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1 Introduction

The exponential function can be introduced as solution of the first order differential equation

y′ = ay, with y(0) = 1, (1)

where a is a constant. Solution of (1) is

y(x) = eax =

∞∑
n=0

(ax)n

n!
, x ∈ R. (2)

Properties of the exponential function (2) such as the positivity, limit and reciprocal, ie.

ex > 0, lim
x→+∞

ex = +∞, 1

ex
= e−x, (3)
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and the addition formula,
eaxeay = ea(x+y), (4)

play a central role in classical Fourier analysis. The reciprocal of the exponential function appears in the Fourier
Transform [9,15]

f̂(x) =

∫ +∞

−∞
f(ξ)e−iξ xdξ. (5)

where f is a piecewise continuous real function over (−∞,+∞) satisfying the condition∫ +∞

−∞
|f(ξ)|dξ <∞.

The convergence of the integral in (5) is deduced from the fundamental relation of trigonometry

cos(x)2 + sin(x)2 = 1

and Euler’s formula
eix = cos(x) + i sin(x).

Properties of the Fourier Transform (5) are very useful when solving equations of mathematical physics (see
[15]). These properties are established by using the properties of the exponential function listed above. A new
branch of classical analysis called Fourier analysis on nonuniform lattices has been attracting significant interest
(see [18,2,1]). The Fourier analysis is on functions of the variable x(s),

x(s) =

{
c1 q
−s + c2 q

s + c3 if q 6= 1
c4 s

2 + c5 s+ c6 if q = 1.
(6)

The lattice (6) satisfies

x(s+ n)− x(s) = γn∇xn+1(s), (7)
x(s+ n) + x(s)

2
= αn xn(s) + βn, (8)

for n = 0, 1, . . . , with
xµ(s) = x(s+

µ

2
), µ ∈ C, (9)

where C is the set of complex numbers and∇ f(s) := f(s)− f(s− 1).
The sequences (αn), (βn), (γn) satisfy the following relations

αn+1 − 2ααn + αn−1 = 0,

βn+1 − 2βn + βn−1 = 2β αn,

γn+1 − γn−1 = 2αn,

with the initial values
α0 = 1, α1 = α, β0 = 0, β1 = β, γ0 = 0, γ1 = 1,

and are given explicitly by (see [5,17])

αn =
q

n
2 + q−

n
2

2
, βn =

β(1− αn)
1− α

, γn =
q

n
2 − q−n

2

q
1
2 − q− 1

2

, for α =
q

1
2 + q−

1
2

2
, q 6= 1. (10)

and
αn = 1, βn = β n2, γn = n, for α = 1, q = 1. (11)

Using the approach based on classical orthogonal polynomials (see [19]), Askey, Atakishiyev and Suslov
[1] provided an analog of the Fourier Transform for the q-harmonic oscillator. In [1] the Poisson kernel for
the continuous Hermite polynomials plays the role of the q-exponential function for the analog of the Fourier
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integral under consideration (see also [2]). This approach does not allow the establishment of some well know
properties of the Fourier transform such as the Fourier inversion formula. The inversion formula, generally
used when solving differential equations by using the Fourier transform, is established by using the classical
approach of the exponential function (see [15]). To the best of our knowledge, there is no known work in-
vestigating the Fourier integral based on the exponential function on nonuniform lattices. This is due to the
lack of analogs of the exponential function, the trigonometric functions, and their fundamental properties on
nonuniform lattices. In the early 2000’s, Suslov [18] in his book ”An introduction to basic Fourier Series”
introduced the bivariate exponential function on the Askey-Wilson lattice x(s) = q−s+qs

2 = cos θ, qs = eiθ,

y(z) = q−z+qz

2 = cosϕ, qz = eiϕ

Eq(x, y; w) =
(w2; q2)∞
(w2q; q2)∞

∞∑
n=0

q
n2

4 wn

(q; q)n
e−inϕ(−q

(1−n)
2 eiθ+iϕ,−q

(1−n)
2 e−iθ+iϕ; q)n, |w| < 1.

By writing
Eq(x, y; w) = AEq(x; w) +BEq(y; −w), (A = A(y), B = B(y))

with
Eq(x; w) = Eq(x, 0; w), (12)

he proved that
Eq(x, y; w) = Eq(x; w)Eq(y; w).

Moreover, he proved that the function Eq(x; w), considered by M.E. Ismail and Zhang[13] with different nor-
malization, satisfies

Dxy =
2q

1
4w

1− q
y, with y(0) = 1, (13)

where [10]

Dx f(x(s)) =
f(x−1(s+ 1))− f(x−1(s))

x−1(s+ 1)− x−1(s)
.

Despite this important work of Suslov, classical Fourier analysis on nonuniform lattices still needs many fun-
damental tools such as the reciprocal and the positivity of the exponential function on nonuniform lattice. Let
us mention that this last problem has been raised by Suslov in his book (see [18], p. 323). The aim of this work
is to:

1. Provide an analog of the power basis on nonuniform lattices;
2. Introduce the analogs of the exponential function and the trigonometric functions on general nonuniform

lattices;
3. Establish the analogs of the properties (4) on nonuniform lattices;
4. Establish a binomial theorem on nonuniform lattices;
5. Establish a formula for computing the nth-derivatives of a given function on nonuniform lattices;
6. Characterize symmetric orthogonal polynomials on nonuniform lattices.

2 Preliminary results

Let Sx be the operator defined by [10]

Sx f(x(s)) =
f(x(s+ 1

2 )) + f(x(s− 1
2 ))

2
. (14)

The operators Dx and Sx satisfy the following important relations, known as product and quotient rules

Theorem 1 [10]
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1. The operators Dx and Sx satisfy the product rules I

Dx (f(x(s))g(x(s))) = Sxf(x(s))Dxg(x(s)) + Dxf(x(s))Sxg(x(s)), (15)
Sx (f(x(s))g(x(s))) = U2(x(s))Dxf(x(s))Dxg(x(s)) + Sxf(x(s))Sxg(x(s)), (16)

where U2 is a polynomial of degree 2

U2(x(s)) = (α2 − 1)x2(s) + 2β (α+ 1)x(s) + δx,

and δx is a constant depending on α, β and the initial values x(0) and x(1) of x(s):

δx =
x2(0) + x2(1)

4α2
− (2α2 − 1)

2α2
x(0)x(1)− β (α+ 1)

α2
(x(0) + x(1)) +

β2 (α+ 1)2

α2
. (17)

2. The operators Dx and Sx also satisfy the quotient rules

Dx
(
f(x(s))

g(x(s))

)
=

Sxf(x(s))Dxg(x(s))− Dxf(x(s))Sxg(x(s))
U2(x(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2

,

Sx
(
f(x(s))

g(x(s))

)
=
U2(x(s))Dxf(x(s))Dxg(x(s))− Sxf(x(s))Sxg(x(s))

U2(x(s)) [Dxg(x(s))]2 − [Sxg(x(s))]2
,

provided that g(x(s)) 6= 0, s ∈ (a, b).
3. The operators Dx and Sx also satisfy the product rules II

Dx Sx = α Sx Dx + U1(s)D2
x, (18)

S2x = U1(s)SxDx + αU2(s)D2
x + I, (19)

where
U1(s) := U1(x(s)) = (α2 − 1)x(s) + β (α+ 1), U2(s) := U2(x(s)). (20)

Since the action of the operators Dx and Sx transforms the monomial x(s)n into a linear combination with
complicated coefficients, we used the generalized basis for the lattice x(s) defined by Suslov [17] as

[xm(z)− xm(s)](n) =

n−1∏
j=0

[xm(z)− xm(s− j)] =

n−1∏
j=0

[xm−n+1(z + j)− xm−n+1(s)], (21)

[xm(z)− xm(s)](0) ≡ 1,

where m ∈ N = {0, 1, 2, 3, ...} and n ∈ N∗ = N \ {0}, in [7] to define the basis Fn by

Fn(x(s)) =

n∏
j=1

[x(s)− xj(zx)], n ∈ N∗, F0(x(s)) ≡ 1, (22)

where zx, which is a constant term with respect to z but depending on the lattice x, satisfies the relations

q2zx =
c2
c1
q−

1
2 (23)

for the q-quadratic lattice x(s) = c1 q
−s + c2 q

s + β
1−α , q 6= 1, c2 c1 6= 0, or the relation

zx = −1

4
− c5

2c4
(24)

for the quadratic lattice x(s) = c4 s
2 + c5 s + c6, c4 6= 0. This basis enabled us to obtain the following

properties:
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Theorem 2 [7]

DxFn(x(s)) = γn Fn−1(x(s)),

SxFn(x(s)) = αn Fn(x(s)) +
γn
2
∇xn+1(zx)Fn−1(x(s)),

Fn+1(x(s)) = (x(s)− xn+1(zx))Fn(x(s)) =

n+1∏
j=1

(x(s)− xj(zx)), n ≥ 0,

Fn(xk(zx)) 6= 0, ∀n ≥ 0, ∀k > n ≥ 0.

