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1 Introduction

The Appell polynomials An(x) defined by

f(t)ext =
∞∑
n=0

An(x)
tn

n!
, (1)

where f is a formal power series in t , have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry [2, 15]. Two special cases
of Appell polynomials are Bernoulli polynomials Bn(x) and Euler polynomials En(x)
that are, respectively, generated by choosing f(t) = t

et−1 and f(t) = 2
et+1 in (1). Also,

Bernoulli numbers Bn := Bn(0) and Euler numbers En := 2nEn(
1
2) are of considerable

importance in number theory, special functions, combinatorics and numerical analysis.

Bernoulli numbers are given by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
(|t| < 2π),

or by the recurrence relation

n∑
k=0

(
n+ 1

k

)
Bk = 0 for n ≥ 1 and B0 = 1.
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They are directly related to various combinatorial numbers such as Stirling, Cauchy and
harmonic numbers. For example, except B1 we have

Bn = (−1)n
n∑

m=0

(−1)mm!

m+ 1
S2(n,m), (2)

where

S2(n,m) =
1

m!

m∑
j=0

(−1)j
(
m

j

)
(m− j)n,

denotes the second kind of Stirling numbers [5, 7] with S2(n,m) = 0 for n < m .

There are some algorithms for computing Bernoulli numbers. One of them is Euler’s
formula

B2n =
(−1)n−12n

22n(22n − 1)
Tn,

where {Tn} , known as Tangent numbers, are generated by

tan t =

∞∑
n=1

Tn
t2n−1

(2n− 1)!
.

In 2001 , Akiyama and Tanigawa [1] (see also [13]) found an algorithm for computing
An,0 := (−1)nBn without computing Tangent numbers as

An+1,m = (m+ 1)(An,m −An,m+1),

where A0,m = 1
m+1 .

Later on, a modified version of the above-mentioned algorithm was proposed by Chen
[4] for computing Cn,0 := Bn as

Cn+1,m = mCn,m − (m+ 1)Cn,m+1

where C0,m = 1
m+1 .

Bernoulli numbers have found various extensions such as poly-Bernoulli numbers, which
are somehow connected to multiple zeta values. For recent extensions of poly-Bernoulli
numbers see e.g. [3, 6, 8, 9, 14]. In [12], the author has defined a new family of poly-
Bernoulli numbers in terms of Gaussian hypergeometric functions and obtained its basic
properties. He has also presented an algorithm for computing Bernoulli numbers and
polynomials and showed that poly-Bernoulli numbers are related to the certain regular
values of the Euler-Zagiers multiple zeta function at non-positive integers of depth p ≥ 1 ,
i.e.

ζ(s1, s2, . . . , sp) =
∑

0<n1<n2<···<np

1

ns1
1 ns2

2 · · ·nsp
p
,
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where s1, s2, . . . , sp are positive integers with sp > 1 .

Another combinatorial aspect of Bernoulli numbers is that they have several symmetry
properties with Cauchy numbers. The first kind of Cauchy numbers is defined by [5, 11]

Cn =

∫ 1

0
t(t− 1) · · · (t− n+ 1) dt = n!

∫ 1

0

(
t

n

)
dt,

having the generating function

t

log(1 + t)
=

∞∑
n=0

Cn
tn

n!
,

and the second kind is defined by

Ĉn =

∫ 0

−1
t(t− 1) · · · (t− n+ 1) dt = n!

∫ 0

−1

(
t

n

)
dt.

Both Cn and Ĉn can be explicitly written as

Cn = (−1)n
n∑

m=0

(−1)mS1(n,m)

m+ 1
and Ĉn = (−1)n

n∑
m=0

S1(n,m)

m+ 1
,

such that S1(n,m) are the first kind of Stirling numbers given by

(t)n = t(t+ 1) · · · (t+ n− 1) =
n∑

m=0

S1(n,m)tm,

where S1(n,m) = 0 for n < m .

This paper is organized as follows: In the next section, we introduce a parametric type of
Bernoulli polynomials and present basic properties of them in section 3. We also compute
the Fourier expansion of the extended polynomials in section 4. As a valuable application
of the extended polynomials, we introduce in section 5 an extension of the well-known
Euler-Maclaurin quadrature formula and compare it with the ordinary case in detail.

2 A Parametric Type of Bernoulli Polynomials

If p, q ∈ R , it is known that the Taylor expansion of the two functions ept cos qt and
ept sin qt are respectively as follows [10]

ept cos qt =

∞∑
k=0

Ck(p, q)
tk

k!
, (3)
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and

ept sin qt =

∞∑
k=0

Sk(p, q)
tk

k!
, (4)

where

Ck(p, q) =

[ k
2
]∑

j=0

(−1)j
(
k

2j

)
pk−2jq2j , (5)

and

Sk(p, q) =

[ k−1
2

]∑
j=0

(−1)j
(

k

2j + 1

)
pk−2j−1q2j+1. (6)

By referring to relations (3)-(6), we can introduce two kinds of bivariate Bernoulli poly-
nomials as

tept

et − 1
cos qt =

∞∑
n=0

B(c)
n (p, q)

tn

n!
(|t| < 2π), (7)

and

tept

et − 1
sin qt =

∞∑
n=0

B(s)
n (p, q)

tn

n!
(|t| < 2π). (8)

