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Zeilberger’s celebrated algorithm finds pure recurrence relations (w. r. t. a single variable) for hyperge-
ometric sums automatically. However, in the theory of orthogonal polynomials and special functions,
contiguous relations w. r. t. several variables exist in abundance. We modify Zeilberger’s algorithm to
generate unknown contiguous relations that are necessary to obtain inner bounds for the extreme zeros
of orthogonal polynomial sequences with 3F2 hypergeometric representations. Using this method, we
improve previously obtained upper bounds for the smallest and lower bounds for the largest zeros of
the Hahn polynomials and we identify inner bounds for the extreme zeros of the Continuous Hahn and
Continuous Dual Hahn polynomials. Numerical examples are provided to illustrate the quality of the
new bounds.

Without the use of computer algebra such results are not accessible. We expect our algorithm to be
useful to compute useful and new contiguous relations for other hypergeometric functions.
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1. Introduction

A sequence of real polynomials {pn}∞n=0, where pn is of exact degree n, is orthogonal with
respect to a positive measure µ(x) > 0 on an interval (a, b), if the scalar product

〈pm, pn〉 =

∫ b

a
pm(x)pn(x)dµ(x) = 0, m 6= n.

If µ(x) is absolutely continuous, then it can be represented by a real weight function w(x) > 0
so that dµ(x) = w(x) dx. If µ(x) is discrete with support in N=0, then it can be represented by
a discrete weight w(x) = 0 (x ∈ N=0) and the scalar product is given by

〈pm, pn〉 =

∞∑
x=0

pm(x) pn(x)w(x) .

The aim of this paper is to find an upper bound for the smallest and a lower bound for the largest
zero of the following families of orthogonal polynomials [1]:

∗Corresponding author. Email: koepf@mathematik.uni-kassel.de

1



March 30, 2017 Integral Transforms and Special Functions Final*version*JNK*Bounds*3F2

• Hahn polynomials: discrete weightw(x) =
(
α+x
x

)(
β+N−x
N−x

)
in {0, 1, . . . , N}when α, β > −1

and

Qn(x;α, β,N) = 3F2

(− n, n+ α+ β + 1,−x
α+ 1,−N

∣∣∣∣ 1) .

• Continuous Hahn polynomials: continuous weightw(x) = Γ(a+ix)Γ(b+ix) Γ(c−ix)Γ(d−
ix) in the interval (−∞,∞) when the real parts of a, b, c and d are positive and c = ā, d = b̄
and

pn(x; a, b, c, d) = in
(a+ c)n(a+ d)n

n!
3F2

(− n, n+a+c+b+d−1, a+ix

a+ c, a+ d

∣∣∣∣ 1) .

• Continuous Dual Hahn polynomials: continuous weight

w(x) =

∣∣∣∣Γ(a+ ix)Γ(b+ ix)Γ(c+ ix)

Γ(2ix)

∣∣∣∣2
in the interval (0,∞), where a, b, c are positive, except possibly for a pair of complex conju-
gates with positive real parts and

S̃n(x2; a, b, c) = 3F2

(− n, a+ ix, a− ix
a+ b, a+ c

∣∣∣∣ 1) .

Here,

Γ(z) =

∫ ∞
0

tz−1e−tdt

denotes the Gamma function,

pFq

(
α1, α2, . . . , αp

β1, β2, . . . , βq

∣∣∣∣x) =
∞∑
k=0

(α1)k · (α2)k · · · (αp)k
(β1)k · (β2)k · · · (βq)k

xk

k!

denotes the hypergeometric series and (a)k = a(a+1) · · · (a+k−1) denotes the shifted factorial
(Pochhammer symbol), as usual.

If {pn}∞n=0 is a sequence of monic orthogonal polynomials with zeros xn,1 < xn,2 < · · · <
xn,n, then it satisfies a three-term recurrence relation

pn(x) = (x−Bn)pn−1(x)− Cnpn−2(x), (1)

whereBn and Cn do not depend on x, p−1 ≡ 0, p0(x) = 1 and Cn > 0. Furthermore, each open
interval with endpoints at successive zeros of pn contains exactly one zero of pn−1. Stieltjes [2,
Theorem 3.3.3] extended this interlacing property by proving that if m < n − 1, provided pm
and pn are co-prime (i.e., they do not have any common zeros), there existm open intervals with
endpoints at successive zeros of pn, each of which contains exactly one zero of pm. Beardon [3,
Theorem 5] provided additional insight into the Stieltjes interlacing process by proving that for
every m < n − 1, if pm and pn are co-prime, there exists a real polynomial Sn−m of degree
n−m−1 in x, whose real simple zeros, together with those of pm, interlace with the zeros of pn.
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This phenomenon will be called completed Stieltjes interlacing, of which a direct consequence
is that the zeros of the polynomial Sn−m act as inner bounds for the extreme zeros (i.e., upper
(lower) bounds for the smallest (largest) zeros) of the polynomial pn, e.g., when m = n − 2, it
follows directly from (1) that xn,1 < Bn < xn,n.

