On a connection between formulas about *q*-gamma functions

Wolfram Koepf

Department of Mathematics and Computer Science, University of Kassel Heinrich-Plett-Str. 40, 34132 Kassel, Germany koepf@mathematik.uni-kassel.de

Predrag M. Rajković

Department of Mathematics, Faculty of Mechanical Engineering, University of Niš A. Medvedeva 14, 18 000 Niš, Serbia pedja.rajk@yahoo.com

Sladjana D. Marinković

Department of Mathematics, Faculty of Electronic Engineering, University of Niš A. Medvedeva 14, 18 000 Niš, Serbia sladjana.marinkovic@elfak.ni.ac.rs

In this short communication, we want to pay attention to a few wrong formulas which are unfortunately cited and used in a dozen papers afterwards. We prove that the provided relations and asymptotic expansion about the q-gamma function are not correct. This is illustrated by numerous concrete counterexamples. The error came from the wrong assumption about the existence of a parameter which does not depend on anything. Here, we apply a similar procedure and derive a correct formula for the q-gamma function.

Keywords: q-Gamma function; asymptotic expansion; boundary functions.

2000 Mathematics Subject Classification: 33D05, 11A67

1. Introduction

Since J. Thomae (1869) and F. H. Jackson (1904) defined the q-gamma function, it plays an important role in the theory of the basic hypergeometric series [4] and its applications [7]. Its properties and different representations were discussed in numerous papers, such as in [3], [11] and [10]. A few successful algorithms for its numerical evaluation are introduced in [6] and [5] and [1]. An asymptotic expansion of the q-gamma function was provided in [2].

Here, we will make observations on the asymptotic expansions given in [8,9].

Let $q \in [0, 1)$. A q-number $[a]_q$ is

$$[a]_q := \frac{1-q^a}{1-q}, \quad a \in \mathbb{R}.$$

The factorial of a positive integer number $[n]_q$ is given by

$$[0]_q! := 1, \quad [n]_q! := [n]_q[n-1]_q \cdots [1]_q, \qquad (n \in \mathbb{N}).$$

Wolfram Koepf, Predrag Rajković and Sladjana Marinković

An important role in q-calculus plays the q-Pochhammer symbol defined by

$$(a;q)_0 = 1,$$
 $(a;q)_n = \prod_{i=0}^{n-1} (1 - aq^i) \quad (n \in \mathbb{N} \cup \{+\infty\}),$

and

$$(a;q)_{\lambda} = \frac{(a;q)_{\infty}}{(aq^{\lambda};q)_{\infty}} \qquad (|q| < 1, \ \lambda \in \mathbb{C}) \ .$$

The *q*-gamma function

$$\Gamma_q(z) = (q;q)_{z-1} (1-q)^{1-z} = \frac{(q;q)_{\infty}}{(q^z;q)_{\infty}} (1-q)^{1-z} \qquad (0 < q < 1, \ z \notin \mathbb{Z}^-)$$
 (1.1)

has the following properties:

$$\Gamma_a(z+1) = [z]_a \Gamma_a(z) \quad (z \in \mathbb{C}), \quad \Gamma_a(n+1) = [n]_a! \quad (n \in \mathbb{N}_0).$$

In particular,

$$\lim_{q \to 1-} \Gamma_q(z) = \Gamma(z).$$

The exact q-Gauss multiplication formula can be found in [4] or [3]:

$$\Gamma_q(nx)\prod_{k=1}^{n-1}\Gamma_{q^n}\left(\frac{k}{n}\right)=[n]_q^{nx-1}\prod_{k=0}^{n-1}\Gamma_{q^n}\left(x+\frac{k}{n}\right)\quad (x>0;\ n\in\mathbb{N}).$$

Equivalently, substituting z = nx, it can be written in the form

$$\Gamma_{q}(z) \prod_{k=1}^{n-1} \Gamma_{q^{n}} \left(\frac{k}{n} \right) = [n]_{q}^{z-1} \prod_{k=0}^{n-1} \Gamma_{q^{n}} \left(\frac{z+k}{n} \right) \quad (z > 0; \ n \in \mathbb{N}).$$
 (1.2)