For instance, we have

B
(c)
0 (p, q) = 1,

B
(c)
1 (p, q) = p− 1

2
,

B
(c)
2 (p, q) = p2 − p− q2 +

1

6
,

B
(c)
3 (p, q) = p3 − 3

2
p2 + (

1

2
− 3q2)p+

3

2
q2,

B
(c)
4 (p, q) = p4 − 2p3 + (1− 6q2)p2 + 6q2p+ q4 − q2 − 1

30
,

B
(c)
5 (p, q) = p5 − 5

2
p4 + (

5

3
− 10q2)p3 + 15q2p2 + (5q4 − 5q2 − 1

6
)p− 5

2
q4,

B
(c)
6 (p, q) = p6 − 3p5 + (

5

2
− 15q2)p4 + 30q2p3 + (15q4 − 15q2 − 1

2
)p2 − 15q4p

− q6 +
5

2
q4 +

1

2
q2 +

1

42
,
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and

B
(s)
0 (p, q) = 0,

B
(s)
1 (p, q) = q,

B
(s)
2 (p, q) = 2qp− q,

B
(s)
3 (p, q) = 3qp2 − 3qp− q3 +

1

2
q,

B
(s)
4 (p, q) = 4qp3 − 6qp2 + (2q − 4q3)p+ 2q3,

B
(s)
5 (p, q) = 5qp4 − 10qp3 + (5q − 10q3)p2 + 10q3p+ q5 − 5

3
q3 − 1

6
q,

B
(s)
6 (p, q) = 6qp5 − 15qp4 + (10q − 20q3)p3 + 30q3p2 + (6q5 − 10q3 − q)p− 3q5.

3 Some Basic Properties of B
(c)
n (p, q) and B

(s)
n (p, q) .

3.1. B
(c)
n (p, q) and B

(s)
n (p, q) can be represented in terms of Bernoulli numbers as follows

B(c)
n (p, q) =

n∑
k=0

(
n

k

)
BkCn−k(p, q), (9)

and

B(s)
n (p, q) =

n∑
k=0

(
n

k

)
BkSn−k(p, q). (10)

Proof. By noting the general identity( ∞∑
k=0

ak
tk

k!

)( ∞∑
k=0

bk
tk

k!

)
=

∞∑
k=0

 k∑
j=0

(
k

j

)
ajbk−j

 tk

k!
,

we have

∞∑
k=0

B
(c)
k (p, q)

tk

k!
=

t

et − 1

(
ept cos qt

)
=

( ∞∑
k=0

Bk
tk

k!

)( ∞∑
k=0

Ck(p, q)
tk

k!

)

=
∞∑
k=0

 k∑
j=0

(
k

j

)
BjCk−j(p, q)

 tk

k!
,

which proves (9). The proof of (10) is similar.
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3.2. For every n ∈ Z+ we have

B(c)
n (1− p, q) = (−1)nB(c)

n (p, q), (11)

and

B(s)
n (1− p, q) = (−1)n+1B(s)

n (p, q). (12)

Proof. Applying the generating function (7) gives

∞∑
n=0

B(c)
n (1− p, q)

tn

n!
=

te(1−p)t

et − 1
cos qt,

as well as

∞∑
n=0

(−1)nB(c)
n (p, q)

tn

n!
=

−te−pt

e−t − 1
cos(−qt) =

te(1−p)t

et − 1
cos qt.

Similarly, property (12) can be proved.

Corollary 1. Relations (11) and (12) imply that

B
(c)
2n+1(

1

2
, q) = 0,

and

B
(s)
2n (

1

2
, q) = 0.

3.3. For every n ∈ N , the following identities hold

B(c)
n (1 + p, q)−B(c)

n (p, q) = nCn−1(p, q), (13)

and

B(s)
n (1 + p, q)−B(s)

n (p, q) = nSn−1(p, q). (14)

Proof. We have

∞∑
n=0

B(c)
n (1 + p, q)

tn

n!
=

tept(et − 1 + 1)

et − 1
cos qt = tept cos qt+

tept

et − 1
cos qt

=

∞∑
n=0

Cn(p, q)
tn+1

n!
+

∞∑
n=0

B(c)
n (p, q)

tn

n!

=

∞∑
n=1

nCn−1(p, q)
tn

n!
+

∞∑
n=0

B(c)
n (p, q)

tn

n!
,

which proves (13). The proof of (14) is similar.
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Corollary 2. Relations (13) and (14) first imply that

B
(c)
2n+1(1, q)−B

(c)
2n+1(0, q) = (2n+ 1)(−1)nq2n,

and

B
(s)
2n (1, q)−B

(s)
2n (0, q) = 2n(−1)n+1q2n−1.

Hence, combining proposition 3.2 respectively yields

B
(c)
2n+1(1, q) = −B

(c)
2n+1(0, q) =

2n+ 1

2
(−1)nq2n,

and

B
(s)
2n (1, q) = −B

(s)
2n (0, q) = n(−1)n+1q2n−1.

3.4. For every n ∈ Z+ the following identities hold

B(c)
n (p+ r, q) =

n∑
k=0

(
n

k

)
B

(c)
k (p, q)rn−k, (15)

and

B(s)
n (p+ r, q) =

n∑
k=0

(
n

k

)
B

(s)
k (p, q)rn−k. (16)

Proof. Apply (7) to obtain

∞∑
n=0

B(c)
n (p+ r, q)

tn

n!
=

(
tept

et − 1
cos qt

)
ert =

( ∞∑
n=0

B(c)
n (p, q)

tn

n!

)( ∞∑
n=0

rn
tn

n!

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

)
B

(c)
k (p, q)rn−k

)
tn

n!
,

which proves (15). The result (16) can be similarly proved.

3.5. We have

n∑
k=0

(
n+ 1

k

)
B

(c)
k (p, q) = (n+ 1)Cn(p, q), (17)

and

n∑
k=0

(
n+ 1

k

)
B

(s)
k (p, q) = (n+ 1)Sn(p, q). (18)
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Proof. From (15), one can conclude that

B
(c)
n+1(p+ 1, q)−B

(c)
n+1(p, q) =

n∑
k=0

(
n+ 1

k

)
B

(c)
k (p, q).

