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Bounded Nonvanishing Functions and 
Bateman Functions 

WOLFRAM KOEPF and DIETER SCHMERSAU 

Konrad-Zuse-Zentrum fur lnformationstechnik, Heilbronner S ~ K  10, 1071 1 Berlin, 
Germany 

- 
We consider the family B of bounded nonvanishing analytic functions f (2) = a0 + a p  + a2z2 + - - in 
the unit disk. The coefficient problem had been extensively investigated (see e.g. [2. 13, 14, 16-18, 201). 
and it is known that 
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sponding coefficient functions Fk(t)  had been independently considered by Bateman [3] who had intro- 
duced them with the aid of the integral representation 

We study the Bateman tunct~ons and iormuiate properties r h t  give insignr in rne coefficiicien~ prubiem 
in B. 
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1. INTRODUCTION 

We consider functions that are analytic in the unit disk 

An analytic function f is called subordinate to g ,  if f = g o w  for some analytic 
function w with w(0) = 0 and w(D) c D; we write f 4 g. The subordination principle 
states that if g is univalent then f 4 g if and only if f (0)  = ~ ( 0 )  and f (D) C g(D),  
see e.g. [15], 523. 

Let B denote the family of bounded nonvanishing analytic functions f ( z )  = a0 + 
a l z  + a2z2 + ... in D. As f is nonvanishing, we have Reln f ( z )  < 0, and by the sub- 
ordination principle it turns out that for a0 = e-' 
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238 W. KOEPF AND D. SCHMERSAU 

FIGIJRE I .  Graphs of thc functions F n ( : )  (r; = I , . .  .,5!. 

Thus the superordinate functions 

are of special interest. Graphs of the functions F,,(t) (n = 1, .  . ., 5) are given in Fig- 
ure 1. The following is a list of the first functions F,,: 
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BATEMAN FUNCTIONS 

We consider the coefficient problem (n E N) to find 

That the maximum exists for all n t N follows from the fact that the union of B 
with the constant functions c F forms a compact family of analytic functions. For 
the coefficient problem it is no loss of generality to assume that a0 > 0 so that we 
can assume that (1) holds for some t > 0. For small n it is then easy to solve the 
coefficient problem using subordination techniques. 

As f 4 g implies that lal(f )I < lul(g)l (see e.g. [15], Theorem 212), we have 

with equality iff t = 1, and J ( z )  = q e - ( ( l + c Z ) ~ ( ' - c Z ) ) ( j l  = 771 = 1). 
By the composition with a Mobills transform, this leads to the inequality (see 

ji6j j 
.- , , ? \ ,  c,,-, , 2 
(1 - !i! , j ! j  (L!l 5 ( 2  ; E, j I 'i ) 

i Ji  
,9 

c.-- rrurn which we may deduce by a standard :echn:que (see e.g. 171, p. 72, Exercise i7 j  
*I--& LlldL 

where we used (3) and chose r2  = (n - l ) j (n  + 1). Unfortunately this estimate is 
just too weak to be of value: The bound 1 for A, is very elementary, and holds 
even for all functions bounded by 1. Each global bound less than 1 would be new, 
however. 

It is similarly easy to solve the coefficient problem for n = 2 using subordination 
techniques, ([15], Theorem 212, see e.g. [lo]). 

Using several methods it was shown that 

for n = 1: 2. 3, and 4. Obviously G(l .zn)  has nth coefficient equal to 2/e, which 
makes these results sharp. That (4) may hoid for n t N, is known as the Krzyi 
conjecture. 

1f the subordinate function has very regular coefficient behavior, then global co- 
efficient results are available: If 
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240 W. KOEPF AND D. SCHMERSAU 

and if the coefficient sequence h, is nonnegative, nonincreasing, and convex, then 
la,l < ho for all n t No, and if the coefficient sequence h,, is nonnegative, nonde- 
creasing, and convex, then la,,l 5 hll ill1 n t No (see e.g. 1151, Theorem 216). O n  the 
other hand, the coefficient sequences of our subordinate functions G(t ,  z) are  highly 
irregular for all 1 > 0. 

