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Abstract: The main aim of this paper is the development of suitable bases that enable
the direct series representation of orthogonal polynomial systems on nonuniform lattices
(quadratic lattices of a discrete or a q-discrete variable). We present two bases of this type, the
first of which allows one to write solutions of arbitrary divided-difference equations in terms
of series representations, extending results given by Sprenger for the q-case. Furthermore,
it enables the representation of the Stieltjes function, which has already been used to prove
the equivalence between the Pearson equation for a given linear functional and the Riccati
equation for the formal Stieltjes function. If the Askey-Wilson polynomials are written in
terms of this basis, however, the coefficients turn out to be not q-hypergeometric. Therefore,
we present a second basis, which shares several relevant properties with the first one. This
basis enables one to generate the defining representation of the Askey-Wilson polynomials
directly from their divided-difference equation. For this purpose, the divided-difference
equation must be rewritten in terms of suitable divided-difference operators developed
in previous work by the first author.
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1. Introduction

Let µ(x) denote a nondecreasing real-valued, bounded function with a finite or an infinite number of
points of increase in the interval, [a, b]. The latter interval may be infinite. We assume that moments of
all orders exist, that is:

µn =

∫ b

a

xn dµ(x)

exists for all n ∈ N, with the integration defined in the Lebesgue-Stieltjes sense.

Definition 1. The polynomial sequence, (Pn), is said to be orthogonal with respect to the measure,
dµ(x), if: 

deg(Pn) = n, n ≥ 0

∫ b
a
Pn(x)Pm(x) dµ(x) = d2

n δn,m, n, m ≥ 0

(1)

where dn 6= 0, n ≥ 0 and δn,m is the Kronecker symbol.

To any sequence of moments, (µn)n is associated the linear functional, L, defined on C[x] by:

〈L, xn〉 = µn, n ≥ 0 (2)

The functional, L (also called moment functional), is said to be regular if there exists a family, (Pn)n, of
polynomials orthogonal with respect to L, that is:

deg(Pn) = n, n ≥ 0

〈L, PnPm〉 = d2
n δn,m, n, m ≥ 0, dn 6= 0, n ≥ 0

(3)

It is well-known that the necessary and sufficient condition for L to be regular is that the principal
submatrices of the infinite Hankel matrix, (µj+ k)j,k∈N, are nonsingular. Furthermore, to the measure
dµ(x) or to the corresponding regular functional, L, is associated the so-called Stieltjes function S(L),
defined as:

S(x) =

∫ b

a

dµ(t)

x− t
=
∞∑
n=0

µn
xn+1

, x /∈ [a, b] (4)

If S(x) is known, then the distribution function, µ, can be recovered from S(x) by means of the Stieltjes
inversion formula [1] (see, also, [2,3]):

µ(t)− µ(s) =
1

π
lim
y→0+

∫ t

s

Im(S(x+ i y) dx

Classical orthogonal polynomials of a continuous variable, (Pn)n, can be characterized by the
distributional differential Equation (usually called Pearson-type Equation) satisfied by their
corresponding regular functional, L, [4]:

D(φL) = ψL (5)
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where φ and ψ are polynomials with deg(φ) ≤ 2 and deg(ψ) = 1, with D = d
dx

and while φL and D(L)

are linear functionals defined by:

〈φL, P 〉 = 〈L, φ P 〉, 〈D(L), P 〉 = −〈L,DP 〉, ∀P ∈ C[x]

Equation (5) is equivalent to the following two Equations [4,5] (which also characterize classical
orthogonal polynomials), namely, the second-order differential Equation satisfied by each Pn:

φ(x)P ′′n (x) + ψ(x)P ′n(x) + λn Pn(x) = 0, λn = −n [(n− 1)
φ′′

2
+ ψ′] (6)

and the Riccati Equation satisfied by the Stieltjes function, S(L) := S(x):

φ(x)S ′(x) + [φ′(x)− ψ(x)]S(x) + (ψ′ − φ′′

2
)µ0 = 0 (7)

Properties, similar to Equations (5)–(7) exist for classical orthogonal polynomials of a discrete
variable [6–8], as well as for classical orthogonal polynomials of a q-discrete variable [7,9,10].

Semi-classical orthogonal polynomials of a continuous variable [4] are defined as those for which
the corresponding linear functional, L, satisfies a Pearson-type Equation (5), but with a more relaxed
condition on the polynomials, φ and ψ, namely, deg(ψ) ≥ 1. This is equivalent to the Riccati
Equation (7), but with the constant term, (ψ′ − φ′′

2
)µ0, replaced by a polynomial, D(x). Laguerre-Hahn

orthogonal polynomials [4] are also defined by general forms of Equations (5) and (7).
Classical orthogonal polynomials on a nonuniform lattice satisfy an Equation of the type: [11,12,14]{

φ(x(s))
∆

∇x1(s)

∇
∇x(s)

+
ψ(x(s))

2

[
∆

∆x(s)
+
∇
∇x(s)

]
+ λn

}
Pn(x(s)) = 0, n ≥ 0 (8)

where φ and ψ are polynomials of maximal degree, two and one, respectively, λn is a constant depending
on the integer, n, and the leading coefficients, φ2 and ψ1, of φ and ψ:

λn = −γn (φ2 γn−1 + ψ1 αn) (9)

and x(s) is a nonuniform lattice defined by:

x(s) =

{
c1 q

s + c2 q
−s + c3 if q 6= 1

c4 s
2 + c5 s+ c6 if q = 1

(10)

Here, ∆ and ∇ are the forward and the backward operators:

∆f(x(s)) := f(x(s+ 1))− f(x(s)), ∇f(x(s)) := f(x(s))− f(x(s− 1))

and:
xµ(s) = x(s+

µ

2
), µ ∈ C

where C is the set of complex numbers. The Lattices (10) satisfy:

x(s+ k)− x(s) = γk∇xk+1(s) (11)
x(s+ k) + x(s)

2
= αk xk(s) + βk (12)
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for k = 0, 1, . . . , with the initial values:

α0 = 1, α1 = α, β0 = 0, β1 = β, γ0 = 0, γ1 = 1

where:

α =

{
1 for q = 1

q
1
2 +q−

1
2

2
if q 6= 1

In addition, the sequences, (αk), (βk), (γk), satisfy the following relations:

αk+1 − 2ααk + αk−1 = 0

βk+1 − 2 βk + βk−1 = 2 β αk

γk+1 − γk−1 = 2αk

and are given explicitly by [11,12]:

αn = 1, βn = β n2, γn = n, for α = 1 (13)

and:

αn =
q

n
2 + q−

n
2

2
, βn =

β(1− αn)

1− α
, γn =

q
n
2 − q−n

2

q
1
2 − q− 1

2

, for α =
q

1
2 + q−

1
2

2
(14)

By means of the companion operators, Dx and Sx [13,14], Equation (8) can be rewritten as:

φ(x(s)) D2
xPn(x(s)) + ψ(x(s)) SxDxPn(x(s)) + λn Pn(x(s)) = 0 (15)

where:

Dx f(x(s)) =
f(x−1(s+ 1))− f(x−1(s))

x−1(s+ 1)− x−1(s)
, Sx f(x(s)) =

f(x−1(s+ 1)) + f(x−1(s))

2
(16)

The operators, Dx and Sx, transform polynomials of degree n in x(s) into a polynomial of degree n− 1

and n in the same variable, respectively. In addition, they fulfill important relations—called product
and quotient rules—which read, taking into account the shift (compared to the definition in [14]), in the
definition of the above defined companion operators as:

Theorem 2. [14]

1. The operators Dx and Sx satisfy the product rules I

Dx (f(x(s))g(x(s))) = Sxf(x(s)) Dxg(x(s)) + Dxf(x(s)) Sxg(x(s)) (17)

Sx (f(x(s))g(x(s))) = U2(x1(s)) Dxf(x(s)) Dxg(x(s)) + Sxf(x(s)) Sxg(x(s)) (18)

where U2(x(s)) = (α2 − 1)x2(s) + 2 β (α + 1)x(s) + δx, and δx is a constant term with respect
to x(s).

