ON THE FEKETE-SZEGÖ PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS

WOLFRAM KOEPF

Abstract. Let S be the familiar class of normalized univalent functions in the unit disk. Fekete and Szegö proved the well-known result

$$
\max _{f \in S}\left|a_{3}-\lambda a_{2}^{2}\right|=1+2 e^{-2 \lambda /(1-\lambda)}
$$

for $\lambda \in[0,1]$. We consider the corresponding problem for the family C of close-to-convex functions and get

$$
\max _{f \in C}\left|a_{3}-\lambda a_{2}^{2}\right|= \begin{cases}3-4 \lambda & \text { if } \lambda \in[0,1 / 3] \\ 1 / 3+4 /(9 \lambda) & \text { if } \lambda \in[1 / 3,2 / 3] \\ 1 & \text { if } \lambda \in[2 / 3,1]\end{cases}
$$

As an application it is shown that $\left|\left|a_{3}\right|-\left|a_{2}\right|\right| \leq 1$ for close-to-convex functions, in contrast to the result in S

$$
\max _{f \in S}| | a_{3}\left|-\left|a_{2}\right|\right|=1.029 \ldots
$$

1. Introduction. Let S denote the family of univalent functions f of the unit disk, normalized by

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

Let $S t$ denote the subset of starlike functions, i.e. functions that have a starlike range with respect to the origin. Further let C denote the family of close-to-convex functions, which have been introduced by Kaplan [4]. A function f, normalized by (1), is called close-to-convex if there exist a starlike function g and a real number α, such that

$$
\left.\operatorname{Re}\left(e^{i \alpha} z f^{\prime}(z) / g(z)\right)>0, \quad \alpha \in\right]-\pi / 2, \pi / 2[.
$$

It turns out that a function is close-to-convex if and only if it maps the unit disk univalently onto a domain whose complement is the union of half-lines, which are pairwise disjoint up to possibly equal tips (see $[6-7,1]$).

A well-known function of this kind is the Koebe function k with

$$
k(z)=\sum_{n=1}^{\infty} n z^{n}=\frac{z}{(1-z)^{2}}=\frac{1}{4}\left(\left(\frac{1+z}{1-z}\right)^{2}-1\right)
$$

which maps the unit disk onto the complement of the half-line] $-\infty,-1 / 4]$, as the last representation shows.

Many extremal problems within the class S are solved by the Koebe function. On the other hand, the Koebe function satisfies

$$
\left|a_{3}-\lambda a_{2}^{2}\right|=|3-4 \lambda|,
$$

[^0]whereas Fekete and Szegö showed [3]
$$
\max _{f \in S}\left|a_{3}-\lambda a_{2}^{2}\right|=1+2 e^{-2 \lambda /(1-\lambda)}
$$
for $\lambda \in[0,1]$,
For $\lambda=0,1$ the Koebe function gives the maximum, but there is no $\left.\lambda_{0} \in\right] 0,1[$ such that the functional $\left|a_{3}-\lambda_{0} a_{2}^{2}\right|$ is maximized by k. We shall show that
$$
\max _{f \in C}\left|a_{3}-\lambda a_{2}^{2}\right|=3-4 \lambda
$$
for $\lambda \in[0,1 / 3]$, so that for close-to-convex functions the situation is quite different. This result implies furthermore that
$$
\max _{f \in C}| | a_{3}\left|-\left|a_{2}\right|\right|=1,
$$
in contrast to the known estimate in S,
$$
\max _{f \in S}| | a_{3}\left|-\left|a_{2}\right|\right|=1.029 \ldots
$$
(see e.g. [2, Theorem 3.11]). Moreover we show that
\[

\max _{f \in C}\left|a_{3}-\lambda a_{2}^{2}\right|= $$
\begin{cases}1 / 3+4 /(9 \lambda) & \text { if } \lambda \in[1 / 3,2 / 3] \\ 1 & \text { if } \lambda \in[2 / 3,1]\end{cases}
$$
\]

2. Preliminary results. Here we give some lemmas which will be used in the next section to solve the main problem.

Recall that a function f is called close-to-convex of order β if there exist a starlike function g and a real number α, such that

$$
\left|\arg \left(e^{i \alpha} z f^{\prime}(z) / g(z)\right)\right|<\beta \pi / 2
$$

