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Abstract

We consider the problem of finding explicit formulae, recurrence relations and sign properties
for both connection and linearization coefficients for generalized Hermite polynomials. The most
computations are carried out by the computer algebra system Maple using appropriate algorithms.
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1 Introduction

In this paper, we deal with the connection and linearization problems which are defined as follows:
Given two polynomial sets {Sn}n≥0 and {Pn}n≥0 s. th. deg(Sn) = deg(Pn) = n. The so-called
connection problem between them asks to find the coefficients Cm(n) in the expression:

Sn(x) =
n∑

m=0

Cm(n)Pm(x) . (1.1)

When Si+j(x) = Qi(x)Rj(x) in (1.1), {Qn}n and {Rn}n being two more polynomial sets with
deg(Qn) = deg(Rn) = n, we are faced with the general linearization problem

Qi(x)Rj(x) =
i+j∑
k=0

Lij(k)Pk(x). (1.2)

A particular case of this problem is the standard linearization problem or Clebsch-Gordan-type prob-
lem if Qn = Rn = Pn.
The computation of the connection and linearization coefficients plays an important role in many situ-
ations of pure and applied mathematics and also in physical and quantum chemical applications. The
study of the linearization problem has gained an increasing interest in the last years. In particular,
the study of positivity conditions of the connection and linearization coefficients has received special
attention [2, Lecture 5]. Many problems in harmonic analysis related to nontrigonometric orthogonal
expansions depend on the nonnegativity of certain connection coefficients (see [2, Lecture 7]), while
the nonnegativity of the linearization coefficients gives rise to a convolution structure associated with

∗Département de Mathématiques, École Supérieure des Sciences et de Technologie de Hammam Sousse. Rue Lamine
Abassi 4011, Sousse, Tunisia, hamza.chaggara@ipeim.rnu.tn

†Fachbereich Mathematik, Universität Kassel, D-34109 Kassel, Germany, koepf@mathematik.uni-kassel.de

1



orthogonal polynomials [2, 31].
The literature on this topic is extremely vast and a wide variety of methods, based on specific proper-
ties of the involved polynomials, have been devised for computing the linearization coefficients either
in explicit form or by means of recursive relations (see e.g. [1, 20, 25, 26] and the references therein).
In a series of papers [23,24], Ronveaux et al. designed the so-called NAVIMA algorithm which allows
us to calculate recurrently the connection and linearization coefficients. There exists an alternative
approach to building recurrence relations for both connection and linearization coefficients due to
Lewanowicz [19, 20].
In some cases (classical orthogonal polynomials), many results concerning the positivity of the con-
nection and linearization coefficients and the recurrence relations satisfied by Cm(n) and Li,j(k) are
known. Hounkonnou et al. [26] proved that for a family of classical orthogonal polynomials the coeffi-
cients Li,j(k) satisfy a linear second-order recurrence relation involving only the index k. The explicit
coefficients of the second order recurrence relation was obtained by Lewanowicz [19], rewriting for
this purpose the fourth order differential equation for the product PiPj .
A further—computer algebra based—method was proposed in [17]. Using several structure formulas
of the classical systems these authors derive generic recurrence equations for the connections coeffi-
cients of these systems.
If {Pn}n is a semi-classical orthogonal family, the corresponding standard linearization coefficients,
defined in (1.2), satisfy a linear recurrence relation involving only the index k. This property also
extends to the linearization coefficients arising from an arbitrary number of products of semi-classical
orthogonal polynomials [25].
A general method, based on suitable operators, generating functions and a simple manipulation of
formal power series, was developed to solve connection and linearization problems. The coefficients
are given explicitly, very often in terms of hypergeometric terms and/or terminating hypergeometric
functions [5, 6, 10].
For the sign properties, the nonnegativity of the connection and linearization coefficients has many
important consequences. Several criteria to get sign properties for the aforementioned coefficients
have been investigated by many authors. Some of them are given in terms of corresponding spectral
measures [34], the others impose conditions on coefficients in the recurrence formula satisfied by the
polynomials [2,3,18,31]. Moreover, alternation of signs in the Cm(n) sequence is linked to the relative
position of the zeros of Qn as compared to those of Pn [14].
In a recent paper [11], we solved a special case of the connection problem, called the duplication
problem, which asks to find the connection coefficients in

Pn(ax) =
n∑

m=0

Cm(n, a)Pm(x),

where {Pn}n≥0 belongs to a wide class of polynomials, including the classical orthogonal polyno-
mials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier,
Meixner, Krawtchouk), the latter for the specific case a = −1. We gave explicit expressions as well as
recurrence relations satisfied by these coefficients. The essential computations were done completely
automatically by some packages of the Maple system [16,29]. The only prerequisite is the knowledge
of a suitable generating function of the involved polynomials.

