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Bateman Functions
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Germany

We consider the family B of bounded nonvanishing analytic functions f(z) =ay + a1z + azz* +--- in
the unit disk. The coefficient problem had been extensively investigated (see e.g. [2, 13, 14, 16-18, 20]),
and 1t is known that
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for n = 1, 2, 3, an ity may hold for n € N, is known as the Krzyz conjecture. [t turns
-
f

our that for £ € Bwith ay = ¢
, 6—1((1+z)/(1—z))

s0 thal the superordinate functions ¢ —#((1+2)/(1-2) = }_:;’_“':"Fk(:)z s ! interest.
sponding coefficient functions F;(¢) had been independently considered by Bateman [3] who had intro-
duced them with the aid of the integral representation

k
are of

) x/2
Fk(t)=(—1)k—/ cos(rtanf — 2k6)d9.
m
0

We study the Bateman functions and formulate properties that give insight in the coefficient probiem
in B.
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1. INTRODUCTION
We consider functions that are analytic in the unit disk
D:={zcCllzl<1}.

An analytic function f is called subordinate to g, if f =g ow for some analytic
function w with w(0) = 0 and w(D) C D; we write f < g. The subordination principle
states that if g is univalent then [ <g if and only if f(0) = g(0) and (D) C g(D),
see e.g. [15], §23.

Let B denote the family of bounded nonvanishing analytic functions f(z) = ay +
a1z +ayz*> +--- in D. As f is nonvanishing, we have Reln f(z) < 0, and by the sub-
ordination principle it turns out that for ap = ¢’

1+:z
—lnf(z) ~ [:,
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FIGUREF 1. Graphs of the functions F{¢) (n = 1,...,5).

and so f(z) =e~' +ajz +ayz* +--- € B if and only if
— +2)/(1—
f(z) <e H((+z)/(1-2)), (1)

Thus the superordinate functions

G(1,z) = e /=) = N Fr(n)7 2)
k=0

are of special interest. Graphs of the functions F,(¢) (n = 1,...,5) are given in Fig-
ure 1. The following is a list of the first functions F,:

Fo(l) =e¢™!
Fl(t) = A21€~t,
F(f) =2e'(—1+ 1),

e (=3 + 61 — 21%)

F(t) = 3 ,

2 (=3+ 9t — 612 +1%)
3 2

F4([) =

2te(—15 + 60 — 6012 + 2003 — 2%
Fs(t) = = .




Wol framj At: 09:53 19 February 2009

Downl oaded By: [ Koepf,

BATEMAN FUNCTIONS 239

We consider the coefficient problem (n € N) to find

Ap := max |an(f)].
feB

That the maximum exists for all n € N follows from the fact that the union of B
with the constant functions ¢ € D forms a compact family of analytic functions. For
the coefficient problem it is no loss of generality to assume that ag > 0 so that we
can assume that (1) holds for some ¢ > 0. For small # it is then easy to solve the
coefficient problem using subordination techniques.

As f < g implies that |a;(f)] <lai(g)| (see e.g. [15], Theorem 212), we have

2
A; = max|a; (e (A=) = max|Fy(r)] = max2te™ = =
120 120 120 e
with equality iff r = 1, and f(z) = ge~ (1 €/0=E2)(i¢| = |nl = 1).
By the composition with @ Md&bius transform, this leads to the inequality (see
(1))

s IR VAN I PN (o~
(L— 120 Jij (€)1 = <

(3)
\"/

©

m which we may deduce by a standard technique (see e.g. {7], p. 72, Exercise 17)

1 f 1 1 /" .
an(F) = lan-s = 5 [ Faq)< L <§ / If’(re”’)ld9>
_ L2 _2ne1f 0 2 NOTOR
ir”'l(l—rz)e_e 2 K n—1 '

where we used (3) and chose r? = (n—1)/(n+ 1). Unfortunately this estimate is
just too weak to be of value: The bound 1 for A, is very elementary, and holds
even for all functions bounded by 1. Each global bound less than 1 would be new,
however.