Lemma 1 (see [5, Lemma 1]). Let $f \in C$. Then the function h, defined by

$$
\begin{equation*}
h^{\prime}(z)=\left(f^{\prime}\left(z^{2}\right)\right)^{1 / 2}, \quad h(0)=0 \tag{2}
\end{equation*}
$$

is an odd close-to-convex function of order 1/2.
Lemma 2 (see [8, p. 166, formula (10)]). Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ and $\operatorname{Re} p>0$. Then

$$
\left|p_{2}-p_{1}^{2} / 2\right| \leq 2-\left|p_{1}\right|^{2} / 2
$$

Lemma 3. Let $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots \in S t$. Then

$$
\left|b_{3}-\lambda b_{2}^{2}\right| \leq \max \{1,|3-4 \lambda|\}
$$

which is sharp for the Koebe function k if $|\lambda-3 / 4| \geq 1 / 4$ and for $\left(k\left(z^{2}\right)\right)^{1 / 2}=$ $z /\left(1-z^{2}\right)$ if $|\lambda-3 / 4| \leq 1 / 4$.

Proof. Because $g \in S t$, the function

$$
z g^{\prime}(z) / g(z)=1+b_{2} z+\left(2 b_{3}-b_{2}^{2}\right) z^{2}+\cdots=1+\dot{p}_{1} z(3)+p_{2} z^{2}+\cdots
$$

has positive real part, so that $\left|p_{2}-\frac{1}{2} p_{1}^{2}\right| \leq 2-\left|p_{1}\right|^{2} / 2$ by Lemma 2 . Let now $\lambda \in \mathbf{C}$. Then by (3) we have

$$
\begin{aligned}
\left|b_{3}-\lambda b_{2}^{2}\right| & =\frac{1}{2}\left|p_{2}+(1-2 \lambda) p_{1}^{2}\right|=\frac{1}{2}\left|p_{2}-\frac{1}{2} p_{1}^{2}+\left(\frac{3}{2}-2 \lambda\right) p_{1}^{2}\right| \\
& \leq \frac{1}{2}\left(2-\frac{1}{2}\left|p_{1}\right|^{2}+\left|\frac{3}{2}-2 \lambda\right|\left|p_{1}\right|^{2}\right)^{2}
\end{aligned}
$$

If now $|\lambda-3 / 4| \leq \frac{1}{4}$, then

$$
\left|b_{3}-\lambda b_{2}^{2}\right| \leq \frac{1}{2}\left(2-\frac{1}{2}\left|p_{1}\right|^{2}+\frac{1}{2}\left|p_{1}\right|^{2}\right)=1 .
$$

On the other hand, if $|\lambda-3 / 4| \geq \frac{1}{4}$, then we use $\left|p_{1}\right| \leq 2$ (see e.g. [8 , Corollary 2.3]), and get

$$
\begin{aligned}
\left|b_{3}-\lambda b_{2}^{2}\right| & \leq 1+\frac{1}{2}\left(\left|\frac{3}{2}-2 \lambda\right|-\frac{1}{2}\right)\left|p_{1}\right|^{2} \\
& \leq 1+|3-4 \lambda|-1=|3-4 \lambda| .
\end{aligned}
$$

3. Main results. The first step of the solution of the Fekete-Szegö problem for close-to-convex functions is the special case $\lambda=1 / 3$.

THEOREM 1. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C$. Then $\left|a_{3}-\frac{1}{3} a_{2}^{2}\right| \leq \frac{5}{3}$.
Proof. Let $f \in C$. Then by Lemma 1 the function h, defined by (2), is an odd close-to-convex function of order $1 / 2$.

For such functions, the author gave sharp bounds on the coefficients (see [5, Theorem 1]), in particular, the fifth coefficient of h is bounded in modulus by $1 / 2$. On the other hand the fifth coefficient of h is given by $\frac{3}{10}\left(a_{3}-\frac{1}{3} a_{2}^{2}\right)$, which implies the result.

The next corollary follows easily from the theorem using $\left|a_{2}\right| \leq 2$ (see e.g. [2, Theorem 2.2]).