2. The operators, Dx and Sx, also satisfy the product rules II:

Dx Sx = α Sx Dx + U1(s) D2
x (19)

S2
x = U1(s) Sx Dx + αU2(s) D2

x + I (20)

where:
U1(s) := U1(x(s)) = (α2 − 1)x(s) + β (α+ 1), U2(s) := U2(x(s)) (21)
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For illustration, the Askey-Wilson polynomials [7] Pn(x; a, b, c, d|q) are defined by:

Pn(x; a, b, c, d|q) = 4φ3

(
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣ q; q
)
, x = cos θ (22)

By taking eiθ = qs, the lattice reads as x(s) = cos θ = qs+q−s

2
. By using the orthogonality relation and

the Pearson-type Equation satisfied by the weight of the Askey-Wilson polynomials, Foupouagnigni [14]
showed that the polynomials, Pn(x; a, b, c, d|q), satisfy a divided-difference equation of the type
from (8) with:

φ (x(s)) = 2 (dcba+ 1)x2 (s)− (a+ b+ c+ d+ abc+ abd+ acd+ bcd)x (s)

+ ab+ ac+ ad+ bc+ bd+ cd− abcd− 1 (23)

ψ (x(s)) =
4 (abcd− 1) q

1
2 x (s)

q − 1
+

2 (a+ b+ c+ d− abc− abd− acd− bcd) q
1
2

q − 1

Costas-Santos and Marcellán [15], using the corresponding weight function, gave four equivalent
characterizations for classical orthogonal polynomials on nonuniform lattices: More precisely, they
proved the equivalence between the second-order divided-difference Equation (8), the orthogonality of
the divided-difference derivatives, the Rodrigues-type formula, as well as the structure relation.

However, despite the important results by Costas-Santos and Marcellán, the characterization of
classical orthogonal polynomials on nonuniform lattices is still incomplete. In fact, there are still missing
many properties, in particular:

¬ The characterization in terms of the Pearson-type Equation for the corresponding regular
functional (similar to Equation (5));

 The characterization in terms of the Riccati Equation for the Stieltjes function of the corresponding
regular functional (similar to Equation (7));

® The method to recover orthogonal polynomials, Pn, from the second-order divided-difference
Equation (8) (similar to the one of Fuchs-Frobenius method used to solve Equation (6)); this
problem has already been raised by Ismail (see [16], page 518);

¯ The building of a bridge between the theory of Magnus based mainly on the Riccati Equation
satisfied by the formal Stieltjes function [17,18] and the theory of orthogonal polynomials on
nonuniform lattices based on the functional approach. Such a bridge would enable the construction
of concrete examples of semi-classical and Laguerre-Hahn orthogonal polynomials, since it is
easier and more convenient to modify the functional rather than the formal Stieltjes function.

These characterizations are very important, since they are the key for the definition and the
characterizations of new classes of orthogonal polynomials on nonuniform lattices, namely, the
semi-classical and the Laguerre-Hahn orthogonal polynomials on nonuniform lattices.

To provide a solution to the four problems raised above and taking into consideration the expansions
of Pn in the monomial basis (x(s)n)n,

Pn(x(s)) =
n∑
k=0

ak x(s)k
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and the one of the formal Stieltjes function [18]:

S0 [L] (x(z)) =

∫ b

a

dµ(x(s))

x(z)− x(s)
=
∞∑
n=0

µn
xn+1(z)

, with µn =

∫ b

a

xn(s)dµ(x(s)), x(z) /∈ [a, b] (24)

there is a strong need to control the actions of the operators, Dx and Sx, on the monomial, xn(s), and also
on the function, 1

xn(s)
. Unfortunately, the application of these operators to the monomial, xn(s), produces

a linear combination (with complicated coefficients) of all monomials of a degree less than or equal to
n − 1 and n, respectively. Also, the application of Dx and Sx to the function, 1

xn(s)
, produces a rational

function of the variable, x(s), with coefficients being very difficult to handle [14]. These constraints
makes the monomial basis, (xn(s))n, not appropriate for the aforementioned operators and justifies our
decision to search for an appropriate basis for the operators, Dx and Sx.

The aim of this work is:

¬ To provide an appropriate basis for the companion operators, that is, a basis (Fn(x(s)))n, such that
each Fn(x(s)) is a polynomial of degree, n, in x(s) fulfilling:

DxFn(x(s)) = an Fn−1(x(s)), Dx
1

Fn(x(s))
=

bn
Fn+1(x(s))

SxFn(x(s)) = cn Fn(x(s)) + dn Fn−1(x(s)), Sx
1

Fn(x(s))
=

en
Fn(x(s))

+
fn

Fn+1(x(s))

where an, bn, cn, dn, en and fn are given constants.

 To provide an algorithmic method to solve Equation (15) as a series in terms of the new basis
and to extend this result to solve arbitrary linear divided-difference equations with polynomial
coefficients involving only products of operators, Dx and Sx.

® To use another appropriate basis for the operators, D2
x and Sx Dx, to derive Representation (15) for

the Askey-Wilson polynomials from the hypergeometric Representation (22) without making use
of the weight function.

¯ To solve explicitly an Equation of type (15) and to extend this result to solve arbitrary linear
divided-difference equations with polynomial coefficients involving only products of operators
D2
x and SxDx.

° To provide a new representation of the formal Stieltjes function of a given linear functional on
a nonuniform lattice and deduce from it various important properties connecting the functional
approach and the one based on the Riccati Equation for the formal Stieltjes function.

The content of this paper is organized as follows. In Section 1, we recall necessary preliminaries,
while in the second section, we provide the basis, (Fk)k, compatible with the companion operators,
Dx and Sx. The third section deals with the algorithmic series solutions of divided-difference equations
in terms of the basis, (Fk)k. In Section 4, we give the second basis, (Bk)k, compatible not with the
companion operators, but rather with their products, D2

x and SxDx, and use this basis in the fifth section
to find the algorithmic series solutions of some divided difference equations in terms of the basis, (Bk)k.
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In the last section, we apply the basis, (Fk)k, to provide new representation of the formal Stieltjes series
and deduce its corresponding properties. Basic exponential and basic trigonometric functions have also
been expanded in terms of the basis, (Fk)k.

2. A New Basis Compatible with the Companion Operators

Using the generalized power on the lattice, xm(z), m ≥ 0, defined by Suslov [12] (see, also, [11]) as:

[xm(z)− xm(s)](n) =
n−1∏
j=0

[xm(z)− xm(s− j)], n ≥ 1, m ≥ 0, [xm(z)− xm(s)](0) ≡ 1 (25)

we define the function, Fn(s), by:

Fn(s) = (−1)n [x(ε)− xn−1(s)]
(n), n ≥ 1, F0(s) ≡ 1 (26)

where ε is the unique solution of the Equation (in the variable, t):

x1(t) = x(t)⇐⇒ x(t+
1

2
) = x(t) (27)

provided that the coefficients, cj , of (10) fulfill c1 c2 6= 0 or c4 6= 0 for the quadratic lattice of the
q-discrete and discrete variable, respectively. More precisely, ε fulfills:

q2ε =
c2
c1
q
−1
2 (28)

for the q-quadratic lattice, x(s) = c1 q
s + c2 q

−s + β
1−α , q 6= 1, c1 c2 6= 0, or the relation:

and ε = −1

4
− c5

2c4
(29)

for the quadratic lattice, x(s) = c4 s
2 + c5 s+ c6, c4 6= 0.

Although the function, Fn(s), from Relation (26) does not appear explicitly as a function of
x(s), Fn(s), as will be shown in the following theorem, it is a polynomial of degree n in the variable,
x(s). Therefore, we adopt the notation, Fn(x(s)), instead of Fn(s), and obtain the following results:

Theorem 3.

DxFn(x(s)) = γn Fn−1(x(s)) (30)

SxFn(x(s)) = αn Fn(x(s)) +
γn
2
∇xn+1(ε)Fn−1(x(s)) (31)

Dx
1

Fn(x(s))
= − γn

Fn+1(x(s))
(32)

Sx
1

Fn(x(s))
=

αn
Fn(x(s))

+
γn
2

∇xn+2(ε)

Fn+1(x(s))
(33)
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Fn+1(x(s)) = (x(s)− xn+1(ε))Fn(x(s)) =
n+1∏
j=1

(x(s)− xj(ε)), n ≥ 0 (34)

Fn(xk(ε)) 6= 0, ∀n ≥ 0, ∀k > n ≥ 0 (35)

Fn(x(s))

F1(x(s))
= Fn−1(x(s)) +

n−2∑
j=0

Ej Fj(x(s)), with Ej =
n∏

i=j+2

(x(ε)− xi(ε)) (36)

Dk
xFn(x(s)) =

[
k−1∏
j=0

γn−j

]
Fn−k(x(s)) =

γn!

γn−k!
Fn−k(x(s)), k ≤ n (37)

Fk(x(s))Fn(x(s)) =
k∑
j=0

Cn+j(n, k)Fn+j(x(s)), with (38)

Cn+j(n, k) = Θε+n+j
2
◦ Θε+n+j−1

2
. . . ◦ Θε+n+1

2
Fk (x(s)) |s=ε+n+j+1

2
, 1 ≤ j ≤ k ≤ n

Cn = Fk (xn+1(ε))

In order to prove Theorem 3, we first prove the following lemmas:

Lemma 4. The following relation holds:

[xm(z)− xm(s)](n) =
n−1∏
j=0

[xm−n+1(z + j)− xm−n+1(s)], n, m ∈ N (39)

where N is the set of nonnegative integer numbers.

