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Abstract

The computation of the chromatic polynomial of a graph, which was introduced by (BIR), is
an NP-complete problem. Consequently, this is also valid for the bivariate generalization of the
chromatic polynomial by (DPT). A recursion formula, which was presented by (AGM), has
exponential complexity. Hence, the aim of the current article is to find efficient algorithms or
formulas for the calculation of the bivariate chromatic polynomial for special types of graphs.
The following results will be presented:

We found efficient formulas for complete graphs, from which the edges of stars with pairwise
different vertices are deleted, for complete partite graphs and for special split graphs.

Furthermore, in a section about separators, we show that the special case of separating com-
plete subgraphs, which is very simple in the univariate case, requires rather complex methods
in the bivariate case.

Finally, we establish a connection between the bivariate chromatic polynomial and the match-
ing polynomial for complete graphs from which the edges of stars with pairwise different vertices
are removed, as well as for bi-cliques.

Some algorithms are implemented in Mathematica, and examples are presented.
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1. Introduction

The bivariate chromatic polynomial by (DPT) is a generalization of the chromatic
polynomial. It can be generalized to the trivariate chromatic polynomial, which is a spe-
cial case of the multivariate chromatic polynomial by (WHI). Before the multivariate
chromatic polynomial was known, (AGM) introduced the edge-elimination-polynomial,
which is the most general polynomial that satisfies a special recurrence relation. In gen-
eral, this polynomial is P-hard to compute, but for graphs of tree-width at most k it
is polynomial time computable. As (TRI) showed, the edge-elimination-polynomial is
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equivalent to the trivariate chromatic polynomial.
Chromatic polynomials have many applications in graph theory, topology, theoretical
physics and in planning mobile networks. Nevertheless, there are only comparatively
few publications on the bivariate chromatic polynomial. In their work (DPT) introduced
explicit representations for the bivariate chromatic polynomial of complete graphs, com-
plete bipartite graphs, paths and cycles. They also showed that the polynomial can be
evaluated in polynomial time for trees and graphs of restricted pathwidth. In this text, we
will introduce more formulas for further classes of graphs, show the complexity of com-
puting the bivariate chromatic polynomial for graphs with complete separators in general
and show a connection between the bivariate chromatic polynomial and the matching
polynomial for special classes of graphs.

In the following, we will only consider simple and finite graphs G = (V,E). For a sub-
graph H of G we write H ⊆ G, and for X ⊆ V , the graph G[X] is the subgraph induced
by the set X. If G = (V,E) is a graph with U ⊂ V , G− U denotes the graph G[V \ U ].
Furthermore, G− v = G− {v} with v ∈ V is the graph with the vertex set V \ {v} and
the edge set E \ {e ∈ E|v ∈ e} (deletion of v).
For terminology see (BOL).
A proper coloring of a graph G is a map from V to a set of colors Y with |Y | = y
without adjacent vertices having the same color. The chromatic polynomial P (G; y) of a
graph G, which was introduced by (BIR), denotes the number of all such maps. For this
polynomial the following relation holds.

Theorem 1 ((BIR), page 42). The number P (G; y) of all proper colorings of G =
(V,E) in y colors is a polynomial in y of degree n = |V |, which can be computed as
follows: Let mi for i = 1, . . . , n be the number of all proper colorings of G using exactly i
colors modulo permutations of the colors. Then, counting also all permutations, we have
miy (y − 1) . . . (y − i+ 1) possibilities to color the vertices of G with exactly i colors. That
means we also distinguish colorings, which only differ by permutation. Altogether, we get

P (G; y) =

n∑
i=1

miy
i ,

where yi = y (y − 1) · · · (y − i+ 1) denotes the falling factorial.

Thus, the chromatic polynomial has only integral coefficients, i.e. P (G; y) ∈ Z[y].
Since the computation of the chromatic polynomial of a graph is an NP-complete prob-
lem (see (SKI), section 5.5.1) for complicated graphs it is difficult to compute the chro-
matic polynomial using for example the package GraphTheory contained in Maple (see
(FKKM)) or the packages Combinatorica (see (SKI)) and GraphUtilities (see (WOL))
contained in Mathematica. Later we will compute some examples with Mathematica using
our package BivariatePolynomials. We will present the package BivariatePolynomials
in the appendix.
Now we give a generalization of the univariate chromatic polynomial which was intro-
duced by (DPT) and which also allows colors that may be distributed arbitrarily to the
vertices.
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Definition 2 ((DPT)). Let G = (V,E) be a graph and X = Y ∪ Z with Y ∩ Z = ∅
the set of all available colors. The colors from Y are called proper and the colors from
Z improper. We set |X| = x and |Y | = y. A generalized proper coloring of G is a map
φ : V → X such that for each e = {v1, v2} ∈ E if φ(v1) ∈ Y and φ(v2) ∈ Y then
φ(v1) 6= φ(v2). The number of all generalized proper colorings of G in x colors is called
P (G;x, y).

Theorem 3 ((DPT)). In the setting of Definition 2 P (G;x, y) can be written as

P (G;x, y) =
∑
X⊆V

(x− y)
|X|

P (G−X; y) .

Because P (G;x, y) can easily be expressed using the univariate chromatic polynomial,
P (G;x, y) is obviously a polynomial too, namely the generalized bivariate chromatic
polynomial. As a result also P (G;x, y) ∈ Z[x, y] is true.
A generalized proper vertex coloring of a graph G = (V,E) corresponds to a partition of
V , such that there exists a bijection from the set of these subsets of V to Y ∪{a}, where
a is chosen from Z arbitrarily and the pre-image of every member of Y is an independent
set. The following definition will prepare this presentation of P (G;x, y).

Definition 4. Let G = (V,E) be a graph. We call a partition of V a partition of G.
Π(G) denotes the set of all partitions of G. Each member of a partition is called a block.

In this work we will only be interested in partitions which are defined as follows.