In this work we extend these results to the so-called generalized Hermite polynomials (see definition
below). This family does not belong to the classical families and has no hypergeometric representation.

The main aim of this paper is to study connection and linearization problems associated to generalized
Hermite polynomials. We give an explicit expression of the connection and linearization coefficients
as well as recurrence relations satisfied associated to these coefficients. Sign properties of both connec-
tion and linearization coefficients will be also given. As application, we consider the classical Hermite
and the classical Laguerre polynomials.
The generalized Hermite polynomial set was introduced by Szegö [21] as a set of real polynomials
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orthogonal with respect to the weight |x|2µe−x2
, µ > −1

2
, then investigated by Chihara in his Ph.D.

Thesis [12]. This family reduces to the ordinary Hermite polynomial set for µ = 0.
The generalized Hermite polynomials have been mentioned in connection with the Gauss quadrature
formulae by Shao et al. [28]. They were also studied by Rosenblum in connection with a Bose-like
oscillator calculus [27] as a polynomial set generated by [27]

e−t2eµ(2xt) =
∞∑

n=0

Hµ
n(x)

tn

n!
, µ ∈ C, µ 6= −1

2
,−3

2
,−5

2
, . . . , (1.3)

where

eµ(x) =
∞∑

n=0

xn

γµ(n)
,

with
γµ(2m + ε) = 22m+εm! (µ +

1
2
)m+ε, ε = 0, 1, (1.4)

where (a)n =
Γ(a + n)

Γ(a)
.

Many other authors investigated properties of these polynomials, using classical methods well known
in the theory of special functions. For instance, some characterization problems related to this polyno-
mial set were given in [7,13]. Recently, many characteristic properties and operational rules associated

to this family were given in [9]. In particular, it was shown that {Hµ
n}n, is a (

1
2
Dµ)-Appell polynomial

set of transfer power series A(t) = e−t2 . This means that Dµ(f)(Hµ
n) = 2nHµ

n−1 and

e−
D2

µ
4 (xn) =

γµ(n)
2nn!

Hµ
n(x). (1.5)

Dµ is the well-known Dunkl operator associated with the parameter µ on the real line [27]:

Dµ(f)(x) =
d

dx
f(x) +

µ

x
(f(x)− f(−x)).

2 Connection Coefficients

In this section, we are interested in finding explicit formulas, recurrence relations and sign properties
of the connection coefficients relating two generalized Hermite polynomials with different parameters.
The obtained explicit connection formula (Equation (2.11) below) generalizes a well known connec-
tion formula for Laguerre polynomials and appears to be new.
We begin by recalling a result giving the connection coefficients between two σ-Appell polynomials.
That is to say σPn = nPn−1, n = 0, 1, . . . , n, where σ is a linear operator, not depending on n, and
called lowering operator. (For more details, we refer the reader to [4, 5] and the references therein).

Lemma 1. ( [5, Corollary 3.4]) Let {Pn}n≥0 and {Qn}n≥0 be two σ-Appell polynomial sets of trans-
fer power series, respectively, A1 and A2. Then

Qn(x) =
n∑

m=0

n!
m!

αn−mPm(x), where
A2(t)
A1(t)

=
∞∑

k=0

αkt
k. (2.1)

It was shown in [9], that {Hµ
n}n≥0 and

{
Bn(x) =

2nn!
γµ(n)

xn

}
n≥0

are two (
1
2
Dµ)-Appell sets of trans-

fer power series, respectively, e−t2 and 1. As application, we obtain the following expansion formulae

Hµ
n(x)
n!

=
[n
2
]∑

m=0

(−1)m(2x)n−2m

m!γµ(n− 2m)
, (2.2)
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(2x)n

γµ(n)
=

[n
2
]∑

m=0

Hµ
n−2m(x)

m!(n− 2m)!
, (2.3)

and, by composition, we get the explicit connection relation

Hµ2
n (x)
n!

=
[n
2
]∑

m=0

 m∑
p=0

(−1)m−p

(m− p)!p!
γµ1(n− 2m + 2p)
γµ2(n− 2m + 2p)

 Hµ1
n−2m(x)

(n− 2m)!
. (2.4)

To obtain a pure recurrence relation for Cn−2m(n), with respect to m, we use Zeilberger’s algorithm
(see e. g. [16], Chapter 7) via the Maple sumrecursion command, and get, with the notation
Dm := Cn−2m(n):

• For n even,

(m + 1)(2µ1 − 1 + n− 2m)Dm+1 + 2(n− 2m− 1)(n− 2m)(−µ1 + m + µ2)Dm = 0. (2.5)

• For n odd,

(m + 1)(2µ1 + n− 2m)Dm+1 + 2(n− 2m− 1)(n− 2m)(−µ1 + m + µ2)Dm = 0. (2.6)

A unified form of the above recurrence relations can be written as follows

(m + 1) (2µ1 + n− 2m− θn) Dm+1 + 2(n− 2m− 1)(n− 2m)(−µ1 + m + µ2)Dm = 0, (2.7)

where θn =
1 + (−1)n

2
.