Lemma 5. The following relations are satisfied:

Dxfn(xn−1(z), xn−1(s)) = −γn fn−1

(
xn−2(z +

1

2
), xn−2(s)

)
(40)

Sxfn(xn−1(z), xn−1(s)) = αn fn

(
xn−1(z +

1

2
), xn−1(s)

)
(41)

−γn
2
∇x2n(z)fn−1

(
xn−2

(
z +

1

2

)
, xn−2(s)

)
where the function, fn, is defined as:

fn(xm(z), xm(s)) =
n−1∏
j=0

[xm(z)− xm(s− j)], n ≥ 1, m ≥ 0, f0(xm(z), xm(s)) ≡ 1 (42)

Proof of Lemma 4
Proof: Relation (39) is obtained by iteration of the following relation:

[xm(s)− xm(z)](n) = [xm−n+1(s+ n− 1)− xm−n+1(z)] [xm−1(s)− xm−1(z)](n−1)

given by Suslov ([12], Equation 2.8, page 235). Therefore:

fn(xm(z), xm(s)) = gn(xm(z), xm(s)), n, m ≥ 0
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where the function, gn, is defined as:

gn(xm(z), xm(s)) =
n−1∏
j=0

[xm−n+1(z + j)− xm−n+1(s)], n ≥ 1, m ≥ 0, g0((xm(z), xm(s))) ≡ 1 (43)

Proof of Lemma 5
Proof: Relation (40) is proven by combination of the definition of Dxf(x(s)), given by (16), and the
following relation, given by Suslov ([12], Equation (2.22), page 239):

∆s[xm(s)− xm(z)](n)

∆sxm−n+1(s)
= −γ(n) [xm(s)− xm(z)](n−1)

but with m = n − 1 and s replaced by s − 1
2
. Here, ∆s means that the forward operator acts on the

variable, s.
The proof of Relation (41) will be done in the following steps:

In the first step, we apply operator Sx on both sides of Relation (42) and adjust the index, j, to obtain:

Sxfn(xn−1(z), xn−1(s)) =
1
2

n−1∏
j=0

(xn−1(z)− xn−1(s− j +
1
2

)) +
1
2

n−1∏
j=0

(xn−1(z)− xn−1(s− j − 1
2

))

=
1
2

[xn−1(z)− xn−1(s+
1
2

)]
n−2∏
j=0

(xn−1(z)− xn−1(s− j − 1
2

))

+
1
2

[xn−1(z)− xn−1(s− n+
1
2

)]
n−2∏
j=0

(xn−1(z)− xn−1(s− j − 1
2

))

=
1
2

[2xn−1(z)− xn−1(s− n+
1
2

)− xn−1(s+
1
2

)]
n−2∏
j=0

(xn−1(z)− xn−1(s− j − 1
2

))

In the second step, we use the relation:

xn−1(s− n+
1

2
) + xn−1(s+

1

2
) = xn(s− n) + xn(s) = 2αn x2n(s− n) + 2βn = 2αn x(s) + 2βn

obtained from (12) and the relation, xµ(z) = xµ(z + µ
2
), to get:

Sxfn(xn−1(z), xn−1(s)) = [xn−1(z)− αn x(s)− βn)]
n−2∏
j=0

(xn−1(z)− xn−1(s− j −
1

2
))

= [xn−1(z)− αn x(s)− βn)] fn−1(xn−1(z), xn−1(s−
1

2
))
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In the third step, we use Relation (39) to transform the previous Equation into:

Sxfn(xn−1(z), xn−1(s)) = [xn−1(z)− αn x(s)− βn)] fn−1(xn−1(z), xn−1(s− 1
2

))

= [xn−1(z)− αn x(s)− βn)] gn−1(xn−1(z), xn−1(s− 1
2

))

= [xn−1(z)− αn x(s)− βn]
n−2∏
j=0

(x1(z + j)− x1(s− 1
2

))

=
[
αn[x(z +

1
2

+ n− 1)− x(s)] + xn−1(z)− αn x(z +
1
2

+ n− 1)− βn
]

×
n−2∏
j=0

(x(z +
1
2

+ j)− x(s))

= αn

n−1∏
j=0

(x(z +
1
2

+ j)− x(s))

+
[
xn−1(z)− αn x(z − 1

2
+ n)− βn

] n−2∏
j=0

(x(z +
1
2

+ j)− x(s))

= αn gn(xn−1(z +
1
2

), xn−1(s))

+
[
xn−1(z)− αn x(z − 1

2
+ n)− βn

]
gn−1(xn−2(z +

1
2

), xn−2(s))

Therefore, using, again, Relation (39), we get:

Sxfn(xn−1(z), xn−1(s)) = αn fn(xn−1(z +
1
2

), xn−1(s)) (44)

+
[
xn−1(z)− αn xn(z − 1

2
+
n

2
)− βn

]
fn−1(xn−2(z +

1
2

), xn−2(s))

In the fourth step, we use the following relation obtained from (12):

x(z − 1
2

+
n

2
) + x(z − 1

2
+
n

2
+ n) = 2αn xn(z − 1

2
+
n

2
) + 2βn

to Transform (44) as:

Sxfn(xn−1(z), xn−1(s)) = αn fn(xn−1(z +
1
2

), xn−1(s))

+

[
xn−1(z)−

xn(z − 1
2) + xn(z − 1

2 + n)
2

]
fn−1(xn−2(z +

1
2

), xn−2(s))

= αn fn(xn−1(z +
1
2

), xn−1(s))

+

[
xn(z − 1

2)− xn(z − 1
2 + n)

2

]
fn−1(xn−2(z +

1
2

), xn−2(s))

= αn fn(xn−1(z +
1
2

), xn−1(s))

+
[
xn−1(z)− xn−1(z + n)

2

]
fn−1(xn−2(z +

1
2

), xn−2(s))

In the last step, we use the following relation obtained from (11):

xn−1(z)− xn−1(z + n)
2

= −γn∇x2n(z)
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to obtain the Equation:

Sxfn(xn−1(z), xn−1(s)) = αn fn(xn−1(z +
1
2

), xn−1(s))− γn
2
∇x2n(z)fn−1(xn−2(z +

1
2

), xn−2(s))

and the proof is complete. 2

Proof of Theorem 3
Proof: By replacing: z by z − n−1

2 in Equations (40) and (41), we obtain:

Dxfn(x(z), xn−1(s)) = −γn fn−1(x(z), xn−2(s))

Sxfn(x(z), xn−1(s)) = αn fn(x1(z), xn−1(s))− γn
2
∇xn+1(z)fn−1(x(z), xn−2(s))

Therefore, for Sxfn(x(z), xn−1(s)) to be a linear combination of fn(x(z), xn−1(s)) and fn−1(x(z), xn−2(s)), it
is necessary for the parameter, z, to be a solution of the following Equation in the variable, t:

x1(t) = x(t)⇐⇒ x(t+
1
2

) = x(t)

This solution is unique, denoted by ε (see Equation (27)), provided that the coefficients, cj , of (10) fulfill c1 c2 6= 0
or c4 6= 0 for the quadratic lattice of the q-discrete and discrete variable, respectively. The resulting basis reads:

Fn(x(s)) := (−1)n fn(x(ε), xn−1(s))

This basis fulfills Relations (30) and (31).
The proof of Relations (32) and (33) is similar to those of Relations (30) and (31).
For the proof of Relation (34), we use Relations (39), (42) and (43) for fixed nonnegative integer, n, and the

fact that x1(ε) = x(ε) with xµ(z) = x(z + µ
2 ) to obtain:

Fn+1(x(s)) = (−1)n+1 fn+1(x(ε), xn(s))

= (−1)n+1 fn+1(x1(ε), xn(s))

= (−1)n+1 fn+1(xn(ε+
1− n

2
), xn(s))

= (−1)n+1 gn+1(xn(ε+
1− n

2
), xn(s))

= (−1)n+1
n∏
j=0

(x(ε+
1− n

2
+ j)− x(s))

= ((x(s)− xn+1(ε)− x(s))) (−1)n
n−1∏
j=0

(x(ε+
1− n

2
+ j)− x(s))

= ((x(s)− xn+1(ε)− x(s))) (−1)n gn(xn−1(ε+
1− n

2
), xn−1(s))

= ((x(s)− xn+1(ε)− x(s))) (−1)n fn(xn−1(ε+
1− n

2
), xn−1(s))

= ((x(s)− xn+1(ε)− x(s))) (−1)n fn(x(ε), xn−1(s))

= (x(s)− xn+1(ε))Fn(x(s))

Relation (35) is satisfied, since, for integers, n, j and k, such that k ≥ 0 and 1 ≤ j ≤ n, we get, by direct
computation using (11), that:

xn+k+1(ε)− xj(ε) 6= 0

Therefore, Fn(xk(ε)) 6= 0, k > n.