Another important resuit, however, can be oi~iaincd by suiioi-ciiiiatiiiii ieciiiiiqiics, 
as well. It is wcll kni;wn :ha: if ( 5 )  holds, then 

Especially: If an analytic function f ( z )  = C E O a k z k  of the unit disk is bounded by 
I, then 1 + z. and the relation 

( l o i i t ~ w i u ~  ~ I ~ > C J  d i ~ c ~ i i ~  i'~uiii F~I,-SCVS;'S i d ~ i i t i t ~ j  i i  < j h S i i i ~ d  ikji ~ h i i i j ; ~ i  . i ~ i ~ i i ; i i ~  
- 

,ee I i .11 , !. ? I ! ! L l l !  L--..-.- (5.1 and Thenren; 6.2). Eqmlity h:~ids if 2nd cxiv if (see [19j, 
L - 

- ,  , O ~  

Throicni 3) / is ;in innii bdn;:;t;il, :.- i f  tiic iiidiai iiizii /(ei') -7- I & .  ,; ( y c ' ,  i = i 
I ' 1 -  

hi airnost all on the uiiii c.ic;c 2 ~ .  i ~ \ i i i v c i i t ; ~ i i l r ~ ~  "1 ,.-.... -.nr,.... inner hilc:i::K ~ l t h  pGit iW 
[((I) havc the i e p i e s e n t ~ t i ~ n  (see e.g. - . .  191, second k::rem on p. I?!%) 

where /L is a singular positive measure on the unit circle t3D. If we choose a point 
measure / I ,  concentrating its full measure t at the point 0 = 1, we get the function 
G(t ,  z )  = e?((i'z)/(l-z)) o f  Equation (2) so that we are  lead to the identity 

For each individual coefficient of G( t , z )  we thus have the (weak) inequality 

It is the purpose of this paper to develop further properties, especially inequalities, 
for the functions F, ( n  t N ) ,  giving more insight in the coefficient problem for B. 

2. A COLLECTION OF PROPERTIES OF THE BATEMAN FUNCTIONS 

In [3] (see also [I], 513.6) Bateman introduced the tunctions ( x  3 0) 

and he  verified that ( [ 3 ] ,  formula (2.7)) 
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BATEMAN FUNCTIONS 241 

where L,(t) denotes 
fines the functions Fn 

the mth Laguerre polynomial. On the other hand if one de- 
(n E NO) with the aid of the generating function 

one gets immediately (see [lo], formula (14), and p. 178) 

and a comparison of (7) and (8) yields the relation 

Fn(t) = (-l)nk2n(t) 

so that we get the Bateman representation 

2 ~ 1 2  
F )  = ( I )  - cos(ttan0 - 2nO)dd = 0 

for our functions F,. By Bateman's work we are prepared to state many further 
properties: For r z  E N the fiiiidiiifi satisfies the differential equation (set: [3], 
formula (5.1)) 

tF$(t) = (t - 2n)F,(t) ( 10) 

with the initial values 

Fn (0) = 0 and FA(0) = -2, (11) 

and the Rodrigues type formula (see [3], formula (31)) 

The differential equation can also be obtained completely algorithmically (see [Ill- 

[121). 
Further we get the following connection with the generalized Laguerre polynomi- 

als (see [23], p. 216, formula (1.15)) 

and (see [22], formula (5.2.1)) 

from which one may deduce the hypergeometric representation 

and the explicit representation 
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242 W. KOEPF AND D. SCHMERSAU 

Bateman obtained further relations: a difference equation ([3], formula (4.1)) 

that is also an easy consequence of the defining equation using the generating func- 
iion, hc ubtamed a differeiice differential equation ([3], f o ~  L I L  , , I ~  LL.u / A  (-.&,I 3)) 

and a system of differential equations ([3], formula (4.3)) 

from which he is led to the inequalities for F, ([3], fcxrnula (4.4)) 

and for F(. (131, formul:, (4.5)) 

