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Abstract

A term an is m-fold hypergeometric, for a given positive integer m, if the ratio an+m/an is a ra-
tional function over a field K of characteristic zero. We establish the structure of holonomic
recurrence equations, i.e. linear and homogeneous recurrence equations having polynomial co-
efficients, that have m-fold hypergeometric term solutions over K, for any positive integer m.
Consequently, we describe a new algorithm, say mfoldHyper, that extends the algorithms by
Petkovšek (1992) and van Hoeij (1998) which compute a basis of hypergeometric (m = 1) term
solutions of holonomic recurrence equations to the more general case of m-fold hypergeometric
terms.
Given a Laurent-Puiseux series

∞∑
n=n0

an(z − z0)n/k (an ∈ K, k ∈ N, n0 ∈ Z), (1)

where k denotes the corresponding Puiseux number, the most descriptive data to obtain (1) is
a “closed-form” expression of the nth coefficient (or simply coefficient) an. We generalize the
concept of hypergeometric type power series introduced by Koepf (1992), by considering linear
combinations of Laurent-Puiseux series whose coefficients are m-fold hypergeometric terms.
Thanks to mfoldHyper, it is possible to have a complete algorithm to decide on the conversion
of holonomic functions to hypergeometric type power series provided that the coefficients are
m-fold hypergeometric term solutions of the underlying recurrence equation. Indeed, in such a
case, it turns out that every linear combination of power series with m-fold hypergeometric term
coefficients, for finitely many values of m, is detected.
This paper is accompanied by implementations in the Computer Algebra Systems (CAS) Max-
ima 5.44.0 and Maple 2021. These can be downloaded at http://www.mathematik.
uni-kassel.de/˜bteguia/FPS_webpage/FPS.htm.
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1. Introduction

The applicability of complex analysis is essentially restricted to analytic functions, since they
easily allow both differentiation and integration. These functions are represented by power series
with positive radius of convergence. Power series are used to represent orthogonal polynomials
(see e.g. Koepf and Schmersau (1998)); in combinatorics, generating functions are power series
(Stanley (2011)); in dynamical systems, algebraic properties of power series involve most of
the constructions (see Lubin (1994)); we can also enumerate commutative algebra and algebraic
geometry (Brewer (2014)), (Zariski and Samuel, 1960, Chapter VII). It is therefore important to
know the exact general coefficient or formula of a power series. We build an algorithm to find
the power series representation of a given holonomic (also called D-finite) function, whenever
the closed-form expressions of the series coefficients are hypergeometric terms. Thus, we are not
considering complex functions as abstract objects defined in a certain domain and its range, but
instead as differentiable objects which satisfy a linear homogeneous differential equation with
polynomial coefficients, and that we can manipulate symbolically to find the nth term of its Taylor
coefficients. Moreover, by the unique power series characterization, this approach does not only
lead to the verification of known identities, but also to the discovery of new ones. Generally, let
K be a field of characteristic zero1.

Definition 1 (m-fold hypergeometric term). A term an is said to be m-fold hypergeometric, for a
positive integer m, if the term ratio r(n) := an+m/an is a rational function over K. When m = 1
one talks about a hypergeometric term. When used without specifying the value of m, m-fold
hypergeometric term denotes a term with this property, i.e. such an m exists.

Given a holonomic expression f , our first interest is to describe an algorithm that decides by
computation whether the power series of f is a linear combination of Laurent-Puiseux series of
the form

∞∑
n=n0

an(z − z0)n/k (an ∈ K, k ∈ N, n0 ∈ Z), (2)

where an is an m-fold hypergeometric term. More often nth coefficient will be substituted by
coefficient and nth term by term when there is no ambiguity. By computing power series we
mean finding a formula that can be used to generate truncated series of any order.
In 1992, Koepf published an algorithmic approach for computing power series (see Koepf (1992)).
The algorithm was implemented in the computer algebra systems (CAS) Maple (Maplesoft
(2020)) and Mathematica (Wolfram (2003)). Three types of functions were considered:

t1 The two-term recurrence relation type 2 which corresponds to expressions leading to linear
recurrence equations of the form

Qnan+m + Pnan = 0, (3)

where Qn, Pn are polynomials in K[n].

1Mostly K := Q(α1, . . . , αN ) is the field of rational functions in several variables
2Originally called hypergeometric type but we avoid this calling since we are redefining this terminology.
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t2 The exp-like type corresponding to expressions leading to linear recurrence equations with
constant coefficients in K.

t3 The rational type which corresponds to functions having a derivative which is rational over
K(z).

All gathered in the Maple package FormalPowerSeries could already recover many power
series formulas. However, using an algorithm that computes m-fold hypergeometric term solu-
tions of so-called holonomic recurrence equations, that is linear homogeneous recurrence equa-
tions with polynomial coefficients, we define a general-purpose approach that finds representa-
tions for any of these three type of input functions. The type t1 is obviously covered according
to the definition of an m-fold hypergeometric term. In this context, the need of our approach
is more justified by the input functions of type t2 and t3 for which commonly used techniques
complicate the result with coefficients over larger algebraic extension fields (Teguia Tabuguia
(2020a)). Let us consider two examples for expansion about z0 = 03. Our Maple implementation
is the ModuleApply4 of our package of name FPS. Using the current Maple implementation for
exp-like type expressions to compute the power series of f (z) := (sin(z) + cos(z))3 one gets

> convert((sin(z)+cos(z))ˆ3,FormalPowerSeries,method=
exponential)

(4)
∞∑

k =0

((
3
4 + 3 I

4

)
(−I)k +

(
3
4 −

3 I
4

)
Ik −

(
1
4 + I

4

)
(3 I)k +

(
− 1

4 + I
4

)
(−3 I)k

)
zk

k!
,

which is given in a simpler form by our Maple implementation as presented below.

> FPS((sin(z)+cos(z))ˆ3,z,n)

(5)
∞∑

n =0

(
−

(−1)n (9n − 3) z2n

2 (2n) !

)
+

 ∞∑
n=0

3 (−1)n (9n + 1) z2n+1

2 (2n + 1) !

 .
This is due to the fact that the needed power series coefficients can be written as a linear combi-
nations of 2-fold hypergeometric term solutions of a holonomic recurrence equation satisfied by
the Taylor coefficients of f (z).
Similarly, the partial fraction decomposition of a given rational function cannot always lead to
”useful” power series representations. The result obtained by Maple for 1/

(
(1 − 3z2) · (4 − z3)

)
extends to several pages and will not be displayed here. In contrast, using our Maple implemen-
tation one gets

> FPS(1/(1-3*zˆ2)/(4-zˆ3),z,n)

(6)

 ∞∑
n=0

108 3nz2n

431

 +

 ∞∑
n=0

9 3nz2n+1

431

 +

∞∑
n =0

(
−

4−nz3n

1724

)
+

∞∑
n =0

(
−

9 4−nz3n+1

431

)
+

∞∑
n =0

(
−

3 4−nz3n+2

1724

)
.

For the latter example, the result shows that 2-fold and 3-fold hypergeometric terms were com-
puted prior to the representation.
Algorithms to compute hypergeometric term (m = 1) solutions of holonomic recurrence equa-
tions were developed by Marko Petkovšek and Mark van Hoeij (see Petkovšek (1992), Van Hoeij

3Throughout this paper we mainly give representations about z0 = 0 since the case of arbitrary z0 deduces easily.
4A Maple command to use package names as Maple procedures.
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(1999), Cluzeau and van Hoeij (2006)). The complexity of Petkovšek’s algorithm is exponen-
tial in the degree of the leading and the trailing polynomial coefficients. Mark van Hoeij used
a different approach and got a much more efficient algorithm for the same purpose. Indeed, he
considered the local behavior of solution terms, which naturally decreases the complexity by re-
ducing the number of candidates since hypergeometric term solutions are built from some factors
of the leading and the trailing polynomial coefficients. Van Hoeij implemented his algorithm in
Maple as LREtools[hypergeomsols]. An equivalent algorithm that is part of our main
approach is described in (Teguia Tabuguia (2020b)).
The current Maple convert/FormalPowerSeries command implements Koepf’s original
approach followed by an invocation of van Hoeij’s algorithm to solve recurrence equations which
are not one of the three type of input functions t1, t2, and t3 listed above. This is the reason why
Maple can handle the power series of exp(z) + ln(1 + z) without treating exp(z) and ln(1 + z)
separately. It should be noted that we are focusing on algorithms which do not check or analyze
the form of their inputs, because this loses many aspects of a general-purpose approach. A simple
example is sin(z)2 + cos(z)2 whose power series expansion is 1, and yet if we treat sin(z)2 and
cos(z)2 separately, we get a different result (see Teguia Tabuguia and Koepf (2021b)). That being
mentioned, one can see the limits of the following Maple results

> convert(ln(1+z)+sin(z),FormalPowerSeries,method=
hypergeometric)

(7)
∞∑

k =0

(
−

(−1)k+1

k + 1
+

I (−I)k+1

2 (k + 1) !
−

I Ik+1

2 (k + 1) !

)
zk+1,

> convert(arctan(z)+1/(1+z),FormalPowerSeries,method=
hypergeometric)

(8)1 +

 ∞∑
k=0

(
(−1)k+1 +

I (−I)k+1

2 (k + 1)
−

I Ik+1

2 (k + 1)

)
zk+1

 ,
whose desired representations are obtained using our FPS as follows.

> FPS(ln(1+z)+sin(z),z,n)

(9)

 ∞∑
n=0

(−1)n zn+1

n + 1

 +

 ∞∑
n=0

(−1)n z2n+1

(2n + 1) !