Axioms 2013, 3 415

Relation (36) is proven by induction on n. Relation (37) is obtained by Iterating (30). We split the proof of
Relation (38) into three steps:

In the first step, for fixed n, k ≥ 1, we expand Fk Fn in the basis Fl:

Fk(x(s))Fn(x(s)) =
n+k∑
l=0

Cl(n, k)Fl(x(s)) (45)

and use the following relation, due to (34):

Fk(xj(ε)) = 0, 1 ≤ j ≤ k (46)

to get C0(n, k) = Fk(x1(ε))Fn(x1(ε)) = 0. Considering (45) for x(s) = x2(ε) and C0(n, k) = 0, we get—using,
again, (46):

C1(n, k)F1(x2(ε)) = Fk(x2(ε))Fn(x2(ε)) = 0, n ≥ 2

Therefore, C1(n, k) = 0, thanks to (35). Progressively, we obtain in a similar way for a fixed integer, j, using
(35), (45) and (46), that:

C0(n, k) = C1(n, k) = · · · = Cj(n, k) = 0, n ≥ j + 1

In the second step, we rewrite, accordingly, Relation (45):

Fk(x(s))Fn(x(s)) =
k∑
j=0

Cn+j(n, k)Fn+j(x(s))

and obtain, using (34):

Fk(x(s)) =
k∑
j=0

Cn+j(n, k)
Fn+j(x(s))
Fn(x(s))

=
k∑
j=0

Cn+j(n, k) gn+j,n+1(x(s)) (47)

where:

gn,j(x(s)) =
n∏
l=j

(x(s)− xl(ε)), 1 ≤ j ≤ n, gn,n+1(x(s)) ≡ 1, gn,n+l(x(s)) ≡ 0, l > 1 (48)

Use of Equation (47) for x(s) = xn+1(ε) gives:

Cn(n, k) = Fk(xn+1(ε))

taking into account Relation (46) and the fact that gn,n+1 ≡ 1. In the third step, we apply the operator, Θa

(defined in (59)) to (47), and use the relation:

Θε+ j
2
gn,j(x(s)) = gn,j+1(x(s)), 1 ≤ j ≤ n

derived by direct computation, to obtain the relation:

Θε+n+1
2
Fk(x(s)) =

k∑
j=1

Cn+j(n, k) gn+j,n+2(x(s)) (49)

from which we deduce using, again, (46) that:

Cn+1(n, k) = Θε+n+1
2
Fk(xn+2(ε))

The remaining coefficients, Cn+l(n, k), l ≥ 2, are obtained in the same way by successive application of
Θε+n+l

2
, 2 ≤ l ≤ k on (49) and use of the Equations, gn,j(xj(ε)) = 0, 1 ≤ j ≤ n. 2

As corollary of Theorem 3 (Equation (34)), we would like to give, explicitly, a representation of the basis, Fn.
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Corollary 6. ¬ The basis, Fn, is explicitly defined on the lattices, x(s) = c1q
−s + c2q

s + c3

(with c1c2 6= 0), by:

Fn(x(s)) =
(
−c1q−(n

4
+ε+ 1

4
)
)n(c2

c1
qε+

1
2 qs; q1/2

)
n

(
qε+

1
2 q−s; q1/2

)
n

(50)

=
(
−c1q−ε

)n(
qε+

1−n
2 q−s,

c2
c1
qε+

1−n
2 qs; q

)
n

(51)

where ε is defined by (28) and (a; q)n =
∏n−1
k=0(1− aqk).

 In the particular case of the Askey-Wilson lattice, x(s) = qs+q−s

2 (c1 = c2 = 1
2 , c3 = 0, ε = −1

4),
the previous Equations read:

Fn(x(s)) =

(
−q
−n

4

2

)n (
q

1
4 qs; q

1
2

)
n

(
q

1
4 q−s; q

1
2

)
n

(52)

=

(
−q

1
4

2

)n (
q

1
4
−n

2 qs, q
1
4
−n

2 q−s; q
)
n

(53)

® The basis, Fn, is explicitly defined on the lattices, x(s) = c1s
2 + c2s+ c3 (with c1c2 6= 0), by:

Fn(x(s)) =
(
−c1

4

)n(
−2s+

1
2
− c2
c1

)
n

(
2s+

1
2

+
c2
c1

)
n

(54)

= (−c1)n
(
s+

1
4
− n

2
− c2

2c1

)
n

(
−s+

1
4
− n

2
+

c2
2c1

)
n

(55)

where the Pochhammer symbol, (a)n, is defined as (a)n =
∏n−1
k=0(a+ k), n ≥ 1, (a)0 = 1.

¯ In the particular case of the Racah lattice, x(s) = s(s+ γ + δ + 1) (c1 = 1, c2 = γ + δ + 1, c3 = 0,
ε = −1

4 −
γ+δ+1

2 ), the previous Equations read:

Fn(x(s)) =
(
−1
4

)n (
−2s− γ − δ − 1

2

)
n

(
2s+ γ + δ +

3
2

)
n

= (−1)n
(
s− 1

4
− n

2
− γ + δ

2

)
n

(
−s+

3
4
− n

2
+
γ + δ

2

)
n

Remark 7. It should be mentioned that for the specific case of the Askey-Wilson lattice our basis, Fn, coincides
(up to a multiplicative factor) to the basis, φn, used by Ismail [19] (Equation (1.4), page 261):

φn(cos θ) =
(
q

1
4 qs; q

1
2

)
n

(
q

1
4 q−s; q

1
2

)
n

=

(
−q

−n
4

2

)−n
Fn(x), x = cos θ =

eiθ + e−iθ

2
=
qs + q−s

2

to provide the Taylor expansion of a polynomial in terms of the basis, φn.

3. Algorithmic Series Solutions of Divided-Difference Equations

In this section, we provide an algorithmic method to solve a divided-difference equation in terms of the
bases, Fn and Bn(a, s), with the latter, which is defined in Proposition 14, being more appropriate for the
Askey-Wilson lattice.
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3.1. Algorithmic Series Solutions of Divided-Difference Equations in Terms of Fn

The basis, Fn, is relevant for the companion operators and provides a method to obtain series solutions of
divided-difference equations.

Theorem 8.
If:

y(x(s)) =
∞∑
k=0

dk Fk(x(s)) (56)

is a polynomial solution of the Equation:

φ(x(s)) D2
xy(x(s)) + ψ(x(s)) SxDxy(x(s)) + λ y(x(s)) = 0 (57)

where λ is a constant, φ and ψ are polynomials a degree of at most two and one, respectively, and given by:

φ(x(s)) = φ2 F2(x(s)) + φ1 F1(x(s)) + φ0, ψ(x(s)) = ψ1 F1(x(s)) + ψ0

then, the coefficients, (dn)n, satisfy a second-order recurrence Equation:

Ak dk+2 +Bk dk+1 + Ck dk = 0, k ≥ 0 (58)

with:

Ak =
[
φ (xk+1(ε)) +

∇xk+2(ε)
2

ψ (xk+1(ε))
]
γk+1 γk+2

Bk =
[
γk Θε+ k

2
φ (xk+1(ε)) + αk ψ (xk+1(ε)) +

γk∇xk+1(ε)
2

ψ1

]
γk+1

Ck = γk γk−1 φ2 + γk αk−1ψ1 + λ

where:
Θaf(x(s)) =

f(x(s))− f(x(a))
x(s)− x(a)

(59)

Proof: In the first step, we apply the companion operators to (56) and, taking into Account (30) and (31),
we get:

D2
xy(x(s)) =

∞∑
k=2

dk γk γk−1 Fk−2(x(s)) (60)

SxDxy(x(s)) =
∞∑
k=1

dk γk αk−1 Fk−1(x(s)) +
∞∑
k=2

dk γk γk−1∇xk(ε)
2

Fk−2(x(s)) (61)

In the next step, we use (60) and (61) in (57) and the following relations obtained by Iterating (34):

F1(x(s))Fn(x(s)) = Fn+1(x(s)) + F1(xn+1(ε))Fn(x(s))

F2(x(s))Fn(x(s)) = Fn+2(x(s)) + Θε+n+1
2
F2 (xn+2(ε)) Fn+1(x(s))

+F2(xn+1(ε))Fn(x(s))

to get an Equation of type:

∞∑
n=0

Ak−2 dk Fk−2(x(s)) +Bk−1 dk Fk−1(x(s)) + Ck dk Fk(x(s)) = 0, with A−j = B−j = 0, j ≥ 1
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The proof is completed by transforming the previous Equation into:

∞∑
k=0

(Ak dk+2 +Bk dk+1 + Ck dk)Fk(x(s)) = 0

and using the fact that (Fk)k is a basis of C[x(s)]. 2

As an application of Theorem 8, in the following proposition, we provide two linearly independent solutions
of Equation (8) (or Equation (15)), where φ and ψ are those coefficients of the Askey-Wilson polynomials given
by (23) with b = aq

1
2 and d = cq

1
2 .

