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Abstract

By defining two specific exponential generating functions, we introduce a kind of Euler

polynomials and study its basic properties in detail. As an application of the introduced

polynomials, we use them in computing some new series of Taylor type that contain the

associated Euler numbers En(0) where En(x) is the Euler polynomial.
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1 Introduction

The Appell polynomials An(x) defined by

f(t)ext =

∞∑
n=0

An(x)
tn

n!
, (1)

where f is a formal power series in t , have found remarkable applications in different
branches of mathematics, theoretical physics and chemistry [1, 2]. One of the special cases
of Appell polynomials are Euler polynomials En(x) where En = 2nEn(12) are usually
known as Euler numbers. These numbers and polynomials have a close relationship with
Bernoulli numbers and polynomials [5].

The Euler numbers are defined by an exponential generating function as [3, 7]

1

cosh t
=

2et

e2t + 1
=
∞∑
n=0

En
tn

n!
(|t| < π

2
), (2)

where, for instance, we have

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, · · · and in general E2n−1 = 0 (n ∈ N).

Computing the finite sums of powers of integers, such as
∑n

k=1 k and
∑n

k=1 k
2 , was one

of the main interests for mathematicians in the 17th century. Although the closed forms
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of these sums were known, the sum 1m + 2m + · · · + nm was not known in the general
case. It was Bernoulli who could solve this problem and introduced Bernoulli numbers to
evaluate the sum

Sm(n) =
n∑
k=1

km = 1m + 2m + · · ·+ nm.

In the sequel, Euler introduced his numbers to evaluate the alternating sum

Am(n) =
n∑
k=1

(−1)n−kkm = nm − (n− 1)m + · · ·+ (−1)n−1.

As a special case of Appell polynomials, if f(t) = 2
et+1 in (1), the Euler polynomials

are generated by

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
(|t| < π). (3)

For x = 0 in (3), the associated Euler numbers En(0) are given by the formula

2

et + 1
=

∞∑
n=0

En(0)
tn

n!
(|t| < π). (4)

Differentiating both sides of (3) with respect to x yields

d

dx
En(x) = nEn−1(x) and deg En(x) = n.

Consequently we have ∫ b

a
En(x) dx =

En+1(b)− En+1(a)

n+ 1
.

Recently in [3], the authors have introduced a generalization of poly-Euler polynomials
with three parameters and established some of their properties. They have also introduced
a more general form of multi poly-Euler polynomials and obtained some identities similar
to those of the generalized poly-Euler polynomials.
In [4], poly-Euler numbers with negative index are treated and their parity is shown as
the main theorem. The divisibility of these numbers is also discussed therein.

This paper is organized as follows: In the next section, we introduce two kinds of Euler
polynomials and define their exponential generating functions. We also study their basic
properties and prove them. Finally in section 3, an application of these polynomials are
given to compute some new series of Taylor type involving the associated Euler numbers
En(0) .
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2 A new type of Euler polynomials

We begin our treatment with the defining (binomial) convolution of two sequences. If an
and bn are two sequences with the following exponential generating functions

A(t) =

∞∑
n=0

an
tn

n!
, and B(t) =

∞∑
n=0

bn
tn

n!
,

then their convolution is defined as

cn = an ∗ bn =
n∑
k=0

(
n

k

)
akbn−k.

Hence, the corresponding exponential generating function takes the form

C(t) = A(t)B(t) =

∞∑
n=0

cn
tn

n!
.

Now, let us define two bivariate polynomials as follows:
If p, q ∈ R , it is known that the Taylor expansion of the two functions ept cos qt and
ept sin qt are, respectively, as follows [6]

ept cos qt =

∞∑
n=0

Cn(p, q)
tn

n!
, (5)

and

ept sin qt =
∞∑
n=0

Sn(p, q)
tn

n!
, (6)

where

Cn(p, q) =

[n2 ]∑
k=0

(−1)k
(
n

2k

)
pn−2kq2k, (7)

and

Sn(p, q) =

[n−1
2 ]∑

k=0

(−1)k
(

n

2k + 1

)
pn−2k−1q2k+1. (8)

By considering Cn(p, q) , Sn(p, q) and the associated Euler numbers En(0) in (4), one
can introduce two types of Euler polynomials as

