n=5 in (3.14) we

obtain

f(x) ∼= f(
π

2
) − f ′(

π

2
) cosx +

1

2!
f ′′(

π

2
) cos2 x − 1

3!

(
f ′(

π

2
) + f ′′′(

π

2
)
)

cos3 x

+
1

4!

(
4f ′′(

π

2
) + f (4)(

π

2
)
)

cos4 x − 1

5!

(
9f ′(

π

2
) + 10f ′′′(

π

2
) + f (5)(

π

2
)
)

cos5 x.

A valuable point of example 1 is that there exists a direct relationship between
series (3.14) and cosine Fourier series, because

(3.17) f(x) =

∞∑
n=0

cn(cosx)n =
α0

2
+

∞∑
j=1

αj cos jx,

in which, according to the trigonometric formulas [3],

cosn x =



1

2n

(
n
n
2

)
+

2

2n

n
2−1∑
k=0

(
n

k

)
cos(n− 2k)x (n : even),

2

2n

n−1
2∑

k=0

(
n

k

)
cos(n− 2k)x (n : odd).
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Hence

αj =



∞∑
l= j

2

1

22l−1

(
2l

l − j
2

)
c2l (j : even),

∞∑
l= j−1

2

1

22l

(
2l + 1

l − j−1
2

)
c2l+1 (j : odd),

or in a unique form we have

αj =
1

2j−1

∞∑
l=0

1

22l

(
2l + j

l

)
c2l+j for any j = 0, 1, . . . .

On the other hand, (3.17) is a Fourier cosine series of f such that

αj =
2

π

∫ π

0

f(x) cos jx dx for j = 0, 1, . . . .

Therefore

(3.18)

∫ π

0

f(x) cos jx dx =
π

2j

∞∑
l=0

1

22l

(
2l + j

l

)
c2l+j ,

where {c2l+j} are given by (3.16). For instance, if j = 0 in (3.18) then

1

π

∫ π

0

f(x) dx =

∞∑
l=0

1

22l

(
2l

l

)
c2l

= f(
π

2
) +

( 1

22
+

1

24
+

1

22 × 32
+ . . .

)
f ′′(

π

2
) +

( 1

26
+

1

26 × 32
+ . . .

)
f (4)(

π

2
) + . . . .

Example 2. Let λ−1(x) = sinx and consider the expansion

(3.19) f(x) =

∞∑
n=0

cn(sinx)n (−π
2
≤ x ≤ π

2
),

which is equivalent to

f(arcsinx) =

∞∑
n=0

cnx
n.

Since

dm
(

arcsinx
)

dxm
∣∣
x=0

=


0 m = 2l,

l−1∏
j=1

(2j − 1)2 m = 2l − 1,
0∏
j=1

(.) = 1,

the partition set is as the same form as (3.15) and therefore

(3.20) cn =
∑
Îkn

1

k1! k2! . . . kn−k+1!
f (k)(0)

[n−k
2 ]+1∏
m=1

( 1

(2m− 1)!

m−1∏
l=1

(2l− 1)2
)k2m−1

,
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for n ≥ 1 and c0 = f(0). For instance, for n=5 in (3.19) we obtain

f(x) ∼= f(0) + f ′(0) sinx +
1

2!
f ′′(0) sin2 x +

1

3!

(
f ′(0) + f ′′′(0)

)
sin3 x

+
1

4!

(
4f ′′(0) + f (4)(0)

)
sin4 x +

1

5!

(
9f ′(0) + 10f ′′′(0) + f (5)(0)

)
sin5 x.

Once again, since

(3.21) f(x) =

∞∑
n=0

cn(sinx)n =
β0
2

+

∞∑
j=1

β2j cos 2jx+

∞∑
j=0

β2j+1 sin(2j + 1)x,

in which, according to the trigonometric formulas [3],

sinn x =



1

2n

(
n
n
2

)
+

(−1)
n
2

2n−1

n
2−1∑
k=0

(−1)k
(
n

k

)
cos(n− 2k)x (n : even),

2

2n
(−1)

n−1
2

n−1
2∑

k=0

(−1)k
(
n

k

)
sin(n− 2k)x (n : odd),

we obtain

βk =



(−1)
k
2

∞∑
l= k

2

1

22l−1

(
2l

l − k
2

)
c2l (k : even),

(−1)
k−1
2

∞∑
l= k−1

2

1

22l

(
2l + 1

l − k−1
2

)
c2l+1 (k : odd),

or in a unique form

βk =
(−1)[

k
2 ]

2k−1

∞∑
l=0

1

22l

(
2l + k

l

)
c2l+k for any k = 0, 1, . . . .