Definition 5. Non adjacent vertices and edges which don’t have any vertex in common
are called independent of each other. A set X ⊆ V or Y ⊆ E is said to be independent if
its members are pairwise independent of each other.
An independent partition π of G = (V,E) denotes, as defined in (DPT), section 3, a
partition of G, such that each block A ∈ π is independent. We denote the set of all
independent partitions by ΠI(G).

2. The recursion formula for P (G;x, y) by Averbouch, Godlin and Makowsky

(AGM) proved a recursive relation for the generalized bivariate chromatic polynomial
P (G;x, y) of a graph G = (V,E); it is a special case of a recursion formula for the edge
elimination polynomial, that they also proved.
To prepare the recursion representation of P (G;x, y), we define for an edge set F ⊆ E
the graph G − F = (V,E \ F ) and especially for one single edge e ∈ E the graph
G− e = (V,E \ {e}) (deletion of e). Moreover, for an edge e = {v1, v2} ∈ E we construct
a new graph G/e from G by removing e, identifying v1 and v2 as one new single vertex
and replacing all possibly arising multiple edges by single edges (contraction of e).
For P (G;x, y) the following relation holds.

Theorem 6 ((AGM)). Let G = (V,E) be a graph and e = {v1, v2} ∈ E. Then

P (G;x, y) = P (G− e;x, y)− P (G/e;x, y) + (x− y)P (G− {v1, v2} ;x, y) (AGM1)
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with the initial conditions P (K1;x, y) = x and P (∅;x, y) = 1, where Kn for n ≥ 1
denotes the complete graph with n vertices and ∅ the zero graph without any vertices.
For graphs G1, G2 with disjoint vertex sets also

P (G1 ∪G2;x, y) = P (G1;x, y)P (G2;x, y)

holds.

The equation in Theorem 6 can also be solved for P (G − e, x, y) and can be used to
compute this polynomial using the other three graphs.
Because we will often analyze the complexity concerning our results, it is important to
compare it with the complexity of the formula in Theorem 6. As it can be seen easily,
the complexity of the method in Theorem 6 in general turns out to be exponential with
base 3. Thus, our aim is to find more efficient ways for certain special graphs. In the
following, we will assume that numerical calculations are much less complex than graph
operations.

3. More general representations by using independent partitions

In this section we introduce two general representations of the bivariate chromatic
polynomial P (G;x, y) of an arbitrary graph G. For this purpose we return to the repre-
sentation which was shown in Theorem 1. It can be written as follows.

Theorem 7. For the univariate case Z = ∅ the equation in Theorem 1 can also be
written as

P (G; y) =
∑

π∈ΠI(G)

y|π| .

From this we get the following result, which we will often use as an efficient method
to prove more special cases.

Theorem 8. Let M be a set and let P(M) = {L|L ⊆M} denote the power set of M . For
a natural number k ≥ 1 let Pk(M) = {L ∈ P(M)| |L| = k}. Furthermore, let G = (V,E)
be a graph, ΠI(G[X]) the set of all independent partitions of X ⊆ V and n = |V |. Then

P (G;x, y) =
∑
W⊆V

(x− y)
|W | ∑

π∈ΠI(G[V \W ])

y|π|

=

n∑
i=0

(x− y)
n−i ∑

X∈Pi(V )

∑
π∈ΠI(G[X])

y|π| .

Proof. By Theorem 3
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P (G;x, y) =
∑
W⊆V

(x− y)
|W |

P (G−W ; y) .

Together with Theorem 7 we get the first equation. The second equation follows from

∑
W⊆V

(x− y)
|W | ∑

π∈ΠI(G[V \W ])

y|π| =

n∑
i=0

∑
W∈Pn−i(V )

(x− y)
|W | ∑

π∈ΠI(G[V \W ])

y|π|

=

n∑
i=0

(x− y)
n−i ∑

X∈Pi(V )

∑
π∈ΠI(G[X])

y|π| .

2

Now we will show a further method of representing the bivariate chromatic polynomial
by using independent partitions. Here we form the outer sum by using all independent
partitions. For some proofs this method will turn out to be more advantageous.

Theorem 9. Let G be a graph, ΠI(G) the set of all independent partitions of G. Then

P (G;x, y) =
∑

π∈ΠI(G)

|π∩P1(V )|∑
i=0

(
|π ∩ P1(V )|

i

)
(x− y)

i
y|π|−i

is an alternative representation of Theorem 6 and Corollary 7 in (DPT).

Proof. First, for each independent partition π ∈ ΠI(G) we color the different blocks

from π differently using proper colors. Thus, we get y|π| possibilities as in the univariate
case. This corresponds with the case i = 0. To use the colors from Z we choose i blocks
with i ≥ 1, but we only include all X ∈ π with |X| = 1 to avoid double colorings. This
problem could occur as follows: Refering to the definition of improper colors, we also
may distribute the same improper color to different blocks from π. If we color a block
X ∈ π with |X| ≥ 2 improper, we get the same coloring also by using each refinement
π′ of π, such that exactly the block X ∈ π is replaced by blocks X ′1, . . . , X

′
k ∈ π′ with

2 ≤ k ≤ |X|. For this purpose we respectively color X ′1, . . . , X
′
k in the same improper

color we have already chosen for X and transfer for all other, not changed blocks the
same color as before.
To color i blocks of all |{X ∈ π| |X| = 1}| blocks of cardinality one in an improper color,

there are
(|{X∈π||X|=1}|

i

)
possibilities. 2

4. Deletion of stars in complete graphs

The representations introduced in the previous section yield efficient methods of prov-
ing the bivariate chromatic polynomial for graphs belonging to certain special graph
classes. We start with a family of graphs which have comparatively many edges: they are
constructed from a complete graph Kn = (V,E) with n = V by removing the edges of
certain pairwise disjoint subgraphs.
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Definition 10. A star is a bipartite graph K1,r with blocks of cardinalities 1 and r for
a natural number r ≥ 1.
Let N, t1 . . . , tN be positive integers. A graph obtained from the complete graph Kn by
removing the edge sets of

∑N
m=1 tm vertex-disjoint stars is denoted by

Kn −
N∑
m=1

tmK1,m, where we suppose that there are exactly tm stars of order m + 1

removed, m = 1, . . . , N .