For large t the first inequality is a refinement of the trivial estimate 

that follows from (6) or from the Bateman representation (9). 
Finally Bateman obtained the following statements about integrais of products 

Fn F, (n, m E N) (see [3], formula (2.91)) 

0 if In-ml # 1 

1" ~ i ( t ) d t = l  and la ~ , ( t ) ~ , ( t ) d f  = 
otherwise 

(19) 

We state further properties: The functions F,, (n E N) have a zero at the origin and 
n - 1 further positive real zeros (see e.g. [23], Nullstellensa~z, p. 123) (indeed, by 
(13), Fn(l) has the same zeros as ~:!~(2t)). 

From the differential equation (10) we moreover see that at t = 2n there is a 
point of inflection, and as F q ( t )  t 0 for t + co. and all other points of inflection 
lie at the zeros of F, one easily deduces that r = 2n must be the largest point of 
inflection of F, implying that all the zeros of F, lie in the interval [0,2n). The 
successive relative maxima of jF,j lying between the zeros of F, form an increasing 
sequence (see [22], Theorem 7.6.2, u = -I), so that the largest value attained by 
lF,(t)l is arrained at Ihc iast Lero of I;;: which is seen to !ie between the last zero T ,  
of Fn and the point t = 2n. For small n the mentioned qualitative properties of F,, 
can be recognized in Figure 1. 
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BATEMAN FUNCTIONS 243 

By a result o f  Hahn ([8], formula (17)) the last zero Tn (being the last zero of 

~ ! , ' ) , ( 2 1 ) )  satisfies the relation 

3 -- 4 n 2 ( ; J - < 2 ~ , , <  411-2-(;;J4tz-2 (20 )  

with two positive constants C!: Cz t R t  that are independent of ni in particrilar 

The right hand side of (20)  leads to the sharpened ineqilality 

T,, < 2n - 1 ,  

and Puiseux serics expansion of ( 2 0 )  yields the retinernent of ( 21 )  

- 
lo the system of differentiai equations given by ( i 5 j  together with the initiai con& 
iions &(Oj = O ( n  t Nj ihe iechnique of Lapiace iranshrmation 

can be applied to deduce a representation by residues for F,,. It is well-known that 
i. I I - , ,  

L.V = ~ C j , j ~ j  - j'iiij (STT e.g. [6j, Saiz 9.i j so iiiai wt. iiiiiain ( i i  E N j  

(7 + l ) L ( F l l ,  = ( Z  - l )L(F,,)  

Induction shows then that for n t N and k t No 

To obtain the initial tunction C ( F l ) ,  we use Fo[r)  = eP' to get first 

Further from (15) with i t  = O we are led to 

( Z  + I )C (F l )  = (Z - I jC(f io)  - I 
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244 W. KOEPF AND D. SCHMERSAU 

Thus by an application of (22)  with n = 1 we have finally 

If we use now the inverse Laplace transform (see e.g. [6], p. 170, formula (15)), we 

where y~ : [--R,R] -t C is given by yR(r) = i r ,  and therefore we have the integral 
representation 

By a standard procedure this can be identified as the residue (see e.g. [4], p. 217, 
formula (12)) 

and therefore we hme the represexratior, (k  E Nj 

These results are collected in 

THEOREM 1 The Bateman functions Fk ( k  E I$() satixfi the integral representation 

and therefore the residual representation 

4. RESULTS DEDUCED FROM THE DIFFERENTIAL EQUATION 

In this section we deduce another statement about an integral involving the Bate- 
man functions and get an estimate for IF,! using its differential equation (10). Mul- 
tiplying (10) by 3F;( t ) / t ,  we have 

We integrate from O to t ,  and get for n t N using the initial values (11) 
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BATEMAN FUNCTIONS 

For the last integral we get integrating by parts 

So we have the identity 

as lim,,, F,(t) = lim,,, F;(I) = 0. Therefore in particular ( t  > 0) 

