Bounded Nonvanishing Functions and Bateman Functions

WOLFRAM KOEPF and DIETER SCHMERSAU

Konrad-Zuse-Zentrum für Informationstechnik, Heilbronner Str. 10, 10711 Berlin, Germany

We consider the family \widetilde{B} of bounded nonvanishing analytic functions $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ in the unit disk. The coefficient problem had been extensively investigated (see e.g. $[2,13,14,16-18,20]$), and it is known that

$$
\left|a_{n}\right| \leq \frac{2}{e}
$$

for $n=1,2,3$, and 4 . That this inequality may hold for $n \in \mathbb{N}$, is known as the Krzyż conjecture. It turns out that for $f \in B$ with $u_{0}=e^{-1}$

$$
f(z) \prec e^{-t((1+z) /(1-z))}
$$

so that the superordinate functions $e^{-t((1+z) /(1-z))}=\sum_{k=0}^{\sim} F_{k}(t) z^{k}$ are of special interest. The corresponding coefficient functions $F_{k}(t)$ had been independently considered by Bateman [3] who had introduced them with the aid of the integral representation

$$
F_{k}(t)=(-1)^{k} \frac{2}{\pi} \int_{0}^{\pi / 2} \cos (t \tan \theta-2 k \theta) d \theta
$$

We study the Bateman functions and formulate properties that give insight in the coefficient problem in \widetilde{B}.

AMS No. 33C15, 33C25, 30C80, 68 Q 40
Communicated: D. Hallenbeck
(Received September 14, 1993; in final form December 12, 1993)

1. INTRODUCTION

We consider functions that are analytic in the unit disk

$$
\mathrm{D}:=\{z \in \mathbb{C}| | z \mid<1\} .
$$

An analytic function f is called subordinate to g, if $f=g \circ \omega$ for some analytic function ω with $\omega(0)=0$ and $\omega(\mathbb{D}) \subset \mathbb{D}$; we write $f \prec g$. The subordination principle states that if g is univalent then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$, see e.g. [15], §23.

Let \widetilde{B} denote the family of bounded nonvanishing analytic functions $f(z)=a_{0}+$ $a_{1} z+a_{2} z^{2}+\cdots$ in D . As f is nonvanishing, we have $\operatorname{Reln} f(z)<0$, and by the subordination principle it turns out that for $a_{0}=e^{-t}$

$$
-\ln f(z) \prec t \frac{1+z}{1-z},
$$

FIGURE 1. Graphs of the functions $F_{n}(t)(n=1, \ldots, 5)$.
and so $f(z)=e^{-t}+a_{1} z+a_{2} z^{2}+\cdots \in \widetilde{B}$ if and only if

$$
\begin{equation*}
f(z) \prec e^{-t((1+z) /(1-z))} . \tag{1}
\end{equation*}
$$

Thus the superordinate functions

$$
\begin{equation*}
G(t, z)=e^{-t((1+z) /(1-z))}=: \sum_{k=0}^{\infty} F_{k}(t) z^{k} \tag{2}
\end{equation*}
$$

are of special interest. Graphs of the functions $F_{n}(t)(n=1, \ldots, 5)$ are given in Figure 1 . The following is a list of the first functions F_{n} :

$$
\begin{aligned}
& F_{0}(t)=e^{-t} \\
& F_{1}(t)=-2 t e^{-t}, \\
& F_{2}(t)=2 e^{-t}(-1+t) t, \\
& F_{3}(t)=\frac{2 t e^{-t}\left(-3+6 t-2 t^{2}\right)}{3}, \\
& F_{4}(t)=\frac{2 t e^{-t}\left(-3+9 t-6 t^{2}+t^{3}\right)}{3}, \\
& F_{5}(t)=\frac{2 t e^{-t}\left(-15+60 t-60 t^{2}+20 t^{3}-2 t^{4}\right)}{15} .
\end{aligned}
$$

We consider the coefficient problem ($n \in \mathbf{N}$) to find

$$
A_{n}:=\max _{f \in \widetilde{B}}\left|a_{n}(f)\right| .
$$

That the maximum exists for all $n \in \mathbb{N}$ follows from the fact that the union of \widetilde{B} with the constant functions $c \in \bar{D}$ forms a compact family of analytic functions. For the coefficient problem it is no loss of generality to assume that $a_{0}>0$ so that we can assume that (1) holds for some $t>0$. For small n it is then easy to solve the coefficient problem using subordination techniques.

As $f \prec g$ implies that $\left|a_{1}(f)\right| \leq\left|a_{1}(g)\right|$ (see e.g. [15], Theorem 212), we have

$$
A_{1}=\max _{t \geq 0}\left|a_{1}\left(e^{-t((1+z) /(1-z))}\right)\right|=\max _{i \geq 0}\left|F_{1}(t)\right|=\max _{t \geq 0} 2 t e^{-t}=\frac{2}{e}
$$

with equality iff $t=1$, and $f(z)=\eta e^{-\left(\left(1+\xi^{z}\right) /\left(1-\xi^{z}\right)\right)}(|\xi|=|\eta|=1)$.
By the composition with a Möbius transform, this leads to the inequality (see [16])

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq_{e}^{2} \quad(z \in D) \tag{3}
\end{equation*}
$$

from which we may deduce by a standard technique (see e.g. [7], p. 72, Exercise 17) that

$$
\begin{aligned}
n\left|a_{n}(f)\right| & =\left|a_{n-1}\left(f^{\prime}\right)\right|=\left|\frac{1}{2 \pi i} \int_{\partial \mathbb{\mathbb { D }},} \frac{f^{\prime}(\zeta)}{\zeta^{n}} d \zeta\right| \leq \frac{1}{r^{n-1}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta\right) \\
& \leq \frac{1}{r^{n-1}\left(1-r^{2}\right)} \frac{2}{e} \leq \frac{2}{e} \frac{n+1}{2}\left(1+\frac{2}{n-1}\right)^{(n-1) / 2}<n
\end{aligned}
$$

where we used (3) and chose $r^{2}=(n-1) /(n+1)$. Unfortunately this estimate is just too weak to be of value: The bound 1 for A_{n} is very elementary, and holds even for all functions bounded by 1 . Each global bound less than 1 would be new, however.

It is similarly easy to solve the coefficient problem for $n=2$ using subordination techniques, ([15], Theorem 212, see e.g. [10]).

Using several methods it was shown that

$$
\begin{equation*}
A_{n}=\frac{2}{e} \tag{4}
\end{equation*}
$$

for $n=1,2,3$, and 4 . Obviously $G\left(1, z^{n}\right)$ has nth coefficient equal to $2 / e$, which makes these results sharp. That (4) may hold for $n \in \mathbb{N}$, is known as the Krzyż conjecture.

If the subordinate function has very regular coefficient behavior, then global coefficient results are available: If

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} z^{k} \prec \sum_{k=0}^{\infty} b_{k} z^{k}, \tag{5}
\end{equation*}
$$

and if the coefficient sequence b_{n} is nonnegative, nonincreasing, and convex, then $\left|a_{n}\right| \leq b_{0}$ for all $n \in \mathbb{N}_{0}$, and if the coefficient sequence b_{n} is nonnegative, nondecreasing, and convex, then $\left|a_{n}\right| \leq b_{n}$ all $n \in \mathbb{N}_{0}$ (see e.g. [15], Theorem 216). On the other hand, the coefficient sequences of our subordinate functions $G(t, z)$ are highly irregular for all $t>0$.