For this graph type we obtain a recursion-free method of computing the bivariate
chromatic polynomial as follows.

Theorem 11. Let n, N be positive integers and t1, t2, . . . , tN ≥ 0 integers such that

n ≥
∑N
m=1 tm (m+ 1). Define G = Kn −

N∑
m=1

tmK1,m. Then

P (G;x, y) =

tN∑
bN=0

(
tN
bN

)
N bN

tN−1∑
bN−1=0

(
tN−1

bN−1

)
(N − 1)

bN−1 . . .

t2∑
b2=0

(
t2
b2

)
2b2

t1∑
b1=0

(
t1
b1

)
n−2bN−...−2b1∑

i=0

(
n− 2bN − . . .− 2b1

i

)
(x− y)

i
yn−bN−...−b1−i .

Proof. For our proof we use Theorem 9:
The first sum in Theorem 9 is formed over all independent partitions of G. To generate
these partitions of G, each block only may consist of either one vertex or two vertices,
where the edge between them has been deleted. There are

∏N
m=1

∑tm
bm=0

(
tm
bm

)
mbm ways of

choosing blocks X2 with |X2| = 2. The remaining blocks X1 are of cardinality |X1| = 1.

So we get |ΠI(G)| =
∏N
m=1

∑tm
bm=0

(
tm
bm

)
mbm , which leads to

tN∑
bN=0

(
tN
bN

)
N bN

tN−1∑
bN−1=0

(
tN−1

bN−1

)
(N − 1)

bN−1 . . .

t2∑
b2=0

(
t2
b2

)
2b2

t1∑
b1=0

(
t1
b1

)

possibilities to choose a set of blocks X2 with |X2| = 2.
From the remaining n − 2bN − . . . − 2b1 vertices we choose i vertices which are colored
improper. For this, there are

n−2bN−...−2b1∑
i=0

(
n− 2bN − . . .− 2b1

i

)
(x− y)

i

possibilities.
Because we want to color both vertices of X2 in the same proper color, we count each
pair of vertices in X2 as only one vertex. So, in the end, we need n − bN − . . . − b1 − i
different proper colors and have yn−bN−...−b1−i possibilities to choose them. 2
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As already mentioned before, the method in Theorem 6 has exponential cost because
of the three graph operations in every recursion step. In contrast, the formula in Theorem
11 does not need any graph operations and recursion steps. There are only computation
steps, which are given by a product of sums. Hence, the computation complexity must
be polynomial bounded.

We want to show an example using the Mathematica packages Combinatorica ((SKI)),
GraphUtilities ((WOL)) and our package BivariatePolynomials. We denote the re-
cursion formula of Theorem 6 by BivariatePolynomialAGM1 in our package
BivariatePolynomials. If we solve this equation for P (G − e;x, y), we denote it by
BivariatePolynomialAGM2.
Now, we consider the special caseK9−K1,3−K1,2−K1,1 from Theorem 11. To compute its
bivariate chromatic polynomial we use the implementations BivariatePolynomialAGM1
and BivariatePolynomialAGM2 and compare the results with the result of the equation
in Theorem 11, which is implemented directly.

G1=DeleteEdges[Combinatorica‘CompleteGraph[9],{{1,2},{1,3},{1,4},{5,6},{5,

7},{8,9}}];

Timing[BivariatePolynomialAGM1[G1,x,y]]

{127.515, x9 + 17280y − 21288xy + 13332x2y − 5688x3y + 1874x4y − 515x5y

+126x6y − 30x7y − 27648y2 + 31030xy2 − 17218x2y2 + 6212x3y2 − 1580x4y2

+263x5y2 + 11484y3 − 10225xy3 + 3976x2y3 − 734x3y3 − 1114y4 + 462xy4}
Timing[BivariatePolynomialAGM2[G1,x,y]]

{0.280802, x9 + 17280y − 21288xy + 13332x2y − 5688x3y + 1874x4y − 515x5y

+126x6y − 30x7y − 27648y2 + 31030xy2 − 17218x2y2 + 6212x3y2 − 1580x4y2

+263x5y2 + 11484y3 − 10225xy3 + 3976x2y3 − 734x3y3 − 1114y4 + 462xy4}
Timing[Expand[

Sum[Binomial[1, c]*3^c*

Sum[Binomial[1, b]*2^b*

Sum[Binomial[1, a]*1^a*

Sum[Binomial[9 - 2*c - 2*b - 2*a, i]*(x - y)^i*

FunctionExpand[FactorialPower[y, 9 - c - b - a - i]],

{i, 0, 9 - 2*c - 2*b - 2*a}], {a, 0, 1}], {b, 0, 1}], {c, 0, 1}]]]

{0.0156001, x9 + 17280y − 21288xy + 13332x2y − 5688x3y + 1874x4y − 515x5y

+126x6y − 30x7y − 27648y2 + 31030xy2 − 17218x2y2 + 6212x3y2 − 1580x4y2

+263x5y2 + 11484y3 − 10225xy3 + 3976x2y3 − 734x3y3 − 1114y4 + 462xy4}

For the graph K40−K1,5−2 ·K1,4−K1,3−4 ·K1,1 we use only the second implementation
BivariatePolynomialAGM2, which stopped after 1 hour computing time while the direct
computation using Theorem 11 leads to the result in 1.63801 seconds.
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5. Complete k-partite graphs

A well-studied family of graphs are the complete k-partite graphs with k ≥ 2. Let
Kn1,n2,...,nk be the complete k-partite graph with k blocks of cardinality ni for i =
1, . . . , k. For the special case with an arbitrary k ≥ 2 and with ni = 2 for all i ∈ {1, . . . , k}
the computation of the bivariate chromatic polynomial is very simple and does not need
any recursion.