Iterating (1) leads to

pn(x) = xn −

(
n∑
i=1

Bi

)
xn−1 + . . .

=
n∏
i=1

(x− xn,i)

= xn −

(
n∑
i=1

xn,i

)
xn−1 + . . . ,

from which another (trivial) inner bound for the extreme zeros of pn can be deduced:

xn,1 <
1

n

n∑
i=1

xn,i =
1

n

n∑
i=1

Bi < xn,n. (2)

In order to find more precise inner bounds for the extreme zeros of a polynomial in an orthogonal
sequence, the study of completed Stieltjes interlacing of zeros of different orthogonal sequences,
where the different sequences are obtained by integer shifts of the parameters of the appropriate
polynomials, can be helpful. This was done for the Gegenbauer, Laguerre and Jacobi polynomi-
als in [4], the Meixner and Krawtchouk polynomials in [5] and the Pseudo-Jacobi polynomials
in [6]. Mixed three-term recurrence relations satisfied by the polynomials under consideration
and obtained from the connection between the appropriate polynomials, their hypergeometric
representations, as well as contiguous function relations satisfied by these polynomials, are used
to obtain these bounds and a Maple computer package [7] for computing contiguous relations of
exclusively 2F1 series is helpful in this regard.

Different Maple routines, however, are necessary to obtain similar identities for polynomial
sequences that lie on the 3F2 and 4F3 planes of the Askey scheme. Zeilberger [8] developed
a powerful method for proving identities for hypergeometric series and we apply Zeilberger’s
algorithm (command sumrecursion of the Maple package hsum.mpl accompanying [9])
to generate the three-term recurrences of the 3F2 hypergeometric families under consideration.
Variations of Zeilberger’s algorithm were given by [10, 11]. Some of the recurrences obtained
are very complicated and for this reason we do not consider the 4F3 families (Wilson and Racah
polynomials) in this paper. However, in principal the method can be extended to the 4F3 case
which will be considered in a forthcoming paper. For a recent study on the properties of the
zeros of these polynomials, we refer the reader to [12].

Zeilberger’s algorithm is much more flexible as was shown by examples in [9]. Similarly as the
commands sumdiffeq [9, Session 10.5] and sumdiffrule [9, Session 10.7] are variations
of sumrecursion, by changing the setting in the computation, one can write Maple routines
to compute the identities necessary to obtain our results. We also refer the reader to [13] where
an application of Zeilberger’s algorithm is used to find three-term recurrence equations for Hahn
polynomials and other discrete orthogonal families.

In this paper, we provide inner bounds for the extreme zeros of different sequences of the
Hahn, continuous Hahn and continuous dual Hahn polynomials. In the Hahn case, we compare
the quality of our newly found bounds with results obtained in [14]. An intensive study on the
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location of the zeros of the Hahn polynomials is made in [15] and lower (upper) bounds for the
smallest (largest) zeros of Hahn polynomials are provided in [14, 16]. The monotonicity of the
zeros of Hahn polynomials with respect to α and β, as determined by Markov’s monotonicity
theorem (cf. [17]), is useful and is, together with the monotonicity of the zeros with respect toN
(cf. [15]), clearly illustrated in our tables. No previous results on inner bounds for the extreme
zeros of the Continuous Hahn and Continuous Dual Hahn polynomials are known. The weight
function of the Continuous Dual Hahn polynomials is even and monotonicity properties of all
the zeros of orthogonal polynomials associated with an even weight function is discussed in
[18]. Recently in [19], upper and lower bounds for the zeros of Gram polynomials are provided
in terms of the zeros of Legendre polynomials.

The following result provides the conditions necessary for the mixed three-term recurrence
relations to hold and will be used to prove our results.

