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Abstract

A reliability property of a particular n-block system leads to the
formulation of a known identity via a specified definite integral.
A second proof is given by showing that a certain (order 1)
recurrence equation is satisfied by each side of the identity.
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Introduction

Identity No. 1.45 For n ≥ 1,

n∑
k=1

(−1)k−1

k

(
n
k

)
=

n∑
k=1

1
k
.

In H.W. Gould’s familiar Combinatorial Identities (Rev. Ed., University of
West Virginia, U.S.A., 1972), the result is listed on page 6. In this short
communication we first offer a formulation of the above, whose origin lies in
some elementary reliability analysis conducted recently by the author E.J.F.
Such a context is briefly outlined and the proof, which we hope readers will
find interesting, follows. A first order recurrence equation is then shown to
be satisfied by each side of the identity, providing an alternative proof on
which a computational approach is remarked.

Proof I

Context

Consider a system of n ≥ 1 independent blocks—all identical and working
in parallel (as opposed to series)—and suppose that the system operates
so long as at least one block works, repair being needed only at the point
of failure of the final nth block. Associated with each block is a reliability
function e−λt ∈ (0, 1], where λ > 0 is its failure rate. Denoting a probability
by Pr{·}, the System Reliability Function R(t), say, is defined for t ≥ 0 as

R(t) = Pr{System is operational at time t}
= 1− Pr{System is not operational at time t}
= 1− Pr{All n blocks have failed at time t}
= 1− Prn{A single block has failed at time t}
= 1− (1− Pr{A single block is operational at time t})n

= 1− (1− e−λt)n. (1)

Thus, the so called Mean Time to Failure for the system is

I(n, λ) =
∫ ∞

0

R(t) dt =
∫ ∞

0

[1− (1− e−λt)n] dt. (2)

We derive the identity in question by treating the integral I(n, λ) in two
different ways.



Proof

Firstly, the substitution x(t) = 1 − e−λt applied to (2) gives rise to a
transformed integral

I(n, λ) =
1
λ

∫ 1

0

1− xn

1− x
dx. (I1)

Noting that, for n ≥ 1,

(x− 1)(1 + x+ x2 + x3 + · · ·+ xn−2 + xn−1) = xn − 1, (I2)

then

I(n, λ) =
1
λ

∫ 1

0

(1 + x+ x2 + x3 + · · ·+ xn−2 + xn−1) dx

=
1
λ

[
1 +

1
2

+
1
3

+
1
4

+ · · ·+ 1
n− 1

+
1
n

]
=

1
λ

n∑
k=1

1
k
. (I3)

We now expand binomially that part of the integrand

(1− e−λt)n =
n∑
k=0

(
n
k

)
(−e−λt)k

= 1 +
n∑
k=1

(−1)k
(
n
k

)
e−λtk, (I4)

so that, by definition (2),

I(n, λ) = −
n∑
k=1

(−1)k
(
n
k

)∫ ∞
0

e(−λk)t dt

= −
n∑
k=1

(−1)k
(
n
k

)
· 1
λk

=
1
λ

n∑
k=1

(−1)k−1

k

(
n
k

)
; (I5)

the identity is immediate upon equating (I3) and (I5).2

Proof II

Consider the sum
∑n
k=1

1
k = S(n), say. It is clearly the unique solution

of the recurrence equation S(n + 1) − S(n) = 1
n+1 (with initial condition



S(1) = 1). Hence, writing

T (n) =
n∑
k=1

(−1)k−1

k

(
n
k

)
, (II1)

then noting that T (1) = 1 we need to show that T (n + 1) − T (n) = 1
n+1

likewise in order to establish the identity for n ≥ 1. This is a straightforward
procedure, since

T (n+ 1)− T (n)

=
n+1∑
k=1

(−1)k−1

k

(
n+ 1
k

)
−

n∑
k=1

(−1)k−1

k

(
n
k

)

=
n+1∑
k=1

(−1)k−1

k
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n
k

)
+
(

n
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)]
−

n∑
k=1

(−1)k−1

k

(
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k

)

=
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k=1
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(
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k

)
+
n+1∑
k=1

(−1)k−1

k

(
n
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)