Using theorem 2 one can prove a Taylor type theorem:

Theorem 3 [7] Let f(x(s)) be a polynomial of degree n of x(s). f can be expanded in the basis Fk(x(s)) as
follows

f(x(s)) =

n∑
k=0

dk Fk(x(s)),

where

dk =
Dkxf(x(zx))

γk!
, γk! =

k∏
j=1

γj , 0 ≤ k ≤ n, γ0! = 1.

3 Analog of power basis

We used the basis Fn (see [7]) to develop a method for solving divided-difference equations on nonuniform
lattices but, since this basis does not have the symmetry property Bn(−x) = (−1)nBn(x) and Bn(0) =
0, n ∈ N∗ it can’t play the role of the power basis on nonuniform lattice. So, in this section, we provide an
analog of the power basis on nonuniform lattices.

3.1 Analog of the power basis on nonuniform lattices

The generalized basis (21) can be rewritten as

[xp(s)− xq(z)](n) =
n−1∏
j=0

[xp(s)− xq(z − j)] =
n−1∏
j=0

[xp−n+1(s+ j)− xq−n+1(z)],

[xp(s)− xq(z)](0) ≡ 1

with n ∈ N∗, p ∈ N, and q ∈ N. So, substituting p = 0 and q = n− 1 into the above equations, we have

[x(s)− xn−1(z)](n) =
n−1∏
j=0

[x(s)− xn−1(z − j)], (25)

=

n−1∏
j=0

[x−n+1(s+ j)− x(z)], n ≥ 1. (26)

Taking n for 2n and n for 2n− 1 in (25), we obtain respectively

[x(s)− x2n−1(z)](2n) =
n−1∏
j=0

[x(s)− x(z + 1

2
+ j)][x(s)− x(z − 1

2
− j)], n ≥ 1, (27)

[x(s)− x2n−2(z)](2n−1) = (x(s)− x(z))
n−1∏
j=1

[x(s)− x(z + j)][x(s)− x(z − j)], n ≥ 2. (28)
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Now, using the fact that s0, solution of the equation x(z) = 0, satisfies

x(s0 + t) = −x(s0 − t), ∀ t ∈ C,

(this relation will be proved later) for the lattice x(s) = c1q
−s + c2q

s and for the linear lattice x(s) = s, we
introduce the analog of the power xn as follows

Kn(x(s)) = x(s)[x(s)− xn−2(s0)](n−1),K1(x(s)) = x(s), K0(x(s)) ≡ 1, (29)

where s0 is given by q2s0 = − c1c2 for the q-quadratic lattice and s0 = 0 for the linear lattice s.

Theorem 4 1. For the lattice x(s) = c1q
−s + c2q

s and the lattice s, we have

Kn(x(s0)) = 0, Kn(−x(s)) = (−1)nKn(x(s)), n ∈ N∗, (30)
DxKn(x(s)) = γnKn−1(x(s)). (31)

2. For the q-quadratic lattice x(s) = c1q
−s + c2q

s (c1c2 6= 0) and the linear lattice x(s) = s, we have

K2n(x(s)) =

n−1∏
j=0

[x(s)2 − x2j(s0)2] =
(
x(s)2 − x2n−2(s0)2

)
K2n−2(x(s)), (32)

K2n+1(x(s)) = x(s)

n−1∏
j=0

[x(s)2 − x2j+1(s0)
2] =

(
x(s)2 − x2n−1(s0)2

)
K2n−1(x(s)), (33)

x(s)SxKn = αnKn+1(x(s)) + (γn−1xn(s0)
2 − αγnxn−1(s0)2)Kn−1(x(s)). (34)

The proof of this theorem uses the following properties:

Proposition 1 For the lattice x(s) defined by (6), we have

Kn(x(s)) = x(s)

n−2∏
j=0

x−n+2(s+ j), (35)

K2n(x(s)) = x(s)2
n−1∏
j=1

x(s− j)x(s+ j), K2(x(s)) = x(s)2, (36)

K2n+1(x(s)) = x(s)

n−1∏
j=0

x(s− 1

2
− j)x(s+ 1

2
+ j), K1(x(s)) = x(s), (37)

DxKn(x(s)) = γnKn−1(x(s)) + (βγn−1 + βn−1)[x(s)− xn−2(s0)](n−1). (38)

Proof (of Proposition 1)
Relation (35) is obtained by using the definition of Kn, given by (29), the relation (26) and the fact that
x(s0) = 0. The equations (36) and (37) are direct consequences of (35). Let us prove (38). Using the definition
of the operators Dx and Sx, and the relations (7) and (8), we obtain by direct computation,

Dx[x(s)− xn−1(s0)](n) = γn[x(s)− xn−2(s0)](n−1), (39)
Sx[x(s)− xn−1(s0)](n) = αnx(s)[x(s)− xn−2(s0)](n−1) + βn[x(s)− xn−1(s0)](n). (40)

Now, observing that Kn(x(s)) = x(s)[x(s) − xn−2(s0)](n−1) (see (29)) and applying the product rule (15),
we have DxKn(x(s)) = (αx(s) + β)Dx[x(s)− xn−2(s0)](n−1) + Sx[x(s)− xn−2(s0)](n−1). Now, by using
(39) and (40) as well as the relation

γn = αγn−1 + αn−1, (41)

obtained by direct computation, we obtain (38).
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Proposition 2

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s (c1c2 6= 0) and the linear lattice x(s) = s, we have

x(s0 + j) = −x(s0 − j). (42)

2. Let βn, n = 1, 2, ..., be the constant appearing in (8). We have

βn = 0⇔ x(s) = c1q
−s + c2q

s orx(s) = c5s+ c6. (43)

Proof (of Proposition 2)

x(s) = c1q
−s + c2q

s ⇒
(
x(s) = 0⇔ q2s0 = −c1

c2

)
; x(s) = s⇒ (x(s) = 0⇔ s0 = 0) .

Therefore, for the q-quadratic lattice x(s) = c1q
−s + c2q

s (c1c2 6= 0), if x(s) = 0 then

qs0x(s0 + j) = c1(q
−j − qj) = −qs0x(s0 − j), j ∈ N.

Since qs0 6= 0, we obtain x(s0+j) = −x(s0−j), j ∈ N. For the linear lattice x(s) = s, the result is obvious.
Let us prove (43). From (10) and (11), βn = 0, n = 1, 2, ..., if and only if β = 0. Taking n = 1 in (8), we have
2β = x(s+ 1) + x(s)− 2αx1(s). For x(s) = c1q

−s + c2q
s + c3, we obtain 2β = −q− 1

2 (q
1
2 − 1)2c3. Hence,

for the q-quadratic lattices x(s) = c1q
−s + c2q

s + c3, β = 0 if and only if c3 = 0, for q 6= 1. For the lattices
x(s) = c4s

2 + c5s+ c6 (that is q = 1), we obtain β = 0 if and only if c4 = 0.

Proof (of Theorem 4) The relation (31) is a direct consequence of (38) and (43). For (32), from the definition
of Kn and the use of relation (28), we have

K2n(x(s)) = x(s)(x(s)− x(s0))
n−1∏
j=1

[x(s)− x(s0 − j)][x(s)− x(s0 + j)].

Then by using the fact that x(s0) = 0 and the fact that x(s0 + j) = −x(s0 − j) (see (42)) for the lattices
x(s) = c1q

−s + c2q
s and x(s) = s, we obtain the result. In a similar way, we obtain (33).

Let us prove (34). From the relations (29) and (32), we have

x(s)K2n(x(s)) = [x(s)− x2n(s0)](2n+1) + x2n(s0)
2[x(s)− x2n−2(s0)](2n−1).

Now, by applying Dx to both sides of the latter equation, the use of the relation Dx [x(s) − x2n−1(s0)](2n) =
γ2n[x(s)− x2n−2(s0)](2n−1) (see (39)) and the product rule (15) leads us to

SxK2n(x(s)) = (γ2n+1 − αγ2n) [x(s)− x2n−1(s0)](2n)

+
(
γ2n+1x2n(s0)

2 − αγ2n−1x2n−1(s0)2
)
[x(s)− x2n−3(s0)](2n−2).

The second use of (29) and then the relation (41) leads us to

x(s)SxK2n = α2nK2n+1(x(s)) + (γ2n−1x2n(s0)
2 − αγ2nx2n−1(s0)2)K2n−1(x(s)).

In a similar way, we obtain from (29) and (32)

x(s)SxK2n+1 = α2n+1K2n+2(x(s)) + (γ2nx2n+1(s0)
2 − αγ2n+1x2n(s0)

2)K2n(x(s)).