E(c)
n (p, q) = En(0) ∗ Cn(p, q), (9)
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and

E(s)
n (p, q) = En(0) ∗ Sn(p, q), (10)

whose exponential generating functions are, respectively, given by

2ept

et + 1
cos qt =

∞∑
n=0

E(c)
n (p, q)

tn

n!
(|t| < π), (11)

and

2ept

et + 1
sin qt =

∞∑
n=0

E(s)
n (p, q)

tn

n!
(|t| < π). (12)

Hence, we can be represent these polynomials as follows

E(c)
n (p, q) =

n∑
k=0

(
n

k

)
Ek(0)Cn−k(p, q), (13)

and

E(s)
n (p, q) =

n∑
k=0

(
n

k

)
Ek(0)Sn−k(p, q). (14)

Note that E
(c)
n (p, 0) = En(p) . For instance, we have

E
(c)
0 (p, q) = 1,

E
(c)
1 (p, q) = p− 1

2
,

E
(c)
2 (p, q) = p2 − p− q2,

E
(c)
3 (p, q) = p3 − 3

2
p2 − 3q2p+

3

2
q2 +

1

4
,

E
(c)
4 (p, q) = p4 − 2p3 − 6q2p2 + (6q2 + 1)p+ q4,

E
(c)
5 (p, q) = p5 − 5

2
p4 − 10q2p3 + (15q2 +

5

2
)p2 + 5q4p− 5

2
q4 − 5

2
q2 − 1

2
,

and

E
(s)
0 (p, q) = 0,

E
(s)
1 (p, q) = q,

E
(s)
2 (p, q) = 2qp− q,

E
(s)
3 (p, q) = 3qp2 − 3qp− q3,

E
(s)
4 (p, q) = 4qp3 − 6qp2 − 4q3p+ 2q3 + q,

E
(s)
5 (p, q) = 5qp4 − 10qp3 − 10q3p2 + (10q3 + 5q)p+ q5,
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Proposition 2.1. For every n ∈ Z+ we have

E(c)
n (1− p, q) = (−1)nE(c)

n (p, q), (15)

and

E(s)
n (1− p, q) = (−1)n+1E(s)

n (p, q). (16)

Proof. Applying the exponential generating function (11) gives

∞∑
n=0

E(c)
n (1− p, q) t

n

n!
=

2e(1−p)t

et + 1
cos qt,

as well as

∞∑
n=0

(−1)nE(c)
n (p, q)

tn

n!
=

2e−pt

e−t + 1
cos(−qt) =

2e(1−p)t

et + 1
cos qt.

The property (16) can be similarly proved.

Corollary 2.1. Relations (15) and (16) imply that

E
(c)
2n+1

(
1

2
, q

)
= 0,

E
(s)
2n

(
1

2
, q

)
= 0,∫ 1

0
E

(c)
2n+1(p, q) dp = 0,

and ∫ 1

0
E

(s)
2n (p, q) dp = 0.

Proposition 2.2. For every n ∈ Z+ , the following identities hold

E(c)
n (1 + p, q) + E(c)

n (p, q) = 2Cn(p, q), (17)

and

E(s)
n (1 + p, q) + E(s)

n (p, q) = 2Sn(p, q). (18)
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Proof. We have

∞∑
n=0

E(c)
n (1 + p, q)

tn

n!
=

2ept(et + 1− 1)

et + 1
cos qt = 2ept cos qt− 2ept

et + 1
cos qt

=

∞∑
n=0

2Cn(p, q)
tn

n!
−
∞∑
n=0

E(c)
n (p, q)

tn

n!
,

which proves (17), and the proof of (18) is similar.

Corollary 2.2. Relations (17) and (18) first imply that

E
(c)
2n (1, q) + E

(c)
2n (0, q) = 2(−1)nq2n,

and

E
(s)
2n+1(1, q) + E

(s)
2n+1(0, q) = 2(−1)nq2n+1.

Hence, by applying Proposition 2.1 we obtain

E
(c)
2n (0, q) = E

(c)
2n (1, q) = (−1)nq2n,

and

E
(s)
2n+1(0, q) = E

(s)
2n+1(1, q) = (−1)nq2n+1.