Another important result, however, can be obtained by subordination techniques, as well. It is well known that if (5) holds, then

$$
\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \leq \sum_{k=0}^{\infty}\left|b_{k}\right|^{2}
$$

Especially: If an analytic function $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ of the unit disk is bounded by 1 , then $f \prec z$, and the relation

$$
\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \leq 1
$$

(foilowing disu dinecily fuom Parseval's identity) is ottaincd (fur shaifer vessions see also [7], Theorem 6.1 and Thenrem 6.2). Equality holds if and only if (see [19]. Theorcm 3) f is an inner function, i.e. if the iadal hmit $f\left(e^{i \theta}\right):--\lim _{r}, \ldots f\left(r e^{i \theta}\right)=1$ for almost all $e^{i \theta}$ on the unit circle $\partial 0$. Nonvanishing inner functions with positive $f(0)$ have the representation (see e.g. [9], second theorem on p. 66)

$$
f(z)=\exp \left(-\int_{\partial \mathrm{D}} \frac{1+e^{i \theta} z}{1-e^{i \theta_{z}}} d \mu(\theta)\right)
$$

where μ is a singular positive measure on the unit circle $\partial \mathrm{D}$. If we choose a point measure μ concentrating its full measure t at the point $\theta=1$, we get the function $G(t, z)=e^{-t((1+z) /(1-z))}$ of Equation (2) so that we are lead to the identity

$$
\sum_{k=0}^{\infty} F_{k}^{2}(t)=1
$$

For each individual coefficient of $G(t, z)$ we thus have the (weak) inequality

$$
\begin{equation*}
\left|F_{n}(t)\right| \leq \sqrt{1-F_{0}^{2}(t)}=\sqrt{1-e^{-2 t}} \quad(n \in \mathbb{N}) \tag{6}
\end{equation*}
$$

It is the purpose of this paper to develop further properties, especially inequalities, for the functions $F_{n}(n \in \mathbb{N})$, giving more insight in the coefficient problem for \widetilde{B}.

2. A COLLECTION OF PROPERTIES OF THE BATEMAN FUNCTIONS

In [3] (see also [1], §13.6) Bateman introduced the functions ($x \geq 0$)

$$
k_{n}(x):=\frac{2}{\pi} \int_{0}^{\pi / 2} \cos (x \tan \theta-n \theta) d \theta
$$

and he verified that ([3], formula (2.7))

$$
\begin{equation*}
k_{2 m}(x)=(-1)^{m} e^{-x}\left(L_{m}(2 x)-L_{m-1}(2 x)\right) \tag{7}
\end{equation*}
$$

where $L_{m}(t)$ denotes the m th Laguerre polynomial. On the other hand if one defines the functions $F_{n}\left(n \in \mathbb{N}_{0}\right)$ with the aid of the generating function

$$
e^{-t((1+z) /(1-z))}=: \sum_{k=0}^{\infty} F_{k}(t) z^{k},
$$

one gets immediately (see [10], formula (14), and p. 178)

$$
\begin{equation*}
F_{n}(t)=e^{-t}\left(L_{n}(2 t)-L_{n-1}(2 t)\right) \tag{8}
\end{equation*}
$$

and a comparison of (7) and (8) yields the relation

$$
F_{n}(t)=(-1)^{n} k_{2 n}(t)
$$

so that we get the Bateman representation

$$
\begin{equation*}
F_{n}(t)=(-1)^{n} \frac{2}{\pi} \int_{0}^{\pi / 2} \cos (t \tan \theta \ldots 2 n \theta) d \theta \tag{9}
\end{equation*}
$$

for our functions F_{n}. By Bateman's work we are prepared to state many further properties: For $n \in$ N the function F_{n} satisfics the differential equation (see [3], formula (5.1))

$$
\begin{equation*}
t F_{n}^{\prime \prime}(t)=(t-2 n) F_{n}(t) \tag{10}
\end{equation*}
$$

with the initial values

$$
\begin{equation*}
F_{n}(0)=0 \quad \text { and } \quad F_{n}^{\prime}(0)=-2 \tag{11}
\end{equation*}
$$

and the Rodrigues type formula (see [3], formula (31))

$$
F_{n}(t)=\frac{t e^{t}}{n!} \frac{d^{n}}{d t^{n}}\left(e^{-2 t} t^{n-1}\right)
$$

The differential equation can also be obtained completely algorithmically (see [11][12]).

Further we get the following connection with the generalized Laguerre polynomials (see [23], p. 216, formula (1.15))

$$
\begin{equation*}
F_{n}(t)=e^{-t} L_{n}^{(-1)}(2 t) \tag{12}
\end{equation*}
$$

and (see [22], formula (5.2.1))

$$
\begin{equation*}
F_{n}(t)=-e^{-t} \frac{2 t}{n} L_{n-1}^{(1)}(2 t) \tag{13}
\end{equation*}
$$

from which one may deduce the hypergeometric representation

$$
F_{n}(t)=-2 t e^{-t} F_{1}\left(\begin{array}{c|c}
1-n & 2 t \\
2
\end{array}\right)
$$

and the explicit representation

$$
F_{n}(t)=\frac{e^{-t}}{n} \sum_{k=1}^{n} \frac{(-1)^{k}}{(k-1)!}\binom{n}{k}(2 t)^{k}
$$

Bateman obtained further relations: a difference equation ([3], formula (4.1))

$$
\begin{equation*}
(n-1)\left(F_{n}(t)-F_{n-1}(t)\right)+(n+1)\left(F_{n}(t)-F_{n+1}(t)\right)=2 t F_{n}(t) \tag{14}
\end{equation*}
$$

that is also an easy consequence of the defining equation using the generating function, he obtained a difference differential equation ([3], formula (4.2))

$$
(n+1) F_{n+1}(t)-(n-1) F_{n-1}(t)=2 t F_{n}^{\prime}(t),
$$

and a system of differential equations ([3], formula (4.3))

$$
\begin{equation*}
F_{n}^{\prime}(t)-F_{n+1}^{\prime}(t)=F_{n}(t)+F_{n+1}(t), \tag{15}
\end{equation*}
$$

from which he is led to the inequalities for F_{n} ([3], formula (4.4))

$$
\begin{equation*}
\left|F_{n}(t)\right| \leq \frac{2 n}{t} \quad(n>2) \tag{16}
\end{equation*}
$$

and for F_{n}^{\prime} ([3], formula (4.5))

$$
\begin{equation*}
\left|F_{n}^{\prime}(t)\right| \leq \frac{n}{t} \quad(n>2) \tag{17}
\end{equation*}
$$

For large t the first inequality is a refinement of the trivial estimate

$$
\begin{equation*}
\left|F_{n}(t)\right| \leq 1 \tag{18}
\end{equation*}
$$

that follows from (6) or from the Bateman representation (9).
Finally Bateman obtained the following statements about integrais of producis $F_{n} F_{m}(n, m \in \mathbb{N})$ (see [3], formula (2.91))

$$
\int_{0}^{\infty} F_{n}^{2}(t) d t=1 \quad \text { and } \quad \int_{0}^{\infty} F_{n}(t) F_{m}(t) d t= \begin{cases}0 & \text { if }|n-m| \neq 1 \tag{19}\\ \frac{1}{2} & \text { otherwise }\end{cases}
$$

We state further properties: The functions $F_{n}(n \in \mathbb{N})$ have a zero at the origin and $n-1$ further positive real zeros (see e.g. [23], Nullstellensatz, p. 123) (indeed, by (13), $F_{n}(t)$ has the same zeros as $\left.L_{n-1}^{(1)}(2 t)\right)$.

From the differential equation (10) we moreover see that at $t=2 n$ there is a point of inflection, and as $F_{n}(t) \rightarrow 0$ for $t \rightarrow \infty$, and all other points of inflection lie at the zeros of F_{n} one easily deduces that $t=2 n$ must be the largest point of inflection of F_{n} implying that all the zeros of F_{n} lie in the interval $[0,2 n$). The successive relative maxima of $\left|F_{n}\right|$ lying between the zeros of F_{n} form an increasing sequence (see [22], Theorem 7.6.2, $\alpha=-1$), so that the largest value attained by $\left|F_{n}(t)\right|$ is attained at the last zero of F_{n}^{\prime} which is scen to lie between the last zero T_{n} of F_{n} and the point $t=2 n$. For small n the mentioned qualitative properties of F_{n} can be recognized in Figure 1.