Theorem 12. Let G be the complete k-partite graph K2,...,2︸︷︷︸
k times

. Then we get

P (G;x, y) =

k∑
i=0

(
k

i

) 2k−2i∑
l=0

(
2k − 2i

l

)
(x− y)

2k−2i−l
yi+l .

Proof. Observe that K2,...,2
∼= K2k − kK1,1. Now we apply Theorem 11 with n = 2k,

N = 1 and t1 = k.

P (K2k − kK1,1;x, y) =

k∑
b1=0

(
k

b1

) 2k−2b1∑
l=0

(
2k − 2b1

l

)
(x− y)

b1+l
y2k−b1−l

=

k∑
b1=0

(
k

b1

) 2k−2b1∑
l=0

(
2k − 2b1

l

)
(x− y)

2k−2b1−l yb1+l .

2

We look at the complexity of the formula in Theorem 12. This method does not need
any graph operations and recursion steps, and we have again a product of sums of com-
putation steps. So, in opposition to the recursion formula in Theorem 6, the complexity
of our equation in Theorem 12 is polynomial bounded.

Now, we compute the bivariate chromatic polynomial of the graph K2,2,2,2 and use again
the implementations BivariatePolynomialAGM1 and BivariatePolynomialAGM2. We
compare them with the directly implemented equation from Theorem 12.

G2=CompleteKPartiteGraph[2,2,2,2];

Timing[BivariatePolynomialAGM1[G2,x,y]]

{16.3333, x8 − 2790y + 3408xy − 2128x2y + 912x3y − 306x4y + 88x5y − 24x6y

+4059y2 − 4392xy2 + 2320x2y2 − 768x3y2 + 156x4y2 − 1332y3 + 1008xy3

−272x2y3 + 60y4}
Timing[BivariatePolynomialAGM2[G2,x,y]]

{0.156001, x8 − 2790y+ 3408xy− 2128x2y+ 912x3y− 306x4y+ 88x5y− 24x6y+ 4059y2

−4392xy2 + 2320x2y2 − 768x3y2 + 156x4y2 − 1332y3 + 1008xy3 − 272x2y3 + 60y4}
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BivariatePolynomialAGM2
G2 = CompleteKPartiteGraph[2, 2, 2, 2];
Timing[BivariatePolynomialAGM1[G2, x, y]]
Timing[BivariatePolynomialAGM2[G2, x, y]]


Timing[Expand[

Sum[Binomial[4, i]*

Sum[Binomial[8 - 2*i, l]*(x - y)^{8 - 2*i - l}*

FunctionExpand[FactorialPower[y, i + l]], {l, 0, 8 - 2*i}],

{i, 0, 4}]]]

{0., x8 − 2790y + 3408xy − 2128x2y + 912x3y − 306x4y + 88x5y − 24x6y + 4059y2

−4392xy2 + 2320x2y2 − 768x3y2 + 156x4y2 − 1332y3 + 1008xy3 − 272x2y3 + 60y4}

For the graph K2,...,2︸︷︷︸
30 times

we use only the implementation BivariatePolynomialAGM2 and

compute the equation from Theorem 12 again directly. While the implementation

BivariatePolynomialAGM2 stopped after 1 hour, the second computation came to a

result after 1.48201 seconds.

Now we assume again an arbitrary k ≥ 2, but instead of ni = 2 we set ni = 3 for

all i ∈ {1, . . . , k}. At this, we also get a simple recursion-free equation for the bivariate

chromatic polynomial.

Theorem 13. Let G be the complete k-partite graph K3,...,3︸︷︷︸
k times

. Then we get

P (G;x, y) =

k∑
i=0

(
k

i

) i∑
t=0

(
i

t

)
3i−t

3k−2i−t∑
l=0

(
3k − 2i− t

l

)
(x− y)

3k−2i−t−l
yi+l .

Proof. We apply Theorem 9 to K3,...,3.

|ΠI(K3,...,3)|=
k∑
i=0

(
k

i

) i∑
t=0

(
i

t

)
3i−t

and for each πi,t ∈ ΠI(K3,...,3) because of

|πi,t|= 3k − 2i− t+ (i− t) + t

= 3k − i− t

also

|{X ∈ πi,t| |X| = 1}|= 3k − 2i− t .

Thus, we have

9



P (K3,...,3;x, y) =

k∑
i=0

(
k

i

) i∑
t=0

(
i

t

)
3i−t

3k−2i−t∑
l=0

(
3k − 2i− t

l

)
(x− y)

l
y3k−i−t−l

=

k∑
i=0

(
k

i

) i∑
t=0

(
i

t

)
3i−t

3k−2i−t∑
l=0

(
3k − 2i− t

l

)
(x− y)

3k−2i−t−l
yi+l .

2

Similar to the situation in Theorem 12 the complexity of the formula in Theorem 13
is polynomial bounded. Hence, we found an efficient method.

To compute the bivariate chromatic polynomial for the graph K3,3,3, we use again the
implementations BivariatePolynomialAGM1 and BivariatePolynomialAGM2 together
with a direct computation using Theorem 13.