Proposition 2.3. For every n ∈ Z+ , the following identities hold

E(c)
n (p+ r, q) =

n∑
k=0

(
n

k

)
E

(c)
k (p, q)rn−k, (19)

and

E(s)
n (p+ r, q) =

n∑
k=0

(
n

k

)
E

(s)
k (p, q)rn−k. (20)

Proof. It is enough to apply (11) to obtain

∞∑
n=0

E(c)
n (p+ r, q)

tn

n!
=

(
2ept

et + 1
cos qt

)
ert =

( ∞∑
n=0

E(c)
n (p, q)

tn

n!

)( ∞∑
n=0

rn
tn

n!

)

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
E

(c)
k (p, q)rn−k

)
tn

n!
,

which proves (19). The result (20) can be similarly proved.
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Corollary 2.3. For every n ∈ Z+ we have

E(c)
n (p, q) =



m∑
k=0

(
2m

2k

)
E

(c)
2m−2k

(
1

2
, q

)(
p− 1

2

)2k

n = 2m,

m∑
k=0

(
2m+ 1

2k + 1

)
E

(c)
2m−2k

(
1

2
, q

)(
p− 1

2

)2k+1

n = 2m+ 1,

and

E(s)
n (p, q) =



m−1∑
k=0

(
2m

2k + 1

)
E

(s)
2m−1−2k

(
1

2
, q

)(
p− 1

2

)2k+1

n = 2m,

m∑
k=0

(
2m+ 1

2k

)
E

(s)
2m+1−2k

(
1

2
, q

)(
p− 1

2

)2k

n = 2m+ 1.

Corollary 2.4. We have

E(c)
n (p, q) +

n∑
k=0

(
n

k

)
E

(c)
k (p, q) = 2Cn(p, q), (21)

and

E(s)
n (p, q) +

n∑
k=0

(
n

k

)
E

(s)
k (p, q) = 2Sn(p, q). (22)

The result (21) follows from (17) and (19), and to obtain (22), it is enough to combine
(18) and (20).

Corollary 2.5. Relations (21) and (22) imply that

E(c)
n (0, q) +

n∑
k=0

(
n

k

)
E

(c)
k (0, q) = 2qn cos

nπ

2
=


2(−1)mq2m n = 2m,

0 n = 2m+ 1,

and

E(s)
n (0, q) +

n∑
k=0

(
n

k

)
E

(s)
k (0, q) = 2qn sin

nπ

2
=


0 n = 2m,

2(−1)mq2m+1 n = 2m+ 1.

Proposition 2.4. For every n ∈ N , the following partial differential equations hold

∂

∂p
E(c)
n (p, q) = nE

(c)
n−1(p, q), (23)

∂

∂q
E(c)
n (p, q) = −nE(s)

n−1(p, q), (24)

∂

∂p
E(s)
n (p, q) = nE

(s)
n−1(p, q), (25)
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and

∂

∂q
E(s)
n (p, q) = nE

(c)
n−1(p, q). (26)

Proof. Let us just prove (23), as the other equations (24), (25) and (26) can be similarly
derived. To prove (23), apply relation (11) to get

∞∑
n=1

∂E
(c)
n (p, q)

∂p

tn

n!
=

2tept

et + 1
cos qt =

∞∑
n=0

E(c)
n (p, q)

tn+1

n!

=

∞∑
n=1

E
(c)
n−1(p, q)

tn

(n− 1)!
=

∞∑
n=1

nE
(c)
n−1(p, q)

tn

n!
.

Proposition 2.5. If E
(c)
n (p, q) and E

(s)
n (p, q) are sorted in terms of the variable p , then

they are polynomials of degree n and n− 1 , respectively, such that we have

E(c)
n (p, q) = pn − n

2
pn−1 + · · · , (27)

and

E(s)
n (p, q) = nqpn−1 −

(
n

2

)
qpn−2 + · · · . (28)

Conversely, if they are sorted in terms of the variable q , then

E(c)
n (p, q) =


(−1)

n−1
2 n

(
p− 1

2

)
qn−1 + (−1)

n+1
2

(
n
3

) (
p3 − 3

2p
2 + 1

4

)
qn−3 + · · · (n odd),

(−1)
n
2 qn + (−1)

n+2
2

(
n
2

)
(p2 − p)qn−2 + · · · (n even),

(29)
and

E(s)
n (p, q) =


(−1)

n+2
2 n

(
p− 1

2

)
qn−1 + (−1)

n
2

(
n
3

) (
p3 − 3

2p
2 + 1

4

)
qn−3 + · · · (n even),

(−1)
n−1
2 qn + (−1)

n+1
2

(
n
2

)
(p2 − p)qn−2 + · · · (n odd).