Hence, by referring to (13), the result (17) is derived. The proof of (18) can be done in a
similar way.

Corollary 3. Relations (17) and (18) imply that

n∑
k=0

(
n+ 1

k

)
B

(c)
k (0, q) = (n+ 1)qn cosn

π

2
=


(−1)m(2m+ 1)q2m n = 2m even,

0 n = 2m+ 1 odd,

and

n∑
k=0

(
n+ 1

k

)
B

(s)
k (0, q) = (n+ 1)qn sinn

π

2
=


0 n = 2m even,

(−1)m(2m+ 2)q2m+1 n = 2m+ 1 odd.

3.6. For every n ∈ N , the following partial differential equations hold

∂

∂p
B(c)

n (p, q) = nB
(c)
n−1(p, q), (19)

∂

∂q
B(c)

n (p, q) = −nB
(s)
n−1(p, q), (20)

∂

∂p
B(s)

n (p, q) = nB
(s)
n−1(p, q), (21)

and

∂

∂q
B(s)

n (p, q) = nB
(c)
n−1(p, q). (22)

Proof. Relation (7) yields

∞∑
n=1

∂B
(c)
n (p, q)

∂p

tn

n!
=

t2ept

et − 1
cos qt =

∞∑
n=0

B(c)
n (p, q)

tn+1

n!

=

∞∑
n=1

B
(c)
n−1(p, q)

tn

(n− 1)!
=

∞∑
n=1

nB
(c)
n−1(p, q)

tn

n!
,

proving (19). Other equations (20), (21) and (22) can be similarly derived.
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Corollary 4. By combining the above results and proposition 3.2 and corollary 2, we
obtain ∫ 1

0
B

(c)
2n (p, q) dp = (−1)nq2n,∫ 1

0
B

(c)
2n+1(p, q) dp = 0,∫ 1

0
B

(s)
2n (p, q) dp = 0,

and ∫ 1

0
B

(s)
2n+1(p, q) dp = (−1)nq2n+1.

3.7. If B
(c)
n (p, q) and B

(s)
n (p, q) are sorted in terms of the variable p , then they are

polynomials of degree n and n− 1 respectively, such that we have

B(c)
n (p, q) = pn − n

2
pn−1 + · · · , (23)

and

B(s)
n (p, q) = nqpn−1 −

(
n

2

)
qpn−2 + · · · . (24)

Also, if they are sorted in terms of the variable q , then

B(c)
n (p, q) =


(−1)

n−1
2 n(p− 1

2)q
n−1 + (−1)

n+1
2

(
n
3

)
(p3 − 3

2p
2 + 1

2p)q
n−3 + · · · (n odd),

(−1)
n
2 qn + (−1)

n+2
2

(
n
2

)
(p2 − p+ 1

6)q
n−2 + · · · (n even),

(25)
and

B(s)
n (p, q) =


(−1)

n+2
2 n(p− 1

2)q
n−1 + (−1)

n
2

(
n
3

)
(p3 − 3

2p
2 + 1

2p)q
n−3 + · · · (n even),

(−1)
n−1
2 qn + (−1)

n+1
2

(
n
2

)
(p2 − p+ 1

6)q
n−2 + · · · (n odd).

(26)

Proof. We first prove (23) by induction. It is known from (17) that

B
(c)
0 (p, q) = 1, B

(c)
1 (p, q) = p− 1

2
and B

(c)
2 (p, q) = p2 − p− q2 +

1

6
.
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Therefore (23) holds for n = 0, 1, 2 . Now assume that it is valid for n− 1 . By referring
to (19), we have

∂

∂p
B(c)

n (p, q) = npn−1 − n(n− 1)

2
pn−2 + · · · .

To complete the proof, it is enough to integrate from the above equation with respect to
the variable p to get the result (23). By referring to relation (22), the result (24) can be
similarly derived.
To prove (25), suppose that it first holds for 0, 1, · · · , n − 1 . If n = 2m , then from (17)
we have

B
(c)
2m(p, q) = − 1

2m+ 1

2m−1∑
k=0

(
2m+ 1

k

)
B

(c)
k (p, q) +

m∑
k=0

(−1)k
(
2m

2k

)
p2m−2kq2k. (27)

Hence, the coefficient of q2m in the right hand side of (27) is equal to

(−1)m
(
2m

2m

)
p2m−2m = (−1)m,

and the coefficient of q2m−2 is equal to

− 1

2m+ 1

((
2m+ 1

2m− 1

)
(−1)m−1(2m− 1)(p− 1

2
) +

(
2m+ 1

2m− 2

)
(−1)m−1

)

+ (−1)m−1

(
2m

2m− 2

)
p2 = (−1)m+1

(
2m

2

)
(p2 − p+

1

6
).

So, (25) is true for n = 2m . In the second case, taking n = 2m+ 1 in (17) gives

B
(c)
2m+1(p, q) = − 1

2m+ 2

2m∑
k=0

(
2m+ 2

k

)
B

(c)
k (p, q) +

m∑
k=0

(−1)k
(
2m+ 1

2k

)
p2m+1−2kq2k.

(28)

Hence, the coefficient of q2m in the right hand side of (28) is equal to

−1

2m+ 2

(
2m+ 2

2m

)
(−1)m + (−1)m

(
2m+ 1

2m

)
p = (−1)m(2m+ 1)(p− 1

2
),

and the coefficient of q2m−2 is equal to

− 1

2m+ 2

((
2m+ 2

2m

)
(−1)m+1

(
2m

2

)
(p2 − p+

1

6
) +

(
2m+ 2

2m− 1

)
(−1)m−1(2m− 1)(p− 1

2
)

+

(
2m+ 2

2m− 2

)
(−1)m−1

)
+ (−1)m−1

(
2m+ 1

2m− 2

)
p3 = (−1)m+1

(
2m+ 1

3

)
(p3 − 3

2
p2 +

1

2
p),
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which completes the proof of (25). By combining (22) and (25), we can also obtain the
result (26).