THEOREM 1.1 [5] Let {pn}∞n=0 be a sequence of polynomials orthogonal on the (finite or infi-
nite) interval (a, b) with respect to dµ(x) > 0. Let k ∈ N=0 be fixed and suppose {gn,k}∞n=0 is
a sequence of polynomials orthogonal with respect to σk(x)dµ(x) > 0 on (a, b), where σk(x) is
a polynomial of degree k, that satisfies

(x−Bn)pn−1(x) = ak−2(x)pn(x) +Anσk(x)gn−2,k(x), n ∈ N=1, (3)

with g−1,k = 0, An, Bn, a−1, a−2 constants and ak−2 a polynomial of degree k − 2 defined on
(a, b) whenever k ∈ {2, 3, . . . }. Then

(i) k ∈ {0, 1, 2, 3, 4};
(ii) the n − 1 real, simple zeros of (x − Bn)gn−2,k interlace with the zeros of pn and Bn is an

upper bound for the smallest, as well as a lower bound for the largest zero of pn if gn−2,k and
pn are co-prime;

(iii) if gn−2,k and pn are not co-prime,
(a) they have one common zero that is equal to Bn and this common zero cannot be the largest

or smallest zero of pn;
(b) the n− 2 zeros of gn−2,k(x) interlace with the n− 1 non-common zeros of pn;
(c) Bn is an upper bound for the smallest as well as a lower bound for the largest zero of

pn. �

All relevant contiguous relations that we need in the next sections were computed auto-
matically using the Maple package hsum.mpl accompanying [9] and procedures that are
specifically adapted for each family using the corresponding hypergeometric representation.
These computations with their complete computations and results, that build the heart of
our approach, can be downloaded from http://www.mathematik.uni-kassel.de/

˜koepf/Publikationen. In the given article, however, we have only included the nec-
essary bounds deduced from the much more complicated contiguous relations since the full
relations do not contribute to our results. The computations of the zeros in our tables can also be
found in the above-mentioned Maple file.

2. Inner bounds for the extreme zeros of Hahn polynomials

We refer the reader to [20] for more information on discrete orthogonal polynomials and the
difference equations they satisfy. For α, β > −1, the parameter shifted Hahn polynomials
Qn(x;α+ k, β +m,N) are orthogonal at the points x ∈ {0, 1, 2, . . . , N} with respect to
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(
α+ k + x

x

)(
β +m+N − x

N − x

)
=

(x+ α+ 1)k(−x+ β +N + 1)m
(α+ 1)k(β + 1)m

w(x) = σk,m(x)w(x) > 0

and together with Qn(x;α, β,N), they satisfy the mixed three-term recurrence relations

(x−Bα+k,β+m
n )Qn−1(x;α, β,N) (4)

= ak+m−2(x)Qn(x;α, β,N) +Anσk,m(x)Qn−2(x;α+ k, β +m,N),

where a0, a1, An and Bα+k,β+m
n are constants and ak+m−2(x) is a polynomial of degree k +

m− 2 for k +m ∈ {2, 3, . . . }.
From Theorem 1.1 it follows that the mixed three-term recurrence relations (4) only exist if

k + m ∈ {0, 1, 2, 3, 4} and each of the points Bα+k,β+m
n , k + m ∈ {0, 1, 2, 3, 4}, is an upper

bound for the smallest as well as a lower bound for the largest zero ofQn(x;α, β,N). Moreover,
the relations that involve the largest possible parameter difference, are found to be particularly
useful to obtain sharp bounds.

When k = 2 and m = 0, we obtain the equation(
Nα+ α2 + αβ + αn+ β n+ n2 +N + 2α− n+ 2

)
(N − n+ 1)

(n+ 1 +N + α+ β)(−α− β − 2n)
Qn(x;α, β,N) (5)

=
(
x−Bα+2,β

n

)
Qn−1(x;α, β,N) +

(n− 1) (n+ β − 1) (x+ 1 + α)2
(α+ 1)2 (n+ 1 +N + α+ β)

Qn−2(x;α+ 2, β,N),

where

Bα+2,β
n =

Nα− αn+ β n+ n2 +N + α− β − 3n+ 2

α+ β + 2n
. (6)

The weight functionw satisfies the symmetry propertyw(α, β, x) = w(β, α,N−x) from which
the symmetry relation [21]

(α+ 1)nQn(N − x;α, β,N) = (−1)n(β + 1)nQn(x;β, α,N)

can be proved and we can deduce that if x is a zero of Qn(x;α, β,N), then N −x will be a zero
of Qn(x;β, α,N). Likewise, the extra interlacing points obtained from the mixed three-term
recurrence relations satisfied by Qn(x;α, β,N), Qn−1(x;α, β,N) and Qn−2(x;α + m,β +
k,N), are

Bα+m,β+k
n = N −Bβ+k,α+m

n (7)

for all values of k and m in N=0 such that k + m ∈ {0, 1, 2, 3, 4}. Thus, from (6) and (7) we
obtain the bound

Bα,β+2
n =

Nα− αn+ β n− n2 + 2Nn−N + α− β + 3n− 2

α+ β + 2n
. (8)