Using Equation (2.4) with the useful identities

(−1)m

(n−m)!
=

(−n)m

n!
and (δ)n+m = (δ)n(δ + m)m, 0 ≤ m ≤ n, (2.8)

and the Chu-Vandermonde reduction formula [30],

2F1

(
−k, b
c

; 1
)

=
(c− b)k

(c)k
, c 6= 0,−1,−2, . . . , (2.9)

we get the following simple and explicit form of the connection coefficients for 0 ≤ m ≤ [
n

2
],

Cn−2m(n) =
n!

m!(n− 2m)!
4m[n

2 ]!
[n
2 −m]!

γµ1(n− 2m)
γµ2(n)

(−1)m(µ2 − µ1)m. (2.10)

The explicit formula (2.10) can be also obtained by induction using, for this purpose, the recurrence
relation (2.7).

Putting Ĥµ2
n (x) =

Hµ2
n (x)

[n
2 ]!n!

, we get a simple form of the connection between two suitable generalized

Hermite polynomials

Ĥµ2
n (x) =

[n
2
]∑

m=0

(−1)m 4m

m!
γµ1(n− 2m)

γµ2(n)
(µ2 − µ1)mĤµ1

n−2m(x). (2.11)

So, when µ2 > µ1, the corresponding connection coefficients alternate in sign, while this coefficient is
nonnegative if µ2 − µ1 is a negative integer. On the other hand, if µ2 − µ1 < 0 and it is not an integer,
then the connection coefficient is always nonnegative provided that µ2 − µ1 ≥ m− 1.
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3 Linearization Problem

To study the linearization problem, we begin by recalling the following result, which gives an ex-
plicit expression of the linearization coefficients associated to three polynomial sets of Brenke type,
generalizing a product formula associated to Appell and q-Appell polynomials given by Carlitz in [8].

Corollary 2. ( [10, Corollary 2.8]) Let {Pn}n≥0, {Qn}n≥0 and {Rn}n≥0 be three polynomial sets of
Brenke type, i.e. polynomial sets generated, respectively, by

A1(t)B1 (xt) =
∞∑

n=0

Pn(x)
n!

tn, A2(t)B2 (xt) =
∞∑

n=0

Qn(x)
n!

tn and A3(t)B3 (xt) =
∞∑

n=0

Rn(x)
n!

tn,

(3.1)
where

Ap(t) =
∞∑

k=0

a
(p)
k tk, and Bp(t) =

∞∑
k=0

b
(p)
k tk, a

(p)
0 b

(p)
k 6= 0, p = 1, 2, 3. (3.2)

Then the linearization coefficients in (1.2) are given by

Lij(k) =
i!j!
k!

i∑
r=0

j∑
s=0

b
(2)
r b

(3)
s

b
(1)
r+s

a
(2)
i−ra

(3)
j−sâ

(1)
r+s−k, k = 0, 1, . . . , i + j, (3.3)

where Â1(t) =
1

A1(t)
=

∞∑
k=0

â
(1)
k tk.

According to (1.3), the generalized Hermite family is a Brenke type polynomial set.
The application of Corollary 2 allows us to solve the linearization problem for the generalized Hermite
polynomials.
Taking into account the orthogonality of this family, we obtain

Hµ
i (x)Hµ

j (x) =
i+j∑

k=|i−j|

Lij(k)Hµ
k (x). (3.4)

Here the sum range is given by k = |i− j| because if k < |i− j| then k + j < i or k + i < j. Hence
deg(Hµ

kH
µ
j ) < degHµ

i or deg(Hµ
kH

µ
i ) < degHµ

j . In both cases the coefficient

Lij(k) =
∫

R
Hµ

i (x)Hµ
j (x)Hµ

k (x)|x|2µe−x2
dx,

vanishes.
On the other hand and according to the symmetry property, Hµ

n(−x) = (−1)nHµ
n(x), the associated

standard linearization Equation (3.4) can be reduced to

Hµ
i (x)Hµ

j (x) =
min(i,j)∑

k=0

Lij(i + j − 2k)Hµ
i+j−2k(x).

By virtue of (3.3) and the generating function (1.3), we obtain the explicit expression

Lij(i + j − 2k) =
i!j!

(i + j − 2k)!k!