At this point we like to mention that from (24)  it is now very easy to deduce the 
inequality t < 2n  for a local extremum of F,,, again (compare 52), as an application 
of (25) yields 

and therefore for any point with F,l,(t) = 0 we get t < 2n. 
To deduce an estimate for IF, 1 we regroup (24) and get 

and for I < 2n  (which is the critical region) finally 

We note that, however, this improves (6) for small I only, see Figure 2. 
In the next section we will give a further improvement of (26). 
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246 W. KOEPF A N D  D. SCHMERSAU 

- - 
0 , 2 5  0.5 0.75 1 1.25 1.5 1.75 2 

FIGUKk 2 .  !he estmates (6) and (26) tor n = 1. , 5 .  

5. EST iMATES BY THE SZEGO METHOD 

We consider the generalized Laguerre polynomials L?)(X)  ( a  E W) given by their 
Rodrigues formula 

1 dn 
xae-xLj ln ) (x )  = - p ( e - x X n + ~ )  

- 1  ,i -n 
r L :  U A  

(27) 

(see [23], p. 213, formula (1.3)). Szego ([21], see [22], p. 159, formula (7.21.3)) con- 
sidered the case a = 0, and was led to the inequality 

Using a similar method we get the following development. For n E No and a E Z 
the function fn,(x) := ecXxn+" is analytic in { z  E C / Rez > 0 ) .  By (27) we have 

1 ( n )  x " e - " ~ ? ) ( x )  = , fn, ( x ) .  
n. 

If x E R', then for z = x + reie ( r  E (0,  x ) )  we have by Taylor's formula 

and Cauchy's integral formula gives the estimate 
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BATEMAN FUNCTlONS 247 

Especially for k = n this yields 

~ ~ e - ~ ~ ~ P ) ( x ) l r "  < max I fna(x + reie)[. 
0<8(2r Q9) 

If furthermore n + a > 0, then f,, is analytic in all of C, and (211) holds for all 
r E R+, This case will be studied now. 

To give an estimate of ma~05852~  I fnu(x + reie)!, we expand 

to get 

rnax I fna(x + reie)\ = e-x max e-""e 
0 5 0 5 2 ~  0 5 0 5 2 7 ~  (x2 + r2 + ~ ~ x c o s ~ ) ) ( " + ~ ) / ~ .  

Together with (29) we have therefore 

xa1 ~ ? ) ( x ) l r ~  < rnax e-rco"e(x2 + r2 + ~ ~ x c o s ~ ) ( ~ +  @)I2. 
n j n g ~  

We set now X : = cos 0 6 [- 1. I]. 

p(X) := x2 + rZ  + 2rxX, and q(X) := e-'xp(~)("'u)iz, 

and have therefore 
xal~?)(x)lrn < max q(X). 

- 1 5 x g  

we get for a possible critical point Ao of q the relation 

x(n + a )  - (x2 + r2) 
Xo = 

2rx 

At the point A = XO we have furthermore 

and Xo maximizes q.  Therefore, from (30) we get 

if - l < X o < l .  
We consider now the case x E (0,4(n + a)]  (which with respect to the repre- 

sentation (13) corresponds to the critical for t = x/2), and choose 
r := ,/-. In this case we have Xo = E [-LO). Hence, (31) im- 
plies 

xal~?'(x)l(x(n + < ex/'(x(n + a))(n+a)/2, 
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W. KOEPF AND D. SCHMERSAU 

and therefore finally 

THEOREM 2 For the generalized Laguerre polynomials L:) (a  E Z) the estimate 

hokfs for x E (O,4(n + a)]  if n + a > 0. 