It is similarly easy to solve the coefficient problem for »# = 2 using subordination
techniques, ([15], Theorem 212, see e.g. [10]).
Using several methods it was shown that
2
- 4
for n =1, 2, 3, and 4. Obviously G(1.z") has nth coefficient equal to 2/e, which
makes these results sharp. That (4) may hold for #n € N, is known as the Krzyz

comnjecture.
If the subordinate function has very regular coefficient behavior, then global co-
efficient results are available: If

iakzk = ibkzk, (5)
k=0 k=0

A, =
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and if the coefficient sequence b, is nonnegative, nonincreasing, and convex, then
lan] < by for all n € Ny, and if the coefficient sequence b, is nonnegative, nonde-
creasing, and convex, then |a,| < b, all n € Ny (see e.g. [15], Theorem 216). On the
other hand, the coefficient sequences ot our subordinate functions G(7, z) are highly
irregular for all 1 > 0.

Another important resuit, however, can be obtained by subordination technigues,
as well. Tt is well known that if (5) holds, then

oo oo
D la® < (bl
k=0 k=0

Especially: If an analytic function f(z) =5 /2, az* of the unit disk is bounded by
1, then [ < z, and the relation

P N Y T LU RS B o 1. - Py
aAldCval > 1u(,uuL_y) 1> Jvuvialiivua \1
" \ .
J

o R T I s Lomgione
(foliowing also duecily {101 OI sharper versions
see also [7L Th ] qualitv hoid

i1

where 1 is a singular positive measure on the unit circle 9D. [f we choose a point
measure j. concentrating its full measure ¢ at the point § = 1, we get the function
G(t,z) = e {1+2/(1=2)) f Equation (2) so that we are lead to the identity

Y Fn=1.
k=0

For each individual coefficient of G(f,z) we thus have the (weak) inequality

|Fu()] < A/1-F2(1)=V1—e2%  (neN). (6)

[t is the purpose of this paper to develop further properties, especially inequalities,
for the tunctions ¥, (n € N), giving more insight in the coetficient problem for B.

2. A COLLECTION OF PROPERTIES OF THE BATEMAN FUNCTIONS

In 3] (see also [1], §13.6) Bateman introduced the functions (x > 0)

2 n/2
kn{x):= - /0 cos(xtanb — nf)db,

and he verified that (|3], formula (2.7))
kam(x) = (—~1)"€ X (Ln(2%) — Ly -1(22)) (7)
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where L,,(t) denotes the mth Laguerre polynomial. On the other hand if one de-
fines the functions F, (n € Ny) with the aid of the generating function

e—1(+2)/(1-2) ., iFk([)Z’(’
k=0
one gets immediately (see [10], formula (14), and p. 178)
Fo(t) = € (Ln(20) — Ly—1(20)) 8)
and a comparison of (7) and (8) yields the relation
Fa(t) = (=1)"kan(2)

so that we get the Bateman representation
/2

2 T/-
Fo(t)=(- ])nér /0 cos(ttand -- 2n6)dé ©)

for our functions F,. By Bateman’s work we are prepared to state many further
properties: For n € N the function F, satisfics the differential equation (see [3],
formula (5.1))
tF) (1) = (t — 2n)F, (1) (10)
with the initial values
F,(0)=0 and F,(0) = -2, (11
and the Rodrigues type formula (see [3] formula (31))

le
Fa(r) = 'd["( —Hgn- 1)

The differential equation can also be obtained completely algorithmically (see [11]-
[12)).
Further we get the following connection with the generalized Laguerre polynomi-
als (see [23], p. 216, formula (1.15))
Fu(t) = e LS V(21), (12)
and (see [22], formula (5.2.1))
Fa(t) = - LE,” (20), (13)

from which one may deduce the hypergeometric representation

).
and the explicit representation

tOL (S
Fa() = <~ L(k 1)1)!< )(Zt)k-

1-n
Fu(2) = —2te "1 Fy ( )
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Bateman obtained further relations: a difference equation ([3], formula (4.1))

(n—=DF,(1) = Fm1(0)) + (0 + D(F, (1) — F, 11(8)) = 2tF, (1) (14)
that is also an easy consequence of the defining equation using the generating func-
tion, he obtained a difference differential equation ([3], formula (4.2))