[ i
2
]∑

r=0

[ j
2
]∑

s=0

γµ(i + j − 2(r + s))
γµ(i− 2r)γµ(j − 2s)

(−k)r+s

r!s!
. (3.5)

Using the explicit formula (3.5), and a Fasenmyer type algorithm [16] to deduce recurrence equations
for multiple hypergeometric series ( [29], see also [33]) we get—using Sprenger’s multsum pack-
age—the following recurrence relations (on one index) for the standard linearization coefficient of
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generalized Hermite polynomials.
Denote by S(k) := Lij(i + j − 2k) and consider three cases:
• For i even and j even:

− (k + 2) (−2 k + 2 µ + i− 3 + j) S(k + 2)
+2

(
ij − 2 i− 2 ik + 5 k + 3 k2 + 2− 2 j − 2 jk

)
(i + j − 2 k − 3) S(k + 1)

+4 (j − k) (−k + i) (i + j − 2 k − 1) (i + j − 2 k − 3) S(k) = 0 (3.6)

• For i even and j odd:

− (k + 3)(k − i)(2k + 4− i− j − 2µ)(2k + 2− i− j − 2µ)S(k + 3)
+2 (−7jk − 22ik + 14 k − 12i− 2j + 17k2 + 5k3 + 6i2 + 4jik + 6 ij

−8k2i− 3jk2 + 3i2k − ji2)(−i− j + 2k + 4)(2k + 2− i− j − 2 µ)S(k + 2)
−4(k + 1− i)(−i− j + 2k + 4)(−i− j + 2k + 2)

×(−13jk − 15ik + 7k − 5i− 2j + 15k2 + 3j2k + 2jµk + 8k3 + 4iµ + 2j2 + 3i2 + 10jik

+2iµk − 2µk2 + 8 ij − 10k2i− 10jk2 + 3i2k − 2 jµi− 4µk − 2j2i− 2ji2)S(k + 1)
+8(k − j)(k + 1− i)(k − i)− i− j + 2k)

×(−i− j + 2k + 1)(−i− j + 2k + 2)(−i− j + 2k + 4)S(k) = 0
(3.7)

• For i odd and j odd:

− (k + 3)(2k + 5− j − i− 2µ)S(k + 3)
+2(i + j − 2k − 5)(−ji + 5k2 − 18k − 16 + 2µk + 2µ + 3ki + 6i + 3jk + 6j)S(k + 2)
−4(i + j − 2k − 5)(3ki + 3i− 2ji− 4k2− 7k − 3 + 3jk + 3j)(i + j − 2k − 3)S(k + 1)

+8(k − j)(k − i)(i + j − 2k − 3)(i + j − 2k − 1)(i + j − 2k − 5)S(k) = 0
(3.8)

Note here, that the linearization problem associated to generalized Hermite polynomials was already
studied by Ronveaux et al. in [25] in the context of semi-classical polynomials. In fact, it was shown
that the linearization coefficients Lij(k) satisfy a linear recurrence relation involving only the k in-
dex. The coefficients of this recurrence relation are very complicated and can only be obtained using
a symbolic manipulation system like Maple or Mathematica, the obtained coefficients filled many
pages [25].

Next, we consider two interesting particular cases involving classical Hermite and Laguerre polyno-
mials.

Classical Hermite Polynomials: The generalized Hermite polynomials reduce to the classical Her-
mite polynomials if µ = 0.
To obtain an explicit recurrence relation satisfied by the linearization coefficients associated to clas-
sical Hermite polynomials, we use Sprenger’s multsum package by applying the multsumrecursion
command to the formula (3.5). The recurrence relation is given by :(

−6 k2 − 4 + 4 ik − 2 ji + 4 i− 10 k + 4 j + 4 jk
)
S (k + 1)

+4 (−j + k) (i− k) (i + j − 2 k − 1) S (k)
+ (k + 2) S (k + 2) = 0 , (3.9)

where, as usual, S(k) := Lij(i + j − 2k).
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The explicit linearization formula for Hermite polynomials is known as Feldheim formula and is given
by [2]

Hi(x)Hj(x) =
min(i,j)∑

k=0

(
i

k

)(
j

k

)
2kk!Hi+j−2k(x). (3.10)

Note that (3.10) follows directly from (3.9) by using the Petkov̌sek-van-Hoeij algorithm (see e. g. [16],
Chapter 9), implemented in Maple by Mark van Hoeij as LREtools[hypergeomsols] [15].

Classical Laguerre polynomials: Now, we consider the classical Laguerre polynomials Lα
n defined

by [22]

Lα
n(x) =

(α + 1)n

n! 1F1

(
−n

α + 1
, x

)
. (3.11)

The generalized Hermite polynomials are related to the Laguerre polynomials by the following formula

Hµ
2n+ε(x) =

(−1)n(2n + ε)!
(µ + 1

2)n+ε
xεL

µ− 1
2
+ε

n (x2), ε = 0, 1. (3.12)

This can be obtained according to (1.4) and the explicit formula (2.2).
The obtained expansion formulae can be used to recover some known expansions associated to La-
guerre polynomials. For instance, combining (2.11) with (3.12) and using (1.4), we get the well-known
connection formula [22] relating two families of Laguerre polynomials with different parameters