Having proved Theorem 4, we now give explicitly the basis Kn for specific classes of the lattices x(s) and
recover some known results. From relations (35)-(37), we have:
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Proposition 3

1. The basis Kn is explicitly defined for the lattice x(s) = c1q
−s + c2q

s (with c1c2 6= 0) by

Kn(x(s)) = (c1q
−s)n(1 +

c2
c1
q2s)(−c2

c1
q−n+2q2s; q2)n−1, K0(x(s)) = 1, n ≥ 1, (44)

K2n(x(s)) = x(s)2(c1c2q
−n)n−1(−c2

c1
q2s+2,−c1

c2
q−2s+2; q2)n−1, n ≥ 1, (45)

K2n+1(x(s)) = x(s)(c1c2)
nq−n

2

(−c2
c1
q2s+1,−c1

c2
q−2s+1; q2)n, n ≥ 0. (46)

2. The basis Kn is explicitly defined for the q-linear lattice x(s) = qs (c1 = 0, c2 = 1, c3 = 0) by

Kn(x(s)) = x(s)n.

3. The basis Kn is explicitly defined for the linear lattice x(s) = s (c4 = 0, c5 = 1, c6 = 0) by

Kn(x(s)) = s

(
s+

2− n
2

)
n−1

,

K2n(x(s)) = (−1)n (−s)n (s)n ,

K2n+1(x(s)) = (−1)ns
(
−s+ 1

2

)
n

(
s+

1

2

)
n

.

From this proposition, we can deduce the following result.

Corollary 1

1. In the particular case of the q-Racah lattice x(s) = q−s + δγ qs+1 (c1 = 1, c2 = δγ q and c3 = 0) the
equations (44)-(46) read as

Kn(x(s)) = (q−s)n(1 + δγq2s+1)(−δγq−n+3q2s; q2)n−1, (47)

K2n(x(s)) = x(s)2(δγ q−n)n−1(−δγq2s+3,− 1

δγ
q−2s+1; q2)n−1, (48)

K2n+1(x(s)) = x(s)(δγ q)nq−n
2

(−δγq2s+2,− 1

δγ
q−2s; q2)n. (49)

2. In the particular case of the Askey-Wilson lattice x(s) = q−s+qs

2 , qs = eiθ, (c1 = c2 = 1
2 , and c3 = 0) the

equations (44)-(46) read as

Kn(x(s)) = 2−ne−inθ(1 + e2iθ)(−q2−ne2iθ; q2)n−1,
K2n(x(s)) = 4−n+1x(s)2q−n(n−1)(−q2e2iθ,−q2e−2iθ; q2)n−1,

K2n+1(x(s)) = 4−nx(s)q−n
2

(−qe2iθ,−qe−2iθ; q2)n.

Remark 1 It should be mentioned that for the specific case of the Askey-Wilson lattice our basis Kn coincides
(up to a multiplicative factor) with the basis ρn used by Ismail [14] (Equation (1.10), page 127)

ρn(x) = 2nKn(x)

while the analogs of the power basis on the q-Racah lattice (47)-(49) seem to be new.

In the forthcoming sections, we will use the basis Kn to provide a binomial theorem on nonuniform lattices,
introduce the analogs of the exponential, and trigonometric functions on nonuniform lattices, and provide
symmetric functions on nonuniform lattices.
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3.2 Taylor theorem

In this subsection, we provide a Taylor type theorem by using the basis Kn.

Lemma 1 (Expansion of Cauchy kernel)

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s, the Cauchy kernel can be expanded in the basis Kn as

1

x(z)− x(s)

=

∞∑
j=0

x(z)Kj(x(s))

Kj+2(x(z))
+

x(s)

x(z)2 − x(s)2

x(s)
x(z)

∞∏
j=1

1− x(s)2

x2j(s0)2

1− x(z)2

x2j(s0)2

+

∞∏
j=0

1− x(s)2

x2j+1(s0)2

1− x(z)2

x2j+1(s0)2

 , s 6= z.

(50)

2. For the linear the lattice x(s) = s (c4 = 1, c5 = 1 and c6 = 0) the Cauchy kernel can be expanded in the
basis Kn as

1

x(z)− x(s)
=

∞∑
j=0

x(z)Kj(x(s))

Kj+2(x(z))
+

x(s)

x(z)2 − x(s)2

[
s

z

sin(sπ)

sin(zπ)
+

sin( 2s+1
2 π)

sin( 2z+1
2 π)

]
, s 6= z.

Proof By using the relationKn(x(z)) = x(z)[x(z)−xn−2(s0)](n−1) (see (29)) and the relations (32) and (33)
we have

x(z)2 − x(s)2

x(z)

n∑
j=0

x(z)Kj(x(s))

Kj+2(x(z))
=

[n2 ]∑
j=0

(
K2j(x(s))

K2j(x(z))
− K2j+2(x(s))

K2j+2(x(z))

)
+

[n2 ]∑
j=0

(
K2j+1(x(s))

K2j+1(x(z))
− K2j+3(x(s))

K2j+3(x(z))

)
,

= 1− K2m+2(x(s))

K2m+2(x(z))
+
x(s)

x(z)
− K2m+3(x(s))

K2m+3(x(z))

where m = [n2 ]. From this equation, we obtain

1

x(z)− x(s)
=

n∑
j=0

x(z)Kj(x(s))

Kj+2(x(z))
+

x(z)

x(z)2 − x(s)2

(
K2m+2(x(s))

K2m+2(x(z))
+
K2m+3(x(s))

K2m+3(x(z))

)
.

Since

K2m+2(x(s))

K2m+2(x(z))
=
x(s)2

x(z)2

m∏
j=1

1− x(s)2

x2j(s0)2

1− x(z)2

x2j(s0)2

 and
K2m+3(x(s))

K2m+3(x(z))
=
x(s)

x(z)

m∏
j=0

1− x(s)2

x2j+1(s0)2

1− x(z)2

x2j+1(s0)2

 ,

the result is obtained when n goes to +∞.

Theorem 5 Let f be an entire function of the variable x(s) = c1q
−s + c2q

s or x(s) = s. The expansion of f
in the basis Kn is

f(x(s)) =

∞∑
j=0

Djxf(0)
γj !

Kj(x(s)) +
1

2iπ

∫
|x(s)−y|=r

f(y)g(x, y)dy (51)

with

g(x, y) =
x

y2 − x2

x
y

∞∏
j=1

1− x2

x2j(s0)2

1− y2

x2j(s0)2

+
∞∏
j=0

1− x2

x2j+1(s0)2

1− y2

x2j+1(s0)2

 .
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Proof Let f be an analytic function, and x(s) a complex number. Since xn(s − j) (j ∈ N∗ and n ∈ N) are
discrete points of C, there is r > 0 such that xn(s − j) (j ∈ N∗ and n ∈ N) do not belong to the circle
C(x(s); r). From Cauchy’s theorem, we have

f(x(s)) =
1

2iπ

∫
|x(s)−y|=r

f(y)dy

y − x(s)
.

Applying Dnx to both sides of this equation, we have

Dnxf(x(s)) =
1

2iπ

∫
|x(s)−y|=r

Dnx
1

y − x(s)
f(y)dy.

Since Dnx 1
y−x(s) =

γn!
[y−xn(s)](n+1) (see [7]), the previous equation becomes

Dnxf(x(s)) =
γn!

2iπ

∫
|x(s)−y|=r

f(y)dy

[y − xn(s)](n+1)
. (52)

Taking s = s0 in the latter equation, we obtain

Dnxf(0) =
γn!

2iπ

∫
|y|=r

yf(y)dy

Kn+2(y)
.

Now if we integrate both sides of the equation (50) on the circle C(x(s); r) and use Cauchy’s formula as well
as the latter formula, we obtain (51).

We have the following result for polynomials.

Proposition 4 Let f(x(s)) be a polynomial of degree n of x(s). f can be expanded in the basis Kj(x(s)) as
follows

f(x(s)) =

n∑
j=0

Djxf(0)
γj !

Kj(x(s)).

Proof Since Kj(x(s)), j ∈ N, is a polynomial of degree j, {Kj(x(s)); j ∈ N} is a basis of the space of

polynomials C[x]. Therefore, there are a0, ..., an ∈ C such that f(x(s)) =

n∑
j=0

ajKj(x(s)). Applying Dlx,

l = 0, 1, .., n, to both sides and using (31), we obtain

Dlxf(x(s)) =
n∑
j=l

ajγjγj−1...γj−l+1Kj−l(x(s)).

Taking x(s) = 0, we obtain alγl! = Dlxf(0), for Kj(0) = 0, j = 1, 2, ..., and K0(x(s)) = 1 (see (29)).

From the latter proposition and the theorems 2 and 3 we can deduce, the following change of basis formulae

Corollary 2 For the q-quadratic lattice, x(s) = c1q
−s + c2q

s, the bases Fn and Kn are connected as follow

Fn(x(s)) =

n∑
j=0

γn!