(n+ DFy()— (n~1DE,_1(t) = 2tF, (1),
and a system of differential equations ([3], formula (4.3))
Fou(t) = Fa(t) = Fat) + Faa (1), (15)
trom which he is led to the inequalities for F, ([3], formula (4.4))
0 < ) (16)
and for F, ([3], formuia (4.5))
iy (n>2) an
For large ¢ the first inequality is a refinement of the trivial estimate
[Fa(D)] <1 (18)

that follows from (6) or from the Bateman representation (9).
Finally Bateman obtained the following statements about integrais of products
E,Fy (n,m € N) (see [3], formula (2.91))

/ FXt)dt=1 and / Fo(£)Fp(t)dt = {
0 0

3 otherwise

(19)

We state further properties: The functions F,, (n € N) have a zero at the origin and
n—1 further positive real zeros (see e.g. [23], Nullstellensatz, p. 123) (indeed, by
(13), F,(1) has the same zeros as Lfilll(Zt)).

From the differential equation (10) we moreover see that at { = 2n there is a
point of inflection, and as F,(t) — 0 for r — oo, and all other points of inflection
lie at the zeros of F,, one easily deduces that r = Zn must be the largest point of
inflection of F, implying that all the zeros of F, lie in the interval [0,2n). The
successive relative maxima of |F,| lying between the zeros of F,, form an increasing
sequence (see [22], Theorem 7.6.2, & = —1), so that the largest value attained by
[F,(1)] is attained 4t the last zero of F); which is scen to lie between the last zero T,
of F, and the point ¢ = 2n. For small n the mentioned qualitative properties of F,
can be recognized in Figure 1.
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By a result of Hahn ({8], formula (17)) the last zero 7, (being the last zero of
Lflll(21)) satisfies the relation

1

dn—2—-C\WVan—2<2T, < 4n—2— GVian -2 (20)
with two positive constants Cy, C> € R that are independent of n, in particular
7,
lim — =2 2n
H—oo N 4

The right hand side of (20) leads to the sharpened inequality
T, < 2n -1,

and Puiseux serics cxpansion of (20) yields the retinement of (21)
2/3
Ty 1
nao(())
n \\n/ )

3. REPRESENTATION BY RESI

To the system

0
tions F,(0) =0

di
U(n

ifferential equations given by (i5) together with the initial condi-
€ N)

f )
( N the technique of Laplace transformation

L()2) = /O e~ [ (1) dr

can be applied to deduce a representation by residues for F,. It is well-known that
L")y = 2Ly — S (1) (see eg. [6], Satz 9.1) so that we abtain (# € N)

(z+ DL(Fy1) = (z - DL(FY)
or

-1
L(Fn+l) - mﬁ(Fn)

Induction shows then that for n ¢ N and k ¢ N

k
z—1
LOFy)={ —— ) L(Fn) 22
(Fa) (z + 1) (Fn) (22)
To obtain the initial function £(F}), we use Fy(1) = e to get first
: RRE 1
L(Fy)(z) = e dif = ——.
Jo 1+ 2

Further from (15) with # = 0 we are led to
(z+ DL )= (z— DL(FH)— 1

or

2

L(F1)(z) =~ v



L S

R

244 W. KOEPF AND D. SCHMERSAU

Thus by an application of (22) with n = 1 we have finally
2 (z-1\1
LF)z)= - | — .
(Fe)(z) (1+ 2)? <z+1>

[f we use now the inverse Laplace transform (see e.g. (6], p. 170, formula (15)), we
get

Fi(t) = llm / e“L{F)(z)
TR
where g : [-R,R] — C is given by Y(7) = i7, and therefore we have the integral

representation
1 /> (7’+i)k‘1
F.()y== et L dr.
k() -ﬁ/'oo (1 — i1

By a standard procedure this can be identified as the residue (see e.g. [4], p. 217,
formula {12)

o0 k=1 k—1
[ T ariRes r ALY
! - (T‘l_)x*‘ \ ’Z l!/l‘rl "/
and therefore we have the representation (k € '\,')
Nhe—1 N
, i Z+1
Fi(t) = 2iRes e”Z(A~_)— .
(Z _ l)kﬂ,

These results are collected in

THEOREM 1 The Bateman functions Fy, (k € N) satisfy the integral representation

ESI Yk —1
Fe(r) = l/ et XDy
7r =00

(T - l')kﬂ

and therefore the residual representation

Fe(r) = 2iRes <e"2%§i;i> .