If we define the functions (a  E R) 

~ , $ ' ) ( t )  : = e - ' ~ : ' ( 2 t )  

then (32) reads ( x  = 2t)  

For n = 0, we have Szegii's result (28) in this interval: and for n = 1 we get in view 
of representation (13) 

5 
I F , ( t ) / < : ( i  (!c(0,2n)).  (34) 

This inequality improves (26) as Puiseux expansion yields 

with some positive function P. 
Note that the special choice a = -1 (and not the value = 0) generates the Rate- 

man functions F,(t) = F,$-')(t). 

6. ASY M PTOTlC EST1 MATES 

We consider the functions (a  E R) 

~ p ) ( t )  = e - ' ~ P ) ( z t )  = e - ' ( ~ ? + ' ) ( ~ t )  - ~:-:')(2t)) = ~ , $ @ + ' ) ( t )  - ~::: ' ) ( t )  

(35) 

of (33) (see [23], p. 216, formula (1.15)) now in more detail. Taking derivative yields 

where the relation about (LIP)) '  corresponds to ([23],  p. 215, formula (1.12)). 
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BATEMAN FUNCTIONS 

Moreover the program [12] generates the differential equation 

( I  + cr + 2 n  - ~ ) F ~ ' " ( I )  + (1 + cr)(Fin)) ' ( t)  + ~ ( F ~ " ) ) " ( I )  = O 

for the functions FA") with respect to the variable r .  and the recurrence equation 

with rcspect to the variable n. 
.4ssume now, t; < r.. Then. we get hy an integration 

!f we choose a = O, we get in particular 

21 (1) F,,(r) = F,!-l)(r) = - ;Fn-,(t) 

(see (12) and (13), or [22], p. 98, formula (5.2.1)) it follows from (37)  that 

We now let t2 + m. Then F ~ ' ) ( I ~ )  4 0, and as 

(see (19),  compare [3],  formulae (2.7) and (2.91)), we get further 

00 ( r z  + 1)2 CO n2 
( ~ i " ) ) ~ ( a )  = L ~ t + , ( t ) ~  - L ~ : ( t ) ~ d t  

where the last inrqualiry is deduced wirh (38). So we have finally the inequality 

This sharpens the result iif Szegd (28)  f ~ r  large t .  F r ~ m  (35)  ant! (36)  i: f d o ~  that 

~ , ( " ) ( t )  + (Fin)) ! (r )  = -2Fi0.;')(1). 
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250 W. KOEPF A N D  D. SCHMERSAU 

We deduce now for a critical point tk of F, with FA(tk) = 0 the relation 

Especially is this 5 2 / e  for 

It is now remarkable that by the result of Hahn (21) for n + ce the most important 
critical point T of F, which produces the maximal value of F, has the property 
T / n  -t 2 as T, < T < 2. This gives finally the following 

THEOREM 3 The Krzyi conjecture is asymptotical(v true for the superordinate func- 
tions e-'((l+Z)l(l-z)), i.e. we have (a,(e-*(( l+z) / ( l -z)))  5 2 / e  for n > N .  

We will now strengthen this result. 
Therefore let A arbitrarv positive zero I ,  of F, be given. Then r ,  is also a zero 

of h,  := F:, and as 
q ( r )  = i?(~, ' J t ) )~ 4 2F,?(qF;(i). 

by the differentia! quatior! for F,, we get 

From this we may deduce that h i ( t )  > 0 for t > 2n. Now, however, we consider 
the interval between t ,  and the smallest relative extremum t; > I ,  of F,, i.e. the 
smallest zero t,' of F,', after t,. Then obviously h,  is strictly increasing in [r,,t;], 
further h;(t,) = hL(t,*) = 0, and therefore h; [f,,f,.~ assumes an absolute maximum 
at some interior point t i* E (t,, t i ) ,  where hi(t,**) = 0. 

