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Abstract. In this paper the simple structure between some convex sets in the 
Banach space H introduced by Hornich is used to determine the extreme points of the 
families K(a) of convex functions of order ~ and V(k) of functions with bounded 
boundary rotation k ~. For  close-to-convex functions of order {1,/3 ~ ]0, 1[, a partial 
result is given. The results for K(~) and V(k) agree with those that hold for the closed 
convex hulls of the same families with respect to the usual linear structure and the 
topology of locally uniform convergence. However, in this case, for kE]2,4[ the 
question of determining the extreme points of ~d V(k) is still open. 

1. Introduction. Let A be the set of all analytic functions in the unit 
disk D. Further let H denote the subclass of all locally univalent 
functions f which are normalized by the conditions 

f(0) = 0, f '  (0) = 1 (1) 

and for which arg 0 c') is bounded in •. Here arg denotes that branch of 
the imaginary part of the logarithm which vanishes at the point 1. 

HORNICH [5] showed that (H, @, Q), I[ I1 ,) is a Banach space with 
the operations 

Z 

( f@ g) (z)" = ~f' (~) .g '  (r d~, 
o 
Z 

(2 @ f ) ( z ) : =  ~(f'(O)~d~ and 
o 

Ilf[l~ : = sup sup (argf '  (z2) - argf '  (z0) �9 
Z I E ~  Z 2 ~  

The null element in H is the identity mapping. Sequential 
convergence with respect to the norm I] IIg implies locally uniform 
convergence but not conversely (see [5], p. 39). 

We begin with the discussion of some properties of families of 
analytic functions considered as subsets of H. A univalent function is 
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called convex if it has a convex range. Let K denote  the family of  
convex  func t ions ,  that  are normalized by (1). It is well-known, that  a 
locally univalent  normalized funct ion f is in K if and only if 

where 

z f "  
1 + (2) j ,  

P : = {fe A [ R e f  > 0, f (0 )  = 1 } . 

Because of  the Herglotz integral representat ion for functions in P 
(see e.g. [11], p. 4) an equivalent condi t ion f o r f ~ K  is that  

1 
logf ' (z )  = ~xlOg(1 _ x z ) 2  d~ (3) 

where # is a Borel probabil i ty measure on X: = {x e C I ix] = 1 }. F r o m  
(3) it is easily seen that  

1 
a rg / ' ( z )  = xJ'arg(1 _ x z)  2 Cl~ = - 2 x~ arg(1 - x z)  cl~ <~ 

(4) 
2 arc sin ]zl 

with equality if and only if r is a point  measure,  i. e. f has the form 

z 
f ( z )  - - -  for some x e X .  (5) 

1 - x z  

The last assertion follows f rom the fact that  the integral is the limit of  
finite convex combinat ions  of  points  that  lie in the closed disk with 
radius Izl and centre at the point  1. The bound  given in (4), which is 
due to MARX [7], Theorem B, shows that  K is a subset of  the ball in H 
with radius 2 z~ (~nd centre at the null element). 

We note  that  as another  easy and well-known consequence of  (3), 

[f"(0) l = (0) = 2 I~ x d#] ~< 2 (6) 
x 

with equality if and only i f#  is a point  measure,  i. e . , f ha s  the form (5). 
F r o m  (2) it is easily seen that  K is closed and convex (see [3], 

Theorem 6.1). Fur thermore ,  since K is the cont inuous  image of  the 
compact  set of  Borel probabil i ty measures on X with respect to the 
weak topology,  K is compact .  The family of  convex  f u n c t i o n s  o f  order 
~, ~ < 1, normalized by (1), will be denoted by K(~). These classes had 
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been in t roduced (in a slightly modified form) by ROBERTSON [10], 
p. 383. A locally univalent  normalized func t ion f i s  in K(~) if and only 
if 

z f r  r 
1 +  ~ P .  

(1 - ~)f' 

As above it is easy to show that  K(~) is a subset of the ball in H with 
radius 2 ( 1 -  ~)z~. Let V(k) denote the families of functions with 
bounded boundary rotation k~  for some k >~ 2, normalized by (1), 
which had been studied by PAATERO [8]. A locally univalent  normal-  
ized funct ion is in V(k) if and only if 

1 + ~ 5 - =  + ~  P l -  - ~  P2 (7) 

for somep~ ,P2 ~ P (see [2], p. 344). Let C (fl) denote the family of  close- 
to-convex functions o f  order fi for some t3 >~ 0, normalized by (1), which 
had been in t roduced by KAPLAN [6] and POMMERENKE [9]. With the 
nota t ion  

Po :=  { f e A ] 3 6 t ~ : R e ( e i t f )  > 0, f (0 )  = 1} , 

a locally univalent normalized function is in C (fl) if and only if there is 
a funct ion q ~ K  such t h a t f ' / q / =  pa for some p e Po. 