4. RESULTS DEDUCED FROM THE DIFFERENTIAL EQUATION

In this section we deduce another statement about an integral involving the Bate-
man functions and get an estimate for |F,| using its differential equation (10). Mul-
tiplying (10) by 2F,(r)/t, we have

2F,(1)F,/ (1) = 2F,(0)F, (1) — 2[—n2F,,(I)F,;(t).

We integrate from 0 to ¢, and get for n € N using the initial values (11)

(FF©) 4= Fiw - [ Z2r,mmear (23)
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For the last integral we get integrating by parts

2y )
/07125,(7)5;(7)47— .y )l / T rydr

2n I ]
= "SF1) - 2nF,(0)F! (m+/ 2n( Fn(r) ldT

[{AN
! T ]

n(T)\

FX(t)+2n j K

So we have the identity

t 2
(FDX(1) — 4 = F2(1) - 7F2(,) : zn/0 (fT(—T)) dr. (24)

From itns weniiiy by ietiing { — oo we are fed o the statement

Ao e s w2
[ (T
A U
Jo N T ]

A
i

=it

as lim, .o F(r) = lim, ., F,(¢) = 0. Therefore in particular (¢ > 0)

/Ot (F_"T@)zdm % (25)

At this point we like to mention that from (24) it is now very easy to deduce the
inequality ¢ < 2n for a local extremum of F,, again (compare §2), as an application
of (25) yields

2 - 2 1\2 _ ! fn_(’r_) : 1\2
F (1) F(t) (F)°(0) 4+2n/0< . )d7<(F,,) (1),

and therefore for any point with F, (1) = 0 we get 1 < 2n.
To deduce an estimate for |F,| we regroup (24) and get

Mgy~ 4 (F )(t)-Zn/Ot<F”T(T)>zdr<4,

and for ¢ < 2n (which is the critical region) finally

4t
—t

E (0] < 5 (26)

We note that, however, this improves (6) for small ¢ only, see Figure 2.
In the next section we will give a further improvement of (26).
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y n=1 2 3 4 5

0.25 0.5 0.75 1 1.25 1.5  1.75

FIGURE 2. l'he estimates {6) and {26) tor n = 1, .5,

5. ESTIMATES BY THE SZEGO METHOD

We consider the generalized Laguerre polynomials LELQ)(X) (a € R) given by their
Rodrigues formula

n
e LM(x) = = —(e7*x"1) (27)

»n! Advn
i UA

(see [23], p. 213, formula (1.3)). Szegd ([21], see [22], p. 159, formula (7.21.3)) con-
sidered the case a = 0, and was led to the inequality

e PILY ) <1 (x> 0). (28)

Using a similar method we get the following development. For n € Ny and a € Z
the function f,,(x) := e *x"** is analytic in {z € C|Rez > 0}. By (27) we have

x"e“xLE,a)(x) f(")( x).

If x € R, then for z = x + re'? (r € (0,x)) we have by Taylor’s formula
y lay

k
fra(2) = Z S0 - o,
and Cauchy’s integral formula gives the estimate

e O < 1 max | fua(x + re)]

rk 0<6<
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Especially for k = n this yields
a,—x7(@) n i9
x%e *|Ly " (x)|r <Ogg%§r|fm(x+re ). (29)
If furthermore n+ a > 0, then f,, is analytic in all of C, and (29) holds for all

r € R*. This case will be studied now.
To give an estimate of maxo<g<zr |faa(¥ + re'?)|, we expand

fna(x + reié) - e_(x+rei9)(x + rel&)n+a

to get

max x+re®) = e * max e~ Tcost( 2 + 12+ 2rxcosé (n+a)/2
ogegzwm“( ) 0<6<2m ( )

Together with (29) we have therefore

L) < max e+t + 2rxcosf) T2,
' 0<A<2T

We set now A := cosé € [—1.1].
pO) =2 +r2+2rx),  and  g(A)i=e A pn)TIr
and have therefore
LY@ < _max g (30)

As
g'(\) = re " pA) D2 (x(n + a) = p(V))

we get for a possible critical point A¢ of g the relation

x(n+a)-(x*+r?)
2rx '