3.8. The following identities hold

B(c)
n (p, q) =

[n
2
]∑

k=0

(−1)k
(
n

2k

)
B

(c)
n−2k(p, 0)q

2k, (29)

and

B(s)
n (p, q) =

[n−1
2

]∑
k=0

(−1)k
(

n

2k + 1

)
B

(c)
n−2k−1(p, 0)q

2k+1, (30)

in which B
(c)
n−2k(p, 0) = Bn−2k(p) and B

(c)
n−2k−1(p, 0) = Bn−2k−1(p) are usual Bernoulli

polynomials.

Proof. According to (20) and (22), first we have

∂2k

∂q2k
B(c)

n (p, q) = (−1)k
n!

(n− 2k)!
B

(c)
n−2k(p, q) for k = 0, 1, · · · , [n

2
],

and

∂2k+1

∂q2k+1
B(c)

n (p, q) = (−1)k+1 n!

(n− 2k − 1)!
B

(s)
n−2k−1(p, q) for k = 0, 1, · · · , [n− 2

2
],

because B
(c)
n (p, q) is a polynomial of degree n for even n and of degree n − 1 for odd

n in terms of the variable q according to the proposition 3.7. The Taylor expansion of

B
(c)
n (p, q) gives

B(c)
n (p, q + h) =

n∑
k=0

1

k!

∂k

∂qk
B(c)

n (p, q)hk,

in which h ∈ R . Since B
(s)
n (p, 0) = 0 for every n ∈ Z+ , by replacing q = 0 and h = q ,

we obtain the relation (29). In a similar way, equality (30) can be derived.

3.9. If m ∈ N and n ∈ Z+ , then we have

B(c)
n (mp, q) = mn−1

m−1∑
k=0

B(c)
n (p+

k

m
,
q

m
), (31)

and

B(s)
n (mp, q) = mn−1

m−1∑
k=0

B(s)
n (p+

k

m
,
q

m
). (32)
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Proof. To prove (31), it is enough to consider the relation

∞∑
n=0

B(c)
n (p+

k

m
,
q

m
)
tn

n!
=

te(p+
k
m
)t

et − 1
cos(

q

m
t),

and then take a sum from both sides of the above equation to obtain

m−1∑
k=0

( ∞∑
n=0

B(c)
n (p+

k

m
,
q

m
)
tn

n!

)
=

tept

et − 1
cos(

q

m
t)

m−1∑
k=0

(
e

t
m

)k
= m

t
memp t

m

e
t
m − 1

cos(q
t

m
) =

∞∑
n=0

m1−nB(c)
n (mp, q)

tn

n!
.

In a similar way, equality (32) can be proved.

For m = 2 , relations (31) and (32) respectively yield

B
(c)
2n (

1

2
, q) = 21−2nB

(c)
2n (0, 2q)−B

(c)
2n (0, q),

and

B
(s)
2n+1(

1

2
, q) = 2−2nB

(s)
2n+1(0, 2q)−B

(s)
2n+1(0, q).

3.10. For every n ∈ N and q ∈ R , the two following propositions are valid:

Pn : The function p 7→ (−1)nB
(c)
2n−1(p, q) is positive on (0, 12) and negative on (12 , 1) .

Moreover, p = 1
2 is a unique simple root on (0, 1) , i.e. the aforesaid function has no zero

in the intervals (0, 12) and (12 , 1) .

Qn : The function p 7→ (−1)nB
(c)
2n (p, q) is strictly increasing on [0, 12 ] and strictly

decreasing on [12 , 1] and always takes a positive value at p = 1
2 .

Proof. The proposition P1 is clear, because −B
(c)
1 (p, q) = −(p − 1

2) = −p + 1
2 . Now

define f(p) = (−1)nB
(c)
2n (p, q) to get f ′(p) = 2n(−1)nB

(c)
2n−1(p, q) . By referring to Pn ,

we see that f is strictly increasing on [0, 12 ] and decreasing on [12 , 1] . Moreover, since∫ 1
0 f(p) dp = q2n ≥ 0 (by corollary 4 ) and B

(c)
2n (1 − p, q) = B

(c)
2n (p, q) (from proposition

3.2), one can conclude that f(12) > 0 .

Finally define g(p) = (−1)n+1B
(c)
2n+1(p, q) to get g′(p) = −(2n+1)(−1)nB

(c)
2n (p, q) . Since

B
(c)
2n (0, q) = B

(c)
2n (1, q) , by noting Qn , only one of the following cases occurs:

i) α ∈ (0, 12) and β ∈ (12 , 1) exist such that

g′(α) = g′(β) = 0 and ∀p ∈ (α, β), g′(p) < 0 and ∀p ∈ [0, α) ∪ (β, 1], g′(p) > 0.
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ii) g′(0) = g′(1) = 0 and ∀p ∈ (0, 1), g′(p) < 0.

iii) ∀p ∈ [0, 1], g′(p) < 0.

In the first case i), by referring to corollary 2 we have

A = g(0) = (−1)n+1B
(c)
2n+1(0, q) =

2n+ 1

2
q2n ≥ 0.

Therefore g(1) = −A ≤ 0 and g takes the following table of variations

p 0 α 1
2 β 1

g′(p) + 0 − 0 +

g(p) A ≥ 0 ↗ ⌢ ↘ 0 ↘ ⌣ ↗ −A ≤ 0

As g(12) = 0 (by corollary 1) and g′(12) ̸= 0 , p = 1
2 is a simple root of g . We can similarly

observe that the two other cases also hold. So the proof of Pn+1 is complete.