γn−j !γj !
Fn−j(0)Kj(x(s)), Kn(x(s)) =

n∑
j=0

γn!

γn−j !γj !
Kn−j(x(zx))Fj(x(s)). (53)
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4 Binomial theorem on nonuniform lattices

In this section, by using the basis (Fn)n (see (22)) and the basis (Kn)n (see (29)) we provide three binomial
formulae on nonuniform lattices.
From the equation (25) (respectively the equation (26)), [x(z)− xn−1(s)](n) is a polynomial of the variable
x(z) (respectively x(s)). So, [x(z)− xn−1(s)](n) can be seen as a bivariate polynomial.

Theorem 6 (Binomial theorem on nonuniform lattices)

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s + c3 (c1c2 6= 0) and the quadratic lattice x(s) = c4s
2 +

c5s+ c6, we have

[x(z)− xn−1(s)](n) =
n∑
k=0

γn!

γk!γn−k!
Fk(x(z))(−1)n−kFn−k(x(s)). (54)

2. For the lattice x(s) = c1q
−s + c2q

s and the linear lattice x(s) = s, we have

[x(z)− xn−1(s)](n) =
n∑
k=0

γn!

γk!γn−k!
(−1)n−kx(s)−1Kn+1−k(x(s))Kk(x(z)), s 6= s0,

(55)

(x(z) + x(s)) [x(z) + xn−2(s)]
(n−1)

=

n∑
k=0

γn−1! (γk + γn−k)

γn−k!γk!
Kn−k(x(z))Kk(x(s)).

(56)

3. The coefficients
(
n
k

)
x
:= γn!

γk!γn−k!
in (54) and (55) satisfy the relation(

n

k

)
x

= q
n−k

2

(
n− 1

k − 1

)
x

+ q−
k
2

(
n− 1

k

)
x

, 1 ≤ k < n. (57)

Proof By (25), [x(z)− xn−1(s)]n =

n−1∏
j=0

[x(z)− xn−1(s− j)] is a polynomial of degree n in x(z). Therefore,

by the use of Theorem 3 (with f(x(z)) = [x(z)− xn−1(s)](n)), we obtain

[x(z)− xn−1(s)](n) =
n∑
j=0

djFj(x(z)), dj =
Djx[x(z)− xn−1(s)](n)

γj !
|z=zx (58)

Next, from relations (25) and (26) we have

[x(z +
1

2
)− xn−1(s)](n) = (x(z +

n

2
)− x(s))[x(z)− xn−2(s)](n−1),

[x(z − 1

2
)− xn−1(s)](n) = (x(z − n

2
)− x(s))[x(z)− xn−2(s)](n−1).

Therefore

Dx [x(z)− xn−1(s)](n) =
[x(z + n

2 )− x(z −
n
2 )][x(z)− xn−2(s)]

(n−1)

∇x1(z)
.

The use of (7) transforms x(z + n
2 )− x(z −

n
2 ) into γn∇x1(z). Thus

Dx [x(z)− xn−1(s)](n) = γn[x(z)− xn−2(s)](n−1).

By iterating the above relation, we get

Djx [x(z)− xn−1(s)](n) =
γn!

γn−j !
[x(z)− xn−j−1(s)](n−j). (59)
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Therefore, from (58) and (22) we obtain (54).
Let us prove (55). Since [x(z)− xn−1(s)](n) is a polynomial of degree n in the variable x(z) we deduce from
the Taylor Proposition 4 and the relation (59) that

[x(z)− xn−1(s)](n) =
n∑
j=0

dn,j
γj !

Kj(x(z))

with dn,j = γn!
γn−j !

[x(s0) − xn−j−1(s)]
(n−j). By using (25) as well as the definition of Kn (see (29)), we

transform [x(s0)− xn−j−1(s)](n−j) into (−1)n−jx(s)−1Kn+1−j(x(s)). (56) is a direct consequence of (55).
Since

(
n
k

)
x
= γn!

γk!γn−k!
= γn−1!γn

γk!γn−k!
, the use of the relation γn = q

n−k
2 γk + q−

k
2 γn−k, obtained by direct

computation, yields to (57).

Corollary 3

[x(z)− xn−1(s)](n) = (−1)n[x(s)− xn−1(z)](n), n ∈ N.

Proof Let n be a positive integer. Taking j = n− k in (54), we obtain

[x(s)− xn−1(z)](n) = (−1)n
n∑
j=0

γn!

γj !γn−j !
Fj(x(s))(−1)n−jFn−j(x(z)) = (−1)n[x(z)− xn−1(s)](n).

4.1 Binomial theorem on the lattice x(s) = c1q
−s + c2q

s + c3

In this subsection, we provide explicit expressions of the binomial formula (54)-(56) on the lattice
x(s) = c1q

−s+ c2q
s+ c3. From (22), we obtain the following representation of Fn, on the q-quadratic lattice,

Fn(x(s)) = (−
√
c1c2)

nq−
n2

4

(√
c1
c2
q

1
4 qs,

√
c2
c1
q

1
4 q−s; q

1
2

)
n

, c1c2 > 0,

and use it as well as the relation (44) to obtain:

Corollary 4

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s + c3, c1c2 > 0, (54) reads as

(c1q
−z)n(q

1−n
2 qz−s,

c2
c1
q

1−n
2 qz+s; q)n

=

n∑
k=0

(−1)kq−n2

4 (
√
c1c2)

n(q; q)n
(q; q)n−k(q; q)k

(√
c1
c2
q

1
4 qz,

√
c2
c1
q

1
4 q−z; q

1
2

)
k

(√
c1
c2
q

1
4 qs,

√
c2
c1
q

1
4 q−s; q

1
2

)
n−k

.

2. For the Askey-Wilson lattice x = cos θ, (c1 = c2 = 1
2 , q

s = eiθ and qz = eiϕ) (54) reads as

e−inϕ
(
q

1−n
2 ei(ϕ−θ), q

1−n
2 ei(ϕ+θ); q

)
n

=

n∑
k=0

(−1)kq−n2

4 (q; q)n
(q; q)n−k(q; q)k

(q
1
4 eiϕ, q

1
4 e−iϕ; q

1
2 )k(q

1
4 eiθ, q

1
4 e−iθ; q

1
2 )n−k.

3. For the q-Racah lattice x(s) = q−s + γ δ qs+1, (c1 = 1, and c2 = δγ q) (54) reads as

(q−z)n(q
1−n
2 qz−s, δγ q

3
2−

n
2 qz+s; q)n

=

n∑
k=0

(−1)kq−n2

4 (δγ q)
n
2 (q; q)n

(q; q)n−k(q; q)k

×(δ 1
2 γ

1
2 q

3
4 qz, δ−

1
2 γ−

1
2 q−

1
4 q−z; q

1
2 )k(δ

1
2 γ

1
2 q

3
4 qs, δ−

1
2 γ−

1
2 q−

1
4 q−s; q

1
2 )n−k.
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Corollary 5

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s, c1c2 6= 0, (55) reads as

(q−z)n(q
1−n
2 qz−s,

c2
c1
q

1−n
2 qz+s; q)n

=

n∑
j=0

(−1)n−jq−
(n−j)j

2 (q; q)n
(q; q)j(q; q)n−j

(q−s)n−j(q−z)j
(
1 +

c2
c1
q2z
)

×
(
−c2
c1
q−n+1+jq2s; q2

)
n−j

(
−c2
c1
q−j+2q2z; q2

)
j−1

.

2. For the Askey-Wilson lattice x = cos θ, (c1 = c2 = 1
2 , q

s = eiθ) (55) reads as

e−inϕ
(
q

1−n
2 ei(ϕ−θ), q

1−n
2 ei(ϕ+θ); q

)
n

=

n∑
j=0

(−1)n−jq−
(n−j)j

2 (q; q)n
(q; q)j(q; q)n−j

e−i(n−j)θe−iϕ(1 + ei2ϕ)

×(−q−n+1+jei2θ; q2)n−j(−q−j+2ei2ϕ; q2)j−1.

3. For the q-Racah lattice x(s) = q−s + γ δ qs+1 (c1 = 1, and c2 = γ δ q) (55) reads as

(q−z)n(q
1−n
2 qz−s, γ δ q

3−n
2 qz+s; q)n

=

n∑
j=0

(−1)n−jq−
(n−j)j

2 (q; q)n
(q; q)j(q; q)n−j

(q−s)n−j(q−z)j
(
1 + γ δ qq2z

)
(
−γ δ q−n+2+jq2s; q2

)
n−j

(
−γ δ q−j+3q2z; q2

)
j−1 .

Corollary 6
For the q-linear lattice x(z) = qz = x (c1 = 0, c2 = 1 and c3 = 0)(55) and (56) read, respectively, as

[x(z)− xn−1(s)](n) =
n∑
k=0

γn!