We note that

Bα+2,β
n −Bα,β+2

n = −2(n− 1)(N − n+ 2)

α+ β + 2n
< 0
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for α, β > −1 and n ∈ {1, 2, . . . , N}. Moreover, from [17, Theorem 7.1.1] it follows that the
zeros of the Hahn polynomials increase with α and decrease with β and it is clear that

0 < xn,1 < Bα+2,β
n < Bα,β+2

n < xn,n < N,

for all values of α, β > −1 and n ∈ {1, 2, . . . , N}. However, the point Bα+4,β
n (Bα,β+4

n ) will be
a more precise upper (lower) bound for the smallest (largest) zero of Qn(x;α, β,N) obtained
by this method. Because of the complexity of the relations from which the latter two bounds
can be found, we do not include them in this paper, but they can be downloaded from http:
//www.mathematik.uni-kassel.de/˜koepf/Publikationen. In order to show
the accuracy of these bounds, we include them in our examples:

Bα+4,β
n =

(
n6 + 3(α+ β + 1)n5 + (N α+ 3α2 + 8αβ + 3β2 +N + 4α+ 8β − 1)n4

+ (α+ β + 1) (2N α+ α2 + 6αβ + β2 + 2N − 2α+ 6β − 7)n3

+ (N2 α2 +N α3 + 4N α2 β +N αβ2 − α4 + 2α3 β + 5α2 β2 + 2αβ3

+ 3N2 α+N α2 + 9N αβ +N β2 − 12α3 − α2 β + 7αβ2 + 2β3

+ 2N2 − 3N α+ 5N β − 42α2 − 15αβ − β2 − 3N − 56α− 12β − 24)n2

+ (α+ β + 1)(N2 α2 + 2N α2 β − α4 + α2 β2 + 3N2 α− 2N α2 + 5N αβ

− 10α3 − 3α2 β + αβ2 + 2N2 − 6N α+ 3N β − 34α2 − 9αβ − β2 − 4N

− 46α− 6β − 20)n+ (α+ 1)2(N α+ 3N + α− β + 4) (α+ 2 +N + β)2

)/
(

(2N + 3α+ β + 8)n4 + 2 (α+ β + 1) (2N + 3α+ β + 8)n3

+ (2N2 α+ 8N α2 + 8N αβ + 2N β2 + 7α3 + 13α2 β + 7αβ2 + β3 + 4N2

+ 30N α+ 10N β + 41α2 + 48αβ + 13β2 + 30N + 79α+ 39β + 52)n2

+ (α+ β + 1)(2N2 α+ 6N α2 + 4N αβ + 4α3 + 6α2 β + 2αβ2 + 4N2

+ 26N α+ 6N β + 27α2 + 24αβ + 3β2 + 28N + 60α+ 22β + 44)n

+ (α+ 1)2 (α+ β + 2) (α+ 2 +N + β)2

)
(9)

and Bα,β+4
n can be obtained from (7).

In [14, Lemma 9], the following inner bounds for the extreme zeros of the Hahn polynomials
are provided for α = β > −1 or α 5 β 5 −N − 1:

xn,1 <
(n+ α)(N − n+ 1)

α+ β + 1
(10)

<
N(α+ n) + (β + n)(n− 1)

α+ β + 2n
< xn,n. (11)

In Tables 1 to 4 we compare these bounds, together with the bounds obtained from relations
(6) and (7), and the bound in (9), to the actual values of the extreme zeros. In each case, the more
precise bound is printed in bold. The precise zeros were computed using Maple with up to 100
digits numerical precision.

Remark 2.1 By using appropriate limiting processes, inner bounds for the extreme zeros of other
classical polynomial systems can be obtained from the bounds obtained in this paper. When we,
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Table 1. Comparison of bounds for the extreme zeros of Q5(x; 10, 2, N) for different values of N .

N x5,1 Bα+4,β
5 in (9) Bα+2,β

5 in (6) Bound in (10) Bound in (11) Bα,β+2
5 from (8) Bα,β+4

5 from (7) x5,5

5 0.1659 1.4108 1.5909 0.6818 4.6818 2.3182 2.7262 4.9975
10 1.5604 3.4837 4.0909 4.0909 8.0909 6.6364 7.8550 9.9130
50 15.8455 20.4292 24.0909 31.3636 35.3636 41.1818 46.1970 47.8746
100 34.2895 41.7837 49.0909 65.4545 69.4545 84.3636 93.0772 94.9150
500 182.5365 212.9863 249.0909 338.1820 342.1820 429.8182 466.2995 470.6930

Table 2. Comparison of bounds for the extreme zeros of Q5(x;α, 2, 30) for different values of α.