3.11. For every n ∈ Z+ and q ∈ R we have

sup
p∈[0,1]

|B(c)
2n (p, q)| = max{|B(c)

2n (0, q)|, |B(c)
2n (

1

2
, q)|}, (33)

and

sup
p∈[0,1]

|B(c)
2n+1(p, q)| ≤

2n+ 1

2
max{|B(c)

2n (0, q)|, |B(c)
2n (

1

2
, q)|}. (34)

Proof. The result (33) is clear by referring to propositions 3.2 and 3.10. To prove (34), if
p ∈ [0, 12 ] then we have

B
(c)
2n+1(p, q) = B

(c)
2n+1(p, q)−B

(c)
2n+1(

1

2
, q) = (2n+ 1)

∫ p

1
2

B
(c)
2n (t, q) dt.

Therefore

|B(c)
2n+1(p, q)| ≤ (2n+ 1)

∫ 1
2

p
|B(c)

2n (t, q)| dt ≤ (2n+ 1)(
1

2
− p) sup

t∈[p, 1
2
]

|B(c)
2n (t, q)|

≤ (2n+ 1)(
1

2
− p)max{|B(c)

2n (0, q)|, |B(c)
2n (

1

2
, q)|},

which is equivalent to

sup
p∈[0, 1

2
]

|B(c)
2n+1(p, q)| ≤

2n+ 1

2
max{|B(c)

2n (0, q)|, |B(c)
2n (

1

2
, q)|}.

On the other hand, B
(c)
2n+1(1− p, q) = −B

(c)
2n+1(p, q) completes the proof of (34).
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3.12. For every n ∈ N and q > 0 , the two following propositions are valid:

Pn : The function p 7→ (−1)nB
(s)
2n (p, q) is positive on [0, 12) and negative on (12 , 1] .

Moreover, p = 1
2 is a unique simple root on [0, 1] , i.e. the aforesaid function has no zero

in the intervals [0, 12) and (12 , 1] .

Qn : The function p 7→ (−1)nB
(s)
2n+1(p, q) is strictly increasing on [0, 12 ] and strictly

decreasing on [12 , 1] and always takes a positive value at p = 1
2 .

Proof. The proposition P1 is clear, because −B
(s)
2 (p, q) = −q(2p− 1) = q(1− 2p) . Now

define f(p) = (−1)nB
(s)
2n+1(p, q) to get f ′(p) = (2n + 1)(−1)nB

(s)
2n (p, q) . By noting Pn ,

we see that f is strictly increasing on [0, 12 ] and decreasing on [12 , 1] . Moreover, since∫ 1
0 f(p) dp = q2n+1 > 0 (by corollary 4 ) and B

(s)
2n+1(1− p, q) = B

(s)
2n+1(p, q) (from propo-

sition 3.2), one can conclude that f(12) > 0 .

Finally define g(p) = (−1)n+1B
(s)
2n+2(p, q) to get g′(p) = −(2n + 2)(−1)nB

(s)
2n+1(p, q) .

Since B
(s)
2n+1(0, q) = B

(s)
2n+1(1, q) , by noting Qn , only one of the three following cases

occurs:

i) α ∈ (0, 12) and β ∈ (12 , 1) exist such that

g′(α) = g′(β) = 0 and ∀p ∈ (α, β), g′(p) < 0 and ∀p ∈ [0, α) ∪ (β, 1], g′(p) > 0.

ii) g′(0) = g′(1) = 0 and ∀p ∈ (0, 1), g′(p) < 0.
iii) ∀p ∈ [0, 1], g′(p) < 0.

In the first case i), by referring to corollary 2, we have

A∗ = g(0) = (−1)n+1B
(s)
2n+2(0, q) = (n+ 1)q2n+1 > 0.

Therefore g(1) = −A∗ < 0 and g takes the following table of variations

p 0 α 1
2 β 1

g′(p) + 0 − 0 +

g(p) A∗ > 0 ↗ ⌢ ↘ 0 ↘ ⌣ ↗ −A∗ < 0

As g(12) = 0 (by corollary 1) and g′(12) ̸= 0 , then p = 1
2 is a simple root of function g .

Similarly, we can observe that the two other cases also hold.

Corollary 5. For every n ∈ N and q ∈ R we have

sup
p∈[0,1]

|B(s)
2n+1(p, q)| = max{|B(s)

2n+1(0, q)|, |B(s)
2n+1(

1

2
, q)|},

and

sup
p∈[0,1]

|B(s)
2n (p, q)| ≤ nmax{|B(s)

2n−1(0, q)|, |B(s)
2n−1(

1

2
, q)|}.
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3.13. Let m and n be two positive integers and

I(c) =

∫ 1

0
B(c)

m (p, q)B(c)
n (p, q) dp.

If m+ n is odd then I(c) = 0 and if it is even then

I(c) =

m+n∑
k=0

1

(k + 1)!

 B∑
j=A

(
k

j

)
n!m!

(n− j)!(m− k + j)!
B

(c)
n−j(0, q)B

(c)
m−k+j(0, q)

 ,

where A = max{0, k −m} and B = min{n, k} .

Proof. First, suppose that m+ n is odd. By using (11) we have

I(c) =

∫ 1

0
B(c)

m (1− p, q)B(c)
n (1− p, q) dp = (−1)m+n

∫ 1

0
B(c)

m (p, q)B(c)
n (p, q) dp = −I(c).

