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In his 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of 
special functions which follows from an identity about Jacobi polynomial sums that was found by 
Askey and Gasper in 1973, published in 1976. 
In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a 
special function system which (by Todorov and Wilf) was realized to be the same as de Branges'. 
In this article, we show how a variant of the Askey-Gasper identity can be deduced by a straight- 
forward examination of Weinstein's functions which are intimately related with a LGwner chain 
of the Koebe function, and therefore with univalent functions. 
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1. INTRODUCTION 

Let S denote the family of analytic and univalent functions f ( z )  = z  + a z z 2  + . . . 
of the unit disk D. S is compact with respect to  the topology of locally uniform 
convergence so that  k ,  := m a x l a , ( f ) J  exists. In 1916 Bieberbach [3] proved that  

f FS 

k2 = 2, with equality if a n d  only if f  is a rotation of the Koebe function 

and in a footnote he mentioned "Vielleicht ist iiberhaupt k ,  = n.". This statement 
is known as the Bieberbach conjecture. 

In 1923 Lowner [13] proved the Bieberbach conjecture for n = 3. His method was 
t o  embed a univalent function f  (2) into a Lowner chain, i.e. afamily {f ( 2 ,  t )  I t 2 0 )  



D
ow

nl
oa

de
d 

B
y:

 [K
oe

pf
, W

ol
fra

m
] A

t: 
08

:5
7 

13
 J

un
e 

20
07

 

228 W. KOEPF AND D. SCHMERSAU 

of univalent functions of the form 

which start with f 

f(z,O) = f ( z ) ,  
and for which the relation 

is satisfied. Here ' and ' denote the partial derivatives with respect to z and t ,  
respectively. Equation (2) is referred to as the Lowner differential equation, and 
geometrically it states that the image domains of ft expand as t increases. 

The history of the Bieberbach conjecture showed that it was easier to obtain re- 
sults about the logarithmic coefficients of a univalent function f ,  i.e. the coefficients 
d, of the expansion 

rather than for the coefficients a, o f f  itself. So Lebedev and Milin [12] in the mid 
sixties developed methods to exponentiate such information. They proved that if 
for f E S the Milin conjecture 

on its logarithmic coefficients is satisfied for some n E PI, then the Bieberbach 
conjecture for the index n + 1 follows. 

In 1984 de Branges [4] verified the Milin, and therefore the Bieberbach conjecture, 
and in 1991, Weinstein [18] gave a different proof. A reference other than [4] 
concerning de Branges' proof is [5], and a German language summary of the history 
of the Bieberbach conjecture and its proofs was given in [lo]. 

Both proofs use the positivity of special function systems, and independently 
Todorov [16] and Wilf [19] showed that both de Branges' and Weinstein's functions 
essentially are the same (see also [Ill),  

$( t )  denoting the de Branges functions and A;(t) denoting the Weinstein func- 
tions, respectively. 

Whereas de Branges applied an identity of Askey and Gasper [2] to his function 
system, Weinstein applied an addition theorem for Legendre polynomials to  his 
function system to deduce the positivity result needed. 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 229 

The identity of Askey and Gasper used by de Branges was stated in ([2], (1.16)) 
in the form 

where C:(x) denote the Gegenbauer polynomials, P;"'~)(X) denote the Jacobi poly- 
nomials (see e.g. [I],  5 22), and 

denotes the shifted factorial (or Pochhammer symbol). 
In this article, we show how a variant of the Askey-Gasper identity can be deduced 

by a straightforward examination of Weinstein's functions which are intimately 
related with the bounded Lowner chain of the Koebe function. 

The application of an addition theorem for the Gegenbauer polynomials quite 
naturally arises in this context. We present a simple proof of this result so that  
this article is self-contained. 

2. THE LOWNER CHAIN OF THE KOEBE FUNCTION AND THE 
WEINSTEIN FUNCTIONS 

We consider the Lowner chain 

of bounded univalent functions in the unit disk D which is defined in terms of the 
Koebe function (1). Since I< maps the unit disk onto the entire plane slit along the 
negative x-axis in the interval (-oo, 1/41, the image w(D,t)  is the unit disk with a 
radial slit on the negative x-axis increasing with t .  