Ao =

At the point A = Ay we have furthermore

pho) = x> + r’ 4+ 2rxh = x(n+a) >0,

hence
CI”()\O) — __zrzxe-rkop(/\o)(n-i-a—?_)/Z < 0,

and Ao maximizes g. Therefore, from (30) we get
x* L ()] < g(ho) (31)

if —1< X <1
We consider now the case x € (0,4(n+ a)] (which with respect to the repre-
sentation (13) corresponds to the critical region (0,2n) for t = x/2), and choose
r:= /x(n+ a). In this case we have Ag = %\/x/(n + a) € [-1,0). Hence, (31) im-
plies
XL 0)|(x(n + a))? < e/ (x(n + )",
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and therefore finally

THEOREM 2 For the generalized Laguerre polynomials LE,O) (a € Z) the estimate
+ a/2
e—x/2|L$1&)(x)‘ < <¥) (32)
holds for x € (0,4(n+ a)] if n+ a > 0.
If we define the functions (a € R)
F(0):= e L (21) (33)
then (32) reads (x = 2¢)

n+aoa

[F(ﬂ)(t)[ < ( )Q/Z (t€(0,2(n+a)])
" 21 ’ '

For a = 0, we have Szegt's result (28) in this interval, and for o« = 1 we get in view
of representation (13)

k)

[F.()] < \// B (t < (0,2n)). (34)

This inequality improves (26) as Puiseux expansion yields

[ _ far, 1 (1 3/2+P t
2n—t V'n 22\n n

with some positive function P.
Note that the special choice a = —1 (and nor the value & = 0) generates the Bate-
man functions F,(t) = F,(,_l)(t).

6. ASYMPTOTIC ESTIMATES

We consider the functions (a € R)

FO(1) = e LD (20) = e (LD (20) - LI P(210)) = B0 (0) - FL 0 (0)
(35)
of (33) (see [23], p. 216, formula (1.15)) now in more detail. Taking derivative yields
(Fs) (1) = —F(1) + 27 (LYY (20)

D e 2 - L @ey) + 27 (L) 21)
= —e (LD @r) + LV (20))
= -(F* P+ FePy), (36)

where the relation about (Lf,a))’ corresponds to ([23], p. 215, formula (1.12)).
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Moreover the program [12] generates the differential equation
(1+a+2n—OFY0) + (1 +a)(FY @) + t(FY'(1) =0

for the functions F{ with respect to the variable ¢, and the recurrence equation

(¥}

(=14 a+ n)F :; "2+(]—(1—Zn+21)1~,""‘ +nF, =0

with respect to the variable n.
Assume now, f; < f,. Then we get by an integration

(FS2Y(02) — (FY () = 2 / ESO(OFY (1)t
Jt
(35),(36)

2 SR (R

If we choose & = 0, we get in particular

AN~ N~ /‘I') 1) 1Y
"F;—‘_%U'\'L' r:) — (E‘“"n‘{jl‘. = 2 ,,' .’.’F‘ ’(,\.)‘ — .’F/“’ -’f‘.}“‘.d,‘, (37
Together with the relation {(n C N)
-1 1
Fu(t)y=Fy (1) = F” ()
(see (12) and (13), or [22], p. 98, formula (5.2.1)) it follows from (37) that
7 + 1] 2 (4]
(FOY(1) = (F"Y(1y) = [P Rz 0" D [
N AN 7 .‘] HTl\/ 2 /r1 N /ZA
We now let 1, — oc. Then F,SO)(IZ) — 0, and as
/ Frt)ydt =1 (38)
Jo

(see (19), compare [3], formulae (2.7) and (2.91)), we get further

(FOR (1) = /OOF,%H(O(””) a- [ R0 s

151 5}

< [ Ra0"; "D A(”;2”2(1—'['1Fﬁ+1(1)d1)

where the last inequality is deduced with (38). So we have finally the inequality
(neN, 1>0)

n+1
NR

This sharpens the result of Szegs (28) for large (. From (35) and (36) it follows that

IFO(0] < ==

Fa ) + (FY (1) = <2F,2 70 (0).

n-—-1
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We deduce now for a critical point 7 of F, with F,(#) = 0 the relation

|Fa(t)] = 21F, (4)] < f 2 (39)
Especially is this < 2/e for
1,
%> %~ 192211551407955841.... (40)
n V2

It is now remarkable that by the result of Hahn (21) for n — oo the most important
critical point T of F, which produces the maximal value of F, has the property
T/n—2asT, <T < 2. This gives finally the following

THEOREM 3 The Krzyz conjecture is asymptotically true for the superordinate func-
tions e="(F2)/(1=2) i e we have |an(e " ((1+2/0=2)) < 2/e for n > N.