2. Our corrections to the paper [8]

Starting from the definition

$$\Gamma_q(x) = (q;q)_{\infty} (1-q)^{1-x} (q^x;q)_{\infty}^{-1},$$

we can write

$$\Gamma_q(x) = (q;q)_{\infty} (1-q)^{1/2} (1-q)^{1/2-x} e^{-\log(q^x;q)_{\infty}}.$$

Hence the function $\Gamma_q(x)$ can be written in the form

$$\Gamma_q(x) = a(q) \cdot (1-q)^{1/2-x} e^{\mu(x)} \quad (a(q) \in \mathbb{R}),$$
 (2.1)

where

$$0 < a(q) = (q;q)_{\infty} (1-q)^{1/2} < 1, \qquad \mu(x,q) = -\log(q^x;q)_{\infty}. \tag{2.2}$$

Let

$$\psi(x,q) = \frac{q^x}{(1-q)(1-q^x)}.$$

From the estimate

$$0 < \mu(x,q) < \psi(x,q)$$
 $(0 < q < 1, x > 0),$

it exists $\theta(x,q) \in (0,1)$ such that

$$\mu(x,q) = \theta(x,q) \cdot \psi(x,q).$$

Therefore, relation (2.1) becomes

$$\Gamma_q(x) = a(q) \cdot (1-q)^{1/2-x} e^{\theta(x,q) \cdot \psi(x,q)}.$$
 (2.3)

On the other hand, formula (1.2) can be written in the form

$$a_p(q)\Gamma_q(x) = [p]_q^x \prod_{k=0}^{n-1} \Gamma_{q^p}\left(\frac{x+k}{p}\right) \quad (x>0; \ p \in \mathbb{N}),$$
 (2.4)

where

$$a_p(q) = [p]_q \Gamma_{q^p} \left(\frac{1}{p}\right) \Gamma_{q^p} \left(\frac{2}{p}\right) \cdots \Gamma_{q^p} \left(\frac{p}{p}\right).$$

Substituting $q \to q^p$ and $x \to k/p$ into the definition (1.1) of the q-gamma function, we have

$$\Gamma_{q^p} \left(\frac{k}{p} \right) = \frac{(q^p; q^p)_{\infty}}{(q^k; q^p)_{\infty}} (1 - q^p)^{1 - k/p} = (1 - q^p)^{1 - k/p} \lim_{n \to \infty} \frac{(q^p; q^p)_n}{(q^k; q^p)_n}.$$

Using moreover

$$\prod_{k=1}^{p} (1-q^p)^{1-k/p} = (1-q^p)^{\frac{p-1}{2}},$$

the following holds:

$$\begin{split} a_p(q) &= [p]_q \prod_{k=1}^p \Gamma_{q^p} \Big(\frac{k}{p}\Big) = [p]_q \prod_{k=1}^p (1-q^p)^{1-k/p} \lim_{n \to \infty} \frac{(q^p;q^p)_n}{(q^k;q^p)_n} \\ &= [p]_q \prod_{k=1}^p (1-q^p)^{1-k/p} \lim_{n \to \infty} \frac{(q^p;q^p)_n^p}{\prod_{k=1}^p (q^k;q^p)_n} \\ &= [p]_q (1-q^p)^{\frac{p-1}{2}} \lim_{n \to \infty} \frac{(q^p;q^p)_n^p}{\prod_{k=1}^p (q^k;q^p)_n}. \end{split}$$

The following identity is valid

$$\prod_{k=1}^{p} (q^{k}; q^{p})_{n} = (q; q)_{np}.$$

Using estimate (2.3), we get

$$\Gamma_{q^p}(n+1) = a(q^p) \cdot (1-q^p)^{-n-1/2} \cdot e^{\theta(n+1,q^p) \cdot \psi(n+1,q^p)}$$