 ,
> FPS(arctan(z)+1/(1+z),z,n)

(10)

 ∞∑
n=0

(−1)n zn

 +

 ∞∑
n=0

(−1)n z2n+1

2n + 1

 .
Indeed, the algorithms by Petkovšek and van Hoeij might only find hypergeometric term solu-
tions in Q, which in certain cases can be equivalent to m-fold hypergeometric term solutions in
Q for some m > 1. This brings us back to the issue of algebraic extension fields encountered for
the exp-like and rational functions by the methods in (Koepf (1992)).
Note, however, that simplifying power series formulas by avoiding algebraic extension fields is
just a consequence of our general-purpose algorithm. With this new approach, we are able to
compute several power series that Maple, Mathematica and Maxima cannot find at the time of
writing this article. We are in collaboration with Maplesoft and the Maxima developers for the
integration of our packages into their systems. It is easy to build examples for which Maple’s
current convert/FormalPowerSeries misses the results.
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> convert(arcsin(z)+cos(z),FormalPowerSeries)
(11)arcsin(z) + cos(z) ,

> convert(exp(zˆ3)+ln(1+zˆ2),FormalPowerSeries)
(12)ez3

+ ln
(
z2 + 1

)
.

The above Maple failures rely on the incapacity of van Hoeij’s algorithm to detect m-fold (m > 1)
hypergeometric term solutions of holonomic recurrence equations. Indeed, the Taylor coeffi-
cients of arcsin(z) + cos(z) satisfies the recurrence equation

(13)
RE1 B −n

(
n3 − 10n2 + 21n − 22

)
a(n) + (n − 4)2 a(n − 4)

+ (n − 2)
(
n3 − 11n2 + 39n − 41

)
a(n − 2) + 2 (n + 1) (n + 2)

(
n2 + 4n − 1

)
a(n + 2)

− 2 (n + 1) (n + 2) (n + 3) (n + 4) a(n + 4) = 0.

Using LREtools[hypergeomsols] to solve this recurrence equation yields

> LREtools:-hypergeomsols(RE1,a(n),{},output=basis)

(14)
[

In

Γ(n + 1)
,

(−I)n

Γ(n + 1)

]
,

which shows that the coefficient of the power series of arcsin(z) is missed! Similarly, for exp(z3)+
ln(1 + z2), LREtools[hypergeomsols] misses the power series coefficient of exp(z3). We
have the recurrence equation (say RE2)

(15)

RE2B −9 (n−9)2 a(n−9)−18 (n−8) (n−7) a(n−7)+3 (n−15) (n−6)2 a(n−6)
− 9 (n − 5) (n − 7) a(n − 5) + 6 (n − 4)

(
n2 − 17n + 63

)
a(n − 4)

+ 3 (n − 6) (n − 3)2 a(n − 3) + 3 (n − 2) (n − 4) (n − 9) a(n − 2)
+ 2 (n − 1) (n − 4) (2n − 7) a(n − 1) + (n − 1) (n − 2) (n + 1) a(n + 1) = 0,

for which van Hoeij’s implementation gives

> LREtools:-hypergeomsols(RE2,a(n),{},output=basis)

(16)
[
In

n
,

(−I)n

n

]
.

We use the name mfoldHyper to denote our algorithm to compute m-fold hypergeometric term
solutions of holonomic recurrence equations. It is implemented in our packages under the same
name (mfoldHyper). Using mfoldHyper to solve RE1 over the rationals yields

> FPS:-mfoldHyper(RE1,a(n))

(17)
[[

2,
{

(−1)n

(2n) !
,

n!2 4n

n2 (2n) !

}]]
,

which are the needed coefficients to compute the power series of arcsin(z) + cos(z). Therefore
FPS finds the representation

> FPS(arcsin(z)+cos(z),z,n)

(18)

 ∞∑
n=0

(−1)n z2n

(2n) !

 +

 ∞∑
n=0

(2n) ! 4−nz2n+1

(2n + 1) n!2

 .
In the same way, mfoldHyper finds the needed coefficients which FPS used to determine the
power series of exp(z3) + ln(1 + z2).
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> FPS:-mfoldHyper(RE2,a(n))

(19)
[[

2,
{

(−1)n

n

}]
,

[
3,

{
1
n!

}]]
;

> FPS(exp(zˆ3)+ln(1+zˆ2),z,n)

(20)

 ∞∑
n=0

(−1)n z2n+2

n + 1

 +

 ∞∑
n=0

z3n

n!

 .
The solutions over Q as those computed with van Hoeij’s algorithm can be obtained with
mfoldHyper by adding complex as a third argument. However this is only used in FPS
when no solution is found in Q. Although we will investigate the efficiency for computing holo-
nomic differential equations by the method of ansatz with undetermined coefficients, we do not
intend to always use the recurrence equation of least order since mfoldHyper is not restricted by
the order of the recurrence equation. For more references on dealing with holonomic functions
see (Zeilberger (1990), Salvy and Zimmermann (1994), Koepf (1997), Kauers and Paule (2011)).

Definition 2 (Hypergeometric type series and functions (see Teguia Tabuguia and Koepf (2021a))).
For an expansion around z0 ∈ K, a series s(z) is said to be of hypergeometric type if it can be
written as

s(z) := T (z) +

J∑
j=1

s j(z), s j =

∞∑
n=n j,0

a j,n(z − z0)n/p j , (21)

where n is the summation variable, T (z) ∈ K[z, 1/z, ln(z)], n j,0 ∈ Z, J, p j ∈ N, and a j,n is an
m j-fold hypergeometric term.
A hypergeometric function is a function that can be expanded as a hypergeometric type power
series. T (z) is called the Laurent polynomial part of the expansion, and the p j’s are its Puiseux
numbers.

We often say that hypergeometric type power series are linear combinations of Laurent-Puiseux
series having m-fold hypergeometric term coefficients, although this may ignore T (z) in Def-
inition 2. Nevertheless T (z) must be taken into account while computing linear combinations
in order to use appropriate starting points for m-fold hypergeometric terms. Indeed, it happens
that evaluations of hypergeometric terms of the series coefficients start at some non-zero integers
(n j,0, j = 1, . . . , J in (21)) determined from the degree of T (z). Several results are missed by
Maple 2021 because of this step of calculating the linear combination. E.g. (z + z2 + 1)ez + (z3 +

3) ln(1 + z) and 1 + z + z2 + z3 · arctan(z) (see Teguia Tabuguia (2020a)). Another step to take into
account is the computation of Puiseux numbers. This is usually tackled by the so-called Frobe-
nius method in the literature. However, we use a different strategy to make sure that Puiseux
numbers appear as in (21) unlike the Frobenius method which forces them to appear additively
(zn+r r ∈ Q) in the power of the indeterminate (see Ryabenko (2000)).
Our results are in line with the work of Anna Ryabenko (see Ryabenko (2002)) which uses an
extended version of Petkovšek’s algorithm (see Petkovšek and Salvy (1993)) for m-fold hyper-
geometric terms (called m-hypergeometric sequences there) to find formal hypergeometric type
solutions of holonomic differential equations (see also Abramov (2000)). Another independent
development from which m-fold hypergeometric terms are considered can be found in (Horn
et al. (2012)).
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The CAS Maxima was the main system used when our results were being developed. Note that
the current Maxima command to find power series representations is powerseries. This com-
mand is based on a pattern matching instead of (symbolic) algorithmic model, which explains
some ”bad” results obtained with this command for non-trivial input functions (see Teguia Tabuguia
(2020a)). In the following sections of the paper, most computations will be given using Maxima.
The overview of the paper is as follows. In order to make the description of our algorithm for
computing power series self-contained, in the next section we define an equivalent approach
to the method of ansatz with undetermined coefficients for computing holonomic differential
equations to have a higher efficiency. The deduction of recurrence equations is straightforward
after this step.
Section 3 is devoted to our most important result, this is the description of mfoldHyper which is
our algorithm to find a basis of m-fold hypergeometric term solutions of holonomic recurrence
equations.
In Section 4 we present the details of our algorithm to compute hypergeometric type power
series. We will see in this section how our algorithm handles the Puiseux numbers, the Laurent
polynomial part, and the starting points involved in a given hypergeometric type series expansion.

2. Computing holonomic equations

This section is about computing holonomic differential equations (DE) from given holonomic
expressions and use them to deduce holonomic recurrence equations (RE) satisfied by their power
series coefficients prior to computing m-fold hypergeometric term solutions. One of the most
prominent implementations for dealing with holonomic equations is the Maple gfun package
(see Salvy and Zimmermann (1994)). However, the method used by gfun (see approach 3 in
Table 1) to compute DEs is different from that of the ansatz with undetermined coefficients as
developed in (Koepf (1992)). We present a variant of the latter which finds the same DEs with
less computations.

2.1. Idea of the method

Let K be a field of characteristic zero, and (A0, A1, . . . , AN−1) ∈ K(z)N , N ∈ N such that a
holonomic function f satisfies

F
(

f , f ′, . . . , f (N−1), f (N)
)

= f (N) + AN−1 · f (N−1) + · · · + A1 · f + A0 f = 0. (22)

Assume that (e1, e2, . . . , el) is a basis of linearly independent functions that spans all the sum-
mands appearing in the expansion of the derivatives f , f ′, . . . , f (N) over K. Thus each derivative
f ( j), j ∈ N>0

(
f (0) = f

)
can be seen as a vector in the linear space 〈e1, e2, . . . , el〉. For example,

if we consider f (z) = cos(z) + sin(z), it is clear that the DE sought is equivalent to a linear com-
bination of the derivatives of f (z) which equals zero, with coefficients in K(z), expanded in the
basis (cos(z), sin(z)).
Since

F
(

f , f ′, . . . , f (N−1), f (N)
)

= 0 ⇐⇒ − f (N) = A0 · f + A1 · f ′ + · · · + AN−1 · f (N−1), (23)

we can write in matrix representation

− f (N) =
[
f , f ′, . . . , f (N−1)

]
(e1,e2,...,el)

(A0, A1, . . . , AN−1)T . (24)
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Therefore, we realize that seeking for a holonomic DE of order N satisfied by f (z) is equivalent
to finding a basis in a K(z)-linear space where the system(

f (N)(z), f (N−1)(z), . . . , f ′(z), f (z)
)

is linearly dependent. The idea is to construct such a basis while computing each derivative of
f (z) and their components. Thus, in each iteration step N, if all the N+1 derivatives are expanded
in the same basis, we try to solve the resulting linear system. The advantage of this approach is
the remember effect of computations from the first N iterations, which induces important time
savings.