By a result of Hahn ([8], formula (17)) the last zero T_{n} (being the last zero of $\left.L_{n-1}^{(1)}(2 t)\right)$ satisfies the relation

$$
\begin{equation*}
4 n-2-C_{1} \sqrt[3]{4 n-2}<2 T_{n}<4 n-2-C_{2} \sqrt[3]{4 n-2} \tag{20}
\end{equation*}
$$

with two positive constants $C_{1}, C_{2} \in \mathbb{R}^{+}$that are independent of n, in particular

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=2 \tag{21}
\end{equation*}
$$

The right hand side of (20) leads to the sharpened inequality

$$
T_{n}<2 n-1,
$$

and Puiseux series expansion of (20) yields the refinement of (21)

$$
\frac{T_{n}}{n}=2-O\left(\left(\frac{1}{n}\right)^{2 / 3}\right)
$$

3. REPRESENTATION BY RESIDUES

To the system of differential equations given by (15) together with the initial conditions $F_{n}(0)=0(n \in \mathbb{N})$ the technique of Laplace transformation

$$
\mathcal{L}(f)(z):=\int_{0}^{\infty} e^{-z t} f(t) d t
$$

can be applied to deduce a representation by residues for F_{n}. It is well-known that $\mathcal{L}\left(f^{\prime}\right)=z \mathcal{L}(f)-f(0)($ see e.g. $[G]$, Satz 9.1) so that we obtain ($n \in \mathbb{N}$)

$$
(z+1) \mathcal{L}\left(F_{n+1}\right)=(z-1) \mathcal{L}\left(F_{n}\right)
$$

or

$$
\mathcal{L}\left(F_{n+1}\right)=\frac{z-1}{z+1} \mathcal{L}\left(F_{n}\right) .
$$

Induction shows then that for $n \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$

$$
\begin{equation*}
\mathcal{L}\left(F_{n+k}\right)=\left(\frac{z-1}{z+1}\right)^{k} \mathcal{L}\left(F_{n}\right) . \tag{22}
\end{equation*}
$$

To obtain the initial function $\mathcal{L}\left(F_{1}\right)$, we use $F_{0}(t)=e^{-t}$ to get first

$$
\mathcal{L}\left(F_{0}\right)(z)=\int_{0}^{\infty} e^{(z-1) t} d t=\frac{1}{1+z} .
$$

Further from (15) with $n=0$ we are led to

$$
(z+1) \mathcal{L}\left(F_{1}\right)=(z-1) \mathcal{L}\left(F_{0}\right)-1
$$

or

$$
\mathcal{L}\left(F_{1}\right)(z)=-\frac{2}{(1+z)^{2}} .
$$

Thus by an application of (22) with $n=1$ we have finally

$$
\mathcal{L}\left(F_{k}\right)(z)=-\frac{2}{(1+z)^{2}}\left(\frac{z-1}{z+1}\right)^{k-1} .
$$

If we use now the inverse Laplace transform (see e.g. [6], p. 170, formula (15)), we get

$$
F_{k}(t)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{\gamma_{R}} e^{t z} \mathcal{L}\left(F_{k}\right)(z) d z
$$

where $\gamma_{R}:[-R, R] \rightarrow \mathbb{C}$ is given by $\gamma_{R}(\tau)=i \tau$, and therefore we have the integral representation

$$
F_{k}(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{i t \tau} \frac{(\tau+i)^{k-1}}{(\tau-i)^{k+1}} d \tau
$$

By a standard procedure this can be identified as the residue (see e.g. [4], p. 217, formula (12))

$$
\int_{\infty}^{\infty} e^{i t \tau} \frac{(\tau+i)^{k-1}}{(\tau-i)^{k+1}} d \tau=2 \pi i \operatorname{Res}\left(e^{i \pi z} \frac{(z+i)^{k-1}}{(z i)^{k+i}}\right)
$$

and therefore we have the representation ($k \in \mathbb{N}$)

$$
F_{k}(t)=2 i \operatorname{Res}\left(e^{i t z} \frac{(z+i)^{k-1}}{(z-i)^{k+1}}\right)
$$

These results are collected in
ThEOREM 1 The Bateman functions $F_{k}(k \in \mathbb{N})$ satisfy the integral representation

$$
F_{k}(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} e^{i t \tau} \frac{(\tau+i)^{k-1}}{(\tau-i)^{k+1}} d \tau
$$

and therefore the residual representation

$$
F_{k}(t)=2 i \operatorname{Res}\left(e^{i t z} \frac{(z+i)^{k-1}}{(z-i)^{k+1}}\right)
$$

4. RESULTS DEDUCED FROM THE DIFFERENTIAL EQUATION

In this section we deduce another statement about an integral involving the Bateman functions and get an estimate for $\left|F_{n}\right|$ using its differential equation (10). Multiplying (10) by $2 F_{n}^{\prime}(t) / t$, we have

$$
2 F_{n}^{\prime}(t) F_{n}^{\prime \prime}(t)=2 F_{n}(t) F_{n}^{\prime}(t)-\frac{2 n}{t} 2 F_{n}(t) F_{n}^{\prime}(t)
$$

We integrate from 0 to t, and get for $n \in \mathbb{N}$ using the initial values (11)

$$
\begin{equation*}
\left(F_{n}^{\prime}\right)^{2}(t)-4=F_{n}^{2}(t)-\int_{0}^{t} \frac{2 n}{\tau} 2 F_{n}(\tau) F_{n}^{\prime}(\tau) d \tau \tag{23}
\end{equation*}
$$

For the last integral we get integrating by parts

$$
\begin{aligned}
\int_{0}^{t} \frac{2 n}{\tau} 2 F_{n}(\tau) F_{n}^{\prime}(\tau) d \tau & =\left.\frac{2 n}{\tau} F_{n}^{2}(\tau)\right|_{0} ^{t}+\int_{0}^{t} \frac{2 n}{\tau^{2}} F_{n}^{2}(\tau) d \tau \\
& =\frac{2 n}{t} F_{n}^{2}(t)-2 n F_{n}(0) F_{n}^{\prime}(0)+\int_{0}^{t} 2 n\left(\frac{F_{n}(\tau)}{\tau}\right)^{2} d \tau \\
& =\frac{2 n}{t} F_{n}^{2}(t)+2 n \int_{0}^{t}\left(\frac{F_{n}(\tau)}{\tau}\right)^{2} d \tau
\end{aligned}
$$

So we have the identity

$$
\begin{equation*}
\left(F_{n}^{\prime}\right)^{2}(t)-4=F_{n}^{2}(t)-\frac{2 n}{t} F_{n}^{2}(t)-2 n \int_{0}^{t}\left(\frac{F_{n}(\tau)}{\tau}\right)^{2} d \tau \tag{24}
\end{equation*}
$$

Fron inis iucnity by ictiñg $i \rightarrow \infty$ we am led to the statement

$$
\int_{0}^{\infty}\left(\frac{I_{n}(\tau)}{\tau}\right)^{2} d \tau=\frac{2}{n}
$$

as $\lim _{t \rightarrow \infty} F_{n}(t)=\lim _{t \rightarrow \infty} F_{n}^{\prime}(t)=0$. Therefore in particular $(t \geq 0)$

$$
\begin{equation*}
\int_{0}^{t}\left(\frac{F_{n}(\tau)}{\tau}\right)^{2} d \tau<\frac{2}{n} \tag{25}
\end{equation*}
$$

At this point we like to mention that from (24) it is now very easy to deduce the inequality $t<2 n$ for a local extremum of F_{n}, again (compare $\S 2$), as an application of (25) yields

$$
F_{n}^{2}(t)-\frac{2 n}{t} F_{n}^{2}(t)=\left(F_{n}^{\prime}\right)^{2}(t)-4+2 n \int_{0}^{t}\left(\frac{F_{n}(\tau)}{\tau}\right)^{2} d \tau<\left(F_{n}^{\prime}\right)^{2}(t)
$$

and therefore for any point with $F_{n}^{\prime}(t)=0$ we get $t<2 n$.
To deduce an estimate for $\left|F_{n}\right|$ we regroup (24) and get

$$
\frac{2 n-t}{t} F_{n}^{2}(t)=4-\left(F_{n}^{\prime}\right)^{2}(t)-2 n \int_{0}^{t}\left(\frac{F_{n}(\tau)}{\tau}\right)^{2} d \tau<4
$$

and for $t<2 n$ (which is the critical region) finally

$$
\begin{equation*}
\left|F_{n}^{2}(t)\right|<\frac{4 t}{2 n-t} \tag{26}
\end{equation*}
$$

We note that, however, this improves (6) for small t only, see Figure 2.
In the next section we will give a further improvement of (26).