Lβ
n(x) =

n∑
m=0

(β − α)m

m!
Lα

n−m(x). (3.13)

For the linearization coefficients, applying Formula (3.5) to the Laguerre polynomial set, we obtain, in
view of (1.4) and (3.12),

Lβ
i (x)Lγ

j (x) =
(

i + j

j

) i+j∑
k=0

F 1:2
2:0

(
−k : −β − i,−i;−γ − j,−j;
−α− i− j,−i− j : −;−;

1, 1
)

×(−1)k (−α− i− j)k

k!
Lα

i+j−k(x), (3.14)

where F p:r
q:s designates the Kampé de Fériet function defined as follows [30]:

F p:r
q:s

(
(ap) : (br); (cr);
(αq) : (βs); (γs);

x, y

)
=

∞∑
n,m=0

[ap]n+m[br]n[cr]m
[αq]n+m[βs]n[γs]m

xn

n!
ym

m!
, (3.15)

where [ap]n =
p∏

j=1

(aj)n.

For the standard case (α = β = γ), using the explicit representation given by (3.14) and Sprenger’s
multsum package, we obtain the following second-order recurrence relation,

(−k + 2 j) (2 i− k) (i + j − k + α) S(k)
−(4 j i− 4 k i− 4 i− 4 k j − 4 j + 3 k2 + 5 k + 2) (i + j − k) S(k + 1) (3.16)

−2 (k + 2) (i + j − k) (i + j − k − 1) S(k + 2) = 0

where S(k) = Lij(i + j − k).
Note here that this result corresponds to the fact that the standard linearization coefficients Lij(k) for
classical orthogonal polynomials satisfy a second-order linear recurrence relation on the index k.
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The explicit expression for the standard linearization coefficients for Laguerre polynomials was first
given by Watson [32] by means of a terminating hypergeometric function 3F2:

Lij(i + j− k) =
(−2)k

k!
(i + j − k)!

(i− k)!(j − k)! 3F2

 i + j + 1− k + α, −k

2
, −k − 1

2
; 1

i− k + 1, j − k + 1

 . (3.17)

Unfortunately, this result cannot be automatically discovered from (3.16). However, a posteriori, one
can prove that (3.17) is correct since it satisfies the same recurrence equation (proved by Zeilberger’s
algorithm) and has the same initial values.

For the general case (3.14), to deduce the recurrence relation associated to three Laguerre polynomials
with arbitrary parameters we used the Mathematica package MultSum [33] to deduce for S(k) =
Lij(i+j−k) a very complicated recurrence equation which can be found in an appendix and is put for
download on www.mathematik.uni-kassel.de/˜koepf/CA/MultSumLaguerre.nb.

Next, we will be concerned with the sign property of the linearization coefficients associated to gener-
alized Hermite polynomials.
A generating function manipulation permits to show that the integral involving three Laguerre polyno-
mials (with same parameters) is always nonnegative, we have [2],

(−1)i+j+k

∫ +∞

0
Lα

i (x)Lα
j (x)Lα

k (x)xαe−xdx≥ 0, α > −1. (3.18)

This property can be useful to study the sign behavior of the linearization coefficients associated
with the generalized Hermite polynomial set. This family is orthogonal with respect to the weight

|x|2µe−x2
, µ > −1

2
, therefore to state the sign of the corresponding linearization coefficients it is

sufficient to consider the sign behavior of

Lij(k) =
∫

R
Hµ

i (x)Hµ
j (x)Hµ

k (x)|x|2µe−x2
dx.

For this end, we consider the following two cases:
• For i = 2i′ and j = 2j′, we have, in view of (3.12),

Lij(i + j − 2k) = (−1)kαijk

∫ ∞

0
L

µ− 1
2

i′ (x)L
µ− 1

2
i′ (x)L

µ− 1
2

i′+j′−k(x)xµ− 1
2 e−xdx, (3.19)

where αijk =
i!j!(i + j − 2k)!

(µ + 1
2)i′(µ + 1

2)j′(µ + 1
2)i′+j′−k

.

According to (3.18), we deduce that for, µ > −1
2

, the linearization coefficient given by Equation
(3.19) is nonnegative.
• For i = 2i′ + 1 and j = 2j′, we have

Lij(i + j − 2k) = (−1)kβijk

∫ ∞

0
L

µ+ 1
2

i′ (x)L
µ− 1

2
j′ (x)L

µ+ 1
2

i′+j′−k(x)xµ+ 1
2 e−xdx.

The sign of the previous integral can not be obtained directly from (3.18).
Using the connection relation (3.13) for standard Laguerre polynomials, with

β = µ− 1
2

and α = µ +
1
2

, we get

L
µ− 1

2
j′ (x) = L

µ+ 1
2

j′ (x)− L
µ+ 1

2
j′−1(x).