Proposition 9. For b = aq
1
2 and d = cq

1
2 , two linearly-independent solutions of the divided-difference

Equation (8) for the Askey-Wilson polynomials are represented in terms of the basis, Fn, as:

Pn(x(s); a, c | q) =
n∑
k=0

(q−
n
2 ; q

1
2 )k(−acq

n
2 ; q

1
2 )k(−2)kq

k(k+2)
4

(q
1
2 ; q

1
2 )k(−q

1
2 ; q

1
2 )k(aq

1
4 ; q

1
2 )k(cq

1
4 ; q

1
2 )k

Fk(x(s)) (62)

= 4φ3

(
q−

n
2 ,−ac q

n
2 , q

1
4 eiθ, q

1
4 e−iθ

−q
1
2 , a q

1
4 , c q

1
4

∣∣∣∣∣ q 1
2 ; q

1
2

)

Qn(x(s); a, c | q) =
+∞∑
k=0

(−q−
n
2 ; q

1
2 )k(acq

n
2 ; q

1
2 )k(−2)kq

k(k+2)
4

(q
1
2 ; q

1
2 )k(−q

1
2 ; q

1
2 )k(aq

1
4 ; q

1
2 )k(cq

1
4 ; q

1
2 )k

Fk(x(s)) (63)

= 4φ3

(
−q−

n
2 , ac q

n
2 , q

1
4 eiθ, q

1
4 e−iθ

−q
1
2 , a q

1
4 , c q

1
4

∣∣∣∣∣ q 1
2 ; q

1
2

)

where eiθ = qs, Pn(x(s); a, c | q) is a polynomial and Qn(x(s); a, c | q) is not.

Proof: Following the method described in the previous theorem, we obtain for φ and ψ, given by (23), with
b = aq

1
2 and d = cq

1
2 , the second-order difference Equation for the expansion coefficient, dn,k (see (58)):

4 p4k+10 (p4 − 1)3 (p4k − p4n)(a2c2p4n+4k − 1) dn(k)

+ 2 p4n+2k+5 (p4 − 1)3(p2 + 1) (p4k+4 − 1) (cp2k+1 − 1) (ap2k+1 − 1) (acp4k+2 − 1) dn(k + 1) (64)

+ p4n (p4 − 1)3(p4k+4 − 1) (p4k+8 − 1) (cp2k+1 − 1) (cp2k+3 − 1) (ap2k+1 − 1)(ap2k+3 − 1) dn(k + 2) = 0

with the change of variable p = q
1
4 .

To solve this recurrence Equation, we use the refined version of q-Petkovšek’s algorithm published by
Horn [20,21] and implemented in Maple by Sprenger [23,24]) (in his package qFPS.mpl) by the command
qHypergeomsolveRE, which finds the q-hypergeometric term solutions of q-holonomic recurrence Equations.
We obtain two solutions expressed in terms of p-Pochhammer and p2-Pochhammer terms. Details of this
computation can be found in a Maple file made available on [22]. Finally, we transform these solutions using
the relation (see [25], Equation 1.2.40, page 6):

(a, p)k (−a, p)k = (a2, p2)k (65)

and the relation obtained by direct computation:

(1 + p2k)(1 + pk) (−1, p)k (p, p)k (−1, p2)k = 4 (p4, p4)k
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to obtain the coefficients of Fk in the Expansions (62) and (63), given above, after replacing p by q
1
4 .

The q-hypergeometric representations of Pn and Qn are deduced by direct computation using the
Expansions (62) and (63) and Proposition 6. These solutions are linearly-independent, since the first is a
polynomial, while the second is an infinite series expansion in terms of Fk. 2

Remark 10.

¬ For fixed positive integer, n, the polynomial solution given by (62) is proportional to the Askey-Wilson
polynomial given by (22) with b = aq

1
2 and d = cq

1
2 .

 The non-polynomial solution of Equation (64) given by (63), which is convergent, proves clearly that our
method described in the previous theorem can be applied to recover convergent series solutions of divided
difference Equations in terms of the basis, Fn.

The previous theorem can be extended to solve divided-difference Equations of arbitrary order with polynomial
coefficients, using Equations (37) and (38).

Theorem 11. The coefficients cn of a polynomial solution:

y(x(s)) =
∞∑
n=0

cn Fn(x(s)) (66)

of any divided-difference Equation of the form:

N∑
i,j=0

Pi,j(x(s)) Six Dj
x y(x(s)) = Q(x(s)) (67)

where k ∈ N and Pi,j(x(s)) and Q(x(s)) are polynomials of arbitrary (but fixed) degree in the variable, x(s), are
solution of a linear difference Equation.

Proof: Equation (67) can be transformed into an Equation of the type:

1∑
i=0

M∑
j=0

P̃i,j(x(s)) Six Dj
x y(x(s)) = Q(x(s)) (68)

where M ∈ N and P̃i,j(x(s)) are polynomials of arbitrary (but fixed) degree in the variable, x(s), using
Relations (19) and (20). The proof of the theorem is completed in the same way as in Theorem 8,
Substituting (66) in (68) and making use of Equations (37) and (38). 2

Remark 12. The previous result generalizes the one given by Atakishiyev and Suslov [26] in which they provide a
method to construct particular solutions to hypergeometric-type difference Equations on a nonuniform lattice.

Remark 13. Theorems 8 and 11 provide a method of expanding solutions of Askey-Wilson operator Equations
in terms of the basis, φn (see Remark 7), or Fn, providing, therefore, the solution of the problem raised by
Ismail ([16], page 518).
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The coefficients of the expansion of the polynomial solution given in (62) is not q-hypergeometric, but rather

q
1
2 -hypergeometric. Therefore, there is the need of an additional transformation in order to prove that Pn

are effectively the known Askey-Wilson polynomials. In order to provide an explicit, direct and simple
representation of polynomial solutions of divided-difference Equations, such as (15), we provide, in the
next subsection, a second basis, which is not compatible with the operators, Dx and Sx, but rather, with
D2
x and SxDx and are, therefore, very useful when searching for series solutions of divided-difference

Equations with polynomials coefficients, involving linear combination of the products of D2
x and SxDx.

This basis allows, for example, to recover from the divided-difference Equation (15), without the need of
any further transformation, the defining representation of the Askey-Wilson polynomials given by (22).

3.2. Algorithmic Series Solutions of Divided-Difference Equations in Terms of Bn(a, s)

In the first step, we define the basis Bn(a, s) and study its properties.
Expressing the Askey-Wilson polynomials (22) in terms of q-Pochhammer symbols:

Pn(x; a, b, c, d|q) =
n∑
k=0

(q−n, q)k (a b c d qn−1, q)k (a qs, q)k (a q−s, q)k
(a b, q)k (a c, q)k (a d, q)k

qk

(q, q)k
(69)

and the fact that these polynomials fulfill (15) suggests the study of the action of the companion operators
on the function:

B(a, x(s), n) = (a qs, q)n
(
a q−s, q

)
n
, n ≥ 1, B(a, x(s), 0) ≡ 1 (70)

which happens to be a polynomial of degree n in x(s) = qs+q−s

2
. By considering a more general situation,

we get:

Proposition 14. The general q-quadratic lattice:

x(s) = u qs + v q−s

and the corresponding polynomial basis:

B̂n(a, u, v, x(s)) = (2a u qs, q)n
(
2a v q−s, q

)
n
, n ≥ 1, B̂0(a, u, v, x(s)) ≡ 1

which we relabel as:
Bn(a, s) ≡ B̂n(a, u, v, x(s))

fulfilling the relations:

DxBn(a, s) = η(a, n)Bn−1(a
√
q, s) (71)

SxBn(a, s) = β1(a, n)Bn−1(a
√
q, s) + β2(n)Bn(a

√
q, s) (72)

B1(a, s)D2
xBn(a, s) = η(a, n) η(a

√
q, n− 1)Bn−1(a, s) (73)

B1(a, s)SxDxBn(a, s) = η(a, n) [β1(a
√
q, n− 1)Bn−1(a, s) + β2(n− 1)Bn(a, s)] (74)

x(s)Bn(a, s) = µ1(a, n)Bn(a, s) + µ2(n) Bn+1(a, s) (75)

B1(a, s)Bn(a, s) = ν1(a, n)Bn(a, s) + ν2(n)Bn+1(a, s) (76)

B1(a, s)Bn(a q, s) = Bn+1(a, s) (77)
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where:

µ1(a, n) =
1 + 4a2uv q2n

2a qn
, µ2(a, n) =

−1

2a qn

ν1(a, n) = (1− q−n) (1− 4a2uv qn), ν2(n) = q−n, η(a, n) =
2a(1− qn)

q − 1

β1(a, n) =
1

2
(1− 4a2uv q2n−1)(1− q−n), β2(n) =

1

2
+

1

2qn

Proof: The proof is obtained by direct computation. 2

Remark 15. It should, however, be noted that for u = v = 1
2
, Relation (71) appears as exercise in [27],

page 34. It also appears in [16], Equation (20.3.11), page 518.