2.2. Description of the method
Let f (z) be a holonomic function expanded as

f (z) = f1(z) + f2(z) + · · · + fl0 (z), (25)

with fi(z)/ f j(z) /∈ K(z), 1 6 i 6= j 6 l0. We mention that the rationality of fi(z)/ f j(z) cannot
always be decided. However, we are only interested in collecting the rational coefficients appear-
ing in the expansion of f (z). That is why our implementations use other mathematical tools to
recognize functions like cos(z) tan(z)5 as holonomic functions.
From (25), we can state that f (z) is a vector in the basis E0 =

(
e1, e2, . . . , el0

)
where ei = fi. Then

we compute the first derivative of f (z), and we get the following two possibilities:

• either f ′(z) is expressed as a linear combination in E0, which means that there exist α1,i =

α1,i(z) ∈ K(z), i = 1, . . . , l0 such that

f ′(z) = α1,1e1 + α1,2e2 + . . . + α1,l0 el0 . (26)

For hyperexponential functions we have α1,1 = · · · = α1,l0 ∈ K(z) and the DE is imme-
diately deduced. But if f ′(z) and f (z) are linearly independent, then we know that all
derivatives can be expanded in E0.

• Or f ′(z) is not expanded in E0, which means that E0 has to be augmented and there exist
α1,i ∈ K(z), i = 1, . . . , l0 and an integer l1 > l0 such that

f ′(z) = α1,1e1 + α1,2e2 + . . . + α1,l0 el0 + el0+1 + . . . + el1 . (27)

Observe here that the new basis is E1 =
(
e1, . . . , el1

)
with el0+1, . . . , el1 corresponding to

independent basis elements brought by f ′(z). And also α1,i, i 6 l0 could be zero.

To give a general view of the algorithm, let us assume that f (z) satisfies a DE of order N > 1. By
repeating the same analysis done for the first derivative, one obtains the following configuration

f (z) = e1 + . . . + el0

f ′(z) = α1,1e1 + · · · + α1,l0 el0 + el0+1 + · · · + el1

f ′′(z) = α2,1e1 + · · · + α2,l0 el0 + α2,l0+1el0+1 + · · · + α2,l1 el1 + el1+1 + . . . + el2

· · ·

f (N−1)(z) = αN−1,1e1 + · · · + αN−1,lN−2 elN−2 + elN−2+1 + · · · + elN−1

f (N) = αN,1e1 + · · · + αN,lN−1 elN−1 ,

5The tangent function is usually not encoded as sin(z)/cos(z), and this fact is also ignore by the implemented differ-
entiation.
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with positive integers l0 6 l1 6 . . . 6 lN−1, and αi, j ∈ K(z), i = 1, . . . ,N, j = 1, . . . , li−1.
The final basis considered is EN−1 =

(
e1, . . . , elN−1

)
. In each iteration N, the algorithm keeps the

components αN,i, the augmented basis and the current derivative. The components are kept in a
matrix form, say H, and at the N th iteration we have

H =



1 · · · 1 0 · · · 0 0 · · · · · · 0 · · · 0
α1,1 · · · α1,l0 1 · · · 1 0 · · · · · · 0 · · · 0
α2,1 · · · α2,l0 · · · · · · α2,l1 1 · · · · · · 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

αN−1,1 · · · · · · · · · · · · · · · · · · · · · αN−1,lN−2 1 · · · 1
αN,1 · · · · · · · · · · · · · · · · · · · · · αN,lN−2 αN,lN−2+1 · · · αN,lN−1


.

(28)

This matrix contains all needed information to find the holonomic DE sought. Indeed the poly-
nomial coefficients of the differential equation sought are the components of the unique vector
solution of the matrix system

A · v = b,

with

A =



1 α1,1 α2,1 . . . αN−1,1
...

...
...

...
...

1 α1,l0 α2,l0 . . . αN−1,l0
0 1 α2,l0+1 . . . αN−1,l0+1
...

...
...

...
...

0 0 0 . . . 1


, and b = −


αN,1
αN,2

...
αN,lN−1

 .
(29)

From the matrix H, b is defined as the negative (note the minus in front) of the transpose of the
last row of H, and A is the transpose of H deprived of its last row.

2.3. Examples
1. f (z) = sin(z)+z cos(z). We have two linearly independent terms over Q(z) (sin(z)/(z cos(z)) /∈

Q), and we can write
f (z) = e1 + e2,

with e1 = sin(z) and e2 = z cos(z). Computing the first derivative gives

f ′(z) = −z sin(z) + 2 cos(z) = −z · e1 +
2
z
· e2.

At this step we have

H =

[
1 1
−z 2

z

]
,

and we get the system
[
1
1

]
v =

[
z
− 2

z

]
, which has no solution v ∈ Q(z) (considered as a

one-dimensional vector space). Now we compute the second derivative, and we get

f ′′(z) = −3 sin(z) − z cos(z) = −3 · e1 − e2.
9



H becomes

H =

 1 1
−z 2

z
−3 −1

 ,
which gives the system [

1 −z
1 2

z

]
v =

[
3
1

]
, v ∈ Q(z)2,

and we get the solution {(
6 + z2

2 + z2 ,
−2z

2 + z2

)}
. (30)

The differential equation sought is therefore

(2 + z2) f ′′(z) − 2z f ′(z) + (6 + z2) f = 0. (31)

2. f (z) = arctan(z). We have only one term so e1 = arctan(z). For the first derivative

f ′(z) =
1

1 + z2 = 0 · e1 + e2,

where e2 = 1/(1 + z2). Since the basis has been augmented there is no system to be solved,
and at this step we have

H =

[
1 0
0 1

]
.

The second derivative gives

f ′′(z) = −
2z

(1 + z2)2 = 0 · e1 −
2z

1 + z2 · e2,

and we get

H =


1 0
0 1
0 − 2z

1+z2


which produces the system [

1 0
0 1

]
v =

[
0
2z

1+z2

]
, v ∈ Q(z)2.

We get v =
(
0, 2z/(1 + z2)

)
, hence the holonomic DE

(1 + z2) f ′′(z) + 2z f ′(z) = 0. (32)

3. f (z) = exp(z)+log(1+z) = e1 +e2, with e1 = exp(z) and e2 = log(1+z). The first derivative
yields

f ′(z) = exp(z) +
1

1 + z
= e1 + 0 · e2 + e3,

10



with e3 = 1/(1 + z). Since a new term is added to the basis, the next step is to compute the
second derivative

f ′′(z) = exp(z) −
1

(1 + z)2 = e1 + 0 · e2 −
1

(1 + z)
· e3.

No term is added to the basis. We try to solve the resulting system. At this stage

H =

1 1 0
1 0 1
1 0 − 1

1+z

 ,
and we get the system 1 1

1 0
0 1

 v =

−1
0
1

1+z

 , v ∈ Q(z)2,

which has no solution. We move on and compute the third derivative

f (3)(z) = exp(z) +
2

(1 + z)3 = e1 + 0 · e2 +
2

(1 + z)2 · e3.

Thus

H =


1 1 0
1 0 1
1 0 − 1

1+z
1 0 2

(1+z)2

 ,
and we obtain the system 1 1 1

1 0 0
0 1 − 1

1+z

 v =


−1
0

− 2
(1+z)2

 ,
whose solution in Q(z)3 is{(

0,−
3 + z

(1 + z)(2 + z)
,−
−1 + 2z + z2

(1 + z)(2 + z)

)}
. (33)

Therefore we get the holonomic DE

(1 + z)(2 + z) f (3)(z) − (−1 + 2z + z2) f
′′

(z) − (3 + z) f ′(z) = 0. (34)

We implemented this algorithm as HolonomicDE(f,y(z)) in our Maple and Maxima pack-
ages. It computes a holonomic DE in terms of the dependent variable y(z) for a function f of
the variable z. Our Maple implementation will be available in future releases of Maple under the
command DEtools[FindODE]. Table 1 shows an efficiency gain of this method (Approach
1) on the original one implemented in the current DEtools[FindODE] (Approach 2). The
third column presents the timings of gfun[holexprtodiffeq] (Approach 3) for the same
computations.
As expected, after trying several other examples, it appears that HolonomicDE generally gives
better timings than the current FindODE. The current holexprtodiffeq does not really

11



Table 1: Comparison of timings for computing holonomic DEs

f (z) CPU time
Approach 1 Approach 2 Approach 3

(arccos(z2) − arcsin(z3))7 219.594 294.047 ∞

sin(z)6 arcsin(z)3 71.672 347.078 748.610
arctan(z)2 + sin(z)4 + log(1 + z)5 0.500 3.359 1.203
exp(z11 + 3) cos(z) + log(1 + z7)
+ cos(z)3 sinh(z)5 161.578 140.562 5706.468

arccos(z)13 + sinh(z)19 53.063 295.750 609.813
(3z + 5z7 + 11z13) log(1 + z3 + z7)
+ arctanh(z) cos(z)5 7.984 31.500 2.703

compare to the other approaches since it also seeks for inhomogeneous DEs which often lead
to holonomic DEs of higher orders (last row, Table 1). The first row in Table 1 indicates 6
hours of computation without result for holexprtodiffeq. We also mention that some holo-
nomic functions are not recognized as such by holexprtodiffeq, an example is cos(k ·
arccos(z)), k ∈ N. These are some reasons why we rather use the method of this section.
Holonomic recurrence equations are easily deduced from holonomic DEs by expanding them
and rewriting powers into polynomials and derivatives into shifts (implemented as FindRE)
(Koepf (1992), Salvy and Zimmermann (1994)). However, although the described method often
finds the differential equation of lowest order, this process does not guarantee finding recurrence
equations of lowest order. Another approach of getting lower-order recurrences is applying the
Almkvist-Zeilberger (see Zeilberger (1990) and Almkvist and Zeilberger (1990)) algorithm to
the Cauchy integral

∮
f (z)/zn+1dz. The choice of FindRE is justified in Subsection 4.2.