G3=CompleteKPartiteGraph[3,3,3];

Timing[BivariatePolynomialAGM1[G3,x,y]]

{90.2934, , x9 + 11828y − 15048xy + 9738x2y − 4305x3y + 1476x4y − 423x5y

+108x6y − 27x7y − 18918y2 + 21942xy2 − 12582x2y2 + 4698x3y2 − 1242x4y2

+216x5y2 + 7848y3 − 7236xy3 + 2916x2y3 − 558x3y3 − 756y4 + 324xy4}
Timing[BivariatePolynomialAGM2[G3,x,y]]

{1.46641, x9 + 11828y − 15048xy + 9738x2y − 4305x3y + 1476x4y − 423x5y

+108x6y − 27x7y − 18918y2 + 21942xy2 − 12582x2y2 + 4698x3y2 − 1242x4y2

+216x5y2 + 7848y3 − 7236xy3 + 2916x2y3 − 558x3y3 − 756y4 + 324xy4}
Timing[Expand[

Sum[Binomial[3, i]*

Sum[Binomial[i, t]*3^(i - t)*

Sum[Binomial[9 - 2 i - t, l]*(x - y)^(9 - 2 i - t - l)*

FunctionExpand[FactorialPower[y, i + l]],

{l, 0, 9 - 2 i - t}], {t, 0, i}], {i, 0, 3}]]]

{0., x9 + 11828y − 15048xy + 9738x2y − 4305x3y + 1476x4y − 423x5y

+108x6y − 27x7y − 18918y2 + 21942xy2 − 12582x2y2 + 4698x3y2 − 1242x4y2

+216x5y2 + 7848y3 − 7236xy3 + 2916x2y3 − 558x3y3 − 756y4 + 324xy4}

We look at the running time result for the graph K3,...,3︸︷︷︸
20 times

using the implementation

BivariatePolynomialAGM2. It stopped after 1 hour running time while a direct comput-
ing using Theorem 13 comes to a result in 7.28525 seconds.

More generally, we will now introduce a way of representing the bivariate chromatic
polynomial of an arbitrary complete k-partite graph. We will not be able to avoid recur-
sion, but it will still turn out to be efficient. The complementary graph G = (V, F ) to a
graph G = (V,E), where F = {{v1, v2} ∈ P2(V )| {v1, v2} /∈ E}, will be important. Let
S(r, k) be the Stirling number of the second kind for natural numbers r and k.
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Theorem 14. We assume t ≥ 1 and ni ≥ 1 for all i ∈ {1, 2, . . . , t}. Then, analogous to
the bipartite case in (DPT), section 5.2, for the graph Kn1,n2,...,nt we have the recursive
representation

P (Kn1,n2,...,nt ;x, y) =

nt∑
i=0

(
nt
i

)
(x− y)

i
nt−i∑
j=0

S(nt−i, j) y
j P (Kn1,n2,...,nt−1

;x− j, y − j)

with the initial condition

P (Kn1
;x, y) = xn1 .

First, we introduce a definition for the proof.

Definition 15. Let G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅. Then G1 ∗G2 =
(W,F ) denotes the graph join of G1 and G2 with vertex set W = V1 ∪ V2 and edge set
F = E1 ∪ E2 ∪ {{v1, v2} |v1 ∈ V1 ∧ v2 ∈ V2}.

Proof. Obviously, the graph Kn1,n2,...,nt can be identified as follows:

P (Kn1,n2,...,nt ;x, y) = P (Kn1,n2,...,nt−1
∗Knt ;x, y) .

From all nt vertices of Knt we choose i vertices for an improper coloring, where i =
0, . . . , nt. For each i the number of all possible choices of i vertices from nt vertices
is
(
nt
i

)
. The remaining nt − i vertices are colored properly. Because of their pairwise

independence we may partition them arbitrarily to assign pairwise different colors to the
blocks. As possible numbers of blocks we get all numbers from 0 to nt − i. Because each
vertex is adjacent to all vertices in Kn1,n2,...,nt−1 , we may not use any of the proper colors
already chosen for the graph Kn1,n2,...,nt−1

. Finally, we get

P (Kn1,n2,...,nt ;x, y) =

nt∑
i=0

(
nt
i

)
(x− y)

i
nt−i∑
j=0

S(nt−i, j) y
j P (Kn1,n2,...,nt−1

;x− j, y − j) .

2

The Stirling number S(n, k) can be calculated in O(n2) time. Theorem 14 shows that
we only need one graph operation in every recursion step multiplied with a product of
two sums of computation steps and a Stirling number. Hence, the complexity of our
method must be polynomial bounded.

For an example in Mathematica we consider the special case n1 = n2 = . . . = nt = r
and return to the graph K3,3,3. We use the implementations BivariatePolynomialAGM1
and BivariatePolynomialAGM2. An implementation of the recursion formula in Theorem
14 in our package BivariatePolynomials is denoted by BivariatePolynomialGerling.
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G4=CompleteKPartiteGraph[3,3,3];

Timing[BivariatePolynomialAGM1[G4,x,y]]

{91.1358, x9 + 11828y − 15048xy + 9738x2y − 4305x3y + 1476x4y − 423x5y

+108x6y − 27x7y − 18918y2 + 21942xy2 − 12582x2y2 + 4698x3y2 − 1242x4y2

+216x5y2 + 7848y3 − 7236xy3 + 2916x2y3 − 558x3y3 − 756y4 + 324xy4}
Timing[BivariatePolynomialAGM2[G4,x,y]]

{1.46641, x9 + 11828y − 15048xy + 9738x2y − 4305x3y + 1476x4y − 423x5y

+108x6y − 27x7y − 18918y2 + 21942xy2 − 12582x2y2 + 4698x3y2 − 1242x4y2

+216x5y2 + 7848y3 − 7236xy3 + 2916x2y3 − 558x3y3 − 756y4 + 324xy4}
Timing[Expand[BivariatePolynomialGerling[3,3,x,y]]]

{0.0312002, x9 + 11828y − 15048xy + 9738x2y − 4305x3y + 1476x4y − 423x5y

+108x6y − 27x7y − 18918y2 + 21942xy2 − 12582x2y2 + 4698x3y2 − 1242x4y2

+216x5y2 + 7848y3 − 7236xy3 + 2916x2y3 − 558x3y3 − 756y4 + 324xy4}

For the graph K10,10,10,10 we use the implementations BivariatePolynomialAGM1,

BivariatePolynomialAGM2 and BivariatePolynomialGerling. The first and second

one stopped after 1 hour running time while the implementation

BivariatePolynomialGerling leads to the result after 77.7821 seconds.