Since

$$\frac{(q^p;q^p)_n^p}{(1-q^p)^{np}} = \Gamma_{q^p}^p(n+1) = a^p(q^p) \cdot (1-q^p)^{p(-1/2-n)} \cdot e^{p \cdot \theta(n+1,q^p) \cdot \psi(n+1,q^p)},$$

Wolfram Koepf, Predrag Rajković and Sladjana Marinković

and

$$\frac{\prod_{k=1}^{p} (q^k; q^p)_n}{(1-q)^{np}} = \frac{(q; q)_{np}}{(1-q)^{np}} = \Gamma_q(np+1) = a(q) \cdot (1-q)^{-1/2-np} \cdot e^{\theta(np+1,q) \cdot \psi(np+1,q)},$$

we have

$$a_p(q) = \frac{a^p(q^p)}{a(q)} [p]_q^{1/2} \lim_{n \to \infty} \frac{e^{p \cdot \theta(n+1,q^p) \cdot \psi(n+1,q^p)}}{e^{\theta(np+1,q) \cdot \psi(np+1,q)}}.$$

From

$$\lim_{n \to \infty} \psi(n+1, q^p) = \lim_{n \to \infty} \psi(np+1, q) = 0 \qquad (0 < q < 1; \ p \in \mathbb{N}),$$

we find

$$a_p(q) = [p]_q^{1/2} \frac{a^p(q^p)}{a(q)}.$$

In that manner, the parameter $a_p(q)$ from formula (2.4) is expressed via the parameter a(q) from formula (2.3).

3. Faults in paper [8]

In the very beginning, the author has supposed that $\Gamma_q(x)$ for 0 < q < 1; x > 0, can be written in the form

$$\Gamma_q(x) = a \cdot (1 - q)^{1/2 - x} e^{\mu(x)} \quad (a \in \mathbb{R}),$$

where

$$\mu(x,q) = -\log(q^x;q)_{\infty} > 0.$$

His efforts in looking for $\mu(x)$ we shortened a lot by starting from the definition of $\Gamma_q(x)$. From the fact that

$$0 < \mu(x) < \frac{q^x}{(1-q)(1-q^x)} ,$$

and

$$(1-q)(1-q^x) = 1-q-q^x+q^{x+1} > 1-q-q^x,$$

the author in [8] concluded wrongly that

$$0 < \mu(x) < \frac{q^x}{(1-q)-q^x} .$$

But, expression $1 - q - q^x$ is not positive for all $q \in (0,1)$ and x > 0. Indeed,

$$1 - q - q^x \le 0 \iff 1 - q \le q^x \iff x \cdot \log q \ge \log(1 - q) \iff x \le \frac{\log(1 - q)}{\log q}.$$

Example 3.1. We examined the sign changes of the function $h_q(x) \equiv 1 - q - q^x$ for different q and x. Notice that $x \to +\infty$ if $q \to 1^-$.

Table 1. Unique real zero of the function $h_q(x)$ and the sign changes for random values of q and x

		_				
q	$x: 1-q-q^x=0$		x	q	$1-q-q^x$	
0.1	0.045758	_	1.10500	0.592727	-0.15378	
0.3	0.296248		2.27287	0.752038	-0.275286	
0.5	1.0000		6.47584	0.816692	-0.0861563	
0.7	3.37555		43.2362	0.946066	-0.0370453	
0.9	21.8543		60.1635	0.954814	-0.0167368	

This estimate should be written in the from

$$0 < \mu(x) < \frac{q^x}{(1-q)-q^x}$$
 $\left(0 < q < 1; x > \frac{\log(1-q)}{\log q}\right)$.

Furthermore, from the estimate

$$0 < \mu(x) < \frac{q^x}{(1-q)-q^x}$$
,

the author in [8] concluded wrongly that

$$\mu(x) = \frac{\theta q^x}{(1-q)-q^x} ,$$

where θ is a number independent of x between 0 and 1.

Example 3.2. We find counterexamples which show that θ depends on x and q. At the first table, we fixed q = 0.9 and take a few random values for x. In another we changed the rule of variables.