8
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It follows that,

Lij(i + j − 2k) = (−1)kβijk

∫ ∞

0
L

µ+ 1
2

i′ (x)L
µ+ 1

2
j′ (x)L

µ+ 1
2

i′+j′−k(x)xµ+ 1
2 e−xdx

+ (−1)k+1βijk

∫ ∞

0
L

µ+ 1
2

i′ (x)L
µ+ 1

2
j′−1(x)L

µ+ 1
2

i′+j′−k(x)xµ+ 1
2 e−xdx, (3.20)

where βijk =
i!j!(i + j − 2k)!

(µ + 1
2)i′+1(µ + 1

2)j′(µ + 1
2)i′+j′+1−k

.

Then we conclude that the coefficient given by (3.20) is also nonnegative as a sum of two nonnegative
integrals.
For odd values of i and j, taking into account the symmetry property Hµ

n(−x) = (−1)nHµ
n(x) of the

generalized Hermite polynomials, the corresponding linearization is always zero.
Finally, we conclude that the considered polynomials admits nonnegative linearization coefficients.
Note that sign properties of generalized Hermite polynomials have been already investigated in [31],
using for this purpose, criterion based on the three term recurrence relation satisfied by the polynomi-
als.
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Appendix

The following is the recurrence for S(k) = Lij(i + j − k) in (3.14).

−(i + j − k + α)(2j − k + α− β)(2i− k + α− γ)(2αi− 2βi + 2i− 2j − 2jα + kβ + 2β + 2jγ − kγ − 2γ)S(k)
− (−5βk4 + 5γk4 − 5β2k3 + 5γ2k3 − 10ik3 + 10jk3 − 10iαk3 + 10jαk3 + 23iβk3 + 13jβk3 + 12αβk3 − 20βk3 − 13iγk3

−23jγk3−12αγk3 +20γk3−β3k2 +γ3k2 +26i2k2−26j2k2 +24iα2k2−24jα2k2 +21iβ2k2 +5jβ2k2 +8αβ2k2−17β2k2

−5iγ2k2−21jγ2k2−8αγ2k2 +4βγ2k2 +17γ2k2−22ik2 +22jk2 +26i2αk2−26j2αk2 +2iαk2−2jαk2−34i2βk2−8j2βk2

− 9α2βk2 + 56iβk2 − 54ijβk2 + 54jβk2 − 54iαβk2 − 10jαβk2 + 41αβk2 − 26βk2 + 8i2γk2 + 34j2γk2 + 9α2γk2

− 4β2γk2 − 54iγk2 + 54ijγk2 − 56jγk2 + 10iαγk2 + 54jαγk2 − 41αγk2 + 4iβγk2 − 4jβγk2 + 26γk2 − 16i3k
+16j3k−18iα3k+18jα3k+3iβ3k+αβ3k−3β3k−3jγ3k−αγ3k+βγ3k+3γ3k+42i2k+40ij2k−42j2k−40i2α2k+40j2α2k
+ 20iα2k − 20jα2k − 28i2β2k − 3α2β2k + 42iβ2k − 16ijβ2k + 17jβ2k − 26iαβ2k − 2jαβ2k + 22αβ2k − 16β2k
+ 28j2γ2k + 3α2γ2k − 17iγ2k + 16ijγ2k − 42jγ2k + 2iαγ2k + 26jαγ2k − 22αγ2k − 2iβγ2k − 13jβγ2k
− 3αβγ2k + 10βγ2k + 16γ2k − 16ik − 40i2jk + 16jk − 16i3αk + 16j3αk + 2i2αk + 40ij2αk − 2j2αk + 22iαk − 40i2jαk
− 22jαk + 16i3βk + 2α3βk − 42i2βk + 28ij2βk − 32j2βk + 41iα2βk − 9jα2βk − 25α2βk + 43iβk + 68i2jβk − 126ijβk
+ 57jβk + 68i2αβk − 4j2αβk − 91iαβk + 48ijαβk − 55jαβk + 39αβk − 13βk − 16j3γk − 2α3γk − β3γk
+ 32i2γk − 68ij2γk + 42j2γk + 9iα2γk − 41jα2γk + 25α2γk + 13iβ2γk + 2jβ2γk + 3αβ2γk − 10β2γk
− 57iγk − 28i2jγk + 126ijγk − 43jγk + 4i2αγk − 68j2αγk + 55iαγk − 48ijαγk + 91jαγk − 39αγk
− 4i2βγk + 4j2βγk − 9iβγk + 9jβγk − 22iαβγk + 22jαβγk + 13γk + 4iα4 − 4jα4 − 16i3 − 24ij3 + 16j3

+ 14i2α3 − 14j2α3 − 12iα3 + 12jα3 − 2i2β3 + 4iβ3 − 2iαβ3 + 2αβ3 − 2β3 + 2j2γ3 − 4jγ3 + 2jαγ3 − 2αγ3