γn−k!γk!
xk(−y)n−k, y = qs. (60)

(x(z) + x(s))[x(z) + xn−2(s)]
(n−1) =

n∑
k=0

γn−1(γk + γn−k)

γn−k!γk!
xk(y)n−k, y = qs.

The relation (60) has already been obtained by Suslov (see [18], p.61, Eq. (3.6.2)).

4.2 Binomial theorem on the lattice x(s) = c4s
2 + c5s+ c6

In this subsection, we provide explicit expressions of the binomial formula (54)-(56) on the lattice x(s) =
c4s

2 + c5s+ c6.

Corollary 7 For the quadratic lattice x(s) = c4s
2 + c5s+ c6 the binomial formula (54) reads as

(z − s− n

2
+

1

2
)n(z + s− n

2
+

1

2
+
c5
c4

)n

=

n∑
k=0

(−1)n+kn!
4n(n− k)!k!

(−2z + 1

2
− c5
c4
, 2z +

1

2
+
c5
c4

)n−k(−2s+
1

2
− c5
c4
, 2s+

1

2
+
c5
c4

)k.
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Corollary 8

1. For the linear lattice x(s) = s (c4 = 0, c5 = 1 and c6 = 0) the binomial formula (55) reads as

(z − s+ 1− n
2

)n = (−1)n(z + 1− n
2

)n +

n−1∑
j=1

(−1)n−j
(
n

j

)
(z +

1− n+ j

2
)n−js(s+

2− j
2

)j−1

+s(s+
2− n
2

)n.

2. For the linear lattice x(s) = s, (c4 = 0, c5 = 1 and c6 = 0 ) the binomial formula (56) reads as

(z + s)(z + s+
2− n
2

)n−1 = z(z +
2− n
2

)n−1 +

n−1∑
j=1

(
n

j

)
z(z +

2− n+ j

2
)n−1−js(s+

2− j
2

)j−1

+s(s+
2− n
2

)n−1.

5 nth-derivatives of holomorphic functions on nonuniform lattices

In this section, we give a formula for computing the nth derivative of a function of the quadratic, the q-quadratic,
the linear and the q-linear variable.

Theorem 7 Let f be an analytic function. We have

Dnxf(x(s)) =
n∑
k=0

(
n

k

)
x

(−1)k
∇x1(s+ n

2 − k)
n−k∏
j=0

∇x1(s+
j

2
)

k∏
j=1

∇x1(s−
j

2
)

f(xn−2k(s)), (61)

where (
n

k

)
x

=

{
γn!

γn−k!γk!
if q 6= 1

n!
(n−k)!k! if q = 1.

Proof Let f be an analytic function. Let x(s) be a complex number, n a positive integer and rn > 0 such that
xn(s− j) (0 ≤ j < n) belongs to the interior of the circle C(x(s); rn) := Cn. From Cauchy’s Theorem,

f(x(s)) =
1

2iπ

∫
Cn

f(y)dy

y − x(s)

and by (52)

Dnxf(x(s)) =
γn!

2iπ

∫
Cn

f(y)dy

[y − xn(s)](n+1)
.

Using (25), we have
1

[y − xn(s)](n+1)
=

n∑
k=0

an,k
y − xn(s− k)

,

where

an,k =
1∏n

j=0,j 6=k(xn(s− k)− xn(s− j))
.

Therefore,

Dnxf(x(s)) = γn!

n∑
k=0

an,k
1

2iπ

∫
Cn

f(y)dy

y − xn(s− k)
.
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Since xn(s− j) belongs to the interior of Cn it follows from Cauchy’s theorem that

f(xn(s− k)) =
1

2iπ

∫
Cn

f(y)dy

y − xn(s− k)

and then

Dnxf(x(s)) = γn!

n∑
k=0

an,kf(xn(s− k)).

To end the proof, we use relation (7) and the fact that γ−j = −γj , j = 1, 2, 3, ..., to transform an,k into

(−1)k∇x1(s+ n
2 − k)

γk!γn−k!
∏n−k
j=0 ∇x1(s+

j
2 )
∏k
j=1∇x1(s−

j
2 )
.

Corollary 9

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s (61) reads as

Dnxf(x(s)) =
n∑
k=0

(−1)k
(
n

k

)
x

an,kf(xn−2k(s)),

where

an,k =

(
1− c2q

2 s+n−2 k

c1

)
q(n−2 k)s q

(n−k)2+k2−n+k
4

(−c2)kc1n−k
(

1√
q −
√
q
)n (

c2q2 s

c1
, q
)
n−k+1

(
c1q−2 s+1

c2
, q
)
k

.

2. For the q-linear lattice x(s) = qs = x, (61) reads as

Dnxf(x(s)) =

(
x−1q−

n−1
4

q
1
2 − q− 1

2

)n n∑
k=0

(−1)k
(
n

k

)
x

q
k(n−1)

2 f(xq
n−2k

2 ).

3. For the quadratic lattices x(s) = c4s
2 + c5s+ c6 (61) reads as

Dnxf(x(s)) =
n∑
k=0

(
n

k

)
c4(2s+ n− 2k) + c5

cn+1
4 (−2s+ 1− c5

c4
)k(2s+

c5
c4
)n+1−k

f(xn−2k(s)).

4. For the linear lattice x(s) = s, (c4 = 0, c5 = 1, c5 = 0) (61) reads as

Dnxf(s) =
n∑
k=0

(−1)k
(
n

k

)
f(s+

n

2
− k).

6 Analogs of the exponential function and the trigonometric functions on nonuniform lattices

6.1 Analog of the exponential function on nonuniform lattices

Replacing d
dx , the usual derivative, in (1), by the operator Dx we have

Dxy(x(s)) = ay(x(s)), y(0) = 1, (62)

where a is a constant. Introducing the analog of the exponential function E(x; a) on nonuniform lattices (6) as
the solution of Equation (62) we have:
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Theorem 8

1. On the lattice x(s) = c1q
−s + c2q

s or s, the exponential function E(x; a) can be formally expanded in the
basis Kn as

E(x; a) =
∞∑
n=0

Kn(x(s))

γn!
an. (63)

2. On q-quadratic lattice x(s) = c1q
−s + c2q

s, c1c2 6= 0, the exponential function E(x; a) can be formally
expanded in the basis Fn as

E(x; a) = ζ0(a)

∞∑
n=0

Fn(x(s))

γn!
an, (64)

where ζ0(a) is the constant given by ζ0(a)
∑∞
n=0

Fn(0))
γn!

an = 1.

Proof From (62), ∀n ∈ N, DnxE(0; a) = an ∈ C. So, by theorem 5, E(x(s); a) can be expanded in the basis
Kn as

E(x; a) =
∞∑
n=0

Kn(x(s))

γn!
an +

1

2iπ

∫
|x(s)−y|=r

E(y; a)g(x, y)dy.

g(x, y) =
x

y2 − x2

x
y

∞∏
j=1

1− x2

x2j(s0)2

1− y2

x2j(s0)2

+

∞∏
j=0

1− x2

x2j+1(s0)2

1− y2

x2j+1(s0)2

 .
Noting that the function x(s) 7→

∞∑
n=0

Kn(x(s))

γn!
an is solution to (62), we conclude that it is a formal expansion

of E(x(s); a). Taking into account the expansion of Kn in the basis Fn (see the second equation of (53)) in
(63), we obtain

E(x; a) =
∞∑
n=0

Kn(x(s))

γn!
an =

∞∑
n=0

n∑
j=0

Kn−j(x(zx))a
n−j

γn−j !

Fj(x(s))a
j

γj !
.

Now, using the product series formula, we obtain

E(x; a) = ζ0(a)

∞∑
n=0

Fn(x(s))a
n

γn!
, ζ0(a) =

∞∑
n=0

Kn(x(zx))a
n

γn!
.

Since E(x; a) satisfies the initial condition E(0; a) = 1, ζ0(a)
∞∑
n=0

Fn(0)a
n

γn!
= 1 .

Considering (63) and (64) as series expansion of E(x; a) in the basis Kn and Fn respectively, we provide in
the following corollaries their representation in terms of basic hypergeometric or hypergeometric functions and
deduced their domains of convergence.

Corollary 10 The series expansion (63) of the exponential function E(x; a) in the basis Kn reads, explicitly,
as follows

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s,

E(x(s), a) = 1 +

∞∑
n=1

(c1q
−s)n(1 + c2

c1
q2s)(− c2c1 q

−n+2q2s; q2)n−1

γn!
an, (65)

= 2ϕ1

(
− c2c1 q

2s,− c1c2 q
−2s

q
; q2, a2c1c2(1− q)2q

1
2

)

+ax(s)2ϕ1

(
− c2c1 q

2s+1,− c1c2 q
−2s+1

q3
; q2, a2c1c2(1− q)2q

1
2

)
. (66)
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The series (65) is the Taylor expansion of E(x(s), a) with respect to a in the domain |a| < q−
1
4√

|c1c2||1−q|
where 0 < q 6= 1 .