Now, consider a special form of the Fourier series of a periodic function f(x) on
[−π2 ,

π
2 ] as follows

(3.22) f(x) =
b0
2

+

∞∑
j=1

b2j cos 2jx+

∞∑
j=0

b2j+1 sin(2j + 1)x,

where

bk =



2

π

π
2∫
−π2

f(x) cos kx dx (k : even),

2

π

π
2∫
−π2

f(x) sin kx dx (k : odd).
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By equating the right hand sides of (3.21) and (3.22) we respectively obtain

1

π

∫ π
2

−π2
f(x) cos jx dx =

(−1)
j
2

2j

∞∑
l=0

1

22l

(
2l + j

l

)
c2l+j (j : even),

and

1

π

∫ π
2

−π2
f(x) sin jx dx =

(−1)
j−1
2

2j

∞∑
l=0

1

22l

(
2l + j

l

)
c2l+j (j : odd),

where {c2l+j} are given by (3.20).

Example 3. Let λ(x) = ln(x+ 1) and consider the expansion

(3.23) f(x) =

∞∑
n=0

cn
(
ex − 1

)n
,

which is equivalent to

f
(

ln(x+ 1)
)

=

∞∑
n=0

cn x
n,

where

cn =
1

n!

dn

dxn
f
(

ln(x+ 1)
)
|x=0

.

To compute cn, first notice that for n ≥ 1, we have

Bn,k

(
λ′(x), λ′′(x), . . . , λ(n−k+1)(x)

)
= Bn,k

(
0! (x+ 1)−1, −(1!) (x+ 1)−2, . . . , (−1)n−k(n− k)! (x+ 1)−(n−k+1)

)
= (x+ 1)−nBn,k

(
0!, −(1!), . . . , (−1)n−k(n− k)!

)
,

where we have used the identity [6]

Bn,k
(
abu1, ab

2u2, ab
3u3, . . . , ab

n−k+1un−k+1

)
= akbnBn,k

(
u1, u2, u3, . . . , un−k+1

)
,

for a = 1 and b = (x+ 1)−1.
Now, replacing um = (−1)m−1(m− 1)! in (3.12) gives

Φ(t, x) = exp
(
x
∑
m≥1

(−1)m−1

m
tm
)

= exp
(
x ln(1 + t)

)
= (1 + t)x,

which is indeed the generating function of the first kind of Stirling numbers, i.e.

Bn,k
(
0!, −(1!), . . . , (−1)n−k(n− k)!

)
= s(n, k).

In other words, we have

dn

dxn
f
(

ln(x+ 1)
)

= (x+ 1)−n
n∑
k=1

s(n, k) f (k)
(

ln(x+ 1)
)
,

and

cn =
1

n!

(
(x+ 1)−n

n∑
k=1

s(n, k)f (k)
(

ln(x+ 1)
))
|x=0

=
1

n!

n∑
k=1

s(n, k)f (k)(0).
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By noting that s(0, 0) = 1 and s(n, 0) = 0 for n ≥ 1, (3.23) can be finally written
as

f(x) =

∞∑
n=0

(ex − 1)n

n!

( n∑
k=0

s(n, k)f (k)(0)
)
,

generating many new identities for the first kind of Stirling numbers.

Example 4. Let λ(x) = 1
1−x , x 6= 0, 1 and consider the expansion

f(x) =

∞∑
n=0

cn
(
1− 1

x

)n
,

leading to

f
( 1

1− x
)

=

∞∑
n=0

cn x
n.

Since
dj

dxj
λ(x)

∣∣
x=0

= j! for any j = 0, 1, . . . , n− k + 1,

the coefficients are given by

cn =
1

n!

n∑
k=1

f (k)(1)Bn,k
(
1!, 2!, . . . , (n− k + 1)!

)

=
1

n!

n∑
k=1

f (k)(1)

(
n− 1

k − 1

)
n!

k!
=

1

n!

n∑
k=1

f (k)(1)L(n, k),

for n ≥ 1 and c0 = f(1) where L(n, k) are known as Lah numbers [5].
Consequently, we have

f(x) = f(1) +

∞∑
n=1

(
1− 1

x

)n n∑
k=1

f (k)(1)

k!

(
n− 1

k − 1

)
.

3.2. On generating functions of some famous numbers

Following the same approach, we can consider some cases of the expansion (3.8)
leading to generating functions of some well-known numbers such as Bell, Stirling
and idempotent numbers.