−
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k=1
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k

(
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)

=
n∑
k=1
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(
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)
+
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(
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)

−
n∑
k=1

(−1)k−1

k

(
n
k

)

=
n∑
k=0

(−1)k

k + 1

(
n
k

)
=

1
n+ 1

(II2)

as desired, the last step a consequence of having set x = 1 in the result

n∑
k=0

(−1)k

k + x

(
n
k

)
=

1

x

(
n+ x
n

) (II3)

(true for n ≥ 0, x 6= 0,−1,−2, . . . ,−n) which appears as Identity No. 1.41
in the aforesaid work of Gould (it is also set on p.71 as Exercise 48 (Section
1.2.6) of Volume 1 of Knuth’s The Art of Computer Programming (Addison-
Wesley, Reading, U.S.A., 1968)); by way of verification, the reader is invited



to confirm that (II3) readily lends itself to proof by induction (although var-
ious derivations are possible). This finishes the second proof, about which
some pertinent observations are now made.2

Remark 1 For completeness we remark that, since the summand of T (n)
(II1) is a hypergeometric term (i.e., its ratio of successive terms is a ra-
tional function in k), Zeilberger’s algorithm invoked through modern com-
puter algebra tools (see, for instance, Koepf’s text Hypergeometric Summa-
tion: An Algorithmic Approach to Summation and Special Function Iden-
tities (Vieweg, Wiesbaden, Germany, 1998), and the accompanying soft-
ware package “hsum6.mpl” accessible at http://www.mathematik.uni-
kassel.de/∼koepf/Publikationen) gives the required recursion in T in-
stantly. The final step of Proof II can equally be effected computationally
using Gosper’s algorithm (also available as part of the package hsum6.mpl).

Remark 2 Consider a hypergeometric term f(k;n), say, which is summed
over k. Many functions of this type are zero outside a certain set of val-
ues k ∈ [kl, ku]—the binomial coefficient

(
n
k

)
, for example, has kl = 0 and

ku = n. The interval given by the largest value of kl and the smallest value
of ku can be regarded as describing the ‘natural bounds’ for the sum, and
Zeilberger’s algorithm will generate an inhomogeneous (rather than a ho-
mogeneous) recurrence for any sum of hypergeometric terms whose bounds
are not the natural ones. This is the case here for T (n) (II1), for which no
such bounds exist.

Remark 3 At the time of writing (January 2002) it has recently been brought
to our attention that J. Riordan shows that T (n)− T (n− 1) = 1

n in a sim-
ilar way to us on p.5 of his 1968 text Combinatorial Identities (Wiley, New
York, U.S.A.), where he notes that, given T (1) = 1, T (n) = 1+ 1

2 +· · ·+ 1
n is

immediate. It is felt instructive to retain Proof II here, however, especially
in view of Remarks 1,2 which bring it up to date.

To end, it is perhaps worth mentioning that Identity No. 1.45 can itself be
established directly from a few other results in Gould’s listing. Setting, for
instance, a = 1 in Identity No. 1.134 (p.17) yields it as a special case, as
does Identity No. 7.17 (p.60) for m = n. In addition, also appearing in this
document is the interesting Identity No. Z.7 (p.82), which states that

n∑
k=1

(−1)k−1

(
n
k

)
f(x− k)

k
= f(x)

n∑
k=1

1
k
− df

dx
(3)

and holds for any polynomial f(x) in x of degree ≤ n. Choosing f(x) = 1
(of degree 0 < n for n ≥ 1), the result follows trivially.



Summary

We have given two different proofs of Gould’s Identity No. 1.45, with
comments as appropriate. Professor Gould (in a private communication to
P.J.L.) has indicated that it possesses a long history, a topic about which he
is writing currently. This work (“Differences of the Harmonic Series, Stirling
Numbers, and q-Analogs”, submitted)—which is much more comprehensive
than ours—includes several of his own proofs of the result, whose natural
generalisation is

n∑
k=1

(−1)k−1

kp

(
n
k

)
=

∑
1≤s1≤s2≤···≤sp≤n

1
s1s2 · · · sp

, p ≥ 1, (4)

that is addressed also.