Now, assume that m+ n is even. Since degp
(
B

(c)
m B

(c)
n

)
= m+ n (from proposition 3.7),

by referring to (19) we obtain

B(c)
m (p, q)B(c)

n (p, q) =

m+n∑
k=0

(
∂k

∂pk
(
B(c)

m (p, q)B(c)
n (p, q)

)) ∣∣∣∣
p=0

pk

k!

=

m+n∑
k=0

 k∑
j=0

(
k

j

)(
∂j

∂pj
B(c)

n (p, q)
∂k−j

∂pk−j
B(c)

m (p, q)

)∣∣∣∣
p=0

 pk

k!

=

m+n∑
k=0

 B∑
j=A

(
k

j

)
n!m!

(n− j)!(m− k + j)!
B

(c)
n−j(0, q)B

(c)
m−k+j(0, q)

 pk

k!
,

which leads to the second result.

Corollary 6. Let m and n be two positive integers and

I(s) =

∫ 1

0
B(s)

m (p, q)B(s)
n (p, q) dp.

If m+ n is odd then I(s) = 0 and if m+ n is even then

I(s) =

m+n−2∑
k=0

1

(k + 1)!

 B∑
j=A

(
k

j

)
n!m!

(n− j)!(m− k + j)!
B

(s)
n−j(0, q)B

(s)
m−k+j(0, q)

 ,

where A = max{0, k −m} and B = min{n, k} .
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4 Fourier expansions of B
(c)
n (p, q) and B

(s)
n (p, q)

The Fourier series of a periodic function f on [0, L] is given by

f(x) =
a0
2

+

∞∑
k=1

(
ak cos(

2kπ

L
x) + bk sin(

2kπ

L
x)

)
,

where

a0 =
2

L

∫ L

0
f(x) dx,

ak =
2

L

∫ L

0
f(x) cos(

2kπ

L
x) dx,

and

bk =
2

L

∫ L

0
f(x) sin(

2kπ

L
x) dx,

which can be also extend to the complex coefficients so that we have

f(x) =

∞∑
k=−∞

cke
2ikπ
L

x,

in which

ck =
1

L

∫ L

0
f(x)e

−2ikπ
L

x dx.

By periodically extending the restrictions of the introduced parametric Bernoulli polyno-
mials to p ∈ [0, 1) , we would encounter with periodic piecewise continuous functions so
that for every real p and q we can define

B̃(c)
n (p, q) = B(c)

n ({p}, q),

B̃(s)
n (p, q) = B(s)

n ({p}, q),

where {p} = p− [p] is the fractional part of the real p .

Theorem 4.1. Let q ∈ R . Then for any p ∈ (0, 1)

B
(c)
1 (p, q) = p− 1

2
= − 1

π

∞∑
k=1

sin(2πkp)

k
, (35)

and for every n ∈ N we respectively have

B
(c)
2n (p, q) = (−1)nq2n +

∞∑
k=1

ak,n cos(2πkp), p ∈ [0, 1], (36)
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where

ak,n = 2(2n)!(−1)n+1
n∑

j=1

q2n−2j

(2n− 2j)!(2πk)2j
,

and

B
(c)
2n+1(p, q) =

∞∑
k=1

bk,n sin(2πkp), p ∈ (0, 1), (37)

where

bk,n = (−1)n+1(2n+ 1)

(
q2n

πk
+ 2(2n)!

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j+1

)
.

Proof. First, let us consider B̃
(c)
1 . It is clear that

c0(B̃
(c)
1 ) =

∫ 1

0
B

(c)
1 (p, q) dp =

∫ 1

0
(p− 1

2
) dp = 0,

and for k ∈ Z\{0} we have

ck(B̃
(c)
1 ) =

∫ 1

0
B

(c)
1 (p, q)e−2iπkp dp =

∫ 1

0
(p− 1

2
)e−2iπkp dp =

−1

2iπk
. (38)

Since B
(c)
1 (0, q) ̸= B

(c)
1 (1, q) , according to Dirichlet’s conditions, it can be concluded for

every p ∈ R\Z that

B̃
(c)
1 (p, q) =

∑
k∈Z

ck(B̃
(c)
1 )e2iπkp =

∑
k∈Z\{0}

−1

2iπk
e2iπkp = − 1

π

∞∑
k=1

sin(2πkp)

k
,

where we use c−k(B̃
(c)
1 ) = −ck(B̃

(c)
1 ) , which proves (35).

We now consider the case B̃
(c)
2n . According to corollary 4 we have

c0(B̃
(c)
2n ) =

∫ 1

0
B

(c)
2n (p, q) dp = (−1)nq2n,

and for k ∈ Z\{0}

ck(B̃
(c)
2n ) =

∫ 1

0
B

(c)
2n (p, q)e

−2iπkp dp =
2n

2iπk

∫ 1

0
B

(c)
2n−1(p, q)e

−2iπkp dp

=
n

iπk
ck(B̃

(c)
2n−1), (39)
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where we have used B
(c)
2n (0, q) = B

(c)
2n (1, q) in proposition 3.2. Similarly, we can find that

c0(B̃
(c)
2n+1) = 0 and ck(B̃

(c)
2n+1) =

2n+ 1

2iπk

(
(−1)n+1q2n + ck(B̃

(c)
2n )

)
. (40)

Now, for every n ∈ N and k ∈ Z\{0} we show that

ck(B̃
(c)
2n ) = (−1)n+1(2n)!

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j
, (41)

and

ck(B̃
(c)
2n+1) =

(−1)n+1(2n+ 1)

i

(
q2n

2πk
+ (2n)!

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j+1

)
. (42)

Since ck(B̃
(c)
1 ) = − 1

2iπk by (38), from equation (39) we obtain

ck(B̃
(c)
2 ) =

1

iπk
(− 1

2iπk
) =

2

(2πk)2
.