(30)

Proof. We first prove (27) by induction. It is known from (21) that

E
(c)
0 (p, q) = 1, E

(c)
1 (p, q) = p− 1

2
and E

(c)
2 (p, q) = p2 − p− q2.
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Therefore (27) holds for n = 0, 1, 2 . Now, assume that it is valid for n − 1 . By noting
(23), we have

∂

∂p
E(c)
n (p, q) = npn−1 − n(n− 1)

2
pn−2 + · · · .

To complete the proof, it is enough to integrate both sides of the above equation with
respect to the variable p to get the result (27). By referring to relation (26), the result
(28) can be similarly derived.
To prove (29), suppose that it first holds for 0, 1, . . . , n − 1 . If n = 2m , then from (21)
we have

E
(c)
2m(p, q) = −1

2

2m−1∑
k=0

(
2m

k

)
E

(c)
k (p, q) +

m∑
k=0

(−1)k
(

2m

2k

)
p2m−2kq2k. (31)

Hence, the coefficient of q2m on the right hand side of (31) is equal to

(−1)m
(

2m

2m

)
p2m−2m = (−1)m,

and the coefficient of q2m−2 is equal to

−1

2

((
2m

2m− 1

)
(−1)m−1(2m− 1)

(
p− 1

2

)
+

(
2m

2m− 2

)
(−1)m−1

)

+ (−1)m−1
(

2m

2m− 2

)
p2 = (−1)m+1

(
2m

2

)
(p2 − p).

So, (29) is true for n = 2m . In the second case, taking n = 2m+ 1 in (21) gives

E
(c)
2m+1(p, q) = −1

2

2m∑
k=0

(
2m+ 1

k

)
E

(c)
k (p, q) +

m∑
k=0

(−1)k
(

2m+ 1

2k

)
p2m+1−2kq2k. (32)

Hence, the coefficient of q2m in the right hand side of (32) is equal to

−1

2m+ 2

(
2m+ 2

2m

)
(−1)m + (−1)m

(
2m+ 1

2m

)
p = (−1)m(2m+ 1)

(
p− 1

2

)
,

and the coefficient of q2m−2 is equal to

−1

2

((
2m+ 1

2m

)
(−1)m+1

(
2m

2

)
(p2 − p) +

(
2m+ 1

2m− 1

)
(−1)m−1(2m− 1)

(
p− 1

2

)

+

(
2m+ 1

2m− 2

)
(−1)m−1

)
+ (−1)m−1

(
2m+ 1

2m− 2

)
p3 = (−1)m+1

(
2m+ 1

3

)(
p3 − 3

2
p2 +

1

4

)
,

which completes the proof of (29). By combining (26) and (29), we can also obtain the
result (30).
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Proposition 2.6. The following identities hold

E(c)
n (p, q) =

[n2 ]∑
k=0

(−1)k
(
n

2k

)
E

(c)
n−2k(p, 0)q2k, (33)

and

E(s)
n (p, q) =

[n−1
2 ]∑

k=0

(−1)k
(

n

2k + 1

)
E

(c)
n−2k−1(p, 0)q2k+1, (34)

in which E
(c)
n−2k(p, 0) = En−2k(p) and E

(c)
n−2k−1(p, 0) = En−2k−1(p) are Euler polynomials.

Proof. According to (24) and (26), first we have

∂2k

∂q2k
E(c)
n (p, q) = (−1)k

n!

(n− 2k)!
E

(c)
n−2k(p, q) for k = 0, 1, . . . ,

[n
2

]
,

and

∂2k+1

∂q2k+1
E(c)
n (p, q) = (−1)k+1 n!