Weinstein [18] used the Lowner chain (5), and showed the validity of Milin's 
conjecture if for all n 2 2 the Weinstein functions A: : W+ -, Ifk (k = 0,. . . , n )  
defined by 

satisfy the relations 
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230 W. KOEPF AND D. SCHMERSAU 

Weinstein did not identify the functions A ; ( t ) ,  but was able to  prove (7) without 
an explicit representation. 

In this section we apply Weinstein's following interesting observation t o  show 
that  A ; ( t )  are the Fourier coefficients of a function that is connected with the 
Gegenbauer and Chebyshev polynomials. 

The range of the function w = K - l ( e e t K )  is the unit disk with a slit on the 
negative real axis. Since for all 7  E R, 7  # 0  (mod a)  the mapping 

maps the unit disk onto the unit disk with two slits on the real axis, we can interpret 
w  as composition w = h ~ ' ( e - ' h , )  for a suitable pair (8, y ) ,  and a simple calculation 
shows that the relation 

cos 7  = (I - e-')  + e-' cos 6' (8) 

is valid. We get therefore 

et w 
h , ( z )  = et . h e ( w ( z , t ) )  = - 

1 - w2 

It is easily seen that (9) remains valid for the pair ( 0 , 7 )  = ( 0 , 0 ) ,  corresponding to 
the representation 

Since on the other hand h , ( z )  has the Taylor expansion 

equating the coefficients of zn+' in (9) we get the identity 

sin(n -t- l)7 
n 

= A;f(t)  + 2 ) A; ( t )  cos k6' 
sin 7  

k = l  
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 231 

Hence we have discovered (see also [19], (2)) 

Theorem 1. (Fourier Expansion) The Weinstein functions A;(t) satisfy the 
functional equation 

Un ((1 - e-') + e-' cos 0) = 6; ((1 - e-') + e-' cos 8) 

(10) 
n 

= A ~ ( t ) + 2 ~ ~ ; ( t ) c o s k 0 ,  
k=l 

where U,,(x) denote the Chebyshev polynonaials of the second kind. 

Proof. This is an immediate consequence of the identity 

sin(n + l ) y  
6: (cos y) = Un (cos y) = 

sin y 

(see e.g. [I], (22.3.16), (22.5.34)). 

3. THE WEINSTEIN FUNCTIONS AS JACOB1 POLYNOMIAL 
SUMS 

In this section, we show that the Weinstein functions A;(t) can be represented as 
Jacobi polynomial sums. 

Theorem 2. (Jacobi Sum) The Weinstein functions have the representation 

Proof. A calculation shows that w(z, t )  has the explicit representation 

Here we use the abbreviation x = 1 - 2e-'. Furthermore, from 

we get the explicit representation 
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232 W. KOEPF AND D. SCHMERSAU 

for W O I : ~ ,  t ) .  By the definition of Wk(z, t ) ,  we have moreover 

Hence, by (12)-(13) we deduce the explicit representation 

for Wk(z, t ) .  

Since the Jacobi polynomials P,(~'')(x) have the generating function 

(see e.g. [I],  (22.9.1)), comparison with (14) yields 

Using the Cauchy product 

we finally have 

Equating coefficients gives the result. 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 233 

4. ASKEY-GASPER INEQUALITY FOR THE WEINSTEIN 
FUNCTIONS 

We would like to utilize the Fourier expansion (10) of Theorem 1 to find new 
representations for the Weinstein functions, hence by Theorem 2 for the Jacobi 
polynomial sum on the left hand side of (4). Hence, we have the need to find a 

representation for C,!, ((1 - e-') + e-' cos 0 . ) 
We do a little more,' and give a representation for 

from which the above expression is the special case x = y = d m , (  = cos0. 
Actually, in the next section, an even more general expression is considered, see 
Theorem 5. Here we outline the deduction for our particular case. 