5. ESTIMATES BY THE SZEGÖ METHOD

We consider the generalized Laguerre polynomials $L_{n}^{(\alpha)}(x)(\alpha \in \mathbb{R})$ given by their Rodrigues formula

$$
\begin{equation*}
x^{\alpha} e^{-x} L_{n}^{(\alpha)}(x)=\frac{1}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n+\alpha}\right) \tag{27}
\end{equation*}
$$

(see [23], p. 213, formula (1.3)). Szegö ([21], see [22], p. 159, formula (7.21.3)) considered the case $\alpha=0$, and was led to the inequality

$$
\begin{equation*}
e^{-x / 2}\left|L_{n}^{(0)}(x)\right|<1 \quad(x>0) \tag{28}
\end{equation*}
$$

Using a similar method we get the following development. For $n \in N_{0}$ and $\alpha \in \mathbb{Z}$ the function $f_{n \alpha}(x):=e^{-x} x^{n+\alpha}$ is analytic in $\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$. By (27) we have

$$
x^{\alpha} e^{-x} L_{n}^{(\alpha)}(x)=\frac{1}{n!} f_{n \alpha}^{(n)}(x)
$$

If $x \in \mathbb{R}^{+}$, then for $z=x+r e^{i \theta}(r \in(0, x))$ we have by Taylor's formula

$$
f_{n \alpha}(z)=\sum_{k=0}^{\infty} \frac{1}{k!} f_{n \alpha}^{(k)}(x)(z-x)^{k}
$$

and Cauchy's integral formula gives the estimate

$$
\frac{1}{k!}\left|f_{n \alpha}^{(k)}(x)\right|<\frac{1}{r^{k}} \max _{0 \leq \theta \leq 2 \pi}\left|f_{n \alpha}\left(x+r e^{i \theta}\right)\right|
$$

Especially for $k=n$ this yields

$$
\begin{equation*}
x^{\alpha} e^{-x}\left|L_{n}^{(\alpha)}(x)\right| r^{n}<\max _{0 \leq \theta \leq 2 \pi}\left|f_{n \alpha}\left(x+r e^{i \theta}\right)\right| . \tag{29}
\end{equation*}
$$

If furthermore $n+\alpha>0$, then $f_{n \alpha}$ is analytic in all of \mathbb{C}, and (29) holds for all $r \in \mathbb{R}^{+}$. This case will be studied now.

To give an estimate of $\max _{0 \leq \theta \leq 2 \pi}\left|f_{n \alpha}\left(x+r e^{i \theta}\right)\right|$, we expand

$$
f_{n \alpha}\left(x+r e^{i \theta}\right)=e^{-\left(x+r e^{i \theta}\right)}\left(x+r e^{i \theta}\right)^{n+\alpha}
$$

to get

$$
\max _{0 \leq \theta \leq 2 \pi}\left|f_{n \alpha}\left(x+r e^{i \theta}\right)\right|=e^{-x} \max _{0 \leq \theta \leq 2 \pi} e^{-r \cos \theta}\left(x^{2}+r^{2}+2 r x \cos \theta\right)^{(n+\alpha) / 2} .
$$

Together with (29) we have therefore

$$
x^{\alpha}\left|L_{n}^{(\alpha)}(x)\right| r^{n}<\max _{0 \leq \theta \leq 2 \pi} e^{-r \cos \theta}\left(x^{2}+r^{2}+2 r x \cos \theta\right)^{(n+\alpha) / 2} .
$$

We set now $\lambda:=\cos \theta \in[-1,1]$.

$$
p(\lambda):=x^{2}+r^{2}+2 r x \lambda, \quad \text { and } \quad q(\lambda):=e^{-r \lambda} p(\lambda)^{(n+\alpha) / 2}
$$

and have therefore

$$
\begin{equation*}
x^{\alpha}\left|L_{n}^{(\alpha)}(x)\right| r^{n}<\max _{-1 \leq \lambda \leq 1} q(\lambda) \tag{30}
\end{equation*}
$$

As

$$
q^{\prime}(\lambda)=r e^{-r \lambda} p(\lambda)^{(n+\alpha-2) / 2}(x(n+\alpha)-p(\lambda))
$$

we get for a possible critical point λ_{0} of q the relation

$$
\lambda_{0}=\frac{x(n+\alpha)-\left(x^{2}+r^{2}\right)}{2 r x} .
$$

At the point $\lambda=\lambda_{0}$ we have furthermore

$$
p\left(\lambda_{0}\right)=x^{2}+r^{2}+2 r x \lambda_{0}=x(n+\alpha)>0,
$$

hence

$$
q^{\prime \prime}\left(\lambda_{0}\right)=-2 r^{2} x e^{-r \lambda_{0}} p\left(\lambda_{0}\right)^{(n+\alpha-2) / 2}<0,
$$

and λ_{0} maximizes q. Therefore, from (30) we get

$$
\begin{equation*}
x^{\alpha}\left|L_{n}^{(\alpha)}(x)\right| r^{n}<q\left(\lambda_{0}\right) \tag{31}
\end{equation*}
$$

if $-1 \leq \lambda_{0} \leq 1$.
We consider now the case $x \in(0,4(n+\alpha)]$ (which with respect to the representation (13) corresponds to the critical region $(0,2 n)$ for $t=x / 2$), and choose $r:=\sqrt{x(n+\alpha)}$. In this case we have $\lambda_{0}=\frac{1}{2} \sqrt{x /(n+\alpha)} \in[-1,0)$. Hence, (31) implies

$$
x^{\alpha}\left|L_{n}^{(\alpha)}(x)\right|(x(n+\alpha))^{n / 2}<e^{x / 2}(x(n+\alpha))^{(n+\alpha) / 2}
$$

and therefore finally
THEOREM 2 For the generalized Laguerre polynomials $L_{n}^{(\alpha)}(\alpha \in \mathbb{Z})$ the estimate

$$
\begin{equation*}
e^{-x / 2}\left|L_{n}^{(\alpha)}(x)\right|<\left(\frac{n+\alpha}{x}\right)^{\alpha / 2} \tag{32}
\end{equation*}
$$

holds for $x \in(0,4(n+\alpha)]$ if $n+\alpha>0$.
If we define the functions $(\alpha \in \mathbb{R})$

$$
\begin{equation*}
F_{n}^{(\alpha)}(t):=e^{-t} L_{n}^{(\alpha)}(2 t) \tag{33}
\end{equation*}
$$

then (32) reads $(x=2 t)$

$$
\left|F_{n}^{(\alpha)}(t)\right|<\left(\frac{n+\alpha}{2 t}\right)^{\alpha / 2} \quad(t \in(0,2(n+\alpha)])
$$

For $\alpha=0$, we have Szegö's result (28) in this interval, and for $\alpha=1$ we get in view of representation (13)

$$
\begin{equation*}
\left|F_{n}(t)\right|<\sqrt{\frac{2 t}{n}} \quad(t \in(0,2 n)) \tag{34}
\end{equation*}
$$

This inequality improves (26) as Puiseux expansion yields

$$
\sqrt{\frac{4 l}{2 n-t}}=\sqrt{\frac{2 t}{n}}+\frac{1}{2 \sqrt{2}}\left(\frac{t}{n}\right)^{3 / 2}+P\left(\frac{t}{n}\right)
$$

with some positive function P.
Note that the special choice $\alpha=-1$ (and not the value $\alpha=0$) generates the Bateman functions $F_{n}(t)=F_{n}^{(-1)}(t)$.