3. Algorithm mfoldHyper

Let K be a field of characteristic zero. We consider the generic holonomic recurrence equation

Pd(n)an+d + Pd−1(n)an+d−1 + · · · + P0(n)an = 0, (35)

Pd(n), . . . , P0(n) ∈ K[n], Pd(n) · P0(n) 6= 0.
By definition, a term an is said to be m-fold hypergeometric (see Definition 1), if there exists a
rational function r(n) ∈ K(n) such that

r(n) =
an+m

an
. (36)

In this section, we present an algorithm to compute a basis of m-fold hypergeometric term solu-
tions of (35).
At first glance, one should remark that m-fold hypergeometric terms have rational functions as
the ratio of terms with index difference equal to m. Consequently, if we can find a way to
transform this property to the simple one of hypergeometric term then by iterative computation
of hypergeometric terms (m = 1), we are done. However, such a transformation cannot be valid
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for all recurrences given that the indices of the indeterminate term an in the equation must be
linear in n with slope 1.
From the characterization (36) one can deduce that for 0 6 j 6 m − 1 the following is valid

r(m · n + j) =
am·(n+1)+ j

am·n+ j
. (37)

Therefore instead of considering the representation (36) one could rather see an m-fold hyper-
geometric term with m related rational functions as defined in (37). The m rational functions
define m linearly independent m-fold terms. In some sense, although hypergeometric terms does
not form a linear space, one could see the computation of an as the determination of a vector in
the basis (amn, amn+1, . . . , amn+m−1), which of course appears more difficult than computing amn.
Observe that for a fixed m ∈ N and j ∈ J0,m− 1K, if we compute an m-fold hypergeometric term
solution of (35) with ratio r(m · n + j), then we can repeat the same computation by updating
the value of j in order to get the other m − 1 terms of this sub-basis6 of solutions. This is one
difference of our approach with previous ones which try to find r(n) directly as a right-factor
using a shift of order m. In our case, we concentrate on the interlacing sub-terms r(m · n + j),
j ∈ J0,m−1K to find (amn, amn+1, . . . , amn+m−1) instead of an. Without loss of generality, since the
computations of the amn+ j, j ∈ J0,m− 1K are similar, we only detail the algorithm for finding the
first element amn ( j = 0) of the basis. We will say that the basis is given in an incomplete form
when only first elements of m-fold hypergeometric term (m fixed) bases are returned. This is how
our implementation of algorithm mfoldHyper returns outputs, but it also gives the possibility to
complete the basis of solutions once the corresponding values of m are already known.
The following lemma gives a condition on the order of a given holonomic RE for its m-fold
hypergeometric term solutions to be computable over a given field K. This lemma can relate
to ((Hendricks and Singer, 1999, Theorem 5.1)) and (Abramov (2000)), but with completely
different perspectives as shown in the proofs.

Lemma 3. Let hn be an m-fold hypergeometric term, for a fixed m ∈ N. Assume

∀u ∈ N, u < m, there is no rational function ru(n) ∈ K(n) : hu+n = ru(n)hn. (38)

Then there is no holonomic recurrence equation over K of order less than m satisfied by hn.

Proof. Let hn be an m-fold hypergeometric term such that

hn+m = r(n) · hn ⇐⇒ Qm(n) · hn+m + Q0(n) · hn = 0, (39)

where Qm(n),Q0(n) ∈ K[n] and r(n) = −Q0(n)/Qm(n) ∈ K(n).
Suppose that hn satisfies a holonomic recurrence equation of order less than m. Then there exists
an equation of the form

Pm−1an+m−1 + Pm−2an+m−2 + · · · + P1an+1 + P0an = 0, (40)

with polynomials P j = P j(n) ∈ K[n], j ∈ J0,m − 1K, and P0(n) 6= 0, satisfied by hn.

6For each fixed m corresponding to an m-fold hypergeometric term we have a basis, and the basis of all m-fold
hypergeometric term solutions is the collection of these bases.
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• If P0 is the only non-zero polynomial in the equation then hn is zero, which is a contradic-
tion by definition.

• We assume that at least one other polynomial factor in the equation is non-zero. Then hn

satisfying (40) yields the following equation after substitution of n by m · n

Pm−1(mn)hmn+m−1 + Pm−2(mn)hmn+m−2 + · · · + P1(mn)hmn+1 + P0(mn)hmn = 0. (41)

By assumption (38), we know that ∀u ∈ N, u < m, hn is not a u-fold hypergeometric term.
So the holonomic recurrence equation of lowest order over K satisfied by hn is

Qm(n) · an+m + Q0(n) · an = 0,

which is a two-term recurrence relation whose basis of m-fold hypergeometric term solu-
tions is

(hmn+m−1, hmn+m−2, . . . , hmn+1, hmn) . (42)

Therefore (41) cannot hold since its left-hand side is a linear combination of linearly in-
dependent terms with respect to K(n), which implies that all the polynomial coefficients
must be zero. Therefore we get a contradiction.

Remark 4.
Observe that the linear independence with respect to K(n) of the elements of the basis (42) used
in the proof of Lemma 3 can be interpreted in the following different way. Since hn 6= 0, hn

satisfying (40) yields the following identity after dividing (40) by hn

−P0 = Pm−1
hn+m−1

hn
+ Pm−2

hn+m−2

hn
+ . . . + P1

hn+1

hn
. (43)

By assumption (38), we know that ∀u ∈ N, u < m, the ratio hn+u
hn

is not a rational function
over K(n). So, each non-zero term on the right-hand side of (43) is not rational over K. This
does not necessarily imply the non-rationality of the whole right-hand side. However by the
linear independence of the elements of the basis (42) one can assume that this holds. Similar
arguments will be used to conclude the proof of Theorem 7.

More generally, any shift of a holonomic recurrence equation of order less than m does not have
m-fold hypergeometric term solutions. In (Abramov (2000)) the property of Lemma 3 defines
primitive m-hypergeometric sequences.
Checking the hypothesis of Lemma 3 is an important task for the algorithm. Fortunately, this
can be done iteratively. Indeed for a fixed field K, if we have already looked for u-fold hyper-
geometric term solutions for integers u < m, then we can proceed to the computation of m-fold
hypergeometric terms knowing that m is less than the order of the recurrence equation under
consideration. Thus this iterative algorithm is terminating.

Definition 5 (m-fold holonomic recurrence equation). A holonomic recurrence equation is said
to be m-fold holonomic, m ∈ N, if it has at least two non-zero polynomial coefficients and the
difference between every pair of indices in the equation is a multiple of m. Choosing 0 as the
trailing term order gives the general form

Pd(n) · an+md + Pd−1(n) · an+m(d−1) + · · · + P1(n) · an+m + P0(n) · an = 0, . (44)

so that Pd · P0 6= 0.
14



Assume an m-fold holonomic RE with representation (44) is given. The basis of m-fold hyperge-
ometric term solutions of (44) can be computed by means of change of variable and computation
of hypergeometric terms.
Having an m-fold hypergeometric term an starting with a0 (by shift it is always possible to define
the initial value by a0), then from (36) the next value computed from a0 is am, and afterwards a2m

. . . , akm, . . .. Thus setting sn = amn implies that all values computed from s0 have their indices
corresponding to multiples of m for an. Moreover, since am·(n+1)/am·n = sn+1/sn ∈ K(n), sn is a
hypergeometric term whose formula is the same as that of amn. Therefore we can update (44)
accordingly to compute its m-fold hypergeometric terms as hypergeometric terms. This analysis
shows that the change of variable m · k = n

sk = am·k
, (45)

transforms (44) to a 1-fold holonomic RE for hypergeometric term solutions sk satisfying

sk+1

sk
=

amk+m

amk
= r(mk). (46)

The resulting RE is

Pd(mk) · sk+d + Pd−1(mk) · sk+(d−1) + · · · + P1(mk) · sk+1 + P0(mk) · sk = 0. (47)

For j ∈ J0,m − 1K, a similar analysis leads to the following change of variablem · k + j = n,
sk = am·k+ j

(0 6 j 6 m − 1). (48)

Since an arbitrary holonomic RE is not necessarily m-fold holonomic, m ∈ N>2, the most inter-
esting part is how to solve non-m-fold holonomic REs.
Without using the shift that rewrites an m-fold holonomic RE in the form (44), its general repre-
sentation is given by

Pdan+k+md + Pd−1an+k+m(d−1) + · · · + P0an+k = 0, (49)

where k ∈ J0,m − 1K.
Consider the three following 3-fold holonomic REs

RE1 : P1,3 · an+7 + P1,2 · an+4 + P1,1 · an+1 = 0,
RE2 : P2,4 · an+11 + P2,3 · an+8 + P2,2 · an+5 + P2,1 · an+2 = 0,
RE3 : P3,4 · an+13 + P3,3 · an+10 + P3,2 · an+7 + P3,1 · an+4 = 0. (50)

• The difference between an index of the indeterminate (an) in RE1 and another index in
RE2 is never divisible by 3. In this case we say that RE1 and RE2 are 3-fold distinct.

• The difference between an index of the indeterminate (an) in RE1 and another index in
RE3 is always a multiple of 3. In this case we say that RE1 and RE3 are 3-fold equivalent.

More generally we have the following definitions.
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Definition 6. Let m ∈ N,

RE1 : Pd1 an+k1+md1 + Pd1−1an+k1+m(d1−1) + · · · + P01 an+k1 = 0, (51)

and
RE2 : Pd2 an+k2+md2 + Pd2−1an+k2+m(d2−1) + · · · + P02 an+k2 = 0 (52)

be two m-fold holonomic recurrence equations.

• We say that RE1 and RE2 are m-fold distinct holonomic equations if k2 − k1 is not divisible
by m.

• We say that RE1 and RE2 are m-fold equivalent holonomic equations if k2 − k1 is divisible
by m.