The following proposition provides the connection coefficients between the bases, Fn and Bn(a, x):

Proposition 16. The bases, (Fk)k and (Bk(a, s))k, are connected in the following ways:

Fn(x(s)) =
n∑
j=0

rn,j Bj(a, s), Bn(a, s) =
n∑
j=0

sn,j Fj(x(s)) (78)

where:

rn,k =
γn!

γn−k!

Fn−k(ε0,k)
k−1∏
l=0

η
(
aq

l
2 , k − l

) , 0 ≤ k ≤ n, n ≥ 1 (79)

sn,k =
1

γk!
Bn−k

(
aq

k
2 , ε+

1

2

) k−1∏
l=0

η
(
aq

l
2 , n− l

)
, 0 ≤ k ≤ n, n ≥ 1 (80)

and:

εj,k =
1 + 4a2uvq2j+k

2aqj+
k
2

(81)

Proof: The proof is obtained first by applying the operator, Dk
x, to both members of (78) for fixed

non-negative integers, n ≥ 1 and k ≤ n, and using (37) and (71), then by observing that:

B̂n(a, u, v, εj,0) = 0, ∀n ≥ 1, ∀j ≤ n, and;Fn(x1(ε)) = 0, ∀n ≥ 1

2From Proposition 14, it appears clearly that because of the appearance of a
√
q in Relations (71)

and (72), the action of Dx and Sx on Bn(a, s) cannot be written as finite (number of terms not
depending on n) linear combination of the elements of the basis (Bk(a, s))k. However, this problem is
solved by using the operators, B1(a, s)D2

x and B1(a, s)SxDx, instead, to obtain Relations (73) and (74).
Equation (15) can therefore be solved using the known coefficients, φ and ψ, of Askey-Wilson.
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3.3. Algorithmic Series Solutions of Divided-Difference Equations in Terms of Bn(a, s)

Theorem 17.
If:

y(x(s)) =
∞∑
k=0

dk Bk(a, s) (82)

is a polynomial solution of the Equation:

φ(x(s)) D2
xy(x(s)) + ψ(x(s)) SxDxy(x(s)) + λ y(x(s)) = 0 (83)

where λ is a constant, φ and ψ are polynomials of a degree of at most two and one, respectively:

φ(x(s)) = φ2 x
2(s) + φ1 x(s) + φ0, ψ(x(s)) = ψ1 x(s) + ψ0 (84)

then, the coefficients, (dk)n, satisfy a second-order difference Equation:

Ak dk+2 +Bk dk+1 + Ck dk = 0, k ≥ 0 (85)

with:

Ak = η(a, k + 2) [η(a
√
q, k + 1) φ (µ1(a, k + 1)) + β1(a

√
q, k + 1)ψ (µ1(a, k + 1))]

Bk = η(a, k + 1) {η(a
√
q, k) (φ2 µ1(a, k)µ2(a, k) + φ2 µ1(a, k + 1)µ2(a, k) + φ1 µ2(a, k) )

+β1(a
√
q, k) (ψ1 µ2(a, k) + β2(k) (ψ1 µ1(a, k + 1) + ψ0) )}+ λ ν1(a, k + 1)

Ck = φ2 µ2(a, k − 1) µ2(a, k) η(a, k) η(a
√
q, k − 1) + ψ1 η(a, k) β2(k − 1)µ2(a, k) + λ ν2(k)

Proof: The proof is similar to the one of Theorem 8 using the properties of the basis Bn(a, s) given
in Proposition 14. 2

The previous theorem can be extended to divided-difference Equations of arbitrary order with
polynomial coefficients, involving linear combinations of powers of the operators, D2

x and SxDx.
Such operators can be rewritten, using Relations (19) and (20), as linear combination of D2j

x and
SxD2j+1

x , j ≥ 0. For this extension, we will need the following results, obtained by iteration of
Relations (71)–(77).

Proposition 18. The basis, (Bn(a, s))n, satisfies the following relations:

D2k
x Bn(a, s) = πn,k Bn−2k(aq

k, s), 0 ≤ 2k ≤ n

Lk(s)Bn(aqk, s) = Bn+k(a, s)

Lk(s)D2k
x Bn(a, s) = πn,k Bn−k(a, s)

Lk+1(s)SxD2k+1
x Bn(a, s) = In,k Bn−k−1(a, s) + Jn,k Bn−k(a, s)

where:

Lk(s) =
k−1∏
j=0

B1(aq
j, s), πn,k =

2k−1∏
j=0

η(aq
j
2 , n− j)

In,k = πn,k η(aqk, n− 2k) β1(aq
k+ 1

2 , n− 2k − 1)

Jn,k = πn,k η(aqk, n− 2k) β2(aq
k+ 1

2 , n− 2k − 1)
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We now state the following theorem, which can be proven in the same way as Theorem 17, but using,
instead, the Equations of the previous proposition.

Theorem 19. If

y(x(s)) =
∞∑
k=0

dnBn(a, s)

is a polynomial solution of the divided-difference Equation:[
M∑
j=0

Pj(x(s))D2j
x +

N∑
j=0

Qj(x(s))SxD2j+1
x

]
y(x(s)) = T (x(s)) (86)

where Pj, Qj and T are polynomials in the variable, x(s), then the coefficients, (dk)n, satisfy a linear
difference Equation of maximal order, max(2M, 2N + 1).

As the corollary of Theorem 17, we have recovered the representation of the Askey-Wilson
polynomials by solving Equation (8).

In fact, we have replaced the coefficients, φ and ψ, of the Askey-Wilson polynomials (see (23)) in
Equation (85) to obtain the following difference Equation of the expansion coefficient, dk:

4 qnq
(
qk+1 − 1

)(
a2qk+1 − 1

)(
acqk+1 − 1

)(
adqk+1 − 1

)(
qqk+1 − 1

)(
abqk+1 − 1

)
dk+2

+4
(
qk+1 − 1

){
−
(
qk+1

)3
a3qnbcd−

(
qk+1

)3
a3qqnbcd+

(
qk+1

)2
qnabcdq +

(
qk+1

)2
a2qqnbc

+
(
qk+1

)2
a3q (qn)2 bcd+

(
qk+1

)2
q2a2 +

(
qk+1

)2
a2qqncd+

(
qk+1

)2
a2qqnbd− qk+1q2 (87)

−qk+1q (qn)2 abcd− qk+1a2q2qn − qk+1aq2qnc− qk+1aq2qnd− qk+1aq2qnb+ q3qn + q2qn
}
dk+1

−4
(
qnq − qk+1

)
q
(
qk+1abcdqn − q2

)
dk = 0

In [28,29]—see, also, [30]—algorithms were presented to find all solutions of an arbitrary
q-holonomic difference Equation in terms of linear combinations of q-hypergeometric terms. This
algorithm was tuned and made much more efficient in [20,21], and a Maple implementation was made
available in [23]. For the purpose of solving the second order q-difference Equation (87) in terms
of hypergeometric terms, we have used the command, qrecsolve, from the q-sum package [29]
to obtain the expansion coefficients, dk, of the expansion of the Askey-Wilson polynomial (69), with
Bk(a, s) = (a qs, q)k (a q−s, q)k .Details of this computation can be found in a Maple file made available
on [22].

4. Applications and Illustrations

In this section, we provide three applications for the basis, Fk: The first gives a formal expansion of a
given function in the basis, Fn, the second provides a new representation of the formal Stieltjes series in
terms of the basis, Fk, while the third gives a representation of the basic exponential and trigonometric
functions in terms of the basis, Fk, after solving explicitly a second-order divided-difference Equation in
terms of Fn.
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4.1. Properties of the New Representation of the Formal Stieltjes Function

In this subsection, we treat series representations of functions on our lattices.

Theorem 20. Let N be a positive integer. Then, any polynomial, fN(x(s)), of degree, N , in the
variable, x(s), can be expanded in the basis, Fk(x(s)), as:

fN(x(s)) =
N∑
k=0

dk Fk(x(s)) (88)

where:

dk =
Dk
xf(x(ε))

γk!
, γk! =

k∏
j=1

γj, k ≥ 1, γ0! = 1

Proof: We write: fN(x(s)) =
N∑
k=0

dk Fk(x(s)) and obtain for 0 ≤ k ≤ N ,

Dk
xfN(x(s))

∣∣
s=ε

= γk! dk

since x1(ε) = x(ε) and Fk(x1(ε)) = 0, ∀k ≥ 1. 2

Remark 21. The Expansion (88) constitutes a generalization to all polynomials of a quadratic or
q-quadratic variable of the Taylor expansion given by Ismail [19] (Theorem 2.1, page 262), but for
the basis, Fn, restricted only to the Askey-Wilson case given above in Proposition 6.