α x5,1 Bα+4,β
5 in (9) Bα+2,β

5 in (6) Bound in (10) Bound in (11) Bα,β+2
5 from (8) Bα,β+4

5 from (7) x5,5

-0.5 0.2966 0.7131 3.2174 n/a n/a 22.0000 25.0283 26.3038
5 5.0673 7.5314 10.5882 15.2941 19.2941 23.2941 26.7850 28.3414
10 8.5443 11.9184 14.0909 17.7273 21.7273 23.9090 27.2727 29.0000
50 18.3546 21.4496 21.7742 23.0645 27.0645 25.2581 27.3696 29.9025
200 23.2194 24.7356 24.7642 25.1415 29.1415 25.7830 26.6385 29.9985

Table 3. Comparison of bounds for the extreme zeros of Q5(x; 10.5, β, 30) for different values of β.

β x5,1 Bα+4,β
5 in (9) Bα+2,β

5 in (6) Bound in (10) Bound in (11) Bα,β+2
5 from (8) Bα,β+4

5 from (7) x5,5

-0.5 11.2191 14.0779 15.6500 20.1500 24.1500 26.4500 29.0938 29.9141
5 6.9636 10.7099 13.1373 15.8039 19.8039 21.6078 24.8851 27.6465
10 5.0265 9.0092 11.6393 13.2131 17.2131 18.7213 21.4190 25.3339
50 1.0722 5.2996 7.3050 n/a n/a 10.3688 10.9749 15.6847
200 0.0657 4.2096 5.0567 n/a n/a 6.0363 6.1001 8.8014

Table 4. Comparison of bounds for the extreme zeros of Q100(x; 3,−0.5, N) for different values of N .

N x100,1 Bα+4,β
100 in (9) Bα+2,β

100 in (6) Bα,β+2
100 from (7) Bα,β+4

100 from (8) x100,100

1 000 0.0361 5.8021 65.9531 947.908 995.2478 999.9999
10 000 7.9491 11.6801 243.7308 9925.6864 9 999.1817 9 999.6205
100 000 96.2846 115.4888 2021.5086 99 703.4642 99 994.0984 99 994.2872
500 000 489.3568 578.8144 9922.7432 498 715.8099 499 969.9708 499 970.4528

for example, let α = b − 1, β = N(1 − c)c−1 and N → ∞ in the definition of the Hahn
polynomials, we obtain the Meixner polynomials [1, Equation (9.5.15)]. Similarly, by making
the same substitution in (8), we obtain

lim
N→∞

−(bc+ c+ n− nc− 1)N + bc+ c− 2nc+ n2c− ncb
N (c− 1)− 2nc− bc+ c

=
bc+ (n− 1)(1− c)

1− c
,

which is the inner bound obtained for the extreme zeros of the Meixner polynomial Mn(x, b; c)
by shifting b by two units, using the same method [5, Theorem 3.1].

3. Inner bounds for extreme zeros of Continuous Hahn polynomials

Let n ∈ N=0. The continuous Hahn polynomials are orthogonal on R if the real parts of a, b, c
and d are positive and c = ā, d = b̄, and these conditions force us to simultaneously shift both
parameters a and c, as well as b and d. We will denote the real and imaginary parts of z by Re(z)
and Im(z) respectively. The parameter shifted polynomial pn(x; a + k, b + m, c + k, d + m),
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which is orthogonal on R with respect to

Γ(a+ k + ix)Γ(b+m+ ix)Γ(c+ k − ix)Γ(d+m− ix)

= (a+ ix)k(b+ ix)m(c− ix)k(d− ix)m w(a, b, c, d, x)

= σk,m(x) w(a, b, c, d, x) > 0,

together with the polynomial pn(x; a, b, c, d), satisfy the mixed three-term recurrence relations

(x−Bn(k,m))pn−1(x; a, b, c, d)

= ak+m−2(x)pn(x; a, b, c, d)− dnσk,m(x)pn−2(x; a+ k, b+m, c+ k, d+m),

where ak+m−2(x) is a polynomial of degree k+m−2 when k+m ∈ {2, 3, . . . }, and a0, a1, dn
and Bn(k,m) are constants. From Theorem 1.1 we deduce that each point Bn(k,m) such
that k + m ∈ {0, 1, 2, 3, 4} will be an upper (lower) bound for the smallest (largest) zero of
pn(x; a, b, c, d).