Example 1. Let f(x) =
∞∑
n=0

cn
(

lnx
)n

. So

(3.24) f
(
ex
)

=

∞∑
n=0

cn x
n,

and the coefficients are computed as

cn =
1

n!

n∑
k=0

f (k)(1)Bn,k(1, 1, . . . , 1︸ ︷︷ ︸
n−k+1

) =
1

n!

n∑
k=0

f (k)(1)S(n, k),

where S(n, k) as the second kind of Stirling numbers is explicitly denoted by [1]

S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.
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As the first sample, replacing f(x) = ex in (3.24) eventually gives

ee
x−1 =

∞∑
n=0

xn

n!

( n∑
k=0

S(n, k)
)
,

which is a generating function for the Bell numbers Bn =
n∑
k=0

S(n, k).

Another interesting case is when f(x) = 1
2−x , because f (k)(1) = k! and the

coeffecients in this case are computed as

cn =
1

n!

n∑
k=0

k!S(n, k) =
1

n!
b̃(n),

where b̃(n) is the nth ordered Bell number and can be also represented by the
important infinite series [20]

b̃(n) =
1

2

∞∑
m=0

mn

2m
.

Therefore, by noting (3.24), we obtain

1

2− ex
=

∞∑
n=0

b̃(n)
xn

n!
,

which is convergent in ( 1
2 , 2), because for large n we have [20]

b̃(n) ≈ n!

2(ln 2)n+1
,

and therefore

lim
n→∞

1

n+ 1

b̃(n+ 1)

b̃(n)
=

1

ln 2
,

which yields x ∈ (e− ln 2, eln 2) = ( 1
2 , 2).

The third interesting case is when f(x) = − lnx. Since

− lnx =

∞∑
n=1

(lnx)n

n!

( n∑
k=1

(−1)k(k − 1)!S(n, k)
)
,

by equating both sides of the above equality we conclude that
n∑
k=1

(−1)k(k − 1)!S(n, k) = 0 n ≥ 2,

which is a direct consequence of the following result [13] for z = −1,

n∑
k=1

S(n, k) (k − 1)! zk = (−1)n Li1−n(1 +
1

z
) n ≥ 2,

where Lin(z) is the polylogarithm function defined by

Lin(z) =

∞∑
k=1

zk

kn
|z| < 1.
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Example 2. Assume that λ(x) = xex for x ≥ −1. The inverse function
λ−1(x) = W0(x), which satisfies the equation

x = W0(x)eW0(x),

is the principal branch of the Lambert function [7]. In fact, the additional constraint
W0(x) ≥ −1 defines the single-valued function W0(x) for x ≥ −e−1. Although
W0(x) cannot be expressed in terms of elementary functions, one can use Lagrange
inversion theorem (see e.g. [4]) for computing the Taylor series of W0(x) at x = 0
such that we have

W0(x) =

∞∑
n=1

lim
ω→0

( dn−1

dωn−1
e−nω

)xn
n!

=

∞∑
n=1

(−n)n−1
xn

n!
,

which is convergent in x ∈ (−e−1, e−1). Now, consider the expansion

f(x) =

∞∑
n=0

cn
(
W0(x)

)n
,

which is equivalent to

f
(
xex
)

=

∞∑
n=0

cn x
n.

Since
dk

dxk
(xex)|x=0

= k, the coefficients are given by

cn =
1

n!

n∑
k=1

f (k)(0)Bn,k
(
1, 2, . . . , n− k + 1

)
=

1

n!

n∑
k=1

f (k)(0)

(
n

k

)
kn−k,

for n ≥ 1 and c0 = f(0). For instance, replacing f(x) = ex leads to the relation

exp(xex) = 1 +

∞∑
n=1

t(n)
xn

n!
,

where t(n) =
n∑
k=1

(
n
k

)
kn−k is known as the number of idempotent maps. See e.g.

[6, p. 91] for more details.

Acknowledgments

This work has been supported by the Alexander von Humboldt Foundation under
the grant number: Ref 3.4 - IRN - 1128637 - GF-E.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs
and mathematical tables. Washington: U.S. Department of Commerce. XIV, 1046 p. (1964);

Table Errata Math. Comput. 21, 747, 1964.

[2] E. T. Bell, Exponential polynomials, The Annals of Mathematics, 35 (1934) 258-277.
[3] W. H. Beyer, Standard Mathematical Tables and Formulae, 28th ed. Boca Raton, FL: CRC

Press, 1987.
[4] C. Carathéodory, Theory of Functions of a Complex Variable, Chelsea, 1954.

[5] C. A. Charalambides, Enumerative Combinatorics, CRC Press Series on Discrete Mathemat-

ics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.
[6] L. Comtet. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Dordrecht:

D. Reidel Publishing Co., 1974.



14 M. MASJED-JAMEI, Z. MOALEMI, AND W. KOEPF

[7] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W

function, Adv. Comput. Math. 5 (1996) 329-359.
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