− 2jβγ3 + 2βγ3 + 2γ3 + 16i2 + 32ij2 − 16j2 + 12i3α2 − 12j3α2 − 22i2α2 − 28ij2α2 + 22j2α2 − 2iα2 + 28i2jα2 + 2jα2

+ 12i3β2 − 26i2β2 + 8iα2β2 − 2jα2β2 − 6α2β2 + 18iβ2 + 12i2jβ2 − 24ijβ2 + 12jβ2 + 18i2αβ2 − 28iαβ2

+ 6ijαβ2 − 8jαβ2 + 12αβ2 − 4β2 − 12j3γ2 − 12ij2γ2 + 26j2γ2 + 2iα2γ2 − 8jα2γ2 + 6α2γ2 + 2iβ2γ2

− 2jβ2γ2 − 12iγ2 + 24ijγ2 − 18jγ2 − 18j2αγ2 + 8iαγ2 − 6ijαγ2 + 28jαγ2 − 12αγ2 + 8j2βγ2

− 8iβγ2 + 6ijβγ2 − 10jβγ2 − 4iαβγ2 + 10jαβγ2 − 6αβγ2 + 4βγ2 + 4γ2 − 4i + 24i3j − 32i2j + 4j − 4i3α
− 24ij3α + 4j3α− 20i2α + 4ij2α + 20j2α + 10iα + 24i3jα − 4i2jα − 10jα + 4i3β − 10iα3β + 6jα3β + 4α3β
− 12i2β − 24i2j2β + 48ij2β − 24j2β − 30i2α2β + 8j2α2β + 36iα2β − 6ijα2β + 6jα2β − 14α2β + 10iβ
− 24i3jβ + 68i2jβ − 60ijβ + 16jβ − 24i3αβ + 48i2αβ + 8j2αβ − 36iαβ − 40i2jαβ + 72ijαβ − 38jαβ
+ 10αβ − 2β + 24ij3γ − 4j3γ − 6iα3γ + 10jα3γ − 4α3γ + 2iβ3γ − 2β3γ + 24i2γ + 24i2j2γ − 68ij2γ + 12j2γ − 8i2α2γ
+ 30j2α2γ − 6iα2γ + 6ijα2γ − 36jα2γ + 14α2γ − 8i2β2γ + 10iβ2γ − 6ijβ2γ + 8jβ2γ − 10iαβ2γ + 4jαβ2γ + 6αβ2γ
− 4β2γ − 16iγ − 48i2jγ + 60ijγ − 10jγ + 24j3αγ − 8i2αγ + 40ij2αγ − 48j2αγ + 38iαγ − 72ijαγ + 36jαγ − 10αγ + 8i2βγ
− 8j2βγ + 14iα2βγ − 14jα2βγ − 6iβγ + 6jβγ + 16i2αβγ − 16j2αβγ − 4iαβγ + 4jαβγ + 2γ)S(k + 1)
−(−9βk4+9γk4−7β2k3+7γ2k3−18ik3+18jk3−18iαk3+18jαk3+39iβk3+21jβk3+15αβk3−54βk3−21iγk3−39jγk3

−15αγk3 +54γk3−β3k2 +γ3k2 +42i2k2−42j2k2 +30iα2k2−30jα2k2 +27iβ2k2 +7jβ2k2 +6αβ2k2−34β2k2−7iγ2k2

−27jγ2k2−6αγ2k2+3βγ2k2+34γ2k2−80ik2+80jk2+42i2αk2−42j2αk2−50iαk2+50jαk2−54i2βk2−12j2βk2−6α2βk2

+ 166iβk2 − 78ijβk2 + 114jβk2 − 66iαβk2 − 8jαβk2 + 73αβk2 − 115βk2 + 12i2γk2 + 54j2γk2 + 6α2γk2 − 3β2γk2

− 114iγk2 + 78ijγk2 − 166jγk2 + 8iαγk2 + 66jαγk2 − 73αγk2 + 8iβγk2 − 8jβγk2 + 115γk2 − 24i3k + 24j3k − 12iα3k
+ 12jα3k + 3iβ3k− 4β3k− 3jγ3k + 4γ3k + 136i2k + 48ij2k− 136j2k− 44i2α2k + 44j2α2k + 86iα2k− 86jα2k− 32i2β2k
+ 85iβ2k − 20ijβ2k + 28jβ2k − 19iαβ2k − jαβ2k + 22αβ2k − 52β2k + 32j2γ2k − 28iγ2k + 20ijγ2k − 85jγ2k + iαγ2k
+ 19jαγ2k − 22αγ2k − iβγ2k − 10jβγ2k + 10βγ2k + 52γ2k − 116ik − 48i2jk + 116jk − 24i3αk + 24j3αk + 92i2αk
+ 48ij2αk − 92j2αk − 18iαk − 48i2jαk + 18jαk + 24i3βk − 152i2βk + 36ij2βk
− 56j2βk + 28iα2βk − 8jα2βk − 22α2βk + 220iβk + 84i2jβk − 264ijβk + 194jβk + 76i2αβk − 8j2αβk − 205iαβk
+48ijαβk− 41jαβk +112αβk− 100βk− 24j3γk +56i2γk− 84ij2γk +152j2γk +8iα2γk− 28jα2γk +22α2γk +10iβ2γk
+ jβ2γk − 10β2γk − 194iγk − 36i2jγk + 264ijγk − 220jγk + 8i2αγk − 76j2αγk + 41iαγk − 48ijαγk + 205jαγk
− 112αγk − 8i2βγk + 8j2βγk + 21iβγk − 21jβγk − 18iαβγk + 18jαβγk + 100γk − 48i3 − 24ij3 + 48j3 + 8i2α3