6. Split graphs

Another important graph class is the class of split graphs. These graphs are definable

as graphs whose vertex set is partioned into two disjoint subsets, such that one of them

is independent and the other one induces a complete subgraph. For the general case we

consider the following result.

Theorem 16. Let G = (V,E) be a split graph with G1 = Kk and G2 = Ks, whose vertex

set is given by V = V (G1) ∪ V (G2) with V (G1) ∩ V (G2) = ∅. For v ∈ V let Γ(v) be

the set of all independent sets of V containing v, and for {v1, v2, . . . , vi} ⊆ V (G1) with

i = 0, . . . , k let

α = {(I1, . . . , Ii) ∈ Γ(v1)× . . .× Γ(vi) | Il ∩ Im = ∅ for all l,m ∈ {1, . . . , i} with l 6= m}.
Then

P (G;x, y) =

k∑
i=0

(x− y)
k−i

yi
∑

{v1,v2,...,vi}⊆V (G1)

∑
α

(x− i)s−|I1|−|I2|−...−|Ii|+i

holds.
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Proof. We apply Theorem 8 to G1. Within G1 each choice {v1, v2, . . . , vi} allows only

the trivial independent partition {{v1} , {v2} , . . . , {vi}}. Thus, all proper colors in G1

must be pairwise different. Hence, we get (x− y)
k−i

yi possibilities for G1 to color the

chosen vertices properly and the remaining vertices in G1 improperly.

We now count the possibilities of coloring the graph G2 and consider all possibilities of

coloring vertices from V (G2) respectively in the same color, such as the above chosen

vertices vr with r = 1, 2, . . . , i. The vertices vr are colored pairwise different and properly,

hence also the sets Ir. Thus, Il ∩ Im = ∅ for all l,m ∈ {1, 2, . . . , i} with l 6= m has to be

true. Now we use none of the already employed colors from Y for the remaining vertices

in G2 to exclude forbidden colorings, because adjacencies between vertices from V (G1)

and V (G2) in general exist. In total, all allowed cases were already considered in the

choice of our sets (I1, I2, . . . , Ii). 2

Furthermore, we also observe the following alternative representation.

Theorem 17. We consider a split graph G = (V,E) like in Theorem 16 with a ver-

tex set V = V (Kk) ∪ V (Ks), such that V (Kk) ∩ V (Ks) = ∅. Furthermore, we de-

fine V (Ks) = {vi ∈ V |i = 1, . . . , s} and for W ⊆ V (Kk) the set NG[V (Kk)\W ](vi) =

{w ∈ V (Kk) \W | {vi, w} ∈ E(G)}. This leads to

P (G;x, y) =
∑

W⊆V (Kk)

(x− y)
|W |

yk−|W |
s∏
i=1

(
x−

∣∣NG[V (Kk)\W ] (vi)
∣∣) .

Proof. Applying Theorem 2.1 in (TAHU) we get

P (G; y) = yk
s∏
i=1

(
y − |N(vi)|

)
with N(vi) = {v ∈ V | {vi, v} ∈ E}. For the subgraph Kk there are yk possibilities to color

the vertices, because they are pairwise adjacent, and for each vertex vi in the subgraph

Ks we may exactly choose the colors which do not occur in N(vi). Together with the

equality

P (G;x, y) =
∑
W⊆V

(x− y)
|W |

P (G−W ; y)

from Theorem 1 in (DPT) the proof is finished. 2

The sums in Theorem 16 and Theorem 17 obviously differ in their complexities signif-

icantly. Hence, the method in Theorem 17 is much faster than the method in Theorem

16.
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7. Separators in graphs

For the univariate case it was shown (see (REA), Theorem 3) that seperators in graphs
are helpful to simplify the calculation of the chromatic polynomial. They are defined as
follows: If G = (V,E) is a connected graph and for W ⊆ V or W ⊆ E the graph G−W
is not connected, then W separates the graph. We call W a separator in G.
Now we consider the following case: Let G be a graph with G = G1 ∪G2 for two graphs
G1 and G2 satisfying G1 ∩ G2 = Kr for an r ≥ 1. According to (REA), Theorem 3, we
have

P (G; y) =
P (G1; y)P (G2; y)

yr
,

where

yr = P (Kr; y) .

The corresponding result in the bivariate case turns out to be much more complicated.

Theorem 18. Let the graph G = (V,E) =
⋃r
i=1Gi with Gi ∩ Gj = Ks for all i, j ∈

{1, . . . , r} with i 6= j and
⋂r
i=1Gi = Ks, i.e. Ks is a separator in G. Let Γ(v) for v ∈ V

be defined as in Theorem 16 and
α = {(I1, . . . , Ik) ∈ Γ(v1)× . . .× Γ(vk) | Il ∩ Im = ∅ for all l,m ∈ {1, . . . , k} with l 6= m}.
Then we get

P (G;x, y) =

s∑
k=0

(x− y)
s−k

yk
∑

{v1,...,vk}⊆V
(⋂r

i=1
Gi

)∑
α

r∏
i=1

P
(
Gi −

r⋂
j=1

Gj −
k⋃
t=1

It;x− k, y − k
)
.

Here, the summand for k = 0 is defined as (x− y)
s∏r

i=0 P
(
Gi −

⋂r
j=1Gj ;x, y

)
.

Proof. By using Theorem 8 the claim follows. 2

As we will see now, the observation can be generalized to separators that are not
complete in general. But here, we have to accept a constraint to the bivariate chromatic
polynomial as well as to construct a new graph. This one is defined as follows.