2. For the q-linear lattice x(s) = qs = x (c1 = 0, c2 = 1 and c3 = 0),

E(x, a) =
∞∑
n=0

(ax)n

γn!
.

3. For linear lattice s (c4 = 0, c5 = 1 and c6 = 0),

E(x(s), a) =
∞∑
n=0

s
(
s− n−2

2

)
n−1

n!
an, (67)

= 2F1

(
−s, s

1
2

;−a
2

4

)
+ as2F1

(
−s+ 1

2 , s+
1
2

3
2

;−a
2

4

)
.

The series (67) converges for |a| < 2.

Corollary 11 The series expansion (64) of the exponential function E(x; a) in the basis Fn reads, explicitly,
as follows:

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s,

E(x(s); a) = (−w; q)∞
(wq

1
2 ; q)∞

∞∑
n=0

an

γn!
Fn(x(s)),

=
(−w; q)∞
(wq

1
2 ; q)∞

2φ1

(
c2
c1
qzx+

1
2 qs, qzx+

1
2 q−s

−q 1
2

; q
1
2 ,−w

)
, (68)

where 0 < q < 1 and w2 = a2c1c2(1 − q)2q−
1
2 . Moreover, the above series is the Taylor expansion of

E(x(s); a) with respect to w or a in the domain |w| < 1 that is in the domain |a| < q
1
4√

|c1c2|(1−q)
.

2. For the q-Racah lattice x(s) = q−s + γδ qs+1, (c1 = 1, c2 = γδ q and qzx = γ−
1
2 δ−

1
2 q−

3
4 ) (68) reads as

E(x(s); a) = (−w; q)∞
(wq

1
2 ; q)∞

2φ1

(
γ

1
2 δ

1
2 q

3
4 qs, γ−

1
2 δ−

1
2 q−

1
4 q−s

−q 1
2

; q
1
2 ,−w

)
,

where 0 < q < 1 and w2 = a2γδ (1− q)2q 1
2 .

Remark 2 Considering the two Taylor series expansions (63) and (64) of E(x(s); a) (for 0 < q < 1) , on
the q-quadratic lattice x(s) = c1q

−s + c2q
s with respect to a, we observe that the domain of the first is

|a| < q−
1
4√

|c1c2|(1−q)
while the one of the second is |a| < q

1
4√

|c1c2|(1−q)
. Therefore, the domain of (63) is larger

than the one of (64).

Remark 3 Taking c1 = c2 = 1
2 and qs = eiθ in (68) we obtain that the basic exponential function Eq(x; w) is

connected to E(x; a) as follows

Eq(x; w) = E(x;
2q

1
4w

1− q
).

Proposition 5 For the q-quadratic lattice x(s) = c1q
−s + c2q

s, we have

lim
n→∞

n∏
j=1

(
1 +

x(s)

xj(zx)

)
=

∞∑
n=0

Kn(x(s))

γn!

(
qzx+

1
2

c1(1− q)

)n
= E(x(s); a)

with a = qzx+1
2

c1(1−q) .
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Proof If we substitute −x for x in the relation (53) and then divide the relation by Fn(0), we obtain

n∏
j=1

(
1 +

x(s)

xj(zx)

)
=

n∑
j=0

γn!

γn−j !γj !

Fn−j(0)

Fn(0)
Kj(−x(s)). (69)

By using the relations Fn(0) =
(
−c1q−(

n
4 +zx+

1
4 )
)n

(−q 1
2 ; q)n and

γn! = q−
n(n−1)

4
(q;q)n
(1−q)n which were obtained by direct computation, we transform (69) into

n∏
j=1

(
1 +

x(s)

xj(zx)

)
=

n∑
j=0

(q ; q)n
(q ; q)n−j

(−q 1
2 ; q)n−j

(−q 1
2 ; q)n

Kj(−x(s))
γj !

(
− qzx+

1
2

c1(1− q)

)j
.

Now, if n tends to ∞ on both sides of the above relation, and we take into account the fact that Kn(−x) =
(−1)nKn(x), we obtain the desired result.

6.2 Analogs of the trigonometric functions on nonuniform lattices

In the same way as in [18], for the basic trigonometric functions, the analog of the cosine function on nonuni-
form lattice C(x; a) and the sine function on nonuniform lattice S(x; a) can be introduced by using the analog
of Euler’s formula:

E(x; ia) = C(x; a) + iS(x; a).

Therefore we deduce from Theorem 8 and the use of the latter relation that:

Proposition 6 The analog of the cosine function on nonuniform lattices C(x; a) and of the sine function on
nonuniform lattices S(x; a) can be expanded in the basis Kn as

C(x(s); a) =

∞∑
n=0

(−1)nK2n(x(s))

γ2n!
a2n, (70)

S(x(s); a) = a

∞∑
n=0

(−1)nK2n+1

γ2n+1!
a2n. (71)

Corollary 12 The series expansion (70) of C(x; a) in the basis Kn reads, explicitly, as

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s, we have

C(x(s), a) = 2ϕ1

(
− c2c1 q

2s,− c1c2 q
−2s

q
; q2,−a2c1c2(1− q)2q

1
2

)
,

2. For the q-linear lattices x(s) = qs = x (c1 = 0, c2 = 1 and c3 = 0), we have

C(x; a) =

∞∑
n=0

(−1)n (ax)
2n

γ2n!
,

3. For the linear lattice s (c4 = 0, c5 = 1 and c6 = 0), we have

C(x; a) = 2F1

(
−s, s

1
2

;
a2

4

)
.

Corollary 13 The series expansion (71) of S(x; a) in the basis Kn reads, explicitly, as

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s, we have

S(x(s), a) = ax(s)2ϕ1

(
− c2c1 q

2s+1,− c1c2 q
−2s+1

q3
; q2,−a2c1c2(1− q)2q

1
2

)
,
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2. For the q-linear lattices x(s) = qs = x (c1 = 0, c2 = 1 and c3 = 0), we have

S(x; a) =

∞∑
n=0

(−1)n (ax)
2n+1

γ2n+1!
,

3. For the linear lattice s (c4 = 0, c5 = 1 and c6 = 0), we have

S(x; a) = (ax)2F1

(
−s+ 1

2 , s+
1
2

3
2

;
a2

4

)
.

7 Analogs of fundamental properties for exponential and trigonometric functions

7.1 Reciprocal of exponential function and fundamental relations of trigonometry

Theorem 9 (Reciprocal of the exponential function)

1. For the q-lattice x(s) = c1q
−s + c2q

s + c3, we have

1

E(x; a)
= E(x;−q 1

2 a). (72)

2. For the lattice x(s) = c4s
2 + c5s+ c6, we have

1

E(x; a)
= E(x;−a).

The proof of this theorem uses the following result.

Proposition 7 The function y(x(s)) = E (x(s); a)E (x(s); b) satisfies the divided-difference equation:

D2
xy − 2abU1(x)Dx y − 2abα Sx y − (a2 + b2)y = 0,

where U1 is the polynomial U1(x) = (α2 − 1)x+ β(α+ 1) (see (20)).

Proof We apply the identity operator as well as the operators Dx, Sx, SxDx and D2
x to the equation

y(x(s)) = E (x(s); a)E (x(s); b)

and use the product rules (15) and (16) to derive the following five equations
X0,0 = y
bX1,0 + aX0,1 = Dx y
abU2X0,0 +X1,1 = Sx y
2a2b2U2U1X0,0 + a(2α b2U2 + 1)X1,0 + b(2α b2U2 + 1)X0,1 + 2abU1X1,1 = SxDx y
(a2 + 2αa2b2U2 + b2)X0,0 + 2ab2U1X1,0 + 2a2bU1X0,1 + 2αabX1,1 = D2

xy

with X0,0 = E (x(s); a)E (x(s); b), X1,0 = SxE (x(s); a)E (x(s); b), X0,1 = E (x(s); a)SxE (x(s); b) and
X1,1 = SxE (x(s); a)SxE (x(s); b). The above system contains 5 linear equations for 4 unknowns, namely
Xj,k, j, k = 0, 1. For the solution of this system to exist, it is necessary for y(x(s)) to satisfy the determinant
condition ∣∣∣∣∣∣∣∣∣∣

1 0 0 0 y
0 b a 0 Dx y

abU2 0 0 1 Sx y
2a2b2U2U1 a(2α b2U2 + 1) b(2αa2U2 + 1) 2abU1 SxDx y

(a2 + 2αa2b2U2 + b2) 2ab2U1 2a2bU1 2αab D2
xy

∣∣∣∣∣∣∣∣∣∣
= 0

which is the required second-order divided-difference equation.
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Let us mention that computations in the above proof have been made by using the Maple software system (see
[16])

Proof (of Theorem 9). According to Proposition 7, for a given a, if there is b such that

E (x(s); a)E (x(s); b) = 1, ∀x(s) (73)

then b is solution of
a2 + 2αa b+ b2 = 0. (74)

For q-lattices, α = q
1
2 +q−

1
2

2 and therefore, (74) gives b = −q 1
2 a or b = −q− 1

2 a.
If b = −q 1

2 a, (73) becomes (72). If b = −q− 1
2 a, we have from (73)

E (x(s); a)E (x(s); −q− 1
2 a) = 1.