6. ASYMPTOTIC ESTIMATES

We consider the functions $(\alpha \in \mathbb{R})$

$$
\begin{equation*}
F_{n}^{(\alpha)}(t)=e^{-t} L_{n}^{(\alpha)}(2 t)=e^{-t}\left(L_{n}^{(\alpha+1)}(2 t)-L_{n-1}^{(\alpha+1)}(2 t)\right)=F_{n}^{(\alpha+1)}(t)-F_{n-1}^{(\alpha+1)}(t) \tag{35}
\end{equation*}
$$

of (33) (see [23], p. 216, formula (1.15)) now in more detail. Taking derivative yields

$$
\begin{align*}
\left(F_{n}^{(\alpha)}\right)^{\prime}(t) & =-F_{n}^{(\alpha)}(t)+2 e^{-t}\left(L_{n}^{(\alpha)}\right)^{\prime}(2 t) \\
& \stackrel{(35)}{=}-e^{-t}\left(L_{n}^{(\alpha+1)}(2 t)-L_{n-1}^{(\alpha+1)}(2 t)\right)+2 e^{-t}\left(L_{n}^{(\alpha)}\right)^{\prime}(2 t) \\
& =-e^{-t}\left(L_{n}^{(\alpha+1)}(2 t)+L_{n-1}^{(\alpha+1)}(2 t)\right) \\
& =-\left(F_{n}^{(\alpha+1)}(t)+F_{n-1}^{(\alpha+1)}(t)\right), \tag{36}
\end{align*}
$$

where the relation about $\left(L_{n}^{(\alpha)}\right)^{\prime}$ corresponds to ([23], p. 215, formula (1.12)).

Moreover the program [12] generates the differential equation

$$
(1+\alpha+2 n-t) F_{n}^{(\alpha)}(t)+(1+\alpha)\left(F_{n}^{(\alpha)}\right)^{\prime}(t)+t\left(F_{n}^{(\alpha)}\right)^{\prime \prime}(t)=0
$$

for the functions $F_{n}^{(\alpha)}$ with respect to the variable t, and the recurrence equation

$$
(-1+\alpha+n) F_{n-2}^{(\alpha)}+(1-\alpha-2 n+2 t) F_{n-1}^{(\alpha)}+n F_{n}^{(\alpha)}=0
$$

with respect to the variable n.
Assume now, $t_{1}<t_{2}$. Then we get by an integration

$$
\begin{aligned}
\left(F_{n}^{(\alpha)}\right)^{2}\left(t_{2}\right)-\left(F_{n}^{(\alpha)}\right)^{2}\left(t_{1}\right) & =2 \int_{t_{1}}^{t_{2}} F_{n}^{(\alpha)}(t)\left(F_{n}^{(\alpha)}\right)^{\prime}(t) d t \\
& \stackrel{(35),(36)}{=}-2 \int_{t_{1}}^{t_{2}}\left(\left(F_{n}^{(\alpha+1)}(t)\right)^{2} \cdots\left(F_{n-1}^{(\alpha+1)}(t)\right)^{2}\right) d t .
\end{aligned}
$$

If we choose $\alpha=0$, we get in particular

$$
\begin{equation*}
\left(F_{i}^{(0)}\right)^{2}\left(l_{2}\right)-\left(F_{i}^{(0)}\right)^{2}\left(l_{1}\right)=-2 \int_{i_{1}}^{t_{2}}\left(\left(F_{i}^{(1)}(t)\right)^{2}-\left(F_{n}^{(1)}(t)\right)^{2}\right) d t \tag{37}
\end{equation*}
$$

Together with the relation ($n \subset N$)

$$
F_{n}(t)=F_{n}^{(-1)}(t)=-\frac{2 t}{n} F_{n-1}^{(1)}(t)
$$

(see (12) and (13), or [22], p. 98, formula (5.2.1)) it follows from (37) that

$$
\left(F_{i}^{(0)}\right)^{2}\left(t_{2}\right)-\left(F_{n}^{(0)}\right)^{2}\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} F_{n+1}^{2}(t) \frac{(n+1)^{2}}{2 t^{2}} d t-\int_{t_{1}}^{t_{2}} F_{i i}^{2}(t) \frac{n^{2}}{2 t^{2}} d t
$$

We now let $t_{2} \rightarrow \infty$. Then $F_{n}^{(0)}\left(t_{2}\right) \rightarrow 0$, and as

$$
\begin{equation*}
\int_{0}^{\infty} F_{n}^{2}(t) d t=1 \tag{38}
\end{equation*}
$$

(see (19), compare [3], formulae (2.7) and (2.91)), we get further

$$
\begin{aligned}
\left(F_{n}^{(0)}\right)^{2}\left(t_{1}\right) & =\int_{t_{1}}^{\infty} F_{n+1}^{2}(t) \frac{(n+1)^{2}}{2 t^{2}} d t-\int_{t_{1}}^{\infty} F_{n}^{2}(t) \frac{n^{2}}{2 t^{2}} d t \\
& \leq \int_{t_{1}}^{\infty} F_{n+1}^{2}(t) \frac{(n+1)^{2}}{2 t^{2}} d t \leq \frac{(n+1)^{2}}{2 t_{1}^{2}}\left(1-\int_{0}^{t_{1}} F_{n+1}^{2}(t) d t\right)
\end{aligned}
$$

where the last inequality is deduced with (38). So we have finally the inequality $(n \in \mathbb{N}, t>0)$

$$
\left|F_{n}^{(0)}(t)\right| \leq \frac{n+1}{\sqrt{2} t}
$$

This sharpens the result of Szegö (28) for large t. From (35) and (36) it follows that

$$
F_{n}^{(\alpha)}(t)+\left(F_{n}^{(\alpha)}\right)^{\prime}(t)=-2 F_{n-1}^{(\alpha+1)}(t) .
$$

We deduce now for a critical point t_{k} of F_{n} with $F_{n}^{\prime}\left(t_{k}\right)=0$ the relation

$$
\begin{equation*}
\left|F_{n}\left(t_{k}\right)\right|=2\left|F_{n-1}^{(0)}\left(t_{k}\right)\right| \leq \sqrt{2} \frac{n}{t_{k}} . \tag{39}
\end{equation*}
$$

Especially is this $\leq 2 / e$ for

$$
\begin{equation*}
\frac{t_{k}}{n} \geq \frac{e}{\sqrt{2}} \approx 1.92211551407955841 \ldots \tag{40}
\end{equation*}
$$

It is now remarkable that by the result of Hahn (21) for $n \rightarrow \infty$ the most important critical point T of F_{n} which produces the maximal value of F_{n} has the property $T / n \rightarrow 2$ as $T_{n}<T<2$. This gives finally the following
THEOREM 3 The Krzyż conjecture is asymptotically true for the superordinate functions $e^{-t((1+z) /(1-z))}$, i.e. we have $\left|a_{n}\left(e^{-t((1+z) /(1-z))}\right)\right| \leq 2 /$ e for $n \geq N$.

We will now strengthen this result.
Therefore let an arbitrary positive zero t_{n} of F_{n} be given. Then t_{n} is also a zero of $h_{n}:=F_{n}^{2}$, and as

$$
h_{n}^{\prime \prime}(t)=2\left(F_{n}^{\prime}(t)\right)^{2}+2 F_{n}(t) F_{n}^{\prime \prime}(t)
$$

by the differential equation for F_{n} we get

$$
\begin{equation*}
h_{n}^{\prime \prime}(t)=2\left(F_{n}^{\prime}(t)\right)^{2}+2 \frac{t-2 n}{t} F_{n}^{2}(t) \tag{41}
\end{equation*}
$$

From this we may deduce that $h_{n}^{\prime \prime}(t)>0$ for $t \geq 2 n$. Now, however, we consider the interval between t_{n} and the smallest relative extremum $t_{n}^{*}>t_{n}$ of F_{n}, i.e. the smallest zero t_{n}^{*} of F_{n}^{\prime} after t_{n}. Then obviously h_{n} is strictly increasing in $\left[t_{n}, t_{n}^{*}\right]$, further $h_{n}^{\prime}\left(t_{n}\right)=h_{n}^{\prime}\left(t_{n}^{*}\right)=0$, and therefore $\left.h_{n}^{\prime}\right|_{\left[t_{n}, t_{n}^{*}\right]}$ assumes an absolute maximum at some interior point $t_{n}^{* *} \in\left(t_{n}, t_{n}^{*}\right)$, where $h_{n}^{\prime \prime}\left(t_{n}^{* *}\right)=0$.