An immediate consequence of these definitions is that linear combinations of m-fold equivalent
holonomic REs always give m-fold holonomic recurrence equations whereas linear combinations
of m-fold distinct holonomic REs are never m-fold holonomic. For example, summing RE1 and
RE3 from (50) yields a 3-fold holonomic RE, whereas summing RE1 and RE2 yields a non-3-
fold holonomic RE.
We can now give the fundamental theorem of this paper from which algorithm mfoldHyper is
deduced.

Theorem 7 (Structure of holonomic REs having m-fold hypergeometric term solutions). Let
m ∈ N, K a field of characteristic zero, and hn be an m-fold hypergeometric term which is not
u-fold hypergeometric over K for all positive integers u < m. Then hn is a solution of a given
holonomic recurrence equation, if that equation can be written as a linear combination of m-fold
holonomic recurrence equations that have hn as solution of each of the m-fold distinct holonomic
recurrence equations involved.

Proof. Let hn be an m-fold hypergeometric term solution of the recurrence equation

Pdan+d + Pd−1an+d−1 + · · · + P0an = 0, d > m, Pd · P0 6= 0. (53)

It suffices to show that for any non-zero term P jan+ j in (53), there exists another term, say Pian+i,
such that m divides j − i. Indeed, by summing m-fold holonomic REs we are sure that for each
term appearing on the left-hand side of the sum there must exist another term whose index differs
from the one of that term by a multiple of m.
We proceed by contradiction. Assume there exists a non-zero term P jan+ j in (53) such that any
other term Pian+i, i 6= j does not verify that m divides j − i. Since hn is a non-zero solution, we
can divide the equation by hn+ j and write

−P j =

d∑
i=0
i 6= j

Pi ·
hn+i

hn+ j
. (54)

The situation is now two-fold:

• For i verifying |i− j|< m, for each corresponding Pi ·hn+i/hn+ j on the right-hand side of (54),
the fact that m does not divide j − i implies that hn+i/hn+ j /∈ K(n) since by assumption hn

is an m-fold hypergeometric term over K that is not u-fold hypergeometric for all integers
u < m. Therefore Pi · hn+i/hn+ j /∈ K(n).
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• For i verifying |i − j|> m, for each corresponding Pi · hn+i/hn+ j on the right-hand side of
(54), we have two possibilities:

– either hn+i/hn+ j /∈ K(n) and we have the same conclusion as in the previous case;
– or hn+i/hn+ j ∈ K(n), but in this case since m does not divide j − i, this implies that hn

is not an m-fold hypergeometric term and we get a contradiction.

Thus the identity (54) has all terms on its right-hand side not belonging to K(n). From the
argument in Remark 4 one shows that this leads to a contradiction by a similar argument as in
the proof of Lemma 3. Indeed, we should get an identity between

d∑
i=0
i6= j

Pi ·
hn+i

hn+ j
/∈ K(n),

and P j(n) ∈ K[n] ⊂ K(n).
For the second part of the theorem, since the multiplication of a holonomic recurrence equation
by a polynomial does not affect the computation of its solutions, a linear combination of m-
fold holonomic REs can always be considered as a sum of m-fold holonomic REs. Therefore it
is enough to show that an m-fold hypergeometric term solution of a sum of m-fold holonomic
recurrence equations is a solution of each of the involved m-fold distinct holonomic recurrences.
The sum of M m-fold holonomic recurrence equations, M ∈ N, can be written as

M∑
j=1

RE j(an) =

M∑
j=1

(
Pd j an+k j+md j + Pd j−1an+k j+m(d j−1) + · · · + P0 j an+k j

)
= 0, (55)

where k j ∈ J0,m − 1K, and Pd j · P0 j 6= 0, j ∈ J1,MK.
If M = 1, then (55) is an m-fold holonomic recurrence equation and hn is an m-fold hypergeo-
metric term solution of it.
We assume now that M > 2 and that there are at least two m-fold distinct holonomic recurrence
equations in (55). Note that if the M m-fold holonomic REs are m-fold equivalent then the situa-
tion is similar to the case M = 1 since every linear combination of m-fold equivalent holonomic
REs is an m-fold holonomic RE.
Now suppose that hn is not solution of RE j1 in (55), j1 ∈ J1,MK, then given that

∑M
j=1 RE j(hn) =

0, there must be another m-fold holonomic recurrence equation RE j2 , j2 ∈ J1,MK, m-fold distinct
with RE j1 such that RE j2 (hn) 6= 0. Without loss of generality, we consider that RE j2 is the only m-
fold holonomic RE with these properties. Of course, if RE j1 (hn) 6= 0 and RE j1 (hn)+RE j2 (hn) = 0
then RE j2 (hn) 6= 0. Thus, we have

RE j1 (hn) 6= 0
RE j2 (hn) 6= 0
RE j1 (hn) + RE j2 (hn) = 0

. (56)

The fact that the m-fold holonomic recurrence equations RE j1 and RE j2 are m-fold distinct im-
plies that k j1 − k j2 is not a multiple of m.
Using (56), after substitution of hn in the sum of the equations and division by hn+k j1 +d j1 m, we
deduce that

−Pd j1
=

d j1−1∑
e j1 =0 j1

Pe j1

hn+k j1 +e j1 m

hn+k j1 +d j1 m
+

d j2∑
e j2 =0 j2

Pe j2

hn+k j2 +e j2 m

hn+k j1 +d j1 m
= S j1 + S j1, j2 , (57)
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which is equivalent to
−Pd j1

− S j1 = S j1, j2 . (58)

All terms in S j1 belong to K(n) since hn is an m-fold hypergeometric term and the corresponding
index differences

n + k j1 + e j1 m − (n + k j1 + d j1 m) = m · (e j1 − d j1 )

are multiples of m. However, for S j1, j2 the index differences

n + k j2 + e j2 m − (n + k j1 + d j1 m) = k j2 − k j1 + m · (e j2 − d j1 )

are not multiples of m. Therefore by the same argument used in the first part of the proof we
deduce that S j1, j2 /∈ K(n). Thus for (58) to hold we must have −Pd j1

− S j1 ∈ K(n) and S j1, j2 /∈
K(n), which is a contradiction.

From this theorem, given m ∈ N, we can compute a basis of m-fold hypergeometric term solu-
tions of a given holonomic RE by splitting it into the sum of m-fold distinct holonomic REs that
we transform into 1-fold holonomic REs, solve by computing hypergeometric terms, and select
the linearly dependent among them. Note that this step can be done differently as suggested
in (Abramov (2000), pages 7-9). We proceed in this way to avoid the computation of greatest
common divisors which can be inefficient in terms of implementation. Also, we do not use the
substitution method because we have observed that it is generally more difficult to verify that
a term is solution of a holonomic RE when factorials and Pochhammer symbols are involved.
To compute hypergeometric terms we use the variant of van Hoeij’s algorithm (Cluzeau and van
Hoeij (2006), Van Hoeij (1999)) described in (Teguia Tabuguia (2020b)) which apart from com-
puting them efficiently, gives them in normal forms that facilitate checking of linear dependency
(mostly simple computation of ratios) and evaluations at natural integers.
Note that the computation of m-fold hypergeometric term solutions of an RE in the form (49) is
done after rewriting it into the form (44).
Let us take as an example the holonomic RE satisfied by the Taylor coefficients of
exp(z) + cos(z).

(%i1) FindRE(cos(z)+exp(z),z,a[n]);

(%o1) (1 + n) · (2 + n) · (3 + n) · an+3 − (1 + n) · (2 + n) · an+2 + (1 + n) · an+1 − an = 0

This is a linear combination of two 2-fold distinct holonomic REs, namely

RE1 : (1 + n) · (2 + n) · (3 + n) · an+3 + (1 + n) · an+1 = 0,

and
RE2 : (−1 − n) · (2 + n) · an+2 − an = 0.

Only RE1 has to be rewritten since its trailing term is not of order 0. This yields

RE11 : n · (1 + n) · (2 + n) · an+2 + n · an = 0.

From this one easily sees that the given holonomic RE has 2-fold hypergeometric term solutions
since we get two two-term recurrence relations that are linearly dependent:

−n · RE2 = RE11.
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Remember that there is no need to use all the m changes of variable of (48) because as we ex-
plained earlier, once one succeeds in computing a basis of m-fold hypergeometric term solutions
corresponding to the representation (37) for a fixed j ∈ J0,m − 1K, the other ones can be com-
puted in a similar way. This will be used for power series computations in order to consider all
possible linear combinations.
Note that even though the algorithm proceeds by iteration up to the order of the given RE, more
often the number of cases to be considered is much smaller than the order of the given RE. For
example, the recurrence equation

(%i1) RE:FindRE(sin(zˆ3)ˆ3,z,a[n]);
(%o1) (n − 8) · (n − 5) · (n − 2) · (1 + n) · an+1 + 90 · (n − 8) · (n − 5) · an−5 + 729 · an−11 = 0

is a 2-fold, 3-fold and 6-fold holonomic RE of order 12. It is straightforward to see that all the
other cases do not lead to a solution since the recurrence equation cannot be written as a sum of
m-fold distinct holonomic REs for m /∈ {1, 2, 3, 6}.
The steps of algorithm mfoldHyper can be defined as follows.

Algorithm 1 mfoldHyper: compute m-fold hypergeometric term solutions of holonomic REs of
order d ∈ N
Input: A holonomic recurrence equation

Pdan+d + Pd−1an+d−1 + · · · + P0an = 0, d > m, Pd · P0 6= 0 (59)

Output: A basis (incomplete form) of m-fold hypergeometric term solutions of (59).

1. Set H = {}.

2. Use the algorithm in (Teguia Tabuguia (2020b)) to find the basis, say H1, of all hyper-
geometric term solutions of (59). If H1 6= ∅, then add [1,H1] to H.