F r o m  the definition we see that  f E  C(fl) implies 

a rg f '  (z2) - a rgf ' (z l )  = 

= (arg q/(z2) - arg q~'(Zl)) + fl (argp (z2) - a rgp  (zl)) < 

< 2z~ + fi~ = (2 + fl)~z 

because of(4) and becausep e P0. Thus C(fi) is a subset of  the ball in H 
with radius (2 + t)~z. All families considered are closed and convex. 
We want  to recall now some inclusion relations between the classes 
considered. An  easy consequence of  the representat ion (7) is 

Lemma 1. For every ~ < 0 we have K(~) ~ V(2 - 4 ~). 

The following Lemma  is well-known. 

Lemma 2 (BRANNAN [2], Theorem 2.2). For every k >~ 2 we have 
V(k) c C (k/2 - 1). 

Thus V(k) is a subset of  the ball in H with radius (1 + k/2) z~. 
If  V i sa  vector space and F c V, t hen f i s  called an extreme point o f  
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F if there is no proper convex representation 

f =  t fl  + (1 - t)f2, t~]0, 1[, 

with suitable functions fl  ,f2 e F, fi  ~a f2. 
Recall that the extreme points of  the convex set P with respect to 

the usual linear structure are exactly the functions f of the form 

l + x z  
- -  x e X  

f ( z ) -  1--  x z '  

(see e.g. [11], Theorem 1.5). 
This statement is equivalent to the Herglotz respresentation and 

implies that the extreme points of the convex set K with respect to the 
Hornich space structure are exactly the functions of the form (5), 
which is a result due to CIMA and PFALTZGRAFF [3], Theorem 6.2. 

This result will be important  in the next section and we refer to it 
by CP. 

2. Families of univalent functions in the Hornich space. The follow- 
ing Lemma shows that K( , )  is a linear and continuous image of Kwith  
respect to the Hornich space structure. 

Lemma 3 (see e. g. [1], p. 5). For all ~ < 1 we have 

K(. )  = (1 - ~) @ K .  

An immediate consequence is 

Corollary 4. For all ~ < 1 the family K (~) is a compact subset of  H. 
A function f is an extreme point of  K(~) with respect to the Hornich 
space structure if and only if  

1 
f ' ( z )  = (1 - -  x z )  2 ( l -a )  for some xEX.  

Proof. For each ~ < 1 the mapping 

L : H ~ H ,  fv--~(1 - ~) @ f  

is a homeomorphism and Lemma 3 shows that L (K) = K(,) .  This and 
CP imply the Corollary. [] 

At this stage we insert the following elementary Lemma. 

Lemma 5. Let F and G be subsets of  the linear space V. Then an 
extreme point of the set F @ G is the sum of  extreme points o f F  and G 
respectively. 
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Proof  It is easily seen that a proper convex representation for 
some f ~  F within the class F defines a proper convex representation 
for f @  g within F @ G for arbitrary ge  G. A similar argument inter- 
changing f and g implies the result. [] 

Now we get the following important 

Theorem 6. For every ~., t3 e ~ + the fami ly  (c~ @ K @ fl @ K) is a 
compact subset o f  H whose extreme points are exactly the functions f o f  
the form 

(1  71- XZ) 2~ 
f '  (z) = (1 - y~ )T  (8) 

with some (x, y) ~ X 2, x ~ - y. 

Proo f  (~ @ K @/3 @ K) is the continuous image of K and so 
compact. From Lemma 5 and CP it follows that every extreme point 
of (~ (2) K @ 13 @ K) has the form (8) for some x, y ~ X. 

I fx  = - y, then the function defined by (8) lies on the straight line 
connecting the identity mapping with the function s i g n ( ~ -  13)- 

Z 
�9 max (~, 13) @ - - ,  which are both functions of (~ (2) K @  13 @ K), 

1 - y z  
and thus cannot be extreme�9 

So we have shown that an extreme point has the form (8) for some 
( x , y ) e X  2, x # - y .  

It remains to show that every point of this form is extreme in 
(~ @ K @ 13 @ K). Therefore we shall show that each of these func- 
tionsfmaximizes a functional uniquely over (~ @ K @ 13 @ K) that is 
linear and continuous with respect to the Hornich space structure. 
This shows that all considered functions are extreme. 

For z0 e D \ {0} the functionals _+ argf '  (z0) are linear and con- 
tinuous in the Hornich space. 