By taking −q 1
2 a for a, we transform the last relation into (72). For the linear and quadratic lattices, α = 1 and

the solution to (74) is b = −a.

Proposition 8

E(x; a) = E(−x;−a), E(−x; a) = E(x;−a),
C(−x; a) = C(x;−a) = C(x; a),

S(−x; a) = S(x;−a) = −S(x; a).

Proof If we substitute x by−x in the relations (63), (70) and (71), and use the symmetry propertiesKn(−x(s)) =
(−1)nKn(x) (see (30)), we get the result.

Proposition 9 (Fundamental Relations of Trigonometry)

1. For the q-quadratic lattice x(s) = c1q
−s + c2q

s, we have

C(x; a)C(x; q
1
2 a) + S(x; a)S(x; q

1
2 a) = 1.

2. For the linear or quadratic lattice x(s) = c1s
2 + c2s, we have

C(x; a)2 + S(x; a)2 = 1.

7.2 Positivity of the exponential function

Theorem 10 For the q-quadratic lattice x(s) = c1q
−s + c2q

s, c1c2 > 0, the function E(x(s); a), 0 < q 6= 1,
has

1. The positivity property
E(x; a) > 0, ∀x ∈ R, (75)

2. The limit properties
lim
x→∞

E(x; a) = +∞, lim
x→∞

E(−x; a) = 0, (a > 0). (76)

Proof We split the proof of the relation (75) into two steps:
For the first step, we prove that ax ≥ 0⇒ E(x; a) > 0.

By using the fact that q2s0 = − c1c2 into x2j(s0)2 and x2j+1(s0)
2 we have

x2j(s0)
2 = −c1c2(qj − q−j)2 and x2j+1(s0)

2 = −c1c2(qj+
1
2 − q−j− 1

2 )2,
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thus, from (32) and (33), we obtain

K2n(x(s)) = x(s)2
n−1∏
j=1

[x(s)2 + c1c2(q
j − q−j)2],

K2n+1(x(s)) = x(s)

n−1∏
j=1

[x(s)2 + c1c2(q
j+ 1

2 − q−j− 1
2 )2].

Taking these relations into account in

E(x; a) = 1 + ax(s) +
(ax(s))2

γ2!
+

+∞∑
n=2

K2n(x(s))

γ2n!
a2n +

+∞∑
n=1

K2n+1(x(s))

γ2n+1!
a2n+1,

obtained from (63), yields

E(x; a) = 1 + ax(s) +
(ax(s))2

γ2!
+

+∞∑
n=2

x(s)2
∏n−1
j=1 [x(s)

2 + c1c2(q
j − q−j)2]

γ2n!
a2n

+

+∞∑
n=1

x(s)
∏n−1
j=1 [x(s)

2 + c1c2(q
j+ 1

2 − q−j− 1
2 )2]

γ2n+1!
a2n+1. (77)

Now, using the hypothesis (ax ≥ 0), the latter equation leads us to E(x; a) > 0.

For the second step, we prove that ax < 0⇒ E(x; a) > 0.

ax < 0⇒ (a < 0 and x > 0) or (a > 0 and x < 0).

Let us suppose that a < 0 and x > 0. From Theorem 9, 1
E(x;a) = E(x; b), with b = −q 1

2 a or b = −q− 1
2 a since

a < 0, and q > 0, bx > 0 hence E(x; b) > 0. and therefore, E(x; a) > 0.
In a similar way, we prove that E(x; a) > 0 for (a > 0 and x < 0). Let us prove (76). Since a > 0, if x

tends to∞ in (77), we get lim
x→∞

E(x; a) = +∞.

For lim
x→∞

E(−x; a) = 0, a > 0, the use of Proposition 8 (E(−x; a) = E(x;−a)) and Theorem 9 allows us to
obtain

E(−x; a) = 1

E(x; b)
with b = q

1
2 a or b = q−

1
2 a.

Therefore, since q−
1
2 a > 0 and q

1
2 a > 0, we obtain the result by using the fact that lim

x→∞
E(x; b) = +∞, b > 0.

Corollary 14 The basic exponential function Eq(x,w) (x(s) = q−s+qs

2 , qs = eiθ) (0 < q < 1) has

1. The positivity property
Eq(x; w) > 0, (78)

2. The limit properties
lim
x→∞

Eq(x; w) = +∞, lim
x→∞

Eq(−x; w) = 0, w > 0. (79)

Proof The Askey-Wilson lattice (x(s) = q−s+qs

2 , qs = eiθ) is q-quadratic x(s) = c1q
−s + c2q

s with c1 =

c2 = 1
2 (that is, c1c2 > 0). Moreover, by Remark 3, Eq(x;w) = E(x; a) with a = 2q

1
4w

1−q . Therefore we can
deduce (78) from (75) and (79) from (76).

Proposition 10 y(x) = SxE(x; a) satisfies the second order divided-difference equation

D2
xy − 2aαDx y + a2y = 0. (80)
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Proof Since Dx E(x; a) = aE(x; a), SxDxE(x; a) = aSxE(x; a). Taking into account (18) in the latter equa-
tion, we have

DxSxE(x; a)− αaSxE(x; a)− a2U1E(x; a) = 0. (81)

Applying Dx to both sides of the above equation, the use of the relation (15) and the fact that
DxU1(x(s)) = (α2 − 1) and SxU1(x(s)) = αU1(x(s)) (obtained by direct computation) we transform (81)
into (80) with y = SxE(x; a).

Corollary 15

1. For the q-quadratic lattice we have

SxE(x; a) =
(w2; q)∞
(w2q; q)∞

E(x; q 1
2 a) + E(x; q− 1

2 a)

2
.

2. For the linear lattice

SxE(x; a) =
(
1 +

a2

4

)
E(x; a).

Proof From Proposition 10, SxE(x; a) is a solution to (80). Looking for a solution of (80) of the form y(x) =

E(x; r), we obtain y(x) = AE(x; a) if q = 1 and y(x) = BE(x; aq 1
2 ) + CE(x; aq− 1

2 ) if q 6= 1. From the
expansion of E(x; a) on q-quadratic lattices x(s) = c1q

−s + c2q
s (resp. on a linear lattice x(s) = s) in the

basis Kn (see (66), (resp. (67))) and the relations (34), one has A =
(
1 + a2

4

)
, B = C = (w2;q)∞

2(w2q;q)∞
.

7.2.1 Addition formulae for the exponential and trigonometric functions on nonuniform lattices

Here we provide, based on the binomial theorem 6, an addition theorem for the exponential function E(x; a).
Let Kn(x(z), x(s)) be the bivariate function on q-quadratic, q-linear and linear lattices

Kn(x(z), x(s)) =

n∑
j=0

γn!

γn−j !γj !
Kn−j(x(z))Kj(x(s)). (82)

Proposition 11 Kn(x(z), x(s)) has the following properties

Kn(x , y) = Kn(y , x), Kn(x , 0) = Kn(x), DxKn(x , y) = DyKn(x , y).

Theorem 11 (Addition theorem for the exponential function)

1. On q-quadratic lattices x(s) = c1q
−s + c2q

s, we have

E (x(z); a)E(x(s);−a) = ζ0(a)ζ0(−a)
∞∑
n=0

[x(z)− xn−1(s)](n)

γn!
an. (83)

2. On q-quadratic lattices x(s) = c1q
−s + c2q

s and linear lattice s, we have

E (x(z); a)E (x(s); a) =
∞∑
n=0

Kn(x(z), x(s))

γn!
an. (84)

Proof (83) is a direct consequence of (64) and the binomial theorem (54) while (84) is due to (63) and (82).

By taking E (x(z), x(s); a) = E (x(z); a)E (x(s); a) as analog of ex+y = exey , we obtain

Corollary 16 On q-quadratic lattices, we have
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1.

E (x(z), x(s); a) = (w2; q2)∞
(w2q; q2)∞

∞∑
n=0

[x(z) + xn−1(s)]
(n)

γn!
an,

=

∞∑
n=0

Kn(x(z), x(s))

γn!
an.

2. Kn(x(z), x(s)) can be expanded in terms of [x(z) + xn−1(s)]
(n) as

Kn(x(z), x(s)) =

[n2 ]∑
k=0

γn!(q
−1; q2)k

(q2; q2)k

(c1c2(1− q)2q
1
2 )k

γn−2k!
[x(z) + xn−2k−1(s)]

(n−2k).