We will now strengthen this result.

Therefore let an arbitrary positive zero ¢, of F, be given. Then ¢, is also a zero
of h, := FZ, and as
(D) + 2F.(0F (1),

iy

by the differential equation for F, we get
Mm—mey+2‘ FA(t). (41)

From this we may deduce that A;,(¢) >0 for ¢ > 2n. Now, however, we consider
the interval between f, and the smallest relative extremum £ > ¢, of F,, i.e. the
smallest zero ¢ of F, after t,. Then obviously 4, is strictly increasing in [¢n,¢,],
further hy,(t:) = h,(¢;) = 0, and therefore 7, ||, -] assumes an absolute maximum
at some interior point ¢* € (t,,¢; ), where h,(£;*) =0
From (41) we deduce
( ( **))2 — n FZ(t**)

I,
and therefore by (18)

f * % 2n—t;* ¥ zn—t**
an(tn )l = 1x* [Fn(ln )l < Fr* = ‘
V n V n

As \/(2n —1t)/t is strictly decreasing for ¢ € (0,2n), it follows furthermore that

2n—1
FL(e7) <\/ i)

In

and finally (4, is positive)

n—t,
Iy

h(87) = 2| Fn (37 ) 1 F (137)] < 2
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using (18) again. As ¢;* is the global maximum of Aj, in [x,1,], we therefore are led
to the inequalities
2n—ty,

0< hy(t)<2
In

(42)

for all ¢ € (£,,15).

We are interested in h,(z}), the value of 4, at its maximum ¢;. Therefore let
p > 0 be given such that h,(1;) > 1/p. As hy(1,) =0, and h, is strictly increasing,
there is some I, € (I,,1;) with h,(f,) = 1/p. The mean value theorem then shows
the existence of ¢, € (I,,1,) with

hn(ty) = ha(ln)

0 in = hy(n)s
and therefore by (42) -
(1) = Pa(in) 2\/2n—tn
iy —in V) iy
or (-
hni) < PinFn) +2 /2”_ e iy =2 /2 e )
Vo PV

By (19) we have
/ hn(T)dT =1,
0

and thus by the integral mean value theorem (h, is nonnegative)

Ly
1> [ )T = b ()6 =)
t—n

for some 1), € (In,1;). As hy, is strictly increasing, we therefore get ,(7,) > hn(tn) =
1/ p implying
1 . . . -
1> ;(tn —1n) or L, — I, <p.

Finally we have
2n—1t,
L

N 1
hn(tn) < ; + 2P

We were led to this inequality under the assumption that h,(7;) > 1/p. If h,(1;) <
1/ p, however, then the same conclusion follows trivially, so that the above calcula-
tions can be summarized by the following

LEMMA 1 Let h,(t) = F2(t), let t, be a positive zero of F, let t; the lowest zero of
F), that is larger than t,, and let p > 0. Then

—_——

2n—t,

1
ha(t) < —+2
(t)<p p\/ .
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We now emphasize on the largest zero ¢, = T, of F,. By the results of §2 the global
maximum of F, is attained at the last zero 7,7 of F, which lies in the interval
(T,,2n), and is therefore the smallest zero of F, after T,,. So Lemma 1 applies.
By a result of Bottema and Hahn (see [5] and [8], p. 228, last formula), the in-
equality
Ty>2n—3-8/2vn—1=:1, (43)

(n > 33) holds for the last zero of F, (or Lfllil). As /(2n — 1)/t is strictly decreasing
for ¢ € (0,2n), we have the inequality

2n—T, < 2n—Ty
T, Tw

Puiseux expansion yields the asymptotic expression (n — oo)