From (41) we deduce

$$
\left(F_{n}^{\prime}\left(t_{n}^{* *}\right)\right)^{2}=\frac{2 n-t_{n}^{* *}}{t_{n}^{* *}} F_{n}^{2}\left(t_{n}^{* *}\right)
$$

and therefore by (18)

$$
\left|F_{n}^{\prime}\left(t_{n}^{* *}\right)\right|=\sqrt{\frac{2 n-t_{n}^{* *}}{t_{n}^{* *}}}\left|F_{n}\left(t_{n}^{* *}\right)\right|<\sqrt{\frac{2 n-t_{n}^{* *}}{t_{n}^{* *}}} .
$$

As $\sqrt{(2 n-t) / t}$ is strictly decreasing for $t \in(0,2 n)$, it follows furthermore that

$$
\left|F_{n}^{\prime}\left(t_{n}^{* *}\right)\right|<\sqrt{\frac{2 n-t_{n}}{t_{n}}}
$$

and finally (h_{n}^{\prime} is positive)

$$
h_{n}^{\prime}\left(t_{n}^{* *}\right)=2\left|F_{n}\left(t_{n}^{* *}\right)\right|\left|F_{n}^{\prime}\left(t_{n}^{* *}\right)\right|<2 \sqrt{\frac{2 n-t_{n}}{t_{n}}}
$$

using (18) again. As $t_{n}^{* *}$ is the global maximum of h_{n}^{\prime} in $\left[t_{n}, t_{n}^{*}\right]$, we therefore are led to the inequalities

$$
\begin{equation*}
0<h_{n}^{\prime}(t)<2 \sqrt{\frac{2 n-t_{n}}{t_{n}}} \tag{42}
\end{equation*}
$$

for all $t \in\left(t_{n}, t_{n}^{*}\right)$.
We are interested in $h_{n}\left(t_{n}^{*}\right)$, the value of h_{n} at its maximum t_{n}^{*}. Therefore let $p>0$ be given such that $h_{n}\left(t_{n}^{*}\right)>1 / p$. As $h_{n}\left(t_{n}\right)=0$, and h_{n} is strictly increasing, there is some $\tilde{\tau}_{n} \in\left(t_{n}, t_{n}^{*}\right)$ with $h_{n}\left(\tilde{t}_{n}\right)=1 / p$. The mean value theorem then shows the existence of $\xi_{n} \in\left(\tilde{t}_{n}, t_{n}^{*}\right)$ with

$$
\frac{h_{n}\left(t_{n}^{*}\right)-h_{n}\left(\tilde{t}_{n}\right)}{t_{n}^{*}-\tilde{t}_{n}}=h_{n}^{\prime}\left(\xi_{n}\right),
$$

and therefore by (42)

$$
\frac{h_{n}\left(t_{n}^{*}\right)-h_{n}\left(\tilde{t}_{n}\right)}{i_{n}^{*}-\bar{i}_{n}}<2 \sqrt{\frac{2 n-t_{n}}{t_{n}}}
$$

or

$$
h_{n}\left(t_{n}^{*}\right)<h_{n}\left(\tilde{t}_{n}\right)+2 \sqrt{\frac{2 n-t_{n}}{t_{n}}}\left(t_{n}^{*}-\bar{t}_{n}\right)=\frac{1}{p}+2 \sqrt{\frac{2 n-t_{n}}{t_{n}}}\left(t_{n}^{*}-\tilde{t}_{n}\right) .
$$

By (19) we have

$$
\int_{0}^{\infty} h_{n}(\tau) d \tau=1
$$

and thus by the integral mean value theorem (h_{n} is nonnegative)

$$
1>\int_{\tilde{t}_{n}}^{t_{n}^{*}} h_{n}(\tau) d \tau=h_{n}\left(\eta_{n}\right)\left(t_{n}^{*}-\tilde{t}_{n}\right)
$$

for some $\eta_{n} \in\left(\tilde{t}_{n}, t_{n}^{*}\right)$. As h_{n} is strictly increasing, we therefore get $h_{n}\left(\eta_{n}\right)>h_{n}\left(\tilde{t}_{n}\right)=$ $1 / p$ implying

$$
1>\frac{1}{p}\left(t_{n}^{*}-\tilde{t}_{n}\right) \quad \text { or } \quad t_{n}^{*}-\tilde{t}_{n}<p
$$

Finally we have

$$
h_{n}\left(t_{n}^{*}\right)<\frac{1}{p}+2 p \sqrt{\frac{2 n-t_{n}}{t_{n}}} .
$$

We were led to this inequality under the assumption that $h_{n}\left(t_{n}^{*}\right)>1 / p$. If $h_{n}\left(t_{n}^{*}\right) \leq$ $1 / p$, however, then the same conclusion follows trivially, so that the above calculations can be summarized by the following
Lemma 1 Let $h_{n}(t)=F_{n}^{2}(t)$, let t_{n} be a positive zero of F_{n}, let t_{n}^{*} the lowest zero of F_{n}^{\prime} that is larger than t_{n}, and let $p>0$. Then

$$
h_{n}\left(t_{n}^{*}\right)<\frac{1}{p}+2 p \sqrt{\frac{2 n-t_{n}}{t_{n}}}
$$

We now emphasize on the largest zero $t_{n}=T_{n}$ of F_{n}. By the results of $\S 2$ the global maximum of F_{n} is attained at the last zero T_{n}^{*} of F_{n}^{\prime} which lies in the interval ($T_{n}, 2 n$), and is therefore the smallest zero of F_{n}^{\prime} after T_{n}. So Lemma 1 applies.

By a result of Bottema and Hahn (see [5] and [8], p. 228, last formula), the inequality

$$
\begin{equation*}
T_{n}>2 n-\frac{3}{2}-8 \sqrt{2} \sqrt{n-1}=: \tau_{n} \tag{43}
\end{equation*}
$$

($n \geq 33$) holds for the last zero of F_{n} (or $L_{n-1}^{(1)}$). As $\sqrt{(2 n-t) / t}$ is strictly decreasing for $t \in(0,2 n)$, we have the inequality

$$
\sqrt{\frac{2 n-T_{n}}{T_{n}}}<\sqrt{\frac{2 n-\tau_{n}}{\tau_{n}}}
$$

Puiseux expansion yields the asymptotic expression ($n \rightarrow \infty$)

$$
\sqrt{\begin{array}{c}
2 n-\tau_{n} \\
\tau_{n}
\end{array}}=2 \sqrt[1 / 2]{ } \frac{1}{n^{1 / 4}}+\frac{131}{16 \sqrt[4]{2} n^{3 / 4}}+O\left(\frac{1}{n^{5 / 4}}\right)
$$

especially is

$$
\sqrt{\frac{2 n-\tau_{n}}{\tau_{n}}} \sim \frac{1}{n^{1 / 4}}
$$

In our calculations the value p was arbitrary, so we have the freedom to choose it properly. The asymptotics suggest the choice $p \sim n^{1 / 8}$. For any $a>0$ we get therefore

$$
h_{n}\left(T_{n}^{*}\right)<\frac{a}{n^{1 / 8}}+2 \frac{n^{1 / 8}}{a} \sqrt{\frac{2 n-T_{n}}{T_{n}}}<\frac{a}{n^{1 / 8}}+2 \frac{n^{1 / 8}}{a} \sqrt{\frac{2 n-\tau_{n}}{\tau_{n}}} \sim \frac{1}{n^{1 / 8}}<\frac{b}{n^{1 / 8}}
$$

for some $b>0$.
${ }^{-}$We choose the value $a=2 \sqrt[8]{2}$ (minimizing the leading term in the corresponding Puiseux expansion) and get the global estimate

$$
h_{n}\left(T_{n}^{*}\right)<2 \sqrt[8]{2} \frac{1}{n^{1 / 8}}+\frac{\sqrt{\frac{3}{2}+8 \sqrt{2} \sqrt{n-1}}}{\sqrt[8]{2} \sqrt{2 n-\frac{3}{2}-8 \sqrt{2} \sqrt{n-1}}} n^{1 / 8}
$$