Assume that (41) is true for n . Then using (40) gives

ck(B̃
(c)
2n+1) =

2n+ 1

2iπk

(
(−1)n+1q2n + (−1)n+1(2n)!

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j

)

=
(−1)n+1(2n+ 1)

i

(
q2n

2πk
+ (2n)!

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j+1

)
.

So, (42) is satisfied for n . Now let (42) be true for n . Then for n+1 , relation (39) gives

ck(B̃
(c)
2n+2) =

n+ 1

iπk

(−1)n+1(2n+ 1)

i

(
q2n

2πk
+ (2n)!

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j+1

)

= (−1)n+2(2n+ 2)!

(
q2n

(2n)!(2πk)2
+

n∑
j=1

q2n−2j

(2n− 2j)!(2πk)2j+2

)

= (−1)n+2(2n+ 2)!

(
q2n

(2n)!(2πk)2
+

n+1∑
j=2

q2n−2j+2

(2n− 2j + 2)!(2πk)2j

)

= (−1)n+2(2n+ 2)!
n+1∑
j=1

q2(n+1)−2j

(2(n+ 1)− 2j)!(2πk)2j
,
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which approves (41) for n+ 1 . From (41) and (42), it is clear that

c−k(B̃
(c)
2n ) = ck(B̃

(c)
2n ) and c−k(B̃

(c)
2n+1) = −ck(B̃

(c)
2n+1).

Since
B

(c)
2n (0, q) = B

(c)
2n (1, q) and B

(c)
2n+1(0, q) ̸= B

(c)
2n+1(1, q),

the identities (36) and (37) can be directly obtained by Dirichlet’s theorem.

Theorem 4.2. Let q ∈ R . Then for every p ∈ (0, 1)

B
(s)
2 (p, q) = 2qp− q = −2q

π

∞∑
k=1

sin(2πkp)

k
,

and for every n ≥ 2 we respectively have

B
(s)
2n−1(p, q) = (−1)n−1q2n−1 +

∞∑
k=1

a′k,n cos(2πkp), p ∈ [0, 1], (43)

where

a′k,n = 2(−1)n(2n− 1)!

n−1∑
j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j
,

and

B
(s)
2n (p, q) =

∞∑
k=1

b′k,n sin(2πkp), p ∈ (0, 1), (44)

where

b′k,n = 2n(−1)n
(
q2n−1

πk
+ 2(2n− 1)!

n−1∑
j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j+1

)
.

Proof. The proof of this theorem is similar to the previous one. However, note that for
k ∈ Z\{0} we have

ck(B̃
(s)
2n−1) = (−1)n(2n− 1)!

n−1∑
j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j
,

and

ck(B̃
(s)
2n ) =

2n(−1)n

i

(
q2n−1

2πk
+ (2n− 1)!

n−1∑
j=1

q2n−1−2j

(2n− 1− 2j)!(2πk)2j+1

)
,

and from corollary 4

c0(B̃
(s)
2n−1) = (−1)n−1q2n−1 and c0(B̃

(s)
2n ) = 0.
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5 An extension of the Euler-Maclaurin quadrature formula

The Euler-Maclaurin summation formula is a suitable tool for providing a connection
between integrals and sums. It gives an estimation of the sum

∑n
k=0 f(k) through the

integral
∫ n
0 f(x)dx with an error term which involves Bernoulli numbers. In other words,

if m,n ∈ N and f (2m) is continuous in [0, n] , then [16]∫ n

0
f(x) dx =

1

2

(
f(0) + f(n)

)
+

n−1∑
k=1

f(k)−
m∑
j=1

B2j

(2j)!

(
f (2j−1)(n)− f (2j−1)(0)

)
+Rm(f),

(45)

where

Rm(f) =
1

(2m)!

∫ 1

0
B2m(x)

(
n−1∑
k=0

f (2m)(x+ k)

)
dx =

1

(2m)!

∫ n

0
f (2m)(x)B2m(x− [x]) dx,

(46)

denotes the remainder term. This formula can be extended by using the integration by
parts via relation (19) as follows∫ 1

0
f(x)dx =

∫ 1

0
f(x)B

(c)
0 (x, q)dx, (47)

where q is an arbitrary real number and B
(c)
0 (x, q) = 1 .

Since ∂
∂xB

(c)
1 (x, q) = B

(c)
0 (x, q) , substituting ∂

∂xB
(c)
1 (x, q) into (47) and integrating by

parts gives∫ 1

0
f(x)dx = f(1)B

(c)
1 (1, q)− f(0)B

(c)
1 (0, q)−

∫ 1

0
f ′(x)B

(c)
1 (x, q) dx. (48)

Note that B
(c)
1 (1, q) = −B

(c)
1 (0, q) and B

(c)
1 (x, q) = 1

2
∂
∂xB

(c)
2 (x, q) . Hence (48) reads as∫ 1

0
f(x)dx = −B

(c)
1 (0, q)

(
f(1) + f(0)

)
− 1

2

∫ 1

0
f ′(x)

∂

∂x
B

(c)
2 (x, q) dx. (49)

Again, integrating by parts yields∫ 1

0
f(x)dx = −B

(c)
1 (0, q)

(
f(1) + f(0)

)
− 1

2

(
B

(c)
2 (1, q)f ′(1)−B

(c)
2 (0, q)f ′(0)

)
+

1

2

∫ 1

0
f ′′(x)B

(c)
2 (x, q) dx

= −B
(c)
1 (0, q)

(
f(1) + f(0)

)
− B

(c)
2 (0, q)

2

(
f ′(1)− f ′(0)

)
+

1

6

∫ 1

0
f ′′(x)

∂

∂x
B

(c)
3 (x, q) dx, (50)
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because B
(c)
2 (1, q) = B

(c)
2 (0, q) and B

(c)
2 (x, q) = 1

3
∂
∂xB

(c)
3 (x, q) .