The function given by (16) as a function of the variable ( is a polynomial of de- 
gree n.  Hence it can be expanded by Gegenbauer polynomials Ct ( ( )  ( j  = 0 , .  . . , n). 
We choose X = 1/2, i.e. we develop in terms of Legendre polynomials P j ( ( )  = 
Cjf2(()  (see e.g. [I], (22.5.36)), 

n 

CA (x Y + dlx~m() = A: (x,  y) CAI'(() 
m=O 

(17) 

with A: depending on x and y. By the orthogonality of the Gegenbauer 
polynomials, 

1 ' i f j = m  1 c z 2 [ ~ )  dc = { 7 otherwise 
- 1 

multiplying (17) by Cjf2(() ,  and integrating from C = - 1 to C = 1, we get therefore 

To eliminate the second (oscillating) factor c;"(c), we utilize the identity 
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234 W. KOEPF AND D. SCHMERSAU 

which is valid for any j times continuously differentiable function f ,  and which can 
easily be proved by iterative partial integration (see e.g. [9], Chapter VII, p. 140). 
Choosing A = 112 and 

f ( 0  := c : ( x u + J i r ; ? m < )  

we get (with the Gamma duplication formula (29)) 

Since furthermore 

(see e.g. [17], p. 179), we get moreover 

with 

Now observe that Q?(x, y) is a polynomial in the variables x and y, of degree n - j 
each. In the next section we will show that the integral Q?(x, y) has zeros at  both 
the zeros of C~?;(X) and CLt;(y), hence, as a polynomial of degree n - j in x and 

y respectively, must be a multiple of the product c!~:(x) Cit;(y).  An initial value 
gives 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 235 

Note that the complete proof of a generalization of statement (17)/(23) will be 
given in the next section. 

Therefore finally, combining (18)-(23), we have discovered the identity 

As a first step this leads to the following Askey-Gasper type representation for the 
Fourier series (10). 

Theorem 3. The Fourier series (10) has the representation 

n 
41 j ! 2  (n - j ) !  - j t  e (a:; ( d m ) )  ' P~(COS 8) 

j = O  

Proof. Set z = y = and C = cosb' in (24). 

Since by a simple function theoretic argument the Legendre polynomials Pj(cos 0) 
on the right hand side of (25) can be written as 

with positive coefficients 

(see e.g. [15], (4.9.3)), we have at  this stage the 
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236 W. KOEPF AND D .  SCHMERSAU 

Corollary 7. The Weinstein functions satisfy the inequalities (7), 

A;(t) 2 0 ( t  c R+,  0 5 k _< n) . 

Proof. Combining Theorems 1 and 2 with (26)-(27) gives the result. 

Theorem 3 together with (26) immediately yields sum representations for the 
Weinstein functions in terms of the Gegenbauer polynon~ials, 

for m = 0 , l , .  . . , [n/2], and 

for m = 0,1,.  . . , [(n - 1)/2]. Another form of this statement will be given in 
Section 6. 

5 .  ADDITION THEOREM FOR THE GEGENBAUER 
POLYNOMIALS 

In this section, we fill the gap that remained in the last section by proving a 
generalization of (17)/(23), the addition theorem for the Gegenbauer polynomials 
(see e.g. [7]). 

Theorem 5. (Addition Theorem for the Gegenbauer Polynomials) For 
v > 112, x ,  y E [-I, 11, and C E C, the Gegenbauer polynomzals satisfy the identity 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 237 

Proof. The function 

as a function of (' is a polynomial of degree n .  Therefore, for any X > 0, we can 
expand it in terms of Gegenbauer polynomials C;(('), 

the coefficients A; being functions of the parameters x and y. 