Definition 19 ((TIT)). Let G be a graph and H a subgraph of G. For each π ∈ ΠI(H)
a new graph Gπ can be defined as follows: Each block X ∈ π can be replaced by a
vertex. We add an edge between each pair of vertices if there was no edge between
the corresponding blocks. Besides, there is an adjacency between each pair of vertices
v ∈ V (H) and w ∈ V (G−H) if and only if w in G was adjacent to a vertex from X ∈ π
with v ∈ X.

This leads to the following result.
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Theorem 20. Let G = (V,E) = G1 ∪G2 with G1 ∩G2 = H and W ⊆ V (H). Assuming
that all vertices from (H −W )π are colored properly, we define the number of all gener-

alized proper colorings of Gi −W as PH−W
( (
Gi −W

)
π

;x, y
)

. For each W ⊆ V (K|π|)

the number PK|π|−W (Giπ;x, y) is defined analogous. Then the following holds:

P (G;x, y) =
∑
W⊆V

(x−y)
|W |∑

π

P
(

(G1−W )π; y
)
P
(

(G2−W )π; y
)

y|π|

=
∑

W⊆V (H)

(x−y)
|W |∑

π

PH−W
(

(G1−W )π;x, y
)
PH−W

(
(G2−W )π;x, y

)
y|π|

where the inner sum is over π ∈ ΠI(G[V (H) \W ]). In the case x 6= y we also get

P (G;x, y) =
∑

π∈ΠI(G[V (H)])

∑
W⊆V (K|π|)

PK|π|−W (G1
π;x, y)PK|π|−W (G2

π;x, y)

(x− y)
|W |

y|π|−|W |

and for x = y by (TIT) in equation (6.2) in section 6.3.3

P (G; y) =
∑

π∈ΠI(G[V (H)])

1

y|π|
P (G1

π; y)P (G2
π; y) .

Proof. The first equation is given by a combination of the following two equations:
From Theorem 1 in (DPT) we use

P (G;x, y) =
∑
W⊆V

(x− y)
|W |

P (G−W ; y)

and from (TIT), equation (6.2),

P (G; y) =
∑

π∈ΠI(G[V (H)])

1

y|π|
P (G1

π; y)P (G2
π; y) .

The last relation can be found as follows: We first choose G1 and G2 as above. After that,
we construct a complete subgraph of G = G1 ∪G2 from each independent partition of H
as in Definition 19. Thus, we can apply Theorem 3 in (REA) for a graph G = G1 ∪ G2

with G1 ∩G2 = Kr and r ≥ 1 to obtain

P (G; y) =
P (G1; y)P (G2; y)

P (Kr; y)
.

For the second equation we sum over all W ⊆ V (H) instead of summing over all W ⊆ V .
To consider the improper colors in V (G − H), we have to use the bivariate chromatic
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polynomials of Gi −W for i ∈ {1, 2}, but on condition of using only proper colors for
the vertices of (H −W )π.
Finally, we change the order of both sums as well as the parts of W and π. 2

Here, a simple special case arises.

Theorem 21. Given the situation in Theorem 20 for the case H ∼= Kr with r =∣∣V (G1) ∩ V (G2)
∣∣, we get

P (G;x, y) =
∑

W⊆V (Kr)

PKr−W (G1;x, y)PKr−W (G2;x, y)

(x− y)
|W |

yr−|W |
.

Proof. Since ΠI(Kr) =
{{
{v1} , . . . , {vr}

}}
with V (Kr) = {v1, . . . , vr} the claim fol-

lows. 2

To avoid the inconvenient constraints to the chromatic polynomials in the relation
in Theorem 20, we use the following method, which contains the inclusion-exclusion
principle. Assumed, Möbius inversion is known, the inclusion-exclusion principle can be
proved easily.

Theorem 22. In the situation of Theorem 20 we get

P (G;x, y) =
∑

W⊆V (H)

(x−y)
|W |

∑
π∈ΠI(G[V (H)\W ])

∏2
i=1

∑
σ⊆π (−1)

|σ|
(x−y)

|σ|
P
( (
Gi−W−σ

)
π−σ ;x, y

)
y|π|

.

Proof. Using the inclusion-exclusion principle, we show for i = 1, 2 the equality

PH−W
(

(Gi−W )π;x, y
)

=
∑
σ⊆π

(−1)
|σ|

(x−y)
|σ|
P
(

(Gi−W−σ)π−σ;x, y
)
.

Definition 19 gives π = V
(

(H −W )π

)
. Let σ ⊆ π, such that exactly all blocks in π − σ,

i.e. all vertices in V
(

(H −W − σ)π

)
, are colored proper. Let PH−W≤

( (
Gi−W

)
π

;x, y
)

be the number of all generalized proper vertex colorings, such that in V
(

(H−W )π

)
also

improper colors may occur. Möbius inversion gives

PH−W≤

(
(Gi−W )π;x, y

)
=
∑
σ⊆π

PH−W
( (
Gi−W

)
π−σ ;x, y

)
(x− y)

|σ|
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⇔

PH−W
(

(Gi−W )π;x, y
)

=
∑
σ⊆π

(−1)|π|−(|π|−|σ|)PH−W≤

( (
Gi−W

)
π−σ ;x, y

)
=
∑
σ⊆π

(−1)|σ| (x− y)
|σ|
PH−W

( (
Gi−W − σ

)
π−σ ;x, y

)
.

2

8. The bivariate chromatic polynomial and the matching polynomial

Some special graphs have independent vertex partitions which consist only of blocks
with cardinalities one or two. Hence, each of them induces a vertex or an edge in the
complementary graph. Thus, each independent partition of such a graph implies a so-
called matching in the complementary graph.

Definition 23. Let G = (V,E) be a graph and M ⊆ E. M is called a matching if no two
edges of M have a vertex in common. If M consists of exactly k edges, M is a k-matching
of G.

In the literature different definitions of matching polynomials occur. We will use the
following definition introduced by (LOPL), section 8.5.