The following theorem shows that the previous expansion, restricted to polynomials, can be extended
to some non-polynomial function, but with an additional expression.

Theorem 22.
The following expansion holds for |q| < 1, z 6= s and z 6= ε+ j

2
, j ≥ 0 :

1

x(z)− x(s)
=
∞∑
k=0

Fk(x(s))

Fk+1(x(z))
+

1

(x(z)− x(s))
lim
N→∞

FN(x(s))

FN(x(z))
(89)

Proof: We will organize the proof in the following steps:

In the first step, we state the fundamental relation for any N ∈ N∗:

[x(z)− x(s)]
N−1∑
k=0

Fk(x(s))

Fk+1(x(z))
= 1− FN(x(s))

FN(x(z))
, z 6= ε+

j

2
, 0 ≤ j ≤ N (90)

which can be obtained by direct computation using the relation:

[x(z)− x(s)]
Fk(x(s))

Fk+1(x(z))
=
Fk(x(s))

Fk(x(z))
− Fk+1(x(s))

Fk+1(x(z))
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In the second step, we clear the convergence issue of the series,
∞∑
k=0

Fk(x(s))
Fk+1(x(z))

, by remarking that for a

fixed s and z, if ak = Fk(x(s))
Fk+1(x(z))

, then:

lim
k→∞

ak+1

ak
= lim

k→∞

x(s)− xk+1(ε)

x(z)− xk+2(ε)
= lim

k→∞

xk+1(ε)

xk+2(ε)
= q

1
2

since lim
k→∞

xk(ε) = ∞, due to the fact that |q| < 1. Therefore, lim
k→∞

∣∣∣ak+1

ak

∣∣∣ =
√
|q| < 1 and the

series converges.

In the third step, we deduce, for fixed s and z, the convergence when N goes to infinity of the
expression FN (x(s))

FN (x(z))
, by observing that:

FN(x(s))

FN(x(z))
=

N∏
k=1

1− x(s)
xk(ε)

1− x(z)
xk(ε)

and that
N∏
k=1

(
1− x(s)

xk(ε)

)
and

N∏
k=1

(
1− x(z)

xk(ε)

)
converge when N goes to infinity, since lim

k→∞
xk(ε) = ∞.

The proof is completed by taking the limit when N goes to infinity in Equation (90).

By taking the integral of both sides of Relation (90) (divided by x(z) − x(s)) and taking, formally,
the limit when N goes to infinity, we obtain:

S0(L)(x(z)) = S1(L)(x(z)) + lim
N→∞

∫ b

a

[
1

(x(z)− x(s))

FN(x(s))

FN(x(z))

]
dµ(x(s)) (91)

with z 6= s, z 6= ε+ j
2
, j ≥ 0, x(z) /∈ [a, b];

S1(L)(x(z)) =
∞∑
n=0

µ̂n
Fn+1(x(z))

(92)

where S0(L)(x(z)) is the usual Stieltjes function defined by (24) and:

µ̂n =

∫ b

a

Fn(x(s)) dµ(x(s)) := 〈L, Fn(x(s))〉

Remark 23. The function, S1(L)(x(z)), defined above will be called the new representation of the
formal Stieltjes function. The fact that we call S1(L)(x(z)) a new representation of the formal Stieltjes
function is justified, for classical orthogonal polynomials on a nonuniform lattice, by the fact that, on the
one hand, the Riccati Equation satisfied by the formal Stieltjes function, S0(L)(x(z)), is equivalent to
the second-order divided-difference equation (defining completely the polynomials) satisfied by classical
orthogonal polynomials on a nonuniform lattice [17]. On the other hand, the Riccati Equation satisfied
by the so-called new representation of the formal Stieltjes function, S1(L)(x(z)), is equivalent to
the same second-order divided-difference equation satisfied by classical orthogonal polynomials on a
nonuniform lattice [31].
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Using S(L)(x(z)) := S1(L)(x(z)), we prove the following theorem by defining, formally, the actions
of the operators, Dx and Sx, on S(L) as follows:

Ox S(L)(x(z)) =
∞∑
n=0

µ̂n Ox
1

Fn+1(x(z))
, z 6= ε+

j

2
, Ox ∈ {Dx, Sx}

Theorem 24. The following results hold:

S (DxL)(s)) = DxS(L)(s) (93)

S (SxL)(s)) = α SxS (L) (s) + U1DxS (L) (s) (94)

where the actions of Dx and Sx on L are defined as:

〈DxL, P 〉 = −〈L,DxP 〉, 〈SxL, P 〉 = 〈L,SxP 〉, ∀P ∈ C[x(s)]

and the product of a polynomial, f , by a linear functional, L, fL, is defined by:

〈fL, P 〉 = 〈L, fP 〉, ∀P ∈ C[x(s)]

Proof: Relation (93) is obtained by direct computation using Equations (30) and (32). The proof of
(94) uses the following results:

S(U1(x(s))DxL) = U1(x(s))S(DxL) (95)

SxFn + Dx(U1Fn) = α(αn+1Fn +
γn
2
∇xn+2(ε)Fn−1) (96)

Relation (95) is obtained using the well-known result by Maroni [32]:

S [fL] (x) = f(x)S [L] (x) + (Lθ0f)(x), f ∈ C[x] (97)

where:
θ0f(x) =

f(x)− f(0)

x

and:

Lg(x(s)) =
n∑
k=0

gk

k∑
j=0

〈L, xj(s)〉xk−j(s), with g(x(s)) =
n∑
k=0

gk x
k(s), n ≥ 0

Relation (96) is derived by direct computation using (10), (21), (28), (30) and (31).
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To prove Relation (94), we combine (31), (33), (95), (96), and the fact that γ0 = 0 to get:

S(SxL)(x(s))− U1(x(s))Dx(S(L))(x(s)) = S(SxL − U1(x(s))DxL)

=
∞∑
n=0

〈L,SxFn + Dx(U1Fn)〉
Fn+1(x(s))

= α

∞∑
n=0

〈L, (αn+1Fn + γn

2
∇xn+2(ε)Fn−1〉

Fn+1(x(s))

= α

∞∑
n=0

〈L, αn+1Fn〉
Fn+1(x(s))

+ α

∞∑
n=0

〈L, γn∇xn+2(ε)Fn−1〉
2Fn+1(x(s))

= α

∞∑
n=0

〈L, αn+1Fn〉
Fn+1(x(s))

+ α

∞∑
n=1

〈L, γn∇xn+2(ε)Fn−1〉
2Fn+1(x(s))

= α

∞∑
n=0

〈L, αn+1Fn〉
Fn+1(x(s))

+ α

∞∑
n=0

〈L, γn+1∇xn+3(ε)Fn〉
2Fn+2(x(s))

= α

∞∑
n=0

〈L, Fn〉
(

αn+1

Fn+1(x(s))
+
γn+1∇xn+3(ε)

2Fn+2(x(s))

)
= α

∞∑
n=0

〈L, Fn〉Sx
1

Fn+1(x(s))

= αSx(S(L))(x(s))

2
4.2. Series Expansion of the Basic Exponential Function

In this sub-section, we represent the basic exponential function in terms of the basis, (Fk)k. The
basic exponential function, Eq(x(s);w), can be defined using the representation by Ismail and Stanton
(see [27] page 21 and references therein):

Eq(x;w) =

(
−w; q

1
2

)
∞

(qw2; q2)∞
2ϕ1

(
q

1
4 eiθ, q

1
4 e−iθ

−q 1
2

∣∣∣∣∣ q 1
2 ;−w

)
, x = cos θ

where (a, q)∞ =
∞∏
n=0

(1− aqn).

By putting eiθ = qs, and therefore:

x = cos θ =
eiθ + e−iθ

2
=
qs + q−s

2
= x(s)

Eq(x(s);w) satisfies the following first-order divided-difference Equation ([27], page 18)

Dxy(x(s)) =
2wq

1
4

1− q
y(x(s))

By inserting the series expansion of y(x(s)) in terms of (Fk)k:

y(x(s)) =
∞∑
n=0

anFn(x(s))
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in the previous first-order divided-difference equation and following the method developed in Theorem 8,
we get the following recurrence Equation for an:

an+1 =
2wq

1
4

(1− q)γn+1

an

from which we deduce that:

an =

(
2wq

1
4

1− q

)n
a0

γn!
, γ0! ≡ 1

Therefore we have, taking into account Equation (53), the following representation of the basic
exponential function:

Eq(x(s);w) = a0

∞∑
n=0

(
2wq

1
4

1− q

)n
Fn(x(s))

γn!

= a0

∞∑
n=0

(
wq

1
2

q − 1

)n
1

γn!