(n− 2k − 1)!
E

(s)
n−2k−1(p, q) for k = 0, 1, . . . ,

[
n− 2

2

]
,

because E
(c)
n (p, q) is a polynomial of degree n for even n and of degree n− 1 for odd n

in terms of the variable q according to Proposition 2.5. The Taylor expansion of E
(c)
n (p, q)

gives

E(c)
n (p, q + h) =

n∑
k=0

1

k!

∂k

∂qk
E(c)
n (p, q)hk,

in which h ∈ R . Since E
(s)
n (p, 0) = 0 for every n ∈ Z+ , By replacing q = 0 and h = q ,

we obtain the relation (33). In a similar way, equality (34) can be derived.

Proposition 2.7. If m is an odd number and n ∈ Z+ , then

E(c)
n (mp, q) = mn

m−1∑
k=0

(−1)kE(c)
n

(
p+

k

m
,
q

m

)
, (35)

and

E(s)
n (mp, q) = mn

m−1∑
k=0

(−1)kE(s)
n

(
p+

k

m
,
q

m

)
. (36)
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Proof. First, it is known that

∞∑
n=0

E(c)
n

(
p+

k

m
,
q

m

)
tn

n!
=

2e(p+ k
m)t

et + 1
cos
( q
m
t
)
.

If we multiply both sides of the above relation by (−1)k and take a sum over k from 0
to m− 1 , then we obtain

m−1∑
k=0

(−1)k

( ∞∑
n=0

E(c)
n

(
p+

k

m
,
q

m

)
tn

n!

)
=

2ept

et + 1
cos
( q
m
t
)m−1∑
k=0

(
−e

t
m

)k
=

2emp
t
m

e
t
m + 1

cos

(
q
t

m

)
1− (−1)met

et + 1
.

Since m is an odd number, relation (35) is true, and in a similar way, equality (36) can
be proved.

For instance, for m = 3 , relations (35) and (36) read as

E(c)
n (1, 3q) = 3n

(
E(c)
n

(
1

3
, q

)
− E(c)

n

(
2

3
, q

)
+ E(c)

n (1, q)

)
,

and

E(s)
n (1, 3q) = 3n

(
E(s)
n

(
1

3
, q

)
− E(s)

n

(
2

3
, q

)
+ E(s)

n (1, q)

)
.

Proposition 2.8. For every n ∈ N and q ∈ R , the two following Propositions are valid:

Pn : The function p 7→ (−1)nE
(c)
2n−1(p, q) is positive on

(
0, 12
)

and negative on
(
1
2 , 1
)

.
Moreover, p = 1

2 is a unique simple root on (0, 1) , i.e. the aforesaid function has no zero
in the intervals

(
0, 12
)

and
(
1
2 , 1
)

.

Qn : The function p 7→ (−1)nE
(c)
2n (p, q) is strictly increasing on

[
0, 12
]

and strictly
decreasing on

[
1
2 , 1
]

and always takes a positive value at p = 1
2 .

Proof. The Proposition P1 is clear, because −E(c)
1 (p, q) = −

(
p− 1

2

)
= −p + 1

2 . Now

define f(p) = (−1)nE
(c)
2n (p, q) to get f ′(p) = 2n(−1)nE

(c)
2n−1(p, q) . By noting Pn , we

see that f is strictly increasing on [0, 12 ] and strictly decreasing on
[
1
2 , 1
]

. Moreover,
since f(0) = q2n ≥ 0 (by Corollary 2.2) and f has a maximum in p = 1

2 , then one can
conclude that f

(
1
2

)
> 0 .