For each f e  (~ @ K @ 13 @ K) we get 

argf '  (z0) = ~" arg g' (z0) - 13. arg h' (z0) 

with some g, h e K, and thus it follows from (4) 

F argf '  (z0) l ~< (~ + 13)" 2 arc sin I z0] (9) 

with equality if and only if 

Z Z 
g ( z ) - - -  and h ( z ) -  

1 - y z  1 + x z  

9 Monatshefte f~r Mathematik, Bd. I00/2 
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for some (x, y) e X 2, i.e. 

f ; y ( Z )  -- (l  +__ XZ)  2~ 
(1 y z )  2~ " 

Equality in (9) occurs if and only if 

arg ( -  x Zo) = - arc cos [Zo[, arg (y Zo) = arc cos [Zo[ 
or  

(10) 

arg(xz0) = arccos [z0], arg(yzo) = - arccoslzo[ . (11) 

If  (10) holds, then argfxy(Zo)= (~ + ~)arcs in  IZol, and thus the 
functional argf '(z0) is maximized, and if (11) holds, then 
argJ 'y  (z0) = - (~ +/~) arc sin ]z0[, and thus the functional 
- a r g f '  (z0) is maximized. 

Now we have only to observe that for every z0 e ~ \ {0} and each 
of  (10) and (11) there is exactly one solution ( x , y )~  X 2 with x 2 ~ y2. 
Conversely for each pair (x, y ) e  X 2, x 2 r y2, there is a (unique) point 
z0e D \ {0}, such that one of  (10) or (11) holds. 

Thus it follows that if x2va y2, then the functions considered 
maximize one of  the functionals _+ argf '(z0) uniquely and thus are 
extreme points. 

If  x 2 = y2, then either x = - y ,  and in this case we had shown 
already that fxy  is not  extreme, or x = y, and then the functions fxy 
maximize uniquely a functional of  the type Re wf"j , j, w~C. (O~ 

To prove this, we observe that for f e  (~ @ K @ fl (2) K) 

0 )  = 0 )  - ( 0 )  

with some g, h e K. F rom (6) we see that 

L 0) 2 + 

with equality if and only if 

1 z 
g ( z ) - - -  and h ( z ) -  

1 - x z  1 + x z  

for some x e X, i.e. 
(1 + x z )  2~ 

f '  (z) - (1 - x z )  2~ 
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Because these functionals are continuous and linear in H, it follows 
that for all x e X  the functionfxx is an extreme point, too. [] 

The family V(k) is of the same type. 

Lemma 7 (BRANNAN [2], Theorem 3.1). For all k > 2 we have 

Corollary 8. For all k > 2 the fami ly  V(k) is a compact subset o f  H. 
A function f is an extreme point o f  V(k) with respect to the Hornich 
space structure i f  and only i f  

(1 + XZ) k/2-1 
f ' ( z )  = (1 -- yz )  k/2+1 for  some ( x , y ) e X  2, x ~ - y . 

Proof. Lemma 7 and Theorem 6 give the result. [] 

TRIMBLE and WRmI-IT [12], Theorem 3, determined the set of 
extreme points in C: = C (1), the set of close- to- convex functions. This 
set includes the extreme points of V(4) (the latter is a proper subfamily 
of C, as Lemma 2 shows), but is much bigger. 

We shall give a characterization of the extreme points of C(~) for 
/3 el0, 1 [ in terms of the extreme points of K and C. This will follow 
from 

Lemma 9. For all/3e[0, 1] we have 

C (/3) = (1 - t3) O K @ / 3 0  C. 

Proof . "  c " :  Let bef~ C (/3) with suitable q~ ~ K and p ~ P0 such that 
f ' =  ~'.p~. The function g defined by g ' =  ~ ' .p  lies in C and it 
follows 

f '  = ( ~ 3 1 - / ~ "  (g ' ) /~ , (12) 

which proves t ha t f e (1  - /3)  Q) K@/3 Q) C. 
" ~  ": For 9~ e K and g E C with suitable W ~ K, p ~ Po, satisfy- 

ing g ' =  v / 'p ,  we define f by (12). Then the function q~ with 
~b' = (q~,)l-v. (W~a is convex and we get 

f ' _ ( ~ o 3 l - ~ ' ( g 3  ~ _ (g ' )~  

and thus f e  C (/3). [] 
9* 

= p ~ ,  
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Corollary 10. I f  fl e ]0, 1[ then an extreme point f o f  C (fl) with respect 
to the Hornich space structure satisfies 

(g')e 
f ' ( z )  = (1 --  x z )  2(1-e) 

for  some x e X and some extreme point g o f  C. 

Proof. Lemmata 5 und 9 give this result. [] 
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