Table 2. The dependence of parameter θ from x and q

•		•	•				
	х	q	θ	•	x	q	θ
	3.78377	0.9	-7.27980		10.5	0.063920	1.00000
	13.2554	0.9	-1.58344		10.5	0.234682	1.00000
	20.6473	0.9	-0.139893		10.5	0.494904	0.99898
	25.7471	0.9	0.342512		10.5	0.618621	0.98504
	32.2948	0.9	0.673069		10.5	0.806515	0.473541
	43.8850	0.9	0.904181		10.5	0.915828	-4.19862

In continuation, the author in [8] got the wrong formulas (2.21)-(2.27). He concluded that

$$a_p = \sqrt{[2]_q} \Gamma_{q^2}(1/2),$$

and

$$\Gamma_q(x) = \sqrt{[2]_q} \Gamma_{q^2} (1/2) (1-q)^{1/2-x} e^{\theta \frac{q^x}{(1-q)-q^x}} \quad (0 < \theta < 1).$$

The following wrong version of the q-Gauss multiplication formula was provided

$$[n]_q^{1/2-x}[2]_q^{(n-1)/2}\Gamma_{q^2}^{n-1}(1/2)\Gamma_q(x) = \prod_{k=0}^{n-1}\Gamma_{q^k}\left(\frac{x+k}{n}\right) \quad (x>0; \ n\in\mathbb{N}).$$

In a special case, for n = 2, it agrees with the exact q-Legendre relation. Also, when $q \to 1$, it reduces to well-known formulas for gamma-function.

4. Bounds of the *q*-gamma function

Let

$$g(x) = \ln \Gamma_a(x)$$

Since

$$g(x+1) = \ln \Gamma_q(x+1) = \ln ([x]_q \Gamma_q(x)) = \ln [x]_q + g(x), \tag{4.1}$$

by induction, we get

$$g(x+n) = \sum_{k=0}^{n-1} \ln[x+k]_q + g(x)$$
 $(n \in \mathbb{N}).$

It is known that g(x) is a convex function.

Lemma 4.1. *If* $x \in (0,1)$ *and* $n \in \mathbb{N}$ *, then*

$$g(n) + x \ln[x + n - 1]_q \le g(x + n) \le (1 - x)g(n) + xg(n + 1)$$

Proof. Since

$$x + n = (1 - x)n + x(n + 1),$$

we can write

$$g(x+n) = g((1-x)n + x(n+1)) < (1-x)g(n) + xg(n+1).$$

Let us find a lower bound for $\Gamma_q(x)$. Since

$$n = (1-x)(x+n) + x(x+n-1),$$

and because of the convexity of the function g(x), we have

$$g(n) \le (1-x)g(x+n) + xg(x+n-1).$$

Applying (4.1), for $x \rightarrow x + n - 1$, we can write

$$g(x+n) = \ln[x+n-1]_a + g(x+n-1),$$

wherefrom

$$g(n) \le (1-x)g(x+n) + x(g(x+n) - \ln[x+n-1]_q) = g(x+n) - x\ln[x+n-1]_q$$

i.e.,

$$g(n) + x \ln[x+n-1]_q \le g(x+n).\square$$

Theorem 4.1. *The following bounds are valid:*

$$[n-1]_q! [n-1+x]_q^x \le \Gamma_q(n+x) \le [n-1]_q! [n]_q^x, \qquad (n \in \mathbb{N}_0; \ 0 \le x < 1).$$

Proof. According to the upper bound for g(x), we get e. g.

$$\ln \Gamma_q(x+n) \le (1-x) \ln \Gamma_q(n) + x \ln \Gamma_q(n+1).$$

Hence

$$\Gamma_q(x+n) \le ([n-1]_q!)^{1-x} ([n]_q!)^x,$$

wherefrom

$$\Gamma_q(x+n) \le [n-1]_q! [n]_q^x.$$

According to the lower bound for g(x), we get

$$\ln \Gamma_q(n) + x \ln[x + n - 1]_q \le \ln \Gamma_q(x + n),$$

i.e.,

$$\Gamma_q(n) [n+x-1]_q^x \leq \Gamma_q(n+x). \square$$

Theorem 4.2.

$$[n-(1-x)]_q \le \left(\frac{\Gamma_q(n+x)}{[n-1]_q!}\right)^{1/x} \le [n]_q, \qquad (n \in \mathbb{N}_0; \ 0 \le x < 1).$$

Fig. 1. $\Gamma_q(x)$ and its boundary functions for q = 0.5.