(
q

1−2n
4 qs; q

)
n

(
q

1−2n
4 q−s; q

)
n

where a0 is a suitable constant, which from the fact that Fn(x1(ε)) = 0, n ≥ 1, is given by:

a0 = Eq(x1(ε), w) =
(−w; q

1
2 )∞

(qw2; q2)∞

with the last expression taken from [27] (Equation 2.3.10, page 18). Here, it should be mentioned that
the previous expansion of the basic exponential function in terms of the basis, Fn, has already been given
by Ismail (see [19], Equation (2.4) page 363), using another approach.

4.3. Series Expansion of the Basic Trigonometric Functions

In this subsection, we represent the basic trigonometric functions in terms of the basis, (Fk)k.
The basic trigonometric cosine and sine functions are defined, respectively, by (see [27], page 23):

Cq(x;w) =
(−w2; q2)∞
(−qw2; q2)∞

2ϕ1

(
−qe2iθ,−qe−2iθ

q

∣∣∣∣∣ q2;−w2

)

Sq(x;w) =
(−w2; q2)∞
(−qw2; q2)∞

2wq
1
4

1− q
cos θ 2ϕ1

(
−qe2iθ,−qe−2iθ

q

∣∣∣∣∣ q2;−w2

)
, x = cos θ, |w| < 1

By putting eiθ = qs, the functions, Cq(x(s);w) and Sq(x(s);w), satisfy the following second-order
divided-difference Equation ([27], page 26):

D2
xy(x(s)) = −

(
2wq

1
4

1− q

)2

y(x(s)) (98)

We have the following:
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Proposition 25. The two linearly-independent solutions of (98) are Aq(x(s), w) and Bq(x(s), w),
defined by:

Aq(x(s), w) =
∞∑
n=0

(−1)n

(
2wq

1
4

1− q

)2n
F2n(x(s))

γ2n!
= 4φ3

(
qs+

1
4 , q−s+

1
4 , qs+

3
4 , q−s+

3
4

−q 1
2 , q

1
2 ,−q

∣∣∣∣∣ q;−w2

)
, qs = eiθ

Bq(x(s), w) =
∞∑
n=0

(−1)n

(
2wq

1
4

1− q

)2n
F2n+1(x(s))

γ2n+1!
= (x(s)− x(ε)) 4φ3

(
qs+

3
4 , q−s+

3
4 , qs+

5
4 , q−s+

5
4

−q 3
2 , q

3
2 ,−q

∣∣∣∣∣ q;−w2

)

Proof: By inserting the series expansion of y(x(s)) in terms of (Fk)k:

y(x(s)) =
∞∑
n=0

bnFn(x(s))

in (98) and following the method developed in Theorem 8, we get the following recurrence Equation:

bn+2 = −

(
2wq

1
4

1− q

)2
1

γn+2γn+1

bn

from which we deduce that:

b2n = (−1)n

(
2wq

1
4

1− q

)2n
b0
γ2n!

and b2n+1 = (−1)n

(
2wq

1
4

1− q

)2n
b1

γ2n+1!

Therefore, the two linearly-independent Solutions (98) are, taking into account Relation (65), the
explicit representation of Fn given in (53) for the Askey-Wilson lattice, and the relation (see [25],
Equation 1.2.39, page 6):

(a; q)2n = (a; q2)n(aq; q2)n

as well as the following relation obtained by direct computation:

γn! =
n∏
k=1

γk = q
−n(n−1)

4
(q; q)n

(1− q)n

Aq(x(s), w) =
∞∑
n=0

(−1)n

(
2wq

1
4

1− q

)2n
F2n(x(s))

γ2n!

=
∞∑
n=0

(
2wq

1
4

1− q

)2n
(−1)n

γ2n!

(
−q−n

2

2

)2n (
qs+

1
4 , q

1
2

)
2n

(
q−s+

1
4 , q

1
2

)
2n

= 4φ3

(
qs+

1
4 , q−s+

1
4 , qs+

3
4 , q−s+

3
4

−q 1
2 , q

1
2 ,−q

∣∣∣∣∣ q;−w2

)
and:

Bq(x(s), w) =
∞∑
n=0

(−1)n

(
2wq

1
4

1− q

)2n
F2n+1(x(s))

γ2n+1!

=
∞∑
n=0

(
2wq

1
4

1− q

)2n
(−1)n

γ2n+1!

(
−q− 2n+1

4

2

)2n+1 (
qs+

1
4 , q

1
2

)
2n+1

(
q−s+

1
4 , q

1
2

)
2n+1

= (x(s)− x(ε)) 4φ3

(
qs+

3
4 , q−s+

3
4 , qs+

5
4 , q−s+

5
4

−q 3
2 , q

3
2 ,−q

∣∣∣∣∣ q;−w2

)
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2

Since the functions, Cq and Sq, are both solutions of (98), which is equivalent to a second-order linear
homogeneous difference Equation of the form:

a2(s)Y (s+ 1) + a1(s)Y (s) + a0(s)Y (s− 1) = 0, with Y (s) = y(x(s))

where aj(s) are functions of s, they can be expressed as linear combination of the solutions, Aq and Bq:

Cq(x(s), w) = u0(s)Aq(x(s), w)+u1(s)Bq(x(s), w), Sq(x(s), w) = v0(s)Aq(x(s), w)+v1(s)Bq(x(s), w)

(99)
where ui and vi are quasi-constants in s, that is, they satisfy ui(s+ 1) = ui(s) and vi(s+ 1) = vi(s).

5. Conclusion and Perspectives

In this paper, we developed suitable bases (replacing the power basis, xn (n ∈ N≥0)), which
enable the direct series representation of orthogonal polynomial systems on nonuniform lattices
(quadratic lattices of a discrete or a q-discrete variable). We presented two bases of this type, the
first of which allows one to write solutions of arbitrary divided-difference equations in terms of
series representations extending results given in [23] for the q-case and in [26] for the quadratic case.
Furthermore, we used this basis to give a new representation of the Stieltjes function, which we have
already used (see [31]), to prove the equivalence between the Pearson Equation for the functional
approach and the Riccati Equation for the formal Stieltjes function, leading, therefore, to the theory
of classical orthogonal polynomials on a nonuniform lattice, using the functional approach.

When the Askey-Wilson polynomials are written in terms of this basis, we proved that the coefficients
are not q-hypergeometric. Therefore, we presented a second basis, which shares several relevant
properties with the first one. This basis enables one to generate the defining representation of the
Askey-Wilson polynomials directly from their divided-difference equation and, also, to solve more
general divided-difference equations of an arbitrary order involving the linear combination of D2j

x and
SxD2j+1

x , (j ≥ 0).
As perspective, we mention that this paper has led and shall lead to the following:

¬ The characterization of the classical and semi-classical orthogonal polynomials on a nonuniform
lattice using the functional approach. Here, new important characterization should be pointed out:
The equivalence between the Riccati divided-difference equation for the Stieltjes function:

φ(x(s))DxS(x(s)) = ψ(x(s)) SxS(x(s)) +D(x(s))

and the Pearson-type Equation for the functional:

Dx(φL) = Sx(ψL)

This pioneering work is mainly based on the use of the properties of (93) and (94), which have
been established using the new Representation (92) of the Stieltjes function in terms of Fn.
The characterization theorem of classical orthogonal polynomials on nonuniform lattices based
on the present paper has already been established and published [31].



Axioms 2013, 3 431

 The definition and the characterization of the Laguerre-Hahn orthogonal polynomials on
nonuniform lattices in terms of the functional Equation for the corresponding linear functional.
This provides the link between the functional approach and the one developed by Magnus [17,18]
using the Riccati Equation for the formal Stieltjes series. Furthermore, the characterization
in terms of the functional Equation allows the study of the modifications of the classical
and semi-classical orthogonal polynomials on a nonuniform lattice, such as the multiplication
of a classical functional by a polynomial (leading to a semi-classical functional) and the
associated classical orthogonal polynomials on a nonuniform lattice (leading to Laguerre-Hahn
orthogonal polynomials).

® The algorithmic determination of the connection and linearization coefficients of the
Askey-Wilson orthogonal polynomials using, mainly, the formalism developed in this paper, the
operators, Dx and Sx, as well as the bases, Bn(a, x). These results have already been established
and published [33].

¯ The extension of the Hahn problem [34] to nonuniform lattices: That is, to prove that any family
of orthogonal polynomials on a nonuniform lattice, satisfying a second-order linear homogeneous
divided-difference equation of the form:

A(x(s))D2
xY (x(s)) +B(x(s))SxDxY (x(s)) + C(x(s))Y (x(s)) = 0

where A, B and C are polynomials, is semi-classical. This work, mainly based on the basis, Fn,
is almost completed [35].

° It might also be used to solve specific divided-difference equations, such as the q-wave and the
q-heat Equations [27]; and provide new identities in the domain of special functions.
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