3. For 2 6 m 6 d do:

(a) Extract the following m-fold holonomic recurrence equations from (59) and con-
struct the system

P0(n) · an + Pm(n) · an+m + · · · + Pm·b d
m c

(n) · an+m·b d
m c

= 0

P1(n) · an+1 + Pm+1(n) · an+m+1 + · · · + Pm·b d
m c+1(n) · an+m·b d

m c+1 = 0

. . .

Pm−1(n) · an+m−1 + P2m−1(n) · an+2m−1 + · · · + Pm·b d
m c+m−1(n) · an+m·b d

m c+m−1 = 0

, (60)

assuming P j(n) = 0 for j > d.
(b) If there exists a holonomic RE with only one non-zero polynomial coefficient in

(60), then stop and go back to step 3.(a) for m + 1.
(c) Shift all the m-fold holonomic recurrence equations in (60) so that the order of the

trailing term equals 0.
(d) Apply the change of variable (45) to each m-fold holonomic recurrence equation.
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Algorithm 1 mfoldHyper

3. (e) Compute a basis of hypergeometric term solutions sk as defined in (45) for (47) of
each resulting holonomic recurrence equation using (Teguia Tabuguia (2020b)).

(f) Construct the set Hm of hypergeometric terms which are each linearly dependent
to some terms in each of the m computed bases in step 3.(d).

(g) If Hm 6= ∅ then add [m,Hm] in H.

4. Return H.

We implemented mfoldHyper in Maxima as mfoldHyper(RE,a[n],[m,j])7, by default
[m,j] is an empty list. In that default case each list of m-fold hypergeometric term solutions,
say [m, [h1,m, h2,m, . . .]], contains ”closed-forms” of hypergeometric terms corresponding to j = 0
in (37). Once we know that there are some m-fold hypergeometric term solutions for particular
m ∈ N, the algorithm can be called as mfoldHyper(RE,a[n],m,j) for 0 6 j < m to get
the complete basis of solutions. Algorithm mfoldHyper will appear in future releases of Maple
as LREtools[mhypergeomsols].
Let us present some examples. We hide the recurrence equations for space saving purposes. All
these computations can be done with our package FPS currently available as third-party Maxima
package on Github.

(%i1) RE:FindRE(atan(z)+exp(z),z,a[n])$
(%i2) mfoldHyper(RE,a[n]);

(%o2)
[[

1,
{

1
n!

}]
,

[
2,

{
(−1)n

n

}]]
For algebraic extension fields the syntax is mfoldHyper(RE,a[n],K), for the two possible
values K=C or K=Q (default value for rationals). To ask for specific m-fold hypergeometric term
solutions the syntax is mfoldHyper(RE,a[n],K,m,j).

(%i3) RE:FindRE(log(1+z+zˆ2)+cos(z),z,a[n])$
(%i4) mfoldHyper(RE,a[n],C);

(%o4)


1,


(
−1−
√

3·i
2

)n

n
,

( √
3·i−1
2

)n

n
,

(−i)n

n!
,

(−1)
n
2

n!


 ,

[
2,

{
(−1)n

(2 · n) !

}]
where the obtained 2-fold hypergeometric term is the coefficient of the hypergeometric type
series of cos(z).

(%i5) declare(q1,constant)$
(%i6) declare(q2,constant)$
(%i7) RE:FindRE(1/((q1-zˆ2)*(q2-zˆ3)),z,a[n])$
(%i8) mfoldHyper(RE,a[n],C);

7The brackets around m,j means optional arguments
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(%o8)
[ 1 ,


−

√
1
q1


n

,

(
1
q1

) n
2

,


(√

3 · i − 1
) (

1
q2

) 1
3

2


n

,

−
(√

3 · i + 1
) (

1
q2

) 1
3

2


n

,

(
1
q2

) n
3


 ,[

2 ,
{(

1
q1

)n}]
,

[
3 ,

{(
1

q2

)n}] ]
For these previous examples, the current Maple convert/FormalPowerSeries yields
complicated power series representations because the above m-fold hypergeometric terms, m >
2, are not found. Next we compute the power series coefficients of some expressions for which
convert/FormalPowerSeries misses representations.

(%i9) RE:FindRE(exp(zˆ2)+cos(zˆ2),z,a[n])$
(%i10) mfoldHyper(RE,a[n]);

(%o10)
[[

2,
{

1
n!

}]
,

[
4,

{
(−1)n

(2 · n) !

}]]
(%i11) RE:FindRE(cosh(zˆ3)+sin(zˆ2),z,a[n])$
(%i12) mfoldHyper(RE,a[n]);

(%o12)
[[

3,
{

1
n!
,

(−1)n

n!

}]
,

[
4,

{
(−1)n

(2 · n) !

}]
,

[
6,

{
1

(2 · n) !

}]]
(%i13) RE:FindRE(asin(zˆ2)ˆ2+acos(z),z,a[n])$
(%i13) mfoldHyper(RE,a[n]);

(%o13)
[[

2,
{

4n · n!2

n2 · (2 · n) !

}]
,

[
4,

{
4n · n!2

n2 · (2 · n) !

}]]
(%i14) RE:FindRE(sqrt(sqrt(8*zˆ3+1)-1)+sqrt(7+13*zˆ4),z,a[n])$
(%i15) mfoldHyper(RE,a[n]);

(%o15)


3,


(

1
4

)
n
·
(

3
4

)
n
· (−8)n · 4n

(4 · n − 1) · (2 · n) !


 ,

[
4,

{
4−4−n · (−13)n · (2 · n) !

(2 · n − 1) · 7n · n!2

}]
(%i16) RE:FindRE(sin(zˆ3)ˆ3,z,a[n])$
(%i17) mfoldHyper(RE,a[n]);

(%o17)
[[

6,
{

(−9)n

(2 · n) !
,

(−1)n

(2 · n) !

}]]
Let us now use our implementation for the computation of a specific representation of m-fold
hypergeometric term solutions. In this case the user has to specify a value for m and j with
j ∈ J0,m − 1K.

(%i18) RE:FindRE(asin(z)ˆ2+log(1+zˆ5),z,a[n])$
(%i19) mfoldHyper(RE,a[n],5,0);

(%o19)
{

(−1)n

n

}
(%i20) mfoldHyper(RE,a[n],5,3);
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(%o20)
{

(−1)n

(5 · n + 3)

}
(%i21) mfoldHyper(RE,a[n],2,1);

(%o21)
{

(2 · n) !
(2 · n + 1) · 4n · n!2

}
We mention that the existence of m-fold hypergeometric term solutions of a holonomic RE sat-
isfied by the Taylor coefficients of a given expression does not necessarily guarantee that this
expression represents a hypergeometric type function. For example, arctan(z) · cos(z) yields a
recurrence equations satisfied by the coefficients of cos(z).

(%i22) RE:FindRE(atan(z)*cos(z),z,a[n])$
(%i23) mfoldHyper(RE,a[n]);

(%o23)
[[

2 ,
{

(−1)n

(2n) !

}]]
However, we know that the coefficient must be different. In the next section, by finding the linear
combination of hypergeometric type power series we will be able to decide using some initial
values whether a potential coefficient is the correct one.

4. Hypergeometric type power series

We defined hypergeometric type functions and series in Definition 2. The presence of ln(z) in
the expansion is justified by the solution of the underlying holonomic DE (see Kauers and Paule
(2011)). The definition in (Koepf (1992)) reduces to the case T (z) = 0 and J 6 m, where m is
the unique type8 encountered in Definition 2. With this new definition, we can define the type
of the series (21) as the tuple (m1,m2, . . . ,mJ). However, we do not compute the coefficients as
they appear in (21), but instead for powers of the form zm j·n+i, 0 6 i < m j which is more suitable
for the coefficients computed using mfoldHyper.
We recall the necessary steps towards hypergeometric type representations (see Teguia Tabuguia
and Koepf (2021b)). Having a holonomic function f :

1. Find a holonomic RE satisfied by the power series coefficients of f (see Section 2);

2. Compute a basis of m-fold hypergeometric term solutions of that RE using mfoldHyper
(see Section 3);

3. If there are solutions, use initial values to find the linear combination of the resulting
hypergeometric type power series that corresponds to the power series expansion of f , if
such a linear combination is valid.

Regarding Puiseux series, we generalize the idea given in ((Gruntz and Koepf, 1995, Section 5)).
We will see that computing Puiseux numbers p j’s appearing in (21) reduces to finding a number
p which can be defined as the Puiseux number of the corresponding hypergeometric type series.
Once p is found, we use the substitution h(z) = f (zp) to convert the situation to that of Laurent

8Originally the type was used to denote the value of m for an m-fold hypergeometric term coefficient.
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series, and finally divide the general power of the indeterminate z in the obtained power series
representation of h(z) by p to get the expansion sought. This is an intermediate step between the
first and the second step above.
The targeted representations have the form

f (z) = T (z) + F(z), (61)

where T (z) ∈ K[z, 1
z , ln(z)] is a Laurent polynomial in the variable z with coefficients in K[ln(z)],

and F(z) is a linear combination of hypergeometric type series. We mention that T (z) is not
uniquely determined but its determination is made more precise by Lemma 8 and Algorithm 2.