From (41) we deduce 

and therefore by (18) 

As is strictly decreasing for t E (0,2n), it follows furthermore that 

and finally (h; is positive) 
I 
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BATEMAN FUNCTIONS 25 1 

using (18) again. As t," is the global maximum of h; in [t,,t,*], we therefore are led 
to the inequalities - 

for all 1 E (t,,t;). 
We are interested in h,(t,'), the value of h, at its maximum ti. Therefore let 

p > 0 be given such that h,(t,') > I lp .  As h,(r,) = 0, and h, is strictly increasing, 
there is some in E (L,,-ti) with hn(in) = l lp.  The mean value theorem then shows 
the existence of [, E (t,,I;) with 

and therefore by (42) , -- 

By (19) we have dm h, (7) d r  = 1, 

and thus by the integral mean value theorem (h, is nonnegative) 

for some qn E (?,,t,+). As h, is strictly increasing, we therefore get h,(rl,) > hn(fn) = 
l lp  implying 

1 
- ( t - )  or t,*-i,<p. 

P 

Finally we have 7 

We were led to this inequality under the assumption that h,(t,*) > llp. If h,(t,') 5 
llp, however, then the same conclusion follows trivially, so that the above calcula- 
tions can be summarized by the following 

LEMMA 1 Let h,(t) = ~ i ( t ) ,  let t, be a positive zero of F,, let t i  the lowest zero of 
FA that is larger than t,, and let p > 0. Then 
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252 W. KOEPF AND D. SCHMERSAU 

We now emphasize on the largest zero t,, = T,, of F,. By the results of 52 the global 
maximum of F,, is attained at the last zero Tn* of F,l, which lies in the interval 
(Tn,2n), and is therefore the smallest zero of FL after T,. So Lemma 1 applies. 

By a result of Bottema and Hahn (see [5]  and [8], p. 228, last formula), the in- 
equality 

r 
T , , > z ~ - ~ - ~ v z ~ ~ = : T , ,  (43 j 

(n 2 33) holds for the last zero of F, (or L!?,). As j ( 2 n  - t ) / t  is strictly decreasing 
for 1 E (0,2n j, we nave the inequality 

Puiseux expansion yields the asymptotic expression ( n  + ca) 

especiaiiy is 

In our calculations the value p was arbitrary, so we have the freedom to choose it 
properly. The asymptotics suggest the choice p - n1i8. For any a > 0 we get there- 
fore 

for some b > 0. 
- We choose the value a = 2 f i  (minimizing the leading term in the corresponding 
Puiseux expansion) and get the global estimate 

Now we remember that F, takes its global maximum over R+ at the point T,*, and 
so does h,. We therefore have for all a > 0, n E N and 2 > 0 the inequality 
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BATEMAN FUNCTIONS 253 

We mention that we get a better asymptotic estimate if we use the sharper left hand 
inequality (20) instead of (43), set 7,' := -1 + 2 n  C(2n - 1) (C  constant) leading 
to the asymptotic result 

and therefore by the choice p - rzl'%nd the samc procedure as above to the 

THEOREM 4 For all I E W+ we have the asymptotic inequality (n > N) 

for some c > 0, and in particular the limiting value 

lim IFn(t)l = 0 
"&,.- 

for all n E N. Therefore one shows that the estimation function 

of (44) is decreasing, and as E(17821075) > 2/e and E(17821076) < 2/e, it remains 
to prove the result for only a finite number of initial values. 

The number of initial values, however, can be decisively lowered using that by 
(40) JFn(t)l 5 2/e whenever T,'/n > e/&, especially if Tn/n > el&. From the Bot- 
tema-Hahn bound 

we obtain first by the calculation 

that e(n) is increasing for tz > 2, and as !im,,,e(n) = 2 there is exactly one 
solution no > 2 of the equation e(n) = e /d2 ,  and Tn/n > e(n) > e(n0) = e l &  
for n > no. A numerical calculation shows that no z 21138.7 so that we are led 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
0
9
:
5
3
 
1
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9



254 W. KOEPF A N D  D. SCHMERSAU 

to the 

THEOREM 5 The inequality IF,(t)l 5 2 / e  is true for all n E N and all t > 0 if it is 
true for n < 21138. 

