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Nehari [4] showed that a convex function, i.e. a function which maps the unit 

disk l} univalently onto a convex domain, satisfies the Nehari univalence criterion, i.e. 

(1 - ]zi2)21Sf(z)l  < 2, z e ID, 

f " '  f " 2  where Sf := (p-) - ½ (iv) denotes the Schwarzian derivative, and that this result is 

sharp, as the function f(z) = ½ log 11 - - z  + z shows. Tile method of the proof does not give 

all sharp functions. We shall show that the sharp function is essentially unique using 

another approach implying Nehari's result. 

This shows furthermore that all convex domains except of parallel strip domains 

are Jordan domains in £, using a result of Gehring and Pommerenke [3]. 

Moreover we give a geometrical description of convex domains whose corre- 

sponding convex functions satisfy the stronger relation 

sup ( 1 - I z l 2 ) 2 l S f ( z ) l  < 2. (1) 
zED 

This result generalizes Nehari's [4] that bounded convex :functions satisfy (1). 

generality we may assume that f(z) = z + a2z2 + a3z3 + •. • Without loss of 

is normalized. The following result is well-known. 

(see e.g. [6]). I f  f(z) = z + a2 z2 + a3z3 + . . .  is convex, Theorem 1 then 

l a 3 

As a consequence we have 

1 - I s 2 1 2  
- a ~ l  _< 

3 

1 This paper is in final form and no version of it will be submitted for publication else- 
where. 
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I f  f(z) = z + a2 z2 + a3z3 + . . .  

1 la3-a,~l <~ 
with equality if  and only if  

is convex, then 

~x l + x z  x e o~). (2) f(z) = log 1 --  x z '  

Proof The inequality obviously follows from the theorem. Equality can only 

occur if a 2 = 0 and l a31 = 1/3. Now we have to show that  in this case f is of the 

form (2). If f(z) = z + a3z3 + . . -  is convex, then l + z ~ ( ~ =  l + 6 a 3 z 2 + . . ,  has f"(z) 

positive real part (see e.g. [5], Theorem 2.7). So the second coefficient of this function is 

bounded by 2 (see e.g. [5], Corollary 2.3), and it follows that  la31 < 1/3. Equality 

holds if and only if 

x2z 2 
1 + z ~ - 

1 + 
1 - - x ~ '  XEO~), 

(see e.g. [5], Corollary 2.3) , which is equivalent to (2). o 

Hence we get 

I f  f(z) = z + a2 z 2 + a 3 z 3 +  . . .  is convex, Theorem 2. then 

(1 - l a ] 2 ) 2 I S f ( a ) [  < 2, (3) 

for all a E I}, with equality i f  and only if  f(i)) is a parallel strip domain, i.e. 

f ( z )  = 1 1 + x z  l O g l _ y z ,  x, y E o ~ , y # - x .  

Proof The theorem is true for a = 0, as Corollary 1 shows. Let now a E D\{0}. 

g(z) = z + b2 z2 + b3z3 + • . .  , defined by Then the function 

/ z + a ~  

g(z) ~ 1 1 - 7 ~ )  - f(a) 
= , (4) 

( 1 -  lal 2) ~'(a) 

is also convex. On the other hand it is easily seen tha t  

(1 - la12) 2 Sf(a) = Sg(O) = 6(b 3 -b~),  
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so that inequality (3) follows. If equality holds, then g has the form (2), and because of 

(4) f must have a similar range, which gives the result. [] 

As a consequence one has 

CoroNary 2. I f  f is convex, and i f  f(~)) is no parallel strip domain, then f(B) 

is a Jordan domain in ~. 

Proof  This follows from [3], Theorem 1. 

Finally we shall give a complete geometrical description for convex domains 

whose corresponding convex functions satisfy the stronger relation (1). 