4.1. Finding the Puiseux number
For this part we ignore the Laurent polynomial part since it only undergoes through the trans-
formations that need to be done. It is enough to suppose that f (z) = F(z) is the sum of two
hypergeometric type series given as

F(z) :=
∞∑

n=0

s1n z(m1·n+ j1)/p1 +

∞∑
n=0

s2n z(m2·n+ j2)/p2 , (62)

where mi, pi ∈ N, ji ∈ J0,mi − 1K, sin is an mi-fold hypergeometric term corresponding to j = ji
in the representation (37), i ∈ {1, 2}. For simplicity, we also assume that p1 and p2 are co-prime.
This is to avoid the use of more variables since in particular this assumption implies that the least
common multiple of p1 and p2 is lcm(p1, p2) = p1 · p2. Substituting z by zlcm(p1,p2) in (62) gives

F(zlcm(p1,p2)) =

∞∑
n=0

s1n z(m1·n+ j1)·p2 +

∞∑
n=0

s2n z(m2·n+ j2)·p1 (63)

=
∑

n∈p2·(m1·N>0+ j1)
a1 n

p2
zn +

∑
n∈p1·(m2·N>0+ j2)

a2 n
p1

zn, (64)

where ain is obtained from sin by the change of variable (48), i ∈ {1, 2}.
Observe that in (63) the powers of the indeterminate z are integers. In general, the right-hand
side in (62) always gives a representation with integer powers when we substitute z by zµ, for any
positive multiple µ of lcm(p1, p2). Thus determining the positive integers p1 and p2 may reduce
to finding a positive multiple µ of lcm(p1, p2) so that we can compute the power series of f (zµ)
and substitute z by z1/µ in the obtained representation to get the one of f (z).
By the general representation (36) of an m-fold hypergeometric term, we know that there exist
rational functions r1(n) and r2(n) such that

a1n+m1
= r1(n) · a1n and a2n+m2

= r2(n) · a2n ,

for the coefficients in (64). Therefore we can write

a1 n
p2

+m1
= r1

(
n
p2

)
· a1 n

p2
and a2 n

p1
+m2

= r2

(
n
p1

)
· a2 n

p1
. (65)

where n
p1

and n
p2

are not necessarily integers.
To compute the holonomic recurrence equation of smallest order for the m1-fold and the m2-
fold hypergeometric terms a1 n

k2
and a2 n

k1
, one needs the smallest integer p such that p · n

p2
∈ N
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and p · n
p1
∈ N. Thus p = lcm(p1, p2) and the obtained holonomic RE is of course compatible

with the one computed using FindRE for the input function f (z). From (65), substituting n by
lcm(p1, p2) · n = p1 · p2 · n yields

a1p1 ·n+m1
= r1 (p1 · n) · a1p1 ·n

and a2p2 ·n+m2
= r2 (p2 · n) · a2p2 ·n

. (66)

Since a1p1 ·n+m1
and a2p2 ·n+m2

are, respectively, m1-fold and m2-fold hypergeometric term solutions
of a holonomic RE satisfied by the power series coefficients of f (z), by algorithm mfoldHyper
we know how such terms are computed using an algorithm to compute the hypergeometric terms
sin such that

sin+1

sin
=

ain+mi

ain
= ri(pi · n), i ∈ {1, 2}.

By Petkovšek’s (see Petkovšek (1992)) algorithm we know that ratios of hypergeometric term
solutions are built from monic factors of the trailing and leading polynomial coefficients of the
recurrence equation. This implies in particular that some zeros and poles of ri(pi ·n) are the roots
of the shifted9 trailing and leading polynomial coefficients, i ∈ {1, 2}. Therefore by computing
the least common multiple of all the trailing and leading polynomial coefficient rational root
denominators we must obtain a multiple of lcm(p1, p2).
For example, the power series coefficient of exp(z3/4) + sin(

√
z) satisfy the recurrence equation

(%i1) FindRE(exp(sqrt(z))+exp(-zˆ(1/3)),z,a[n]);

(%o1) − 576 (n + 1) (n + 2) (2n + 3) (3n + 4) (3n + 5) an+2

− 24 (n + 1)
(
10494n4 + 5247n3 − 3806n2 − 2041n − 174

)
an+1

+ 2
(
39366n5 − 177147n4 + 321624n3 − 210377n2 + 41242n + 396

)
an

− an−1

(
19683n3 − 81648n2 + 112995n − 56710

)
− 729an−2 = 0

Therefore we deduce the Puiseux number lcm(1, 2, 3, 3) = 6. Indeed the factors (n+1) and (n+2)
have both root denominators equal to 1, (2 · n + 3) has root denominator equal to 2, and (3 · n + 4)
and (3 · n + 5) have both root denominators equal to 3. After substitution the new holonomic RE
is free of Puiseux numbers.

(%i2) FindRE(exp(zˆ3)+exp(-zˆ2),z,a[n]);

(%o2) 2 (n − 1) (n + 1) an+1 + 3 (n − 3) n an + 4an−1 (n − 1) − 9an−3 (n − 3) − 6an−2

− 12an−4 − 18an−5 = 0

For the rest of this section we assume that the Puiseux number is 1.

4.2. Computing the Laurent polynomial part
Some m-fold hypergeometric terms may not be defined at certain integer values. We show how
to extract the part of the series expansion which cannot be deduced from the hypergeometric
type part. The first thing to notice is that the Laurent polynomial part T (z) has a sequence of
coefficients that satisfies the recurrence equation of f (z) in (61). T (z) is viewed as a series with
finitely many non-zero coefficients. The following lemma gives an idea of how to extract T (z)
from the series expansion of f (z).

9Integer shift used in Petkovšek’s algorithm, see also Lemma 8
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Lemma 8. Let K be a field of characteristic zero, N,M ∈ Z,N > M, T (z) ∈ K[z, 1
z ] be a Laurent

polynomial of degree N and lowest non-zero monomial degree M. The coefficients of T (z) satisfy
the holonomic recurrence equation

Pdan+d + Pd−1an+d−1 + . . . + P0an = 0, (67)

d ∈ N, P j ∈ K[n], j ∈ J0, dK, Pd · P0 6= 0, if N is a root of P0 and M is a root of Pd(n − d).

Proof. Suppose that the coefficients of T (z) satisfy (67). Since T (z) has finitely many non-zero
coefficients we can write

T (z) =
∑
n∈Z

cnzn,

where cn = 0 for n ∈ Z \ JM,NK. Saying that the coefficients of T (z) satisfy (67) is equivalent to
say that the sequence (cn)n∈Z is a sequence solution of (67). Given that (67) is valid for all integer
indices, observe that by substituting an by cn in (67) for sufficiently large positive or negative
integers, all terms on the left-hand side of (67) vanish.
Furthermore, we can make a substitution such that either the trailing or the leading term does
not necessarily vanish. Indeed, since cn = 0 for n ∈ Z \ JM,NK, substituting an by cn in (67) for
n = N yields

P0(N)cN = 0,

and therefore using the assumption cN 6= 0 we deduce that P0(N) = 0. Similarly, substituting an

by cn in (67) for n = M − d gives
Pd(M − d)cM = 0,

and therefore as cM 6= 0 by assumption, it follows that Pd(M − d) = 0.

Algorithmically, we proceed as follows.

Algorithm 2 Computing T (z) and a possible starting point of F(z) in (61)

Input: An expression f whose series coefficients satisfy the holonomic recurrence equation

Pdan+d + Pd−1an+d−1 + . . . + P0an = 0, (68)

d ∈ N, P j ∈ K[n], j ∈ J0, dK, Pd · P0 6= 0,
Output: T (z) and a starting point N0 for F(z) for the representation (61) of f .

1. Compute the minimum integer roots M of Pd(n − d) and the maximum integer root N
of P0(n).

2. If N does not exist then set T (z) := 0 and set N0 := M.

3. If N does exist then set T (z) := Taylor( f (z), z, 0,N)10and set N0 := N + 1.

4. Return [T (z),N0].

8Truncated series of order N at 0.
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Remark 9. Note that generally when T (z) = 0 and F(z) starts at 0, N = M = 0 and 0 is not
necessarily a root of the trailing polynomial coefficient. For example

(%i1) FindRE(exp(z),z,a[n]);

(%o1) (1 + n) · an+1 − an = 0

whose trailing polynomial coefficient has no root. In this case T (z) = 0 or does not exist. Here
M = 0 is a root of the leading polynomial coefficient (shifted by −1) which represents the starting
point of the series expansion of exp(z). Note that FindRE does not cancel the common factors
after rewriting DEs into REs and this is essential for computing the Laurent polynomial part.
These factors contain necessary information to determine the first non-zero coefficient of the
series expansion sought. More precision for finding the starting point N0 is given in Remark 12.

Similar results were discussed in (Abramov et al. (2000)) by extending the finding of formal
series solutions of holonomic DEs to the skew Laurent-Polynomial ring in the case of rational
coefficients.
Note, however, that the returned T (z) is generally a polynomial from which the exact Laurent
polynomial part can be subtracted. Our Maxima package has the code LPolyPart(f,z) that
implements Algorithm 2.

(%i1) LPolyPart(asech(z),z);

(%o1) [log (2) − log (z) , 1]

(%i2) LPolyPart(sin(z)/zˆ5,z);

(%o2) [0,−5]

(%i3) LPolyPart(cos(4*acos(z)),z);

(%o3) [8 · z4 − 8 · z2 + 1, 5]

In the latter example the linear combination of the corresponding hypergeometric type series
yields 0 so that one finally gets the known Chebychev polynomial cos(4 arccos(z)) = 8 · z4 − 8 ·
z2 + 1.

4.3. Finding the linear combination

Since we have an idea of how to determine T (z) and the starting point N0, we can now explain
how to find F(z) in the representation (61). The importance of this part lies in constructing a
consistent linear system for determining the coefficients of the linear combination sought. This
step is all the more important than the previous one because the fact that the RE is not irreducible
in most cases makes its order inappropriate for the initial values. We construct that system by
using the integers m of m-fold hypergeometric term solutions and the degree of the Laurent
polynomial part.
Let

H :=
[ [

1,
{
hn,1, . . . , hn,l1

}]
,
[
m1,

{
hm1n,1, . . . , hm1n,lm1

}]
, . . . ,

[
mµ,

{
hmµn,1, . . . , hmµn,lmµ

}] ]
=

[[
1, S 1,0

]
,
[
m1, S m1,0

]
, . . . ,

[
mµ, S mµ,0

]]
(69)
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for integers 1 < m1 < · · · < mµ be the non-empty basis of m-fold hypergeometric term solutions
of a holonomic RE satisfied by the series coefficients of f (z). The constant lm is the number of
m-fold hypergeometric terms in H m ∈ {1,m1, . . . ,mµ}. Our approach to find the representation
(61) for the power series of f (z) goes as follows.