Finally define g(p) = (−1)n+1E
(c)
2n+1(p, q) to get g′(p) = −(2n+ 1)(−1)nE

(c)
2n (p, q) . Since

g′(0) = g′(1) = −(2n + 1)q2n ≤ 0, and E
(c)
2n (1 − p, q) = E

(c)
2n (p, q) , so by noting Qn we

have ∀p ∈ (0, 1) : g′(p) < 0 . Therefore, g takes the following table of variations
As g

(
1
2

)
= 0 (by Corollary 2.1) and g′

(
1
2

)
< 0 , then p = 1

2 is a simple root of g . So
the proof of Pn+1 is complete.
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p 0 1
2 1

g′(p) − − −
g(p) ↘ 0 ↘

Proposition 2.9. For every n ∈ Z+ and q ∈ R we have

sup
p∈[0,1]

∣∣∣E(c)
2n (p, q)

∣∣∣ = max

{∣∣∣E(c)
2n (0, q)

∣∣∣ , ∣∣∣∣E(c)
2n

(
1

2
, q

)∣∣∣∣} , (37)

and

sup
p∈[0,1]

∣∣∣E(c)
2n+1(p, q)

∣∣∣ ≤ 2n+ 1

2
max

{∣∣∣E(c)
2n (0, q)

∣∣∣ , ∣∣∣∣E(c)
2n

(
1

2
, q

)∣∣∣∣} . (38)

Proof. The result (37) follows from Propositions 2.1 and 2.8. To prove (38), if p ∈
[
0, 12
]

then we have

E
(c)
2n+1(p, q) = E

(c)
2n+1(p, q)− E

(c)
2n+1

(
1

2
, q

)
= (2n+ 1)

∫ p

1
2

E
(c)
2n (t, q) dt.

Therefore∣∣∣E(c)
2n+1(p, q)

∣∣∣ ≤ (2n+ 1)

∫ 1
2

p

∣∣∣E(c)
2n (t, q)

∣∣∣ dt ≤ (2n+ 1)

(
1

2
− p
)

sup
t∈[p, 12 ]

∣∣∣E(c)
2n (t, q)

∣∣∣
≤ (2n+ 1)

(
1

2
− p
)

max

{∣∣∣E(c)
2n (0, q)

∣∣∣ , ∣∣∣∣E(c)
2n (

1

2
, q)

∣∣∣∣} .
So we have

sup
p∈[0, 12 ]

∣∣∣E(c)
2n+1(p, q)

∣∣∣ ≤ 2n+ 1

2
max

{∣∣∣E(c)
2n (0, q)

∣∣∣ , ∣∣∣∣E(c)
2n (

1

2
, q)

∣∣∣∣} .
On the other hand, E

(c)
2n+1(1− p, q) = −E(c)

2n+1(p, q) completes the proof of (38).

Proposition 2.10. For every n ∈ N and q > 0 , the two following Propositions are valid:

Pn : The function p 7→ (−1)nE
(s)
2n (p, q) is positive on

[
0, 12
)

and negative on
(
1
2 , 1
]

.
Moreover, p = 1

2 is a unique simple root on [0, 1] , i.e. the aforesaid function has no zero
in the intervals [0, 12) and (12 , 1] .

Qn : The function p 7→ (−1)nE
(s)
2n+1(p, q) is strictly increasing on

[
0, 12
]

and strictly
decreasing on

[
1
2 , 1
]

and always takes a positive value at p = 1
2 .
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Proof. The Proposition P1 is clear, because −E(s)
2 (p, q) = −q(2p− 1) = q(1− 2p) . Now

define f(p) = (−1)nE
(s)
2n+1(p, q) to get f ′(p) = (2n + 1)(−1)nE

(s)
2n (p, q) . By noting Pn ,

we see that f is strictly increasing on
[
0, 12
]

and decreasing on
[
1
2 , 1
]

. Moreover, since
f(0) = q2n+1 > 0 (by Corollary 2.2), one can conclude that f

(
1
2

)
> 0 .

Finally define g(p) = (−1)n+1E
(s)
2n+2(p, q) to get g′(p) = −(2n + 2)(−1)nE

(s)
2n+1(p, q) .

Since g′(0) = g′(1) = −(2n + 2)q2n+1 > 0, and E
(s)
2n+1(1 − p, q) = E

(s)
2n+1(p, q) , so by

noting Qn we have ∀p ∈ (0, 1) : g′(p) < 0 . Therefore, g takes the following table of
variations

p 0 1
2 1

g′(p) − − −
g(p) ↘ 0 ↘

As g
(
1
2

)
= 0 (by Corollary 2.1) and g′

(
1
2

)
< 0 , then p = 1

2 is a simple root of function
g . So the proof of Pn+1 is complete.