−8j2α3−24iα3+24jα3−2i2β3+6iβ3−4β3+2j2γ3−6jγ3+4γ3+104i2+80ij2−104j2+12i3α2−12j3α2−72i2α2−20ij2α2

+ 72j2α2 + 52iα2 + 20i2jα2 − 52jα2 + 12i3β2 − 50i2β2 + 62iβ2 + 12i2β2 − 40ijβ2 + 28jβ2 + 12i2αβ2 − 36iαβ2 + 4ijαβ2

+ 20αβ2 − 24β2 − 12j3γ2 − 12ij2γ2 + 50j2γ2 − 28iγ2 + 40ijγ2 − 62jγ2 − 12j2αγ2 − 4ijαγ2 + 36jαγ2

−20αγ2 +6j2βγ2 +4ijβγ2−18jβγ2 +8βγ2 +24γ2−56i+24i3j−80i2j +56j−36i3α−24ij3α+36j3α+24i2α+60ij2α
− 24j2α + 20iα + 24i3jα − 60i2jα− 20jα + 36i3β − 96i2β − 24i2j2β + 76ij2β − 64j2β − 18i2α2β + 6j2α2β + 54iα2β
− 4ijα2β − 18jα2β − 20α2β + 88iβ − 24i3jβ + 144i2jβ − 208ijβ + 100jβ − 24i3αβ + 122i2αβ − 14j2αβ − 146iαβ
− 32i2jαβ + 92ijαβ − 50jαβ + 52αβ − 28β + 24ij3γ − 36j3γ + 64i2γ + 24i2j2γ − 144ij2γ + 96j2γ − 6i2α2γ + 18j2α2γ
+ 18iα2γ + 4ijα2γ − 54jα2γ + 20α2γ − 6i2β2γ + 18iβ2γ − 4iβ2γ − 8β2γ − 100iγ − 76i2jγ + 208ijγ − 88jγ
+ 24j3αγ + 14i2αγ + 32ij2αγ − 122j2αγ + 50iαγ − 92ijαγ + 146jαγ − 52αγ − 14i2βγ + 14j2βγ
+ 10iβγ − 10jβγ + 12i2αβγ − 12j2αβγ − 36iαβγ + 36jαβγ + 28γ)S(k + 2)
−(i+j−k−2)(7βk3−7γk3+3β2k2−3γ2k2+14ik2−14jk2+14iαk2−14jαk2−22iβk2−8jβk2−6αβk2+42βk2+8iγk2

+ 22jγk2 + 6αγk2 − 42γk2 − 16i2k + 16j2k − 12iα2k + 12jα2k
−8iβ2k+13β2k+8jγ2k−13γ2k+66ik−66jk−16i2αk+16j2αk+54iαk−54jαk+16i2βk−94iβk+20ijβk−40jβk+20iαβk
− 4jαβk− 26αβk + 75βk− 16j2γk + 40iγk− 20ijγk + 94jγk + 4iαγk− 20jαγk + 26αγk− 4iβγk + 4jβγk− 75γk− 48i2

− 8ij2 + 48j2 + 4i2α2 − 4j2α2 − 36iα2 + 36jα2 + 4i2β2 − 20iβ2 + 12β2 − 4j2γ2 + 20jγ2 − 12γ2 + 72i + 8i2j − 72j
− 44i2α− 8ij2α + 44j2α + 36iα + 8i2jα− 36jα + 44i2β − 84iβ − 8i2jβ + 56ijβ − 48jβ − 8i2αβ + 56iαβ
−16jαβ−24αβ+36β+8ij2γ−44j2γ+48iγ−56ijγ+84jγ+8j2αγ+16iαγ−56jαγ+24αγ−16iβγ+16jβγ−36γ)S(k + 3)
+ 2(i + j − k − 3)(i + j − k − 2)(k + 4)(2αi− 2βi + 2i− 2j − 2jα + kβ + β + 2jγ − kγ − γ)S(k + 4) = 0.
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