The mixed three-term recurrence relations that involve parameter shifts a + 1, c + 1 and b +
1, d+ 1, are given here:

(x−Bn(1, 0))Pn−1(x; a, b, c, d) (12)

=
(a+ c)n

a+ b+ c+ d+ 2n− 2
Pn(x; a, b, c, d) +

b+ d+ n− 2

a+ b+ c+ d+ 2n− 2
σ1,0(x)Pn−2(x; a+ 1, b, c+ 1, d),

(x−Bn(0, 1))Pn−1(x; a, b, c, d) (13)

=
(b+ d)n

a+ b+ c+ d+ 2n− 2
Pn(x; a, b, c, d) +

a+ c+ n− 2

a+ b+ c+ d+ 2n− 2
σ0,1(x)Pn−2(x; a, b+ 1, c, d+ 1)

and by letting a = p+ iq = c̄ and b = r + is = d̄ where p, q, r, s ∈ R, p, r > 0, we have

σ1,0(x) = (a+ ix)(c− ix) = p2 + (q + x)2 > 0,

σ0,1(x) = (b+ ix)(d− ix) = r2 + (s+ x)2 > 0

and the bounds are given by

Bn(1, 0) = i
ab− cd+ (n− 1)(a− c)
a+ b+ c+ d+ 2n− 2

= −q(r + n− 1) + ps

p+ r + n− 1
(14)

Bn(0, 1) = i
ab− cd+ (n− 1)(b− d)

a+ b+ c+ d+ 2n− 2
= −s(p+ n− 1) + qr

p+ r + n− 1
. (15)

Furthermore, we see that if q ≤ s, i.e., Im(a) ≤ Im(b),

Bn(0, 1)−Bn(1, 0) =
(n− 1)(q − s)
p+ r + n− 1

≤ 0.

From Theorem 1.1 we know that the points Bn(1, 0) and Bn(0, 1), obtained from (12) and
(13) respectively, are both upper (lower) bounds for the smallest (largest) zero of Pn(x; a, b, c, d).
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Furthermore, we observe that

lim
n→∞

Bn(1, 0) = − Im(a) and lim
n→∞

Bn(0, 1) = − Im(b)

and the bounds are thus less sharp for larger values of n, and, when Im(a) = Im(b), Bn(1, 0) =
Bn(0, 1) = − Im(a) for all values of n.

In Table 5 we show the quality of these bounds, together with bounds obtained by the param-
eter shifts a + 2, c + 2 and b + 2, d + 2, which are, in fact, more precise bounds and can be
obtained in the same manner as shown above. The recurrence equation providing the bound

Bn(0, 2) = −2ps(n+ r) + s(n− 1)(n+ 2r) + 2qr(r + 1)

n(n+ 2p+ 2r − 1) + 2r(p+ r)
(16)

is much more complicated and can be downloaded from http://www.mathematik.
uni-kassel.de/˜koepf/Publikationen. Because of time and memory constraints,
Maple cannot provide the recurrence equation with the bound

Bn(2, 0) = −2qr(n+ p) + q(n− 1)(n+ 2p) + 2ps(p+ 1)

n(n+ 2p+ 2r − 1) + 2p(p+ r)
, (17)

but this can be found by using a symmetry argument.

Table 5. Bounds for the extreme zeros of pn(x; a, b, c, d), Im(a) 5 Im(b), c = ā, d = b̄, for differ-
ent values of a, b and n.Bn(0, 2), Bn(0, 1), Bn(1, 0) and Bn(2, 0) are the bounds in (16), (15), (14)
and (17) respectively.

n a b xn,1 Bn(0, 2) Bn(0, 1) Bn(1, 0) Bn(2, 0) xn,n

5 1− 20i 3− 20i 17.94 20 20 20 20 22.06
5 1− 20i 1 + 155i -140.16 -139.09 -125.83 -9.17 4.09 5.16
5 1− 15i 1 + 15i -12.55 -12.27 -10.0 0 10.00 12.27 12.55
5 10 + i 1 + 15i -15.46 -14.63 -14.07 -10.33 -9.80 -7.86
15 1− 20i 1 + i -2.01 -0.69 0.31 18.69 19.69 21.01
15 1− 20i 1− 10i 7.46 10.15 10.63 19.38 19.85 22.54

4. Inner bounds for the extreme zeros of Continuous Dual Hahn polynomials

The parameter shifted Continuous Dual Hahn polynomials S̃n(x2; a + k, b + l, c + m), are
orthogonal in the interval (0;∞) with respect to σk,l,m(x2)w(x; a, b, c), where

σk,l,m(x2) = |(a+ ix)k(b+ ix)l(c+ ix)m|2 (18)

and satisfy the mixed three-term recurrence relations

(x2 −Bn(k, l,m))S̃n−1(x2; a, b, c)