COROLLARY 1. Let $\lambda \in[0,1 / 3]$. Then

$$
\max _{f \in C}\left|a_{3}-\lambda a_{2}^{2}\right|=3-4 \lambda
$$

The maximum is attained by the Koebe function.
Another consequence of the theorem is the following result about successive coefficients of close-to-convex functions.

Corollary 2. Let $f \in C$. Then $\left|\left|a_{3}\right|-\left|a_{2}\right|\right| \leq 1$.
Proof. It is well known that $\left|a_{2}\right|-\left|a_{3}\right| \leq 1$ for all $f \in S$ (see e.g. [2, Theorem 3.11]). Moreover, if $\left|a_{2}\right| \leq 1$, then also $\left|a_{3}\right|-\left|a_{2}\right| \leq 1$ (see e.g. [2, proof of Theorem $3.11])$. Now let $f \in C$ and $\left|a_{2}\right| \in[1,2]$. Then Theorem 1 implies that

$$
\begin{aligned}
\left|a_{3}\right|-\left|a_{2}\right| & \leq\left|a_{3}-\frac{1}{3} a_{2}^{2}\right|+\frac{1}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right| \\
& \leq \frac{5}{3}+\frac{1}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right| \leq 1,
\end{aligned}
$$

as $\left|a_{2}\right|$ is in the above range.
The following notation will be used throughout the paper. For $f(z)=z+a_{2} z^{2}+$ $a_{3} z^{3}+\cdots \in C$ there is a representation of the form

$$
\begin{equation*}
f^{\prime}(z)=\frac{g(z)}{z} \cdot \tilde{p}(z) \tag{4}
\end{equation*}
$$

with some function $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots \in S t$ and some function $\tilde{p}(z)=$ $1+\tilde{p}_{1} z+\tilde{p}_{2} z^{2}+\cdots$ such that $\left.\operatorname{Re}\left(e^{i \alpha} \tilde{p}(z)\right)>0, \alpha \in\right]-\pi / 2, \pi / 2[$. Then the function $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, defined by

$$
\begin{equation*}
\tilde{p}_{n}=\cos \alpha \cdot e^{-i \alpha} \cdot p_{n}, \quad n \in \mathbf{N} \tag{5}
\end{equation*}
$$

has positive real part. Comparing coeffficients in (4) we get

$$
3 a_{3}=b_{3}+\tilde{p}_{1} b_{2}+\tilde{p}_{2}, \quad 2 a_{2}=b_{2}+\tilde{p}_{1}
$$

so that

$$
\begin{equation*}
a_{3}-\lambda a_{2}^{2}=\frac{1}{3}\left(b_{3}-\frac{3}{4} \lambda b_{2}^{2}\right)+\frac{1}{3}\left(\tilde{p}_{2}-\frac{3}{4} \lambda \tilde{p}_{1}^{2}\right)+\tilde{p}_{1} b_{2}\left(\frac{1}{3}-\lambda / 2\right) . \tag{6}
\end{equation*}
$$

Now we consider the case $\lambda=2 / 3$.
THEOREM 2. Let $f(z)=z=a_{2} z^{2}+a_{3} z^{3}+\cdots \in C$. Then $\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| \leq 1$.
Proof. From (6) it follows that

$$
\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| \leq \frac{1}{3}\left|b_{3}-\frac{1}{2} b_{2}^{2}\right|+\frac{1}{3}\left|\tilde{p}_{2}-\frac{1}{2} \tilde{p}_{1}^{2}\right| .
$$

From (5) we get

$$
\begin{aligned}
\tilde{p}_{2}-\frac{1}{2} \tilde{p}_{1}^{2} & =\cos \alpha \cdot e^{-i \alpha}\left(p_{2}-\frac{1}{2} \cos \alpha \cdot e^{-i \alpha} p_{1}^{2}\right) \\
& =\cos \alpha \cdot e^{-i \alpha}\left(p_{2}-\frac{1}{2} p_{1}^{2}+\mu p_{1}^{2}\right)
\end{aligned}
$$

where $|2 \mu|^{2}=\left|1-\cos \alpha \cdot e^{-i \alpha}\right|^{2}=\sin ^{2} \alpha$. Now we get with the aid of Lemmas 2 and 3 that

$$
\begin{aligned}
\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| & \leq \frac{1}{3}+\frac{1}{3} \cos \alpha\left(2-\frac{\left|p_{1}\right|^{2}}{2}\right)+\frac{1}{3} \cos \alpha|\sin \alpha| \frac{\left|p_{1}\right|^{2}}{2} \\
& \leq 1-\cos \alpha \frac{\left|p_{1}\right|^{2}}{6}(1-|\sin \alpha|) \leq 1
\end{aligned}
$$