Now we remember that F_{n} takes its global maximum over \mathbb{R}^{+}at the point T_{n}^{*}, and so does h_{n}. We therefore have for all $a>0, n \in \mathbb{N}$ and $t>0$ the inequality

$$
\begin{align*}
\left|F_{n}(t)\right| & <\sqrt{2 \sqrt[8]{2} \frac{1}{n^{1 / 8}}+\frac{\sqrt{\frac{3}{2}+8 \sqrt{2} \sqrt{n-1}}}{\sqrt[8]{2} \sqrt{2 n-\frac{3}{2}-8 \sqrt{2} \sqrt{n-1}}}} n^{1 / 8} \\
& =\frac{2 \sqrt[16]{2}}{n^{1 / 16}}+\frac{131}{642^{7 / 16} n^{9 / 16}}+O\left(\frac{1}{n^{17 / 16}}\right) \tag{44}
\end{align*}
$$

We mention that we get a better asymptotic estimate if we use the sharper left hand inequality (20) instead of (43), set $\tau_{n}^{*}:=-1+2 n-C(2 n-1)(C$ constant) leading to the asymptotic result

$$
\sqrt{\frac{2 n-\tau_{n}^{*}}{\tau_{n}^{*}}} \sim \frac{1}{n^{1 / 3}}
$$

and therefore by the choice $p \sim n^{1 / 6}$ and the same procedure as above to the
THEOREM 4 For all $t \in \mathbb{R}^{+}$we have the asymptotic inequality $(n \geq N)$

$$
\left|F_{n}(t)\right|<\frac{c}{n^{1 / 12}}
$$

for some $c>0$, and in particular the limiting value

$$
\lim _{n \rightarrow \infty}\left|F_{n}(t)\right|=0
$$

Obviously this theorem strengthens Theorem 3.
In principle (44) enables one to prove the statement

$$
\left|F_{n}(t)\right| \leq \frac{2}{e}
$$

for all $n \in \mathbb{N}$. Therefore one shows that the estimation function

$$
E(n)=\sqrt{2 \sqrt[8]{2} \frac{1}{n^{1 / 8}}+\frac{\sqrt{\frac{3}{2}+8 \sqrt{2} \sqrt{n-1}}}{\sqrt[8]{2} \sqrt{2 n-\frac{3}{2}-8 \sqrt{2} \sqrt{n-1}}}} n^{1 / 8}
$$

of (44) is decreasing, and as $E(17821075)>2 / e$ and $E(17821076)<2 / e$, it remains to prove the result for only a finite number of initial values.

The number of initial values, however, can be decisively lowered using that by (40) $\left|F_{n}(t)\right| \leq 2 / e$ whenever $T_{n}^{*} / n \geq e / \sqrt{2}$, especially if $T_{n} / n \geq e / \sqrt{2}$. From the Bot-tema-Hahn bound

$$
\frac{T_{n}}{n}>\frac{\tau_{n}}{n}=2-\frac{3}{2 n}-8 \sqrt{2} \frac{\sqrt{n-1}}{n}=: e(n)
$$

we obtain first hy the calculation

$$
e^{\prime}(n)=\frac{-16 \sqrt{2}+3 \sqrt{n-1}+8 \sqrt{2} n}{2 n^{2} \sqrt{n-1}}
$$

that $e(n)$ is increasing for $n>2$, and as $\lim _{n \rightarrow \infty} e(n)=2$ there is exactly one solution $n_{0} \geq 2$ of the equation $e(n)=e / \sqrt{2}$, and $T_{n} / n>e(n) \geq e\left(n_{0}\right)=e / \sqrt{2}$ for $n>n_{0}$. A numerical calculation shows that $n_{0} \approx 21138.7$ so that we are led
to the
THEOREM 5 The inequality $\left|F_{n}(t)\right| \leq 2 / e$ is true for all $n \in \mathbb{N}$ and all $t>0$ if it is true for $n \leq 21138$.

7. ESTIMATES FOR THE DERIVATIVE

By (23) it follows that at the zeros of F_{n} the derivative F_{n}^{\prime} satisfies the relation $\left|F_{n}^{\prime}(t)\right| \leq 2$. This result holds for all $t \geq 0$ which can be seen as follows: Using (36) with $\alpha=-1$ we have

$$
\begin{equation*}
F_{n}^{\prime}(t)=-e^{-t}\left(L_{n}(2 t)+L_{n-1}(2 t)\right) \tag{45}
\end{equation*}
$$

and by an application of the Szegö result (28) it follows for $t>0$

$$
\begin{equation*}
\left|F_{n}^{\prime}(t)\right|<2 . \tag{46}
\end{equation*}
$$

This shows that for all $n \in \mathbb{N}$ the derivatives $\left|F_{n}^{\prime}\right|$ have their maximal value at the origin where $\left|F_{n}^{\prime}(0)\right|=2$ (see (11)). We note moreover, even though the derivative $F:=F_{n}^{\prime}$ has a representation (45) similar to that of F_{n} itself, it satisfies the much more complicated differential equation

$$
\left(-4 n^{2}+4 n t-t^{2}\right) F(t)-2 n F^{\prime}(t)+\left(-2 n t+t^{2}\right) F^{\prime \prime}(t)=0
$$

8. THE FUNCTIONS H_{n}

In this section we collect the explicit inequalities that we deduced, and formulate a conjecture concerning the Bateman functions.
As the last point of inflection of the functions F_{n} is at the point $t=2 n$ which increases with increasing n, it is reasonable to introduce the functions

$$
H_{n}(t):=(-1)^{n} F_{n}(n t)
$$

that have common absolute values with F_{n} which, however, are attained at different points. The scale on the t-axis is here such that the last point of inflection lies at $t=2$ for all functions $H_{n}(n \in \mathbb{N})$, and H_{n} is positive for $t \geq 2$. It is easy to deduce the differential equation

$$
\begin{equation*}
t H_{n}^{\prime \prime}(t)=n^{2}(t-2) H_{n}(t) \tag{47}
\end{equation*}
$$

satisfied by H_{n}. The inequalities that we deduced for F_{n} read as follows for H_{n} : The trivial estimate (18) gives

$$
\left|H_{n}(t)\right| \leq 1,
$$

(16) yields ($n>2$)

$$
\left|H_{n}(t)\right| \leq \frac{2}{t}
$$

the refinement (39) gives

$$
\left|H_{n}\left(t_{k}\right)\right| \leq \frac{\sqrt{2}}{t_{k}}
$$

for a critical point t_{k} of H_{n}, (26) implies

$$
\left|H_{n}(t)\right|<\sqrt{\frac{4 t}{2-t}}
$$

and finally (34) yields

$$
\left|H_{n}(t)\right|<\sqrt{2 t} .
$$

These estimates commonly do not depend on n. One more estimate will be added in the next section. Figure 3 shows them graphically.

Figures 4 and 5 show the graphs of the functions $H_{n}(n=1, \ldots, 20)$. We conjecture that H_{n} is strictly decreasing for increasing n at the point $t=2$. Note that by the result of Hahn (21) this is not true for any $t<2$. In the next section we will show, however, that $\lim _{n \rightarrow \infty} H_{n}(t)=0$ for each $t>2$.

9. ESTIMATES FOR LARGE

In this section we show that for all $t>2$ the values $H_{n}(t)$ tend to 0 for $n \rightarrow \infty$.
The inequalities (46), and (17) correspond to the incqualities

$$
\left|H_{n}^{\prime}(t)\right| \leq 2 n,
$$

and

$$
\begin{equation*}
\left|I I_{n}^{\prime}(i)\right| \leq \frac{n}{t} \tag{48}
\end{equation*}
$$

for the derivative of H_{n}, respectively.

FIGURE 4. The functions $H_{n}(n=1, \ldots, 20)$.