By using the general relations

B
(c)
k (1, q) = (−1)kB

(c)
k (0, q) and B

(c)
k (x, q) =

1

k + 1

∂

∂x
B

(c)
k+1(x, q),

and continuing the process, for even m we finally obtain∫ 1

0
f(x)dx = −

m
2
−1∑

i=0

B
(c)
2i+1(0, q)

(2i+ 1)!

(
f (2i)(1) + f (2i)(0)

)
−

m
2∑

i=1

B
(c)
2i (0, q)

(2i)!

(
f2i−1(1)− f2i−1(0)

)
+

1

m!

∫ 1

0
f (m)(x)B(c)

m (x, q) dx, (51)

while for odd m we have∫ 1

0
f(x)dx = −

m−1
2∑

i=0

B
(c)
2i+1(0, q)

(2i+ 1)!

(
f (2i)(1) + f (2i)(0)

)
−

m−1
2∑

i=1

B
(c)
2i (0, q)

(2i)!

(
f2i−1(1)− f2i−1(0)

)
− 1

m!

∫ 1

0
f (m)(x)B(c)

m (x, q) dx. (52)

On the other side, since the interval of integration in relations (51) and (52) can be shifted
from [0, 1] to [1, 2] by replacing f(x) by f(x + 1) , by considering such transpositions
up to the interval [n− 1, n] and referring to corollary 2, for every even m we obtain

∫ n

0
f(x)dx =

1

2

m
2
−1∑

i=0

(−1)i

(2i)!
q2i

(
n−1∑
k=0

(
f (2i)(k + 1) + f (2i)(k)

))

−

m
2∑

i=1

B
(c)
2i (0, q)

(2i)!

(
f (2i−1)(n)− f (2i−1)(0)

)
+Rm(f ; q), (53)

while for odd m we have∫ n

0
f(x)dx =

1

2

m−1
2∑

i=0

(−1)i

(2i)!
q2i

(
n−1∑
k=0

(
f (2i)(k + 1) + f (2i)(k)

))

−

m−1
2∑

i=1

B
(c)
2i (0, q)

(2i)!

(
f (2i−1)(n)− f (2i−1)(0)

)
+Rm(f ; q), (54)

where

Rm(f ; q) =
(−1)m

m!

∫ 1

0
B(c)

m (x, q)

(
n−1∑
k=0

f (m)(x+ k)

)
dx =

(−1)m

m!

∫ n

0
f (m)(x)B(c)

m (x− [x], q) dx,

(55)
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is the remainder term. The relations (53) and (54) are indeed a parametric extension of
the Euler-Maclaurin quadrature formula for q = 0 . Let us consider the even case (53)
when m → 2m as∫ n

0
f(x)dx =

1

2

m−1∑
i=0

(−1)i

(2i)!
q2i

(
n−1∑
k=0

(
f (2i)(k + 1) + f (2i)(k)

))

−
m∑
i=1

B
(c)
2i (0, q)

(2i)!

(
f (2i−1)(n)− f (2i−1)(0)

)
+R2m(f ; q), (56)

with

R2m(f ; q) =
1

(2m)!

∫ 1

0
B

(c)
2m(x, q)

(
n−1∑
k=0

f (2m)(x+ k)

)
dx =

1

(2m)!

∫ n

0
f (2m)(x)B

(c)
2m(x− [x], q) dx.

(57)

By referring to relations (46) and (57), it is clear that if |R2m(f ; q)| < |Rm(f)| for a
particular value of q , then the accuracy of the extended formula (56) is better than the
standard Euler-Maclaurin formula (45). In this direction, since

|R2m(f ; q)| = 1

(2m)!

∣∣∣∣∣
∫ 1

0
B

(c)
2m(x, q)

(
n−1∑
k=0

f (2m)(x+ k)

)
dx

∣∣∣∣∣ ≤ n

(2m)!
max
t∈[0,n]

|f (2m)(t)|

×
∫ 1

0
|B(c)

2m(x, q)| dx,

and

|Rm(f)| = 1

(2m)!

∣∣∣∣∣
∫ 1

0
B2m(x)

(
n−1∑
k=0

f (2m)(x+ k)

)
dx

∣∣∣∣∣ ≤ n

(2m)!
max
t∈[0,n]

|f (2m)(t)|

×
∫ 1

0
|B2m(x)| dx,

it seems that solving the polynomial type inequality∫ 1

0
|B(c)

2m(x, q)| dx ≤
∫ 1

0
|B2m(x)| dx,

in terms of the variable q is a good criterion to consider formula (56) with respect to
the well-known formula (45) though there might be other appropriate criterions for this
purpose. In the following table, we have compared the values of |R2m(f ; q)| and |Rm(f)|
for some smooth functions and found out that the absolute error of formula (57) is less
than formula (46) for some specific values of q . Note that to derive these values, we have
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f(x) n m q |Rm(f)| |R2m(f ; q)|
x sinx 5 1 0.1 2.14182× 10−3 1.55109× 10−4

x2 cosx 20 6 0.001 1.15731× 10−10 1.15645× 10−10

ex 20 7 0.001 1.6036× 10−4 1.60291× 10−4

e−x 1 2 0.2 2.03937× 10−5 4.5966× 10−6

xex 10 2 0.20159 10.6246 1.73236× 10−4

xe−x 10 1 0.1 4.00736× 10−3 9.94681× 10−4

x8 3 2 0.252354 5.9 6.04417× 10−5

e−x sinx 1 3 0.38 3.61361× 10−6 7.02988× 10−7

used Mathematica software.
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