An easy consequence using $\left|a_{3}-a_{2}^{2}\right| \leq 1$ is
Corollary 3. Let $\lambda \in[2 / 3,1]$. Then

$$
\max _{f \in C}\left|a_{3}-\lambda a_{2}^{2}\right|=1
$$

The maximum is attained by the function $\left(k\left(z^{2}\right)\right)^{1 / 2}$.
We remark that Theorem 2 provides a direct proof of $\left|a_{3}\right|-\left|a_{2}\right| \leq 1$ for $\left|a_{2}\right| \leq 3 / 2$ (compare with the proof of Corollary 2), namely

$$
\begin{aligned}
\left|a_{3}\right|-\left|a_{2}\right| & \leq\left|a_{3}-\frac{2}{3} a_{2}^{2}\right|+\frac{2}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right| \\
& \leq 1+\frac{2}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right| \leq 1
\end{aligned}
$$

if $\left|a_{2}\right| \in[0,3 / 2]$.
It remains to consider the case $\lambda \in] 1 / 3,2 / 3[$.
Theorem 3. Let $\lambda \in] 1 / 3,2 / 3[$. Then

$$
\max _{f \in C}\left|a_{3}-\lambda a_{2}^{2}\right|=\frac{1}{3}+\frac{4}{9 \lambda} .
$$

The maximum is attained by the function f, which is defined by

$$
f^{\prime}(z)=\frac{1}{(1-z)^{2}} \cdot\left(t \frac{1+z}{1-z}+(1-t) \frac{1+z^{2}}{1-z^{2}}\right), \quad f(0)=0
$$

where $t=2 /(3 \lambda)-1$.
Proof. Consider equation (6). We use the estimate $\left|b_{3}-\frac{3}{4} \lambda b_{2}^{2}\right| \leq 3(1-\lambda)$, which comes from Lemma 3 , further equations (5) and $\left|b_{2}\right| \leq 2$, getting

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq 1-\lambda+\frac{\cos \alpha}{3}\left|p_{2}-\frac{3}{4} \lambda \cos \alpha \cdot e^{-i \alpha} p_{1}^{2}\right|+\cos \alpha\left(\frac{2}{3}-\lambda\right)\left|p_{1}\right|
$$

Writing $\frac{3}{4} \lambda \cos \alpha \cdot e^{-i \alpha}=\frac{1}{2}-\mu$, we have

$$
|2 \mu|^{2}=\left|1-\frac{3}{2} \lambda \cos \alpha \cdot e^{-i \alpha}\right|^{2}=1-\left(3 \lambda-\frac{9}{4} \lambda^{2}\right) \cos ^{2} \alpha,
$$

which implies with the aid of Lemma 2 that

$$
\left|p_{2}-\frac{3}{4} \lambda \cos \alpha \cdot e^{-i \alpha} p_{1}^{2}\right| \leq 2+\frac{\left|p_{1}\right|^{2}}{2}\left(\sqrt{1-\left(3 \lambda-\frac{9}{4} \lambda^{2}\right) \cos ^{2} \alpha}-1\right)
$$

so that-using the notations $y:=\cos \alpha$ and $p:=\left|p_{1}\right|-\mathrm{it}$ follows that

$$
\begin{aligned}
\left|a_{3}-\lambda a_{2}^{2}\right| & \leq 1-\lambda+y\left(\frac{2}{3}+\frac{p^{2}}{6}\left(\sqrt{1-\left(3 \lambda-\frac{9}{4} \lambda^{2}\right) y^{2}}-1\right)+p\left(\frac{2}{3}-\lambda\right)\right) \\
& =: F_{\lambda}(p, y) .
\end{aligned}
$$