I f  f(z) = z + a2 z2 + a3z3 + • - • is convex, then the following con- Theorem 3 .  

ditions are equivalent: 

(a) sup (1 - Iz l2 )21Sf (z ) l  = 2; 
zED 

(b) there is a sequence o f  domains G k which are similar to f(B), such that the 

Carathkodory kernel o f  (Gk) (see e.g. [5], p. 28) is a parallel strip; 

(e) f(B) is a parallel strip or is unbounded such that Of(D) has an angle a = 0 

at ®; 

(d) 0f(D) is not a quasieircle in ~. 

Proof  Suppose that f([}) is a parallel strip. Then all conditions are true, (a) by 

2 Theorem 2 and (b) by choosing the constant sequence. In the sequel let f(z) = z + a2z 

+ a3z3 + . . .  be convex and f(~)) not a parallel strip. Then by Corollary 2 it is a 

Jordan domain in ~:. 

(a) ¢¢ (b). Suppose, condition (a) holds. If the supremum is attained at an in- 

terior point a e B, then Theorem 2 implies that f(ID) is a parallel strip, which we as- 

sumed not to be the case. So there is a sequence (Zk) of numbers z k ~ D with 

(1 -- [Zkl2)21Sf(Zk) [ -~ 2 

as k ~ 0o. We define functions gk by 

and get 

gk(z) := 

z + Zk]  
f[1 + ~kZl - f (zk) 

(1 - [Zk[ 2) f ' ( z k )  
= z + b 2 k  z2 + b 3 k Z 3 + . . . ,  

(1  - I Zkl2)21Sf(Zk)l = 6[b3k - b~k [ -~ 2, 
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so that it follows with aid of Corollary 1 that the sequence (gk) or a subsequence con- 

~x l + X Z , x E  o~. By deft- verges locally uniformly to some function of the form log 1 - - x z  

nition all functions gk have ranges which are similar to f(D) implying (b). Similarly 

one sees that (b) implies (a), too. 

(a), (b) ~ (c). We have to show that 

(i) f(I}) is unbounded, 

(ii) 0f(i}) has an angle a at ®, 

(iii) a = 0 .  

Step (i) is Nehari's result [4] that bounded convex functions satisfy (1), (ii) is a property 

of convex domains, and (iii) will be deduced from (b). 

Because f(l}) is convex, the complement is the union of halfptanes ~:\f(l}) = 

U H t . Consider now the images of the corresponding lines OH t on the Riemann 
tET 
sphere. They represent a family of circles on the sphere, having the north pole as a com- 

mon point. So there exist two extremal directions, which correspond to the asymptotic 

directions of of(l}) and give the semitangents of 0f(D) at ®, and (ii) is verified. 

Suppose now, a > 0. We consider the images of the asymptotic lines on the 

Riemann sphere. These circles intersect at the north pole and at some finite point under 

the same angle a .  So the same is true for the asymptotic lines theirselves, because the 

stereographic projection is angle-preserving. For an arbitrary similar region, i.e. the 

image of f(l}) under the conformal mapping az + b, this angle remains invariant, so 

that each similar domain has the same fixed angle a at ®. 

Now, let (Gk) be a given sequence of domains similar to f(•), which converges 

to a parallel strip. With aid of a suitable Mhbius transformation we transform ® into a 

finite point w o . Of course this transformation does not preserve convexity, but it 

preserves univalence and the angle c~. So we get a new sequence of regions (Gk), which 

have the point w 0 as a common boundary point, having there the fixed angle o~, and 

which converge to a region, having w 0 as a (doubly) boundary point with a zero angle 

there. This easily gives a contradiction (see e.g. [5], p. 31, problem 3), and so o~ = 0. 

(c) ~ (d). As a well-known consequence of Ahlfors' intrinsic characterization [1] 

quasicircles don't  have zero angles. 

(d) ~ (a). This is equiva~lent to the result of Ahlfors and Weill [2], who showed 

that (1) implies that f(D) is a quasicircle in ~:. [] 

I want to thank Professor J. Becker for discussing the object with me. 
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