8 Characterization of Symmetric orthogonal polynomials on nonuniform lattices

Symmetric orthogonal polynomials play an important role in applications such as Numerical Analysis [12] and
in Optics [4]. Orthogonal polynomials of the linear discrete variable have been determined (see [3]) from the
three-term recurrence equation

P−1(x) := 0, P0(x) := 1, Pn+1(x) = (x−Bn)Pn(x)− CnPn−1(x).

In this section, based on the divided-difference equation [7]

φ(x(s))D2
xy(x(s)) + ψ(x(s))SxDxy(x(s)) + λ y(x(s)) = 0, (85)

where λ is a constant, φ and ψ are polynomials of degree at most two and one, respectively, for classical orthog-
onal polynomials on nonuniform lattices, we characterize symmetric orthogonal polynomials on nonuniform
lattices.

Theorem 12 A sequence of classical orthogonal polynomials on nonuniform lattice is symmetric if and only if
their corresponding polynomial coefficients φ and ψ in the equation (85) are of the form

φ(x) = φ2x
2 + φ0, ψ(x) = ψ1x, (86)

where φ2, φ0 and ψ1 are constant numbers.

Proof Let (Pn) be a sequence of classical and symmetric polynomials on nonuniform lattices. Since (Pn)n is
classical (see [8]) there are two polynomials

φ(x)) = φ2x
2 + φ1x+ φ0 and ψ(x) = ψ1x+ ψ0

of degree at most two and of degree one, respectively, such that

φ(x(s))D2
xPn(x(s)) + ψ(x(s)) SxDxPn(x(s)) + λPn(x(s)) = 0.

Thanking −x for x in this equation, we have

φ(−x(s))D2
−xPn(−x(s)) + ψ(−x(s))S−xD−xPn(−x(s)) + λPn(−x(s)) = 0. (87)

The following relations

D−x Pn(−x) = (−1)(n+1)DxPn(x), S−x Pn(−x) = (−1)(n)SxPn(x),

obtained from the definitions of operators Dx and Sx as well as the symmetric property Pn(−x) =
(−1)nPn(x), and the second use of the symmetry, transform the second order equation (87) into

φ(−x(s))D2
xPn(x(s))− ψ(−x(s))SxDxPn(x(s)) + λPn(x(s)) = 0.
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By identification, we get the result.
Conversely if (Pn)n is a sequence of classical orthogonal polynomials such that their corresponding poly-

nomial coefficients in (85) are of the form (86), then, by substituting y(x(s)) by Pn(x) into (85) and then taking
−x for x in the obtained equation, we obtain

φ(x(s))D2
−xPn(−x(s))− ψ(x(s))S−xD−xPn(−x(s)) + λPn(−x(s)) = 0

which can be easily transformed into

φ(x(s))D2
xPn(−x(s)) + ψ(x(s))SxDxPn(−x(s)) + λPn(−x(s)) = 0.

Therefore, Pn(−x) = constantPn(x). Since Kj , j ∈ N, is symmetric, by identifying the coefficients of
Kn we have constant = (−1)n

From the above theorem and the polynomial coefficients of (86) for well known classical orthogonal polyno-
mials on nonuniform lattices (see [10]), we deduce the following result:

Corollary 17

1. The Askey-Wilson polynomials are symmetric if and only if b = −a and d = −c;
2. The q-Racah polynomials are symmetric if and only if (γ = −α and β = α) or (γ = −αδ and β = α

δ2 );
3. The Dual Hahn polynomials are symmetric if and only if γ = −1;
4. Continuous q-Jacobi polynomials are symmetric if and only if α = β;
5. Continuous q-Hermite polynomials are symmetric.

The following theorem allows us to expand in the basis Kn a symmetric classical orthogonal polynomials
sequence.

Theorem 13 If

y(x(s)) =

∞∑
n=0

dnKn(x(s)) (88)

is a series solution of the equation (85) with polynomial coefficients of the form (86), the coefficients (dn)n
satisfy a second-order difference equation

Andn+2 +Bndn = 0, (89)

where

An = γn+2γn+1φ(xn(s0)) + ψ1γn+2(γnxn+1(s0)
2 − αγn+1xn(s0)

2)

Bn = γn (φ2γn−1 + (γn − αγn−1)ψ1) + λ.

Proof Firstly, we introduce

y(x(s)) =

∞∑
n=0

dnKn(x(s))

into the equation (85). Secondly, we use the relation

D2
xKn = γnγn−1Kn−2

as well as the relations

x(s)2Kn = Kn+2 + xn(s0)
2Kn

x(s)SxKn = (γn+1 − αγn)Kn+1(x(s)) + (γn−1xn(s0)
2 − αγnxn−1(s0)2)Kn−1(x(s))

(due to (32)-(34)) to transform the obtained equation into
∞∑
n=0

(Andn+2 +Bndn)Kn(x(s)) = 0.

The proof is completed by using the fact that Kn is a basis.
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The Askey-Wilson polynomials [6]

Pn(x; a, b, c, d|q) =
n∑
k=0

(q−n, q)k
(
a b c d qn−1, q

)
k
(a qs, q)k (a q−s, q)k

(a b, q)k (a c, q)k (a d, q)k

qk

(q, q)k
, x = cos θ, (90)

satisfy (85) with [10,7]

φ (x(s)) = 2 (dcba+ 1)x2 (s)− (a+ b+ c+ d+ abc+ abd+ acd+ bcd)x (s)

+ ab+ ac+ ad+ bc+ bd+ cd− abcd− 1, (91)

ψ (x(s)) =
4 (abcd− 1) q

1
2 x (s)

q − 1
+

2 (a+ b+ c+ d− abc− abd− acd− bcd) q 1
2

q − 1

and

λ = λn = −4
(−1 + qn) (−q + abcdqn)

√
q

(q − 1)
2
qn

. (92)

By Corollary 17, these polynomials are symmetric if and only if b = −a and d = −c. So, from the above
theorem, we have:

Corollary 18

P2n(x(s) ; a ,−a , c ,−c|q) = an

n∑
j=0

(q−2n ; q2)j(a
2c2q2n−1 ; q2)j

(
4 q2

)j
q2 (

j
2)

(q ; q2)j(−a2 ; q2)j(−c2; , q2)j(q2 ; q2)j
K2j(x(s)),

= qn(x(s)
2).

P2n+1(x(s) ; a ,−a , c ,−c|q) = bn

n∑
j=0

(q−2n ; q2)j(a
2c2q2n+1 ; q2)j

(
4 q3

)j
q2 (

j
2)

(−a2q ; q2)j(−c2q; , q2)j(q3 ; q2)j(q2 ; q2)j
K2j+1(x(s)),

= x(s)rn(x(s)
2).

where an = (−c2; q2)n(q; q2)n(−a2)n
(ac; q)n(−ac; q)n(−a2q;q2)n and bn = 2(q; q2)n(−qc2; q2)n(−1)n(an)2(−1+q2n+1)a

(−1+q)(a2c2; q2)n(−a2; q2)n(a2(qn)2+1)qn .

9 The divided-difference equation for the function 4φ3

The non-terminating hypergeometric function 2F1 and the non-terminating 2φ1 satisfies respectively a second
order differential equation and a second order q-difference equation (see [11]). In this section, we prove that
the non-terminating Askey-Wilson 4φ3 satisfies the second order divided-difference equation (85).

Theorem 14 The non-terminating Askey-Wilson function 4φ3, 0 < q < 1,

4φ3

(
t, abcdq−1t−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

)
(93)

satisfies the divided-difference equation (85), where coefficients φ, ψ are those of the Askey-Wilson polynomials
(see (91)) and λ is :

λ = 4

(
tcdba− abcd+ tq − qt2

)√
q

(−1 + q)
2
t

. (94)
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Proof We assume that the non-terminating Askey-Wilson 4φ3, given by (93), satisfies (85). So, writing

4φ3

(
t, abcdq−1t−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

)
=

+∞∑
n=0

dnBn(a, x(s))

where

dn =
(t, q)n

(
a b c d qn−1, q

)
n

(a b, q)n (a c, q)n (a d, q)n

qn

(q, q)n
, Bn(a, x(s)) = (aqs, aq−s; q)n,

we obtain from [7] (Theorem 11, page 422)

8∑
k=0

Hk(φ2, φ1, φ0, ψ1, ψ0, λ) q
kn = 0,

where the Hk(φ2, φ1, φ0, ψ1, ψ0, λ) are linear combinations of λ and the coefficients of φ and ψ. Solving the
system of linear equations Hk(φ2, φ1, φ0, ψ1, ψ0, λ) = 0, 0 ≤ k ≤ 8 in terms of λ and the coefficients φj and
ψj , we obtain, up to a multiplicative factor, λ (see (94)) and the coefficients of the polynomials given in (91).

Remark 4 Solving the divided-difference equation (85) (by using [7], Theorem 18) with coefficients given by
(91) and (94) we recover (93).
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