7. ESTIMATES FOR THE DERIVATIVE 

By (23) it follows that at the zeros of F, the derivative FL satisfies the relation 
IFL(t)l 5 2. This result holds for all t > 0 which can be seen as follows: Using (36) 
with a! = -1 we have 

and by an application of the Szego result (28) it follows for r > 0 

This shows that for all n E N the derivatives IF; have their maximal value at the 
origin where I Fi(0)I = 2 (see (1 1 ) ) .  We note moreover, even though the derivative 
F := Fi has a rzprzszntatioii (45:) similar ui that of Ffi itself, ii satisfies ~ l i z  nluch 
more complicated differential equation 

8. THE FUNCTIONS H, 

In this section we collect the explicit inequalities that we deduced, and formulate a 
conjecture concerning the Bzkiii~ii Fiiictions. 

As the last point of inflection of the functions F, is at the point t = 2n which 
increases with increasing n,  it is reasonable to introduce the functions 

that have common absolute values with F, which, however, are attained at different 
points. The scale on the t-axis is here such that the last point of inflection lies at 
t = 2 for all functions H, ( n  E N ) ,  and H, is positive for t 2 2. It is easy to deduce 
the differential equation 

rH$(t) = n2(t - 2)H,(t) (47) 

satisfied by H,. The inequalities that we deduced for F, read as follows for H,: The 
trivial estimate (18) gives 

IHn(t)l < 1, 

(16) yields ( n  > 2) 
2 

IHn(t)l 5 7 ,  

the refinement (39) gives 
JZ 

IHn(lk)l 5 - 
tk 
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BATEMAN FUNCTIONS 

for a critical point l k  of Hn, (26j impiies 

and finally (34) yields 

lHn(f)l < "5. 

These estimates commonly d o  not depend on n. One  more estimate will be added 
in the next section. Figure 3 shows them graphically. 

Figures 4 and 5 show the graphs of the functions Hn (n = 1,. . . ,20). We conjecture 
that H,, is strictly decreasing for increasing n at the point 1 = 2. Note that by the 
result of Hahn (21) this is not true for any r < 2. In the next section we will show, 
however, that limn,, H,(L) = 0 for each t > 2. 

9. ESTIMATES FOR LARGE I 

In this section we show that for all 1 > 2 the values H,(L) tend to 0 for n --) w. 
The inequalities (46). ~ I I J  ! 17') ~ur rcspond  t o  the incqualitics 

and 

for the derivative of H,,, respectively 
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256 W. KOEPF AND D. SCHMERSAU 

FIGURE 4. The functions Hn (n = 1,.  . .,20). 

AGURE 5. The functions H, (n = 1,. . . ,20) in the interval [1.5,2]. 

By the differential equation (47) for H, we have 

c 
Hn(t) = HL(t) .  n2(t - 2) 
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BATEMAN FUNCTIONS 25 7 

Let now 2 < tl < t2 be given. By definition H,, is strictly positive in [tl,t2], and by 
(49) HA' is strictly positive in [tl,t2]. Therefore 

As the function t / ( t  - 2) is strictly decreasing, we have 

As H l  is positive in [tl,t2], and as lim,,, HA(t) = 0, it follows that HL is negative 
and increasing, and therefore 

rt? 1 t! 
H,,(t)dt < -- 1 11 

I,.  n? (1- 2 
IH,i(tl) - H I ; ( ~ ~ ) I  < 7- n t l - 2  IHA(t$ 

where we used (48). For fixed t2 > 2 we set now tl := (2 + t2)/2, and with the inte- 
gral mean value theorem we find r E [tl,t2] with 

Another estimate for large t which is independent of n, will be established now. 
Let again 2 < tl < t2. Then by (49) 

- - t 1 

n2(tl - 2) i (W2( t2 )  - ( ~ A ) ~ ( t l ) l .  

We let now t2 -+ m, and get (t := tl) using (48) 

This estimate improves the earlier ones for large t, see Figure 3. 
Finally we show that uniformly with respect to n the functions H,, decrease faster 

than each negative power. 
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