Definition 24 ((LOPL)). Let G = (V,E) be a graph and let n := |V | and ak be the
number of k-matchings in G for k = 1, . . . , bn/2c. The matching generating polynomial
is defined as

M(G;x) =

bn/2c∑
k=0

akx
k .

Now we return to the graph type in Definition 10, whose independent partitions fulfill
the property mentioned above.

Theorem 25. For natural numbers t1, . . . , tN we call a graph G = (V,E) according to

Definition 10 a Kn −
N∑
m=1

tmK1,m, if we can delete the edges of respectively tm stars

K1,m from a complete graph Kn, such that no two stars have any vertices in common.

Furthermore, let H =
∑N
m=1 tmK1,m, n := |V (H)| and M(H;x) =

∑bn/2c
k=0 akx

k. Then
we get

P (G;x, y) =

bn/2c∑
k=0

ak

n−2k∑
i=0

(
n− 2k

i

)
(x− y)

i
yn−k−i .

Hence, k is the number of all blocks X ∈ π ∈ ΠI(G) with |X| > 1 while ak is the number
of all such π with k blocks of the form X. Observe, that in general the relation ak = 0
holds starting with a certain k.
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Proof. In each independent partition of V there are only blocks which only consist of
just one vertex or one deleted edge, i.e. an edge of E(H). To achieve this, no two edges
of H may have a vertex in common. So we are looking for all possible matchings of H.
Hence, the number ak of all k-matchings in H is equivalent to the number of all partitions
π of V with exactly k blocks X with |X| > 1.
2

Theorem 26. For k ≤
∑N
i=1 ti Theorem 11 and Definition 24 lead to

ak=

k∑
bN=0

(
tN
bN

)
N bN

k−bN∑
bN−1=0

(
tN−1

bN−1

)
(N − 1)

bN−1. . .

k−bN−...−b3∑
b2=0

(
t2
b2

)
2b2
(

t1
k − bN−. . .−b2

)

and for bN , . . . , b1 we have also

k=

N−1∑
i=0

bN−i .

2

Furthermore, there is also a connection between the bivariate chromatic polynomial
of a biclique and the matching polynomial of its complementary graph. This relation
was already shown in (BOH), section 2, for the univariate chromatic polynomial. Before
we present a more general form for the bivariate case we need a Definition by (BOH),
section 1.

Definition 27 ((BOH)). A (m,n)-biclique is a graph G, which is the complementary
graph of a bipartite graph with partition sets of cardinalities m and n with n ≥ m.

Now we generalize the result by (BOH), section 2, mentioned above in the following
Theorem.

Theorem 28. Let G be an (m,n)-biclique with n ≥ m and

MG =
{
F ⊆ E(G)|F is a matching in G

}
.

In addition, let ai
G

be the number of all i-matchings in G. Analogous to the univariate

case in (BOH), section 2, we get

P (G;x, y) =
∑

X∈MG

∑
W⊆V (G)\V (X)

(x− y)
|W |

ym+n−|W |−|E(X)|

=
∑
H⊆G

(x− y)
G−H ∑

X∈MH

ym+n−|W |−|E(X)|

=

m∑
i=0

ai
G

m+n−2i∑
j=0

(x− y)
j

(
m+ n− 2i

j

)
ym+n−j−i .
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Proof. Equal proper colors may only be assigned to pairwise non-adjacent vertices. As
already mentioned in (BOH), section 2, the only possibility to do this is given by vertices
which belong to a matching in G. Improper colors are exclusively assigned to vertices
which do not belong to the currently considered matching. To choose exactly j vertices
not belonging to the currently considered matching, we have

(
m+n−2i

j

)
possibilities. All

remaining m+n−j vertices are colored pairwise different and properly. Here, the vertices
of all i edges of each i-matching are respectively colored in the same color. 2

9. Conclusion

In this text we first introduced two general representations of the bivariate chromatic
polynomial for arbitrary graphs. These representations are very helpful to prove many
formulas for special graph classes, which are much more efficient than the recursion for-
mula by (AGM). Furthermore, we showed methods of computing the bivariate chromatic
polynomial by using separators of graphs and could see that this is very complex in the
bivariate case even for complete seperators. Finally, we could show a connection between
the bivariate chromatic polynomial and the matching polynomial of two special graph
classes.
A very important case is the class of graphs with restricted tree-width. As already men-
tioned in the introduction, the edge-elemination-polynomial is P-hard to compute in
general, but for graphs of restricted tree-width it is computable in polynomial time. In
particular, the bivariate chromatic polynomial of graphs of tree-width at most k is poly-
nomial time computable. Hence, it should be interesting to find algorithms to compute
the bivariate chromatic polynomial for graphs of restricted tree-width.
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Appendix: Mathematica package BivariatePolynomials

Our Mathematica package BivariatePolynomials contains some new implementa-
tions.

The first one is BivariatePolynomialAGM1[graph_,x_,y_]. It computes the bivariate
chromatic polynomial for a graph G = (V ;E) and an edge e = {v1, v2} ∈ E using the
recursion formula

P (G;x, y) = P (G− e;x, y)− P (G/e;x, y) + (x− y)P (G− {v1, v2} ;x, y) (AGM1)

with the initial conditions P (K1;x, y) = x and P (∅;x, y) = 1 by (AGM) in Theorem 6.

The implementation BivariatePolynomialAGM2[graph_,x_,y_] solves the equation
above for P (G− e, x, y) using the other three graphs.
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Our last implementation BivariatePolynomialGerling[r_,k_,x_,y_] computes the
bivariate chromatic polynomial for a complete partite graph Kn1,n2...,nt with t ≥ 1 and
ni ≥ 1 for all i ∈ {1, 2, . . . , t} in Theorem 14.

The Mathematica package BivariatePolynomials and a Mathematica notebook con-
taining all examples is available at http://www.mathematik.uni-kassel.de/~koepf/

Publikationen/ under Software Downloads.
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