= ak+l+m−2(x2)S̃n(x2; a, b, c)− dnσk,l,m(x2)S̃n−2(x2; a+ k, b+ l, c+m),

where ak+l+m−2 is a polynomial of degree k + l +m− 2 in x2 when k + l +m ∈ {2, 3, . . . },
and a0, a1, dn and Bn(k, l,m) are constants. From Theorem 1.1 we deduce that each point
Bn(k, l,m) such that k+ l+m ∈ {0, 1, 2, 3, 4} will be an upper (lower) bound for the smallest
(largest) zero of S̃n(x2; a, b, c).

9
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The mixed three-term recurrence relations that provide us with relatively good upper bounds
for the lowest zeros are those that involve a total parameter shift of four units, i.e., when we shift

(1) one parameter by four units;
(2) two of the parameters by two units each;
(3) one parameter by three units and another one by one unit;
(4) two parameters by one unit and the third one by two units.

Neither the weight function, nor the zeros of the polynomial S̃n(x2; a, b, c) depend on the or-
der in which the parameters a, b and c occur and shifting a by four units leads to exactly the same
bound as shifting b or c by four units, provided that the parameter with the smallest numerical
value is shifted. In order to illustrate the method used, we provide the mixed recurrence relations
obtained when a is shifted by two units.

S̃n(x2; a, b, c) =
Bn(2, 0, 0)− x2

(a+ b)(a+ c) + (2a+ 1)(n− 1)
S̃n−1(x2; a, b, c) (19)

− (n− 1) (b+ c+ n− 2)σ2,0,0(x2)

(a+ c)2 (a+ b)2 ((a+ b)(a+ c) + (2a+ 1)(n− 1))
S̃n−2(x2; a+ 2, b, c),

where, from (18),

σj,0,0(x2) =

j−1∏
k=0

(a+ k)2 + x2

and the inner bound obtained in this case is

Bn(2, 0, 0) = ab+ ac+ bc+ (2a+ 1)(n− 1). (20)

Shifting both a and b by two units leads to the mixed three-term recurrence relation

a2(x2)

a+ b+ 2n
S̃n(x2; a, b, c) = −

(
x2 −Bn(2, 2, 0)

)
(a+ b+ 1)S̃n−1(x2; a, b, c)

− (n− 1)(a+ b+ n)2 σ2,2,0(x2)

(a+ b+ 2n)(a+ b)4(a+ c)2
S̃n−2(x2; a+ 2, b+ 2, c),

where a2 is a polynomial of degree two in x2 :

a2(x2) = 4 a2bc+ 4 a3bc+ 6 a2b2c+ 3 a2bc2 + 4 ab3c+ 3 ab2c2 + 6 abc2 + 4 ab2c− 6 abc

+ a+ b− a3 + (a+ b+ 1) (2 ab+ a+ b)n2 + 3 a2b3 − 3 a2b+ a4b+ a2b2 + 3 a3b2

+ 3 b2c2 + 2 ac2 + 2 bc2 + b3c2 − 2 b2c+ b4c+ 2 b3c+ ab4 − 3 ab2 + a3c2 + 3 a2c2

+ 2 a3c+ a4c− 2 a2c+ ab− 3 ac− 3 bc− b3

+ (3 a3b+ a3c+ 5 a2b2 + 5 a2bc+ 3 ab3 + 5 ab2c+ b3c+ a3 + 3 a2b+ 4 a2c

+ 3 ab2 + 10 abc+ b3 + 4 b2c− a2 − 5 ab+ 3 ac− b2 + 3 bc− 2 a− 2 b)n

− (n− 1) (2 a(a+ b+ c+ n) + 2 b(b+ c+ n) + 2 c+ 2n− 1)x2 − (n− 1)x4

10
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and

Bn(2, 2, 0) =
(a+ b)(ac+ bc+ 2c+ n− 1)

a+ b+ 2n
+ ab. (21)

The relation obtained when we shift a by four units can be downloaded from http://www.
mathematik.uni-kassel.de/˜koepf/Publikationen. The bound obtained in this
case is included in our examples and is given by