Corollary 2.6. For every n ∈ N and q ∈ R we have

sup
p∈[0,1]

∣∣∣E(s)
2n+1(p, q)

∣∣∣ = max

{∣∣∣E(s)
2n+1(0, q)

∣∣∣ , ∣∣∣∣E(s)
2n+1

(
1

2
, q

)∣∣∣∣} ,
and

sup
p∈[0,1]

∣∣∣E(s)
2n (p, q)

∣∣∣ ≤ nmax

{∣∣∣E(s)
2n−1(0, q)

∣∣∣ , ∣∣∣∣E(s)
2n−1

(
1

2
, q

)∣∣∣∣} .
Proposition 2.11. Let m and n be two positive integers and

I(c) =

∫ 1

0
E(c)
m (p, q)E(c)

n (p, q) dp.

If m+ n is odd then I(c) = 0 and if it is even then

I(c) =

m+n∑
k=0

1

(k + 1)!

 B∑
j=A

(
k

j

)
n!m!

(n− j)!(m− k + j)!
E

(c)
n−j(0, q)E

(c)
m−k+j(0, q)

 ,

where A = max{0, k −m} and B = min{n, k} .

Proof. First, suppose that m+ n is odd. By using (15) we have

I(c) =

∫ 1

0
E(c)
m (1− p, q)E(c)

n (1− p, q) dp = (−1)m+n

∫ 1

0
E(c)
m (p, q)E(c)

n (p, q) dp = −I(c).
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Now, assume that m+n is even. Since degp

(
E

(c)
m E

(c)
n

)
= m+n (from Proposition 2.5),

using (23) we obtain

E(c)
m (p, q)E(c)

n (p, q) =
m+n∑
k=0

(
∂k

∂pk
(
E(c)
m (p, q)E(c)

n (p, q)
)) ∣∣∣∣

p=0

pk

k!

=

m+n∑
k=0

 k∑
j=0

(
k

j

)(
∂j

∂pj
E(c)
n (p, q)

∂k−j

∂pk−j
E(c)
m (p, q)

)∣∣∣∣
p=0

 pk

k!

=

m+n∑
k=0

 E∑
j=A

(
k

j

)
n!m!

(n− j)!(m− k + j)!
E

(c)
n−j(0, q)E

(c)
m−k+j(0, q)

 pk

k!
,

which leads to the second result.

Corollary 2.7. Let m and n be two positive integers and

I(s) =

∫ 1

0
E(s)
m (p, q)E(s)

n (p, q) dp.

If m+ n is odd then I(s) = 0 and if m+ n is even then

I(s) =

m+n−2∑
k=0

1

(k + 1)!

 B∑
j=A

(
k

j

)
n!m!

(n− j)!(m− k + j)!
E

(s)
n−j(0, q)E

(s)
m−k+j(0, q)

 ,

where A = max{0, k −m} and B = min{n, k} .

3 Some new series of Taylor type involving associated Euler
numbers En(0)

One of the applications of relations (11) and (12) is that they can be considered as the
Taylor expansion of two special functions at t = 0 involving associated Euler numbers
En(0) . In other words, substituting the relations (13) and (14) in, respectively, (11) and
(12) yield

fc(t; p, q) =
2ept

et + 1
cos qt =

∞∑
n=0

(
n∑
k=0

(
n

k

)
Ek(0)Cn−k(p, q)

)
tn

n!

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)Ck(p, q)

)
tn

n!
, (39)
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and

fs(t; p, q) =
2ept

et + 1
sin qt =

∞∑
n=0

(
n∑
k=0

(
n

k

)
Ek(0)Sn−k(p, q)

)
tn

n!

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)Sk(p, q)

)
tn

n!
, (40)

where Ck(p, q) and Sk(p, q) are defined in (7) and (8). In order to evaluate the two
functions fc and fs at some specific parameters, first let us prove the following identities

Ck(p, p) = 2
k
2 pk cos

kπ

4
, (41)

Sk(p, p) = 2
k
2 pk sin

kπ

4
, (42)

Ck(0, q) = qk cos
kπ

2
, (43)

Sk(0, q) = qk sin
kπ

2
, (44)

and

Ck(p, 0) = pk, Sk(p, 0) = 0. (45)

It is easy to find out that

cos kθ + i sin kθ = (cos θ + i sin θ)k

=

[ k
2
]∑

j=0

(−1)j
(
k

2j

)
sin2j θ cosk−2j θ + i

[ k−1
2

]∑
j=0

(−1)j
(

k

2j + 1

)
sin2j+1 θ cosk−2j−1 θ.