The orthogonality relation of the system c;(<) is given by 

1 

{ i f j = m  

- 1 otherwise 

(see e.g. [I], (22.2.3)). Multiplying (28) by (1 - c~)~- ' /~c;(( ' ) ,  and integrating 
from C = -1 to (' = 1, we get therefore 

Utilizing identity (19) with 

we get 

The derivative identity (21) then yields 
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238 W. KOEPF AND D. SCHMERSAU 

Now we choose X := v - 112 (hence our assumption v > 112). This choice ts 
motivated by the calculation involving the differential equation that follows later, 
for which the desired simplification occurs exactly when X = v - 112. Using the 
duplication formula 

222- 1 
r (22)  = - 

J;r r ( ~ )  r ( ~  + 112) (29) 

of the Gamma function to simplify the factor in front of the integral, we finally 
arrive at  the representation 

for the coefficients A?(x, y) .  Hence, we consider the function 

in detail. Observe that Qy(x ,  y) is a polynomial in the variables x and y, of degree 
n - j each. Note furthermore that Qy(x,  y) is symmetric, i.e. Qy(x,  y) = Q?(y, x ) .  

In the following we will show that the integral Qy(x ,  y) has zeros at  both the 

zeros of c;~;(z) and c :+$(~) ,  hence, as a polynomial of degree n - j in x and y 
respectively, must be a constant multiple of the product c;+~(x) C;+?(y). 

By the symmetry of Qy(x ,  y) it is enough to show that  Qy(x,  y) has zeros at  the 

zeros of c;~{(x) .  Since C:+;(X) is a solution of the differential equation 

and since any polynomial solution p(x) of (30) must be a multiple of C;+;(X) (see 
e.g. [15], Theorem 4.2.2  in combination with [I], (22.5.27)), we have only t o  check 
that p(x) := Q?(x, y) satisfies (30). 

We write q ( i )  := xy + Ji=?d-(, and note 

so that  

that 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 239 

Hence we deduce 

a 
-(2v + 2j + 1) - Q j " ( z , ~ )  

a z  

we get 

Combining these results, we arrive at  the representation 
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W. KOEPF AND D. SCHMERSAU 

The first integral obviously vanishes since C;+;(X)  satisfies the differential equa- 
tion ( 3 0 ) .  The vanishing of the final parenthesized expression follows easily by 
partial integration. Therefore, we have proved that Q ? ( x ,  y )  is a solution of ( 3 0 ) ,  
as announced. 

Hence, 

with a constant a (not depending on x  and y ) .  For y  = 1,  we deduce 

1 

hy an evaluation of the Beta type integral. On the other hand, by ( 3 1 ) ,  

Q r ( x ,  1 )  = a C n - ,  

(see e.g. [I], ( 2 2 . 4 . 2 ) ) ,  so that we get 

Hence 

implying 

2'j(n - j ) !  r ( j + ~ ) ~  
A:(", y )  = I'(2u- 1 )  

r ( n + j + 2 u )  F ( U ) ~  

and we are done. 
As a consequence, taking the limit u  + 112 ,  we get the following 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 241 

Corollary 6. (Addit ion Theorem for t h e  Legendre Polynomials) For 
x ,  y E [-I, 11, (' E C, the Legendre polynomials satisfy the identities 

Pn ( X Y  + d=dW <) 

where Tj(<) denote the Chebyshev polynomials of the first kind, and 

denote the associated Legendre functions (see e.g. [I], (8.6.6)). 
I n  particular, for y = x, one has 

P T O O ~ .  Since 

( )  and C:(x) = lirn c,$(x) for all o > 0 C:(x) = lim - 
A-o A A + a  

(see e.g. [I], (22.5.4)), for v + 112 Theorem 5 implies 

c y ( x y  + dC2d-c) 

" (n  - j ) !  2 
= C:'~(X) C:'~(Y) + C 4 j  - ((1/2),) 

j = 1  ( n + I ) ,  

With C,!,/~(Z) = Pn(x), and jC!(C) = 2Tj(C) (see e.g. [I], (22.5.35), (22.5.33)), we 
get (33). An application of (21) and (35) yields (34). 