Bn(4, 0, 0) =
(

2 (2 a+ 3) (a2 + 3 a+ 1)n3 + (6 a4 + 6 a3 b+ 6 a3 c+ 10 a2 b c+ 24 a3

+ 22 a2 b+ 22 a2 c+ 30 a b c+ 22 a2 + 18 a b+ 18 a c+ 18 b c)n2

+ (2 a5 + 6 a4 b+ 6 a4 c+ 4 a3 b2 + 16 a3 b c+ 4 a3 c2 + 10 a2 b2 c+ 10 a2 b c2

+ 6 a b2 c2 + 3 a4 + 18 a3 b+ 18 a3 c+ 13 a2 b2 + 42 a2 b c+ 13 a2 c2

+ 24 a b2 c+ 24 a b c2 + 9 b2 c2 − 16 a3 + 5 a2 b+ 5 a2 c+ 9 a b2 + 12 a b c

+ 9 a c2 + 9 b2 c+ 9 b c2 − 35 a2 − 9 a b− 9 a c− 9 b c− 22 a− 6)n

+ (a+ c)2 (a+ b)2 (a b+ a c+ b c− 2 a+ 2 b+ 2 c− 5)
)

/ (
(4 a+ 6)n3 + (6 a2 + 6 a b+ 6 a c+ 2 b c+ 6 a+ 8 b+ 8 c− 4)n2

+ (4 a3 + 6 a2 b+ 6 a2 c+ 2 a b2 + 8 a b c+ 2 a c2 + 2 b2 c+ 2 b c2

+ 6 a2 + 6 a b+ 6 a c+ 2 b2 + 6 b c+ 2 c2 + 2 a− 2 b− 2 c+ 2)n

+ (a+ c)2 (a+ b)2

)
. (22)

In Tables 6 and 7 we provide some examples that illustrate the quality of these bounds. The
point

Bn = (a+ b+ n− 1)(a+ c+ n− 1) + (n− 1)(b+ c+ n− 2)− a2, (23)

obtained from the three-term recurrence relation satisfied by the Continuous Dual Hahn poly-
nomials [1, Equation 9.3.4], is in each case the best lower bound for the largest zero of these
polynomials. It is clear that Bn is an increasing function of n and therefore a more accurate
lower bound for the largest zero of S̃n(x2; a, b, c) than the bound in (2). In Table 6 the best
upper bound for the smallest zero obtained in each case is printed in bold. Furthermore, when
only one parameter is shifted, we shift the smallest one and where two parameters are shifted,
we shift the smallest parameters.

Table 6. Bounds for the extreme zeros of S̃n(x2; a, b, c) for different values of a, b, c and n.
Bn(4, 0, 0), Bn(2, 2, 0), Bn(2, 0, 0) and Bn are the bounds in (22), (21), (20) and (23) respectively.

n {a, b, c} x2n,1 Bn(4, 0, 0) Bn(2, 2, 0) Bn(2, 0, 0) Bound in (2) Bn x2n,n

6 {7,7,7} 63.91 120.68 112.00 222.00 267.83 402 581.83
6 {7,8,9} 85.53 148.14 143.79 266.00 326.83 476 690.30
6 {1,19,40} 389.85 504.83 572.13 834.00 1134.83 1464 2147.23
6 {7,8,40} 312.91 440.85 436.56 731.00 946.83 1251 1828.50
6 {7,39,40} 1204.09 1614.00 1799.72 2188.00 2558.83 3018 4285.71
31 {7,8,9} 29.34 98.629 91.65 641.00 1506 3401 5829.19
31 {1,19,40} 114.82 157.85 240.95 909.00 3214 6189 10788.25
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Table 7. Best inner bounds for the extreme zeros of S̃n(x2; a, b, c) obtained
by this method (taken from Table 6) for different values of a, b, c and n.

n {a, b, c} xn,1 Upper Bound for xn,1
√
Bn xn,n

6 {7,7,7} 7.99 10.58 20.05 24.12
6 {7,8,9} 9.25 11.99 21.82 26.27
6 {1,19,40} 19.74 22.47 38.26 46.34
6 {7,8,40} 17.69 20.89 35.37 42.76
6 {7,39,40} 34.70 40.17 54.94 65.47
31 {7,8,9} 5.42 9.93 58.32 76.35
31 {1,19,40} 10.72 12.56 78.67 103.87

Funding

The first author would like to thank Alexander von Humboldt Foundation and TWAS for reward-
ing an AGNES Grant for Junior Researchers 2014, as well as TWAS and DFG for sponsoring a
research visit at the Institute of Mathematics of the University of Kassel in 2016 (reference KO
1122/12-1). The second author would like to thank TWAS and DFG for sponsoring a research
visit at the Institute of Mathematics of the University of Kassel in 2015 (reference 3240278140).

References

[1] Koekoek R, Lesky LA, Swarttouw RF. Hypergeometric Orthogonal Polynomials and Their q-
Analogues. Springer Monographs in Mathematics. Heidelberg: Springer Verlag; 2010.
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