———
[2n—70 L5 11311 1N
\/ - 7uv~n1/4 ' 16\?/5”3/4 i \\n5/4/’
especially is
//2,177'” 1

A

VAl

In our calculations the value p was arbitrary, so we have the freedom to choose it
properly. The asymptotics suggest the choice p ~ n'/8. For any a > 0 we get there-

fore
P
. a n/8 [2n-T, a n'/% [2n—m, 1 b
hn(Tn) < —nl/B + Z—a \/ Tn < —}’—ll/—g + Z—a —Tn ~ —nl/B < _—_—nl/S

for some b > 0.
We choose the value a = 2v/2 (minimizing the leading term in the corresponding
Puiseux expansion) and get the global estimate

3
1 3 4+8V2vn—1
ha(Ty) < 22— + 2 n
h \B/Z\/Zn-%—&/i\/n—l

Now we remember that F, takes its global maximum over R at the point T};, and
so does h,. We therefore have for all a > 0, n € N and ¢ > 0 the inequality

1/8

3+ 8V2vn—1
Fuol < |2V e
n \ﬁ\/Zn—%—S\/f\/n-l

_wv2, B +0( ! ) (44)

nl/16 © 64 27716,,9/16 ni1/16

nl/8
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We mention that we get a better asymptotic estimate if we use the sharper left hand
inequality (20) instead of (43), set 7,7 := —1+ 2n— C(2n — 1) (C constant) leading
to the asymptotic result

/Zn — T 1

VT

and therefore by the choice p ~ n'/% and the same procedure as above to the
THEOREM 4 For all t € R" we have the asymptotic inequality (n > N)

for some ¢ > 0, and in particular the limiting value

lim |F, (1) =0

Obviously this theorem strengihens Theorem 3.

In principie (44) enables ane to prove the statement

]

AOIES

for all n € N. Therefore one shows that the estimation function

o e

\f\/Zn——AS\/_\/—

of (44) is decreasing, and as E(17821075) > 2/e and E(17821076) < 2/e, it remains
to prove the result for only a finite number of initial values.

The number of initial values, however, can be decisively lowered using that by
(40) | Fy(2)| < 2/e whenever T;; /n > e/\/2, especially if T,,/n > e/+/2. From the Bot-
tema—Hahn bound

nl/8

L 38f“

=2——- n
= e(n)
we obtain first by the calculation
o(n) = —16v2 +3V/n—1+8V2n
o 2n2/n—1
that e(n) is increasing for n>2, and as lim,_e(n) =2 there is exactly one

solution 1y >2 of the equation e(n)=e/v2, and T, /n > e(n)>e(ny) =e/V2
for n > ny. A numerical calculation shows that ng = 21138.7 so that we are led
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to the

THEOREM 5 The inequality |F,(1)| <2/e is true for all n€ N and all t >0 if it is
true for n < 21138.

7. ESTIMATES FOR THE DERIVATIVE

By (23) it follows that at the zeros of F, the derivative F, satisties the relation
|F!(1)| < 2. This result holds for all # > 0 which can be seen as follows: Using (36)
with @ = —1 we have

F(t) = —e™(La(2t) + Lo—1(21)), (45)
and by an application of the Szegd result (28) it follows for 7 > 0
Fy(0)] < 2. (46)

This shows that for all » ¢ N the derivatives |F,| have their maximal value at the
origin where |F;(0)] = 2 (see (11)). We note moreover, even though the derivative
F := F), has a representation (45) similar 1 that of F, itsclf, it satisfics the much
more complicated differential equation

22 o 2

i 2Npit
(—4n” +4nt — YF(t) - 2nF' () + (-2ne + 1°)F7 (1) =

\
M

8. THE FUNCTIONS H,

In this section we collect the explicit inequalities that we deduced, and formulate a
conjecture concerning the Bateman functions.