Theorem 4.3. For any $n \in \mathbb{N}$ and $x \in (0,1)$ there exists $\theta = \theta(n,x,q) \in (0,1)$ such that

$$\Gamma_a(n+x) = [n-1]_a! [n-\theta(1-x)]_a^x$$

Introducing y = n + x $(n \in \mathbb{N}_0; 0 \le x < 1)$ and denoting $n = \lfloor y \rfloor$, we can write

$$[\lfloor y \rfloor - 1]_q! [y - 1]_q^{y - \lfloor y \rfloor} \le \Gamma_q(y) \le [\lfloor y \rfloor - 1]_q! [\lfloor y \rfloor]_q^{y - \lfloor y \rfloor} \qquad (y > 1).$$

Theorem 4.4. For any $y \in (1, +\infty) \setminus \mathbb{N}$, it exists $\theta = \theta(y, q) \in (0, 1)$ such that

$$\Gamma_q(\mathbf{y}) = [\lfloor \mathbf{y} \rfloor - 1]_q! \ [\lfloor \mathbf{y} \rfloor - \theta (1 - (\mathbf{y} - \lfloor \mathbf{y} \rfloor))]_q^{\mathbf{y} - \lfloor \mathbf{y} \rfloor} \,.$$

Acknowledgement. This paper is supported by the Ministry of Science and Technological Development of the Republic Serbia, projects No 174011.

Fig. 2. $\Gamma_q(x)$ and its bounds for q = 0.9.

References

- [1] G. Allasia, F. Bonardo, On the Numerical Evaluation of Two Infinite Products, *Mathematics of Computation* **35** No. 151 (1980) 917–931.
- [2] A.B.O. Daalhuis, Asymptotic Expansions for *q*–Gamma, *q*–Exponential, and *q*–Bessel Functions, *Journal of Math. Analysis and Applications* **186** (1994) 896–1994.
- [3] I. Ege, E. Yyldyrym, Some generalized equalities for the *q*–gamma function, *Filomat* **2**6 No. 6 (2012) 1227-1232.
- [4] G. Gasper, M. Rahman, *Basic Hypergeometric Series*, 2nd Ed, Encyclopedia of Math. and its Appl, **96** (Cambridge University Press, Cambridge 2004).
- [5] B. Gabutti, G. Allasia, Evaluation of *q*-gamma function and q-analogues by iterative algorithms, *Numer Algor* **49** (2008) 159–168.
- [6] L. Gateschi, Procedimenti iterativi per il calcolo numerico di due prodotti infiniti, *Rend. Sem. Mat. Univ. Politec. Torino* **29** (1969/70) 187–201.
- [7] T.H. Koornwinder, Special functions and q-commuting variables, in Special Functions, *q*–Series and Related Topics, M.E.H. Ismail, D.R. Masson and M. Rahman (eds.), Fields Institute Communications 14, American Mathematical Society (1997) 131–166.
- [8] M. Mansour, An asymptotic expansion of the q-gamma function $\Gamma_q(x)$, *Journal of Nonlinear Mathematical Physics* **13** No. 4 (2006) 479–483.
- [9] M. Mansour, A Family of Sequences Related to an Asymptotic Expansion of the *q*–gamma Function, *Int. Journal of Math. Analysis* **3** No. 23 (2009) 1131–1137.
- [10] M. Mansour, On the functional equations of the q-Gamma function, *Aequationes Mathematicae* **89** (2015) 1041–1050.
- [11] A. Sole, V.G. Kac, On integral representations of *q*-gamma and *q*-beta functions, *Rend. Mat. Acc. Lincei* **9** (2005) 11–29.