Using 
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W. KOEPF AND D. SCHMERSAU 

Tn (cos 8) = cos no 

(see e.g. [I], (22.3.15)) finally yields (36). 
Note that  Weinstein used (36) in his proof of Milin's conjecture. 

6. ASKEY-GASPER IDENTITY FOR THE WEINSTEIN 
FUNCTIONS 

Here, we combine the above results to  deduce a sum representation with nonneg- 
ative summands for the Weinstein functions, and therefore by Theorem 2 for the 
Jacobi polynomial sum. 

By Theorem 3 we have 

c ((I - e )  + e cos e) = fJ2j + 1) 
41 j!2 (n - j)! e -,: 

j = o  ( n + j + l ) !  

and, expanding Pj(cos8) using (33) with x = y = 0, C = cos0, this gives 

where C' indicates that  the summand for k = 0 is to  be taken with a factor 112. 
Interchanging the order of summation, and using Tk(cos 0) = cos k0, gives 

x (tit; (-1) cos ke. 
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WEINSTEIN'S FUNCTIONS AND T H E  ASKEY-GASPER IDENTITY 243 

Comparing with Theorem 1, 

C,?, ( ( 1  - r - ' )  + e" cos 0) = 2  f : ' A ; ( t )  cos k0 , 
k = O  

and equating coefficients yields for the Weinstein functions 

n 4 j j ! ' (n -  j ) !  ( j - k ) !  
4%) = x ( 2 j  + l P k  ( n  + + l ) !  ( j + k ) !  

j = k  

Replacing n  by k  + n ,  and then making the index shift j,,, := jOld - k  finally leads 
to 

Setting y := d m ,  by Theorem 2  

This is an Askey-Gasper type representation different from ( 4 )  that was given by 
Gasper ( [6 ] ,  ( 8 . 17 ) ,  and ( 8 . 18 )  with x = 0 ) .  Note that Gasper's formula ( [ 6 ] ,  (8.18)) 
interpolates between these two representations. Whereas Askey's and Gasper's 
deductions of the given formulas prove the results for all a > - 2 ,  our deduction 
has the disadvantage that  it is only valid for a = 2k,  k  E N o .  On the other hand, 
the advantage of our presentation is that  it embeds this result in a natural way in 
Weinstein's proof of Milin's conjecture using only elementary properties of classical 
orthogonal polynomials. 
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244 W. KOEPF AND D. SCHMERSAU 

7. CLOSED FORM REPRESENTATION OF WEINSTEIN 
FUNCTIONS 

Note that nowhere in our deduction we needed the explicit representation of the de 
Branges functions = Weinstein functions, compare Henrici's comment [8], p. 602: 
"At the time of this writing, the only way to verify ~ [ ( t )  5 0 appears to  be to  solve 
the system explicitly, and to manipulate the solution". 

In this connection we would like t o  mention that in [ l l ]  we proved the identity 
(3),  which connects de Branges' with Weinstein's functions, by a pure application 
of the de Branges differential equations system (see also [14]), and without the use 
of an explicit representation of the de Branges functions. 

In this section we give a simple method to generate this explicit representation 
which was used by de Branges, see also [19]. 

Since (1 - e-') + e-t cos6 = I - 2e-' sin2 !, Taylor expansion gives using (21) 
and ([I], (22.4.2)) 

j 
n  + j  + 1 ) 22, (-1)' e- j t  (sin' i) 

= n - j  
j = O  

An elementary argument shows that 
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WEINSTEIN'S FUNCTIONS AND THE ASKEY-GASPER IDENTITY 245 

(see e.g. [17], p. 189). Changing the order of summation, we get therefore 

n n 

C: ((I - e-')+ e - ' c o s ~ )  = ~ C ' C ( - ~ ) J + ~  ( " + ' + I  n - j  ) ( j y k )  e-1' c o s k ~  
k=O j = k  

= 2):'~;(t) cos kg 

by (10). Hence 

AE(t) = 

- - e-kt  ( n + k + 1 ) 3F2 (n + k + 2, k + 112, -n + k 
n - k  k + 3 / 2 , 2 k + l  
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