By replacing θ = π
4 in the above relation, we obtain

cos
kπ

4
+ i sin

kπ

4
= 2−

k
2

[ k
2
]∑

j=0

(−1)j
(
k

2j

)
+ i 2−

k
2

[ k−1
2

]∑
j=0

(−1)j
(

k

2j + 1

)
,

which leads to relations (41) and (42), respectively. Relations (43), (44) and (45) are also
clear by noting relations (7) and (8).

Now, we can consider some particular examples.

Example 1. As the hyperbolic secant function is even, so by referring to (2) we have

sech t =
2et

e2t + 1
=

∞∑
n=0

E2n

(2n)!
t2n, |t| < π

2
. (46)
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On the other hand, replacing t→ 2t, p = 1
2 and q = 0 in (39) gives

fc

(
2t;

1

2
, 0

)
= sech t =

∞∑
n=0

(
n∑
k=0

(
n

k

)
Ek(0)Cn−k

(
1

2
, 0

))
2ntn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
Ek(0)2k−n

)
2ntn

n!
.

This means that we have the following relationship between the Euler numbers E2n and
associated Euler numbers Ek(0) where k = 0, 1, . . . , 2n :

E2n =

2n∑
k=0

(
2n

k

)
2kEk(0). (47)

Remark: From equation (4), we observe that

E2k(0) = 0 ∀k ∈ N and E0(0) = 1.

Hence, by the above relations, formula (47) is simplified as

n∑
k=1

(
2n

2k − 1

)
22k−1E2k−1(0) = E2n − 1,

which can be written as the matrix form
u1,1 0 0 · · · 0
u2,1 u2,2 0 · · · 0

...
un,1 un,2 un,3 · · · un,n




E1(0)
E3(0)

...
E2n−1(0)

 =


E2 − 1
E4 − 1

...
E2n − 1


in which

un,k =

(
2n

2k − 1

)
22k−1.

The above system is triangular and can be therefore solved explicitly. This means that we
will eventually have

E2n−1(0) =

n∑
k=1

vn,kE2k. (48)

Hence, the standard Euler numbers in (48) can be used throughout the paper instead of
the associated Euler numbers.
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Example 2. Let f(t) =
cos t

et + 1
and g(t) =

sin t

et + 1
. If in (39) we take p = 0 and q = 1 ,

then by noting (43) we obtain

fc(t; 0, 1) =
2

et + 1
cos t =

∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0) cos

kπ

2

)
tn

n!

=

∞∑
n=0

 [n
2
]∑

k=0

(
n

2k

)
En−2k(0)(−1)k

 tn

n!
.

Therefore we have

cos t

et + 1
=

∞∑
n=0

 [n2 ]∑
k=0

(−1)k

2

(
n

2k

)
En−2k(0)

 tn

n!
,

and in a similar way

sin t

et + 1
=
∞∑
n=0

[n−1
2 ]∑

k=0

(−1)k

2

(
n

2k + 1

)
En−2k−1(0)

 tn

n!
.

Example 3. Let f(t) =
et

et + 1
cos t and g(t) =

et

et + 1
sin t . replacing p = q = 1 in (39)

gives

2et

et + 1
cos t =

∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)Ck(1, 1)

)
tn

n!

=
∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)2

k
2 cos

kπ

4

)
tn

n!
.

Similarly we obtain

2et

et + 1
sin t =

∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)Sk(1, 1)

)
tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)2

k
2 sin

kπ

4

)
tn

n!
.

Therefore, we have

et

et + 1
cos t =

∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)2

k
2
−1 cos

kπ

4

)
tn

n!
,
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and

et

et + 1
sin t =

∞∑
n=0

(
n∑
k=0

(
n

k

)
En−k(0)2

k
2
−1 sin

kπ

4

)
tn

n!
.
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