As the last point of inflection of the functions F, is at the point ¢ = 2n which
increases with increasing n, it is reasonable to introduce the functions

Hy(t) := (=1)"F,(nr)

that have common absolute values with F,, which, however, are attained at different
points. The scale on the -axis is here such that the last point of inflection lies at
t = 2 for all functions H, (n € N), and H,, is positive for £ > 2. It is easy to deduce
the differential equation

(H)'(t) = n*(t — 2)Hy(2) (47)
satisfied by H,,. The inequalities that we deduced for F, read as follows for H,: The
trivial estimate (18) gives

|Ha (1) < 1,

(16) yields (n > 2)

[\

,Hn([)| S 7’

the refinement (39) gives

N

IHn(lk)! < [_‘
k
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for a critical point £ of H,, (26) impiies

4t
H, (1 —
[H.,(0)] < e
and finally (34) yields
|H,(0)] < V2.

These estimates commonly do not depend on n. One more estimate will be added
in the next section. Figure 3 shows them graphically.

Figures 4 and 5 show the graphs of the functions H, (n = 1,...,20). We conjecture
that H, is strictly decreasing for increasing n at the point 1 = 2. Note that by the
result of Hahn (21) this is not true for any ¢ < 2. In the next section we will show,
however, that lim,, .., H,(t) = 0 for each ¢ > 2.

9. ESTIMATES FOR LARGE ¢

In this section we show that for all ¢ > 2 the values H,(¢) tend to 0 for n — oo.
The inequalities (46), and (17) correspond to the inequalitics

|H,(0)] < 2n,

and

—
-
o

~

for the derivative of H,, respectively.
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FIGURE 4. The functions H, (n = 1,...,20).

3

1.5 1.6 1.7 1.8 1.9
FIGURE 5. The functions H, (n = 1,...,20) in the interval [1.5,2].

By the differential equation (47) for H, we have

Ha(t) = ——= Hy (1)- (49)

( 2)
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Let now 2 < 11 < 1, be given. By definition H,, is strictly positive in [#,#2], and by
(49) H, is strictly positive in [#1,7;]. Therefore

/tzH(t)dt— 1/t2 L H W) di
n CN ) n(dt.

As the function ¢/(¢ — 2) is strictly decreasing, we have
max I
[E[t],[z]t—z 11—2’

and therefore
1 1

—/t2 LH)(di < b /IZH“(t)dt
n2 f r—2""" “nip-2 4 " '

As H,/ is positive in [#1,#;], and as lim,_. . H,(¢) = 0, it follows that H, is negative
and increasing, and therefore

2

1 I3 , 1 h ;
H,()dt < ———|H (1)— H,(h)| < =——=I|H, (&
()t < o5 H ) = i) € P )

Jity

where we used (48). For fixed £, > 2 we set now 1) := (2 + #;)/2, and with the inte-
gral mean value theorem we find 7 € [#1,#;] with

1 4 l
SG-mh-2n (L-2Pn

Another estimate for large ¢ which is independent of #, will be established now.
Let again 2 < #; < ;. Then by (49)

H()<H(T)= —/ Hu(t)dr <

(1) — H3 ()| = \ / “HEoy @l = / ) 2H,i(r)Hn(t)dr|

/t:2 P )H(t)H"(t)dt‘

2

L 2H)(O)H] (1) dt

< 2
n2(t - 2) Jy,

ﬁl(ﬁi)z(h) — (H)* (1)L,

We let now f; — oc, and get (¢ := t1) using (48)

[Hu() < (H) (D) <

1
( 2) 1(1-2)
This estimate improves the earlier ones for large ¢, see Figure 3.
Finally we show that uniformly with respect to n the functions H, decrease faster
than each negative power.
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THEOREM 6 For each k € Ny there is a constant Cj, > 0 such that
Ce
H@ <% (>0 neN)

that is independent of n.

Proof We prove the result by induction with respect to k. For k = 0 the state-
ment is trivially true, see (18). Assume now the statement holds for some k € No,

i.e.

ny\x
t

Fa(0] < G (7)
Then we get using (14)
Ea(O] = oel(n = DEn(E) = Faa(6) + (1 D(F(0) = Faa 1))

< 2(n—1D)C + (n+1)C + (n+ )G Dy (f)k
- 2r {7/

2n—NCe Dy + (n+ DG Dy + (n+ DCeDie fnN\k
s , ) ,

I/
{ —
\1

- 8%
=2GDi (7 )

where we chose Dy > 1 such that (n + 1)¢ < Dy b* (the choice Dy = 2% does the job
required as (n + 1)F < (2n)* < 2¢n*). This yields the result. |
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