By the differential equation (47) for H_{n} we have

$$
\begin{equation*}
H_{n}(t)=\frac{t}{n^{2}(t-2)} H_{n}^{\prime \prime}(t) \tag{49}
\end{equation*}
$$

Let now $2<t_{1}<t_{2}$ be given. By definition H_{n} is strictly positive in [t_{1}, t_{2}], and by (49) $H_{n}^{\prime \prime}$ is strictly positive in $\left[t_{1}, t_{2}\right]$. Therefore

$$
\int_{t_{1}}^{t_{2}} H_{n}(t) d t=\frac{1}{n^{2}} \int_{t_{1}}^{t_{2}} \frac{t}{t-2} H_{n}^{\prime \prime}(t) d t .
$$

As the function $t /(t-2)$ is strictly decreasing, we have

$$
\max _{t \in\left[t_{1}, t_{2}\right]} \frac{t}{t-2}=\frac{t_{1}}{t_{1}-2},
$$

and therefore

$$
\frac{1}{n^{2}} \int_{t_{1}}^{t_{2}} \frac{t}{t-2} H_{n}^{\prime \prime}(t) d t \leq \frac{1}{n^{2}} \frac{t_{1}}{t_{1}-2} \int_{t_{1}}^{t_{2}} H_{n}^{\prime \prime}(t) d t .
$$

As $H_{n}^{\prime \prime}$ is positive in $\left[t_{1}, t_{2}\right]$, and as $\lim _{t \rightarrow \infty} H_{n}^{\prime}(t)=0$, it follows that H_{n}^{\prime} is negative and increasing, and therefore

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} H_{n}(t) d t & \leq \frac{1}{n^{2}} \frac{t_{1}}{t_{1}-2}\left|H_{n}^{\prime}\left(t_{1}\right)-H_{n}^{\prime}\left(t_{2}\right)\right| \leq \frac{1}{n^{2}} \frac{t_{1}}{t_{1}-2}\left|H_{n}^{\prime}\left(t_{1}\right)\right| \\
& \leq \frac{1}{n^{2}} \frac{t_{1}}{t_{1}-2} \frac{n}{t_{1}} \leq \frac{1}{n\left(t_{1}-2\right)}
\end{aligned}
$$

where we used (48). For fixed $t_{2}>2$ we set now $t_{1}:=\left(2+t_{2}\right) / 2$, and with the integral mean value theorem we find $\tau \in\left[t_{1}, t_{2}\right]$ with

$$
H\left(t_{2}\right) \leq H(\tau)=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} H_{n}(t) d t \leq \frac{1}{\left(t_{2}-t_{1}\right)\left(t_{1}-2\right)} \frac{1}{n}=\frac{4}{\left(t_{2}-2\right)^{2}} \frac{1}{n}
$$

Another estimate for large t which is independent of n, will be established now. Let again $2<t_{1}<t_{2}$. Then by (49)

$$
\begin{aligned}
\left|H_{n}^{2}\left(t_{2}\right)-H_{n}^{2}\left(t_{1}\right)\right| & =\left|\int_{t_{1}}^{t_{2}}\left(H_{n}^{2}(t)\right)^{\prime} d t\right|=\left|\int_{t_{1}}^{t_{2}} 2 H_{n}^{\prime}(t) H_{n}(t) d t\right| \\
& =\left|\int_{t_{1}}^{t_{2}} \frac{t}{n^{2}(t-2)} H_{n}^{\prime}(t) H_{n}^{\prime \prime}(t) d t\right| \\
& \leq \frac{t_{1}}{n^{2}\left(t_{1}-2\right)} \int_{t_{1}}^{t_{2}}\left|2 H_{n}^{\prime}(t) H_{n}^{\prime \prime}(t)\right| d t \\
& =\frac{t_{1}}{n^{2}\left(t_{1}-2\right)}\left|\left(H_{n}^{\prime}\right)^{2}\left(t_{2}\right)-\left(H_{n}^{\prime}\right)^{2}\left(t_{1}\right)\right| .
\end{aligned}
$$

We let now $t_{2} \rightarrow \infty$, and get ($t:=t_{1}$) using (48)

$$
\left|H_{n}(t)\right|^{2} \leq \frac{t}{n^{2}(t-2)}\left|\left(H_{n}^{\prime}\right)^{2}(t)\right| \leq \frac{1}{t(t-2)} .
$$

This estimate improves the earlier ones for large t, see Figure 3 .
Finally we show that uniformly with respect to n the functions H_{n} decrease faster than each negative power.

Theorem 6 For each $k \in \mathbf{N}_{0}$ there is a constant $C_{k}>0$ such that

$$
\left|H_{n}(t)\right| \leq \frac{C_{k}}{t^{k}} \quad(t>0, n \in \mathbf{N})
$$

that is independent of n.
Proof We prove the result by induction with respect to k. For $k=0$ the statement is trivially true, see (18). Assume now the statement holds for some $k \in \mathrm{~N}_{0}$, i.e.

$$
\left|F_{n}(t)\right| \leq C_{k}\left(\frac{n}{t}\right)^{k}
$$

Then we get using (14)

$$
\begin{aligned}
\left|F_{n}(t)\right| & =\frac{1}{2 t}\left|(n-1)\left(F_{n}(t)-F_{n-1}(t)\right)+(n+1)\left(F_{n}(t)-F_{n+1}(t)\right)\right| \\
& \leq \frac{2(n-1) C_{k}+(n+1) C_{k}+(n+1) C_{k} D_{k}}{2 t}\left(\frac{n}{t}\right)^{k} \\
& \leq \frac{2(n-1) C_{k} D_{k}+(n+1) C_{k} D_{k}+(n+1) C_{k} D_{k}}{2 t}\left(\frac{n}{t}\right)^{k} \\
& =2 C_{k} D_{k}\left(\frac{n}{t}\right)^{k+1},
\end{aligned}
$$

where we chose $D_{k} \geq 1$ such that $(n+1)^{k} \leq D_{k} b^{k}$ (the choice $D_{k}=2^{k}$ does the job required as $\left.(n+1)^{k} \leq(2 n)^{k} \leq 2^{k} n^{k}\right)$. This yields the result.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publ., New York, 1964.
[2] Amer. Math. Monthly 59 (1952), 45, Problem 4468, and solution in Amer. Math. Monthly 60 (1953), 131-132.
[3] H. Bateman, The k-function, a particular case of the confluent hypergeometric function, Trans. Amer. Math. Soc. 33 (1931), 817-831.
[4] H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Grundlehren der mathematischen Wissenschaften 77, Springer, Berlin-Heidelberg-New York, 1965.
[5] O. Bottema, Die Nullstellen gewisser durch Rekursionsformeln definierter Polynome, Proc. Amsterdam 34 (1930), 681-691.
[6] G. Doetsch, Einführung in Theorie und Anwendung der Laplace-Transformation, Mathematische Reihe 24, Birkhäuser, Basel-Stuttgart, 1958.
[7] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften 259, SpringerVerlag, New York-Berlin-Heidelberg-Tokyo, 1983.
[8] W. Hahn, Bericht über dic Nullstellen der Laguerreschen und der Hermiteschen Polynome, Jber. DMV 44 (1934), 215-236.
[9] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall series in Modern Analysis, PrenticeHall, Englewood Cliffs, NJ, 1962.
[10] J. A. Hummel, St. Scheinberg and L. Zalcman, A coefficient problem for bounded nonvanishing functions, J. Anal. Math. 31 (1977), 169-190.
[11] W. Koepf, Power series in Computer Algebra. J. Symb. Comp. 13 (1992), 581-603.
[12] W. Koepf, A package on formal power series. Mathematica Journal 4 (1994), to appear. Preprint SC 93-27, Konrad-Zuse-Zentrum Berlin.
[13] J. Krzyż, Problem 1, posed in: Fourth conference on analytic functions, Ann. Polon. Math. 20 (19671968), 314.
[14] V. Levin, Aufgabe 163, Jber. DMV 43 (1934), 113.
[15] J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, London, 1944.
[16] C. T. Rajagopal, On inequalities for analytic functions, Amer. Math. Monthly 60 (1953), 693-695.
[17] E. Reissner, Lösung der Aufgabe 163, Jber DMV 44 (1934), 80-83.
[18] M. S. Robertson, Solution of Problem 4468, Amer. Math. Monthly 60 (1953), 131-132.
[19] J. V. Ryff, Subordinate H^{p} Functions.
[20] H. S. Shapiro, Problem 4468, Amer. Math. Monthly 59 (1952), 45.
[21] G. Szegö, Ein Beitrag zur Theorie der Polynome von Laguerre und Jacobi, Math. Z. 1 (1918), 341356.
[22] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Coll. Publ. 23, New York City, 1939.
[23] F G. Tricomi, Vorlesungen über Orthogonalreihen, Grundlehren der Mathematischen Wissenschaften 76, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.