Algorithm 3 Computing hypergeometric type series

Input: f (z), the recurrence equation, say RE computed by FindRE, the incomplete basis of
m-fold hypergeometric term solutions of RE, say H , computed by mfoldHyper, T (z) and
N0 computed by Algorithm 2.

Output: The representation (61) of f (z).

1. Find the other m-fold symmetric terms associated to each m-fold hypergeometric
term in H for m ∈ {m1, . . . ,mµ}. For that purpose one calls our implementa-
tion mfoldHyper(RE,a[n],m,j) of Algorithm 1 for j = 1, . . . ,m − 1, m ∈

{m1, . . . ,mµ}. This allows to build the sets

S m :=
{
S m,0, S m,1 . . . , S m,m−1

}
, (70)

for m ∈ {1,m1, . . . ,mµ}, where

S m, j :=
{
hmn+ j,1, hmn+ j,2, . . . , hmn+ j,lm

}
, 0 6 j 6 m − 1. (71)

2. Compute im, j =
⌈

N0− j
m

⌉
for j = 0, . . . ,m − 1, m ∈ {m1, . . . ,mµ}.

3. Set

N = N0 +

 ∑
m∈{1,m1,...,mµ}

lm − 1

 · lcm(1,m1, . . . ,mµ) + mµ − 1 (72)

4. Compute γm, j =
⌊
N− j

m

⌋
, j = 0, . . . ,m − 1, m ∈ {m1, . . . ,mµ}.

5. Let αm, j,k ∈ K, m ∈ {1,m1, . . . ,mµ}, j = 0, . . . ,m − 1, k = 1, . . . , lm be some unknown
constants and define

I(z) :=
∑

m∈{1,m1,...,mµ}

m−1∑
j=0

lm∑
k=1

αm, j,k

γm, j∑
n=im, j

hmn+ j,kzmn+ j. (73)

6. Solve the linear system resulting from the equation

I(z) + T (z) − Taylor( f (z), z, 0,N) = 0, (74)

for the unknown
(
αm, j,k

)T

m∈{1,m1,...,mµ}, 06 j6m−1, 16k6lm
∈ K

∑
m∈{1,m1 ,...,mµ }

lm·m.

7. If there is no solution then stop and return FALSE. No linear combination exists in this
case.
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Algorithm 3 Computing hypergeometric type series

8. If there is a solution then set all parameters of dependency to 0 (if there are some).
This gives the choice of the linear combination. We denote by α′m, j,k the resulting value
found for αm, j,k, m ∈ {1,m1, . . . ,mµ}, j = 0, . . . ,m − 1, k = 1, . . . , lm.

9. For each S m,m ∈ {1,m1, . . . ,mµ} construct the term

S ′m :=
∑

S m, j∈S m

 ∑
hmn+ j,k∈S m, j

α′m, j,khmn+ j,k

 zmn+ j−im, j (75)

:=
m−1∑
j=0

 lm∑
k=1

α′m, j,khmn+ j,k

 zmn+ j−im, j (76)

10. Return T (z) +
∑

m∈{1,m1,...,mµ}

∑∞
n=0 S ′m.

The correctness of this algorithm depends on whether the solution of the linear system in step
6 has enough equations to determine the possible coefficients of the linear combination sought.
This is established by the following lemma.

Lemma 10. In Algorithm 3, N given in (72) is a valid integer for which the series expansion of
order N of f (z) suffices for determining the linear combination sought.

Proof. The computation is similar for any integer N0, therefore we assume that N0 = 0. The
number of unknowns in each equation is q =

∑
m∈{1,m1,...,mµ}

lm. The aim is to find N such that
Taylor( f (z), z, 0,N) in Algorithm 3 step 6 yields a linear system with at least q equations with q
unknowns each. Of course, the minimal value of N is an integer that verifies

N = m1 · x1 = m2 · x2 = · · · = mµ · xµ,

for some positive integers x1, x2, . . . , xµ, since we have to find q equations that correspond to the
q first coincidences of

zm1·n, zm2·n, . . . , zmµ·n.

The second coincidence is reached at the expansion of order lcm(m1, . . . ,mµ), therefore by in-
duction we deduce that for any positive integer p, the pth coincidence is reached at the expansion
of order (p − 1) · lcm(m1, . . . ,mµ). Hence we finally get

N = (q − 1) · lcm(m1, . . . ,mµ) =

 ∑
m∈{1,m1,...,mµ}

lm − 1

 · lcm(m1, . . . , ·mµ) + mµ − 1

where mµ − 1 is added to get similar coincidences with some

zm1·n+ j, zm2·n+ j, . . . , zmµ+ j·n,

with j ∈ J1,m1K.

Remark 11. In (72) we use lcm(1,m1, . . . ,mµ) because it allows to recover the order (l1 − 1) · 1
when there are only hypergeometric terms (µ = 0).
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Remark 12. The value of the starting point N0 is made more precise after taking into account
the maximum integer among the zeros and poles of the primitive m-fold hypergeometric terms
(see Petkovšek and Salvy (1993)). This is a prior step for Algorithm 3 to work as expected. For
example, for f (z) = z10 exp(z) + z, Algorithm 2 finds the Laurent polynomial part T (z) = z, and
mfoldHyper finds the hypergeometric term

hn := {
(n − 9) (n − 8) (n − 7) (n − 6) (n − 5) (n − 4) (n − 3) (n − 2) (n − 1) n

n !
}. (77)

However, to find the value of c ∈ Q such that f (z) = T (z) + c
∑∞

n=0 hnzn, evaluations should start
at n = 10 since hn = 0 for n = 2, 3, . . . , 9. Thus, from the m-fold hypergeometric terms computed
by mfoldHyper, one can find the needed N0 and adapt T (z) accordingly. Finally, a reduced
hypergeometric type representation is obtained after subtracting the terms of T (z) that came
from the hypergeometric type part. This is how our algorithm handles the following examples
after shifting the indices and simplifying the coefficients.

(%i1) FPS(z+zˆ10*exp(z),z,n)

(%o1)

 ∞∑
n=0

zn+10

n !

 + z,

(%i2) FPS(z+zˆ5*exp(z)+zˆ10*cos(z),z,n)

(%o2)

 ∞∑
n=0

(−1)n z2(n+5)

(2n) !

 +

 ∞∑
n=0

zn+5

n !

 + z.

Theorem 13. The power series representation of every hypergeometric type function whose nth

term series coefficients are m-fold hypergeometric term solutions of a holonomic recurrence
equation (as computed using FindRE11) that they satisfy is detected by Algorithm 3.

Proof. Due to Theorem 7, Algorithms 1, 2, 3 and Lemmas 8, 10, provided the recurrence equa-
tion computed using a similar approach to FindRE.

One should remark that the class of holonomic functions considered in Theorem 13 covers all
those mentioned in (Abramov et al. (2000)).
As already used many times, the command FPS(f(z),z,n,[z0]) of our Maxima package
computes the power series representation of f(z) at the point of expansion z0∈ C (if given or
0 otherwise) with the index variable n by combining FindRE, mfoldHyper; implementations
of Algorithms 2 and 3, and the one to compute Puiseux numbers. All this leads to an algorithm
to compute hypergeometric type series from holonomic functions whenever possible.

(%i1) FPS(exp(sqrt(z))+exp(-zˆ(1/3)),z,n);

(%o1)

 ∞∑
n=0

z
n
2

n !

 +

∞∑
n=0

(−1)n z
n
3

n !

(%i2) FPS(z*cos(zˆ(3/2)) + asin(zˆ(1/3))ˆ2,z,n);

(%o2)

 ∞∑
n=0

(−1)n z3n+1

(2n) !

 +

∞∑
n=0

2 4n (n + 1) !2 z
2(n+1)

3

(n + 1)2 (2 (n + 1)) !

11This is to make sure that cancellation of common factors is avoided.
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(%i3) FPS(log(1+sqrt(z)+z+zˆ(3/2)),z,n);

(%o3)

 ∞∑
n=0

(−1)n zn+1

n + 1

 +

∞∑
n=0

(−1)n z
n+1

2

n + 1

Some examples with non-zero Laurent polynomial parts (see Subsection 4.2).

(%i4) FPS(1+z+zˆ2+zˆ3*atan(z),z,n);

(%o4)

 ∞∑
n=0

(−1)n · z2·n

2 · n − 3

 + z +
4
3

(%i5) FPS(sin(z)ˆ2+cos(z)ˆ3,z,n);

(%o5)

 ∞∑
n=0

−
(−(−9)n − 3 · (−1)n + 2 · (−1)n · 4n) · z2·n

4 · (2 · n) !

 +
1
2

(%i6) FPS(1+2*z+3*zˆ2+5*zˆ3+exp(asinh(z)),z,n);

(%o6)

 ∞∑
n=0

−
(−1)n (2n) ! z2n

(2n − 1) 4n n !2

 + 5z3 + 3z2 + 3z + 1

Let us use other points of expansion.

(%i7) FPS(sin(2*z)+cos(z),z,n,%pi/2);

(%o7) −

∞∑
n=0

(−1)n · (1 + 2 · 4n) ·
(
z − π

2

)1+2·n

(2 · n + 1) · (2 · n) !

Definition 2 extends to asymptotic expansion at infinity.

(%i8) FPS(atan(z)+exp(-z),z,n,inf);

(%o8)
π

2
−

∞∑
n=0

(−1)n z−2n−1

2n + 1

The current Maple convert/FormalPowerSeries misses the initial term π/2 for the latter
example. The computations easily extend over K[log(z)] as shown below.

(%i9) FPS(log(z)*exp(z),z,n);

(%o9) log (z)
∞∑

n=0

zn

n !

Our Maple implementation will replace the FormalPowerSeries package in future releases
of Maple. The link to download our Maple and Maxima packages is http://www.mathematik.
uni-kassel.de/˜bteguia/FPS_webpage/FPS.htm. Note, furthermore, that our FPS
package also contains implementation for dealing with non-holonomic power series like the se-
ries of tan(z), z/(exp(z) − 1), etc. A demonstration of the latter result will be presented at the
Maple conference 2021.
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