For further simplification we shall use the notation $\gamma:=2-3 \lambda$.
Now we shall show that F_{λ} attains its maximum value for $(p, y) \in[0,2] \times[0,1]$ at the point $(4 /(3 \lambda)-2,1)$. Observe that

$$
\begin{equation*}
F_{\lambda}\left(\frac{4}{3 \lambda}-2,1\right)=\frac{1}{3}+\frac{4}{9 \lambda} \tag{7}
\end{equation*}
$$

Suppose now that F_{λ} attains its maximum value at an interior point $\left(p_{0}, y_{0}\right) \in$ $] 0,2[\times] 0,1\left[\right.$. Then the partial derivates $\partial F_{\lambda} / \partial p$ and $\partial F_{\lambda} / \partial y$ must vanish at (p_{0}, y_{0}). The equality $\left(\partial F_{\lambda} / \partial p\right)\left(p_{0}, y_{0}\right)=0$ gives the relation

$$
\begin{equation*}
\sqrt{1-\left(3 \lambda-\frac{9}{4} \lambda^{2}\right) y_{0}^{2}}-1=-\frac{\gamma}{p_{0}} \tag{8}
\end{equation*}
$$

so that

$$
\left(3 \lambda-\frac{9}{4} \lambda^{2}\right) y_{0}^{2}=\frac{2 \gamma}{p_{0}}-\frac{\gamma^{2}}{p_{0}^{2}} .
$$

Now, $\left(\partial F_{\lambda} / \partial y\right)\left(p_{0}, y_{0}\right)=0$ implies

$$
\frac{2}{3}+\frac{\gamma p_{0}}{6}=\frac{p_{0}^{2}\left(2 \gamma / p_{0}-\gamma^{2} / p_{0}^{2}\right)}{6\left(1-\gamma / p_{0}\right)}
$$

so that, by solving the quadratic equation for p_{0}, we get

$$
\begin{equation*}
\gamma p_{0}=2\left(1-\sqrt{1-\gamma^{2}}\right) \tag{9}
\end{equation*}
$$

Therefore, at $\left(p_{0}, y_{0}\right)$ the value of F_{λ} becomes, using (8) and (9),

$$
\begin{align*}
F_{\lambda}\left(p_{0}, y_{0}\right) & =1-\lambda+y\left(\frac{2}{3}+\frac{1}{3}\left(1-\sqrt{1-\gamma^{2}}\right)\right) \\
& \leq \frac{4+\gamma-\sqrt{1-\gamma^{2}}}{3} \tag{10}
\end{align*}
$$

because $y \leq 1$.
Since $\lambda \in] 1 / 3,2 / 3[$, the number γ lies between 0 and 1 so that there is some $\delta \in$ $] 0, \pi / 2\left[\right.$ with $\gamma=\cos \delta$ and $\sqrt{1-\gamma^{2}}=\sin \delta$. The evident inequality $1<\cos \delta+\sin \delta$
implies

$$
\begin{aligned}
& 2-\cos \delta<1+\sin \delta \\
& \Rightarrow(2-\cos \delta)(1-\sin \delta)<1-\sin ^{2} \delta=\cos ^{2} \delta \\
& \Rightarrow(2-\gamma)\left(1-\sqrt{1-\gamma^{2}}\right)<\gamma^{2} \\
& \Rightarrow(2-\gamma)\left(4+\gamma-\sqrt{1-\gamma^{2}}\right)<6-\gamma \\
& \Rightarrow \frac{4+\gamma-\sqrt{1-\gamma^{2}}}{3}<\frac{1}{3}+\frac{4}{3(2-\gamma)}=\frac{1}{3}+\frac{4}{9 \lambda} .
\end{aligned}
$$

Thus, using (7) and (10), we get a contradiction to our assumption that F_{λ} attains its maximum value at (p_{0}, y_{0}), so that the maximum must be attained at a boundary point.

In both cases $y=0$ and $p=0$ an easy computation shows that the maximal value (7) is not attained. If $y=1$ we have

$$
F_{\lambda}(p, 1)=: G_{\lambda}(p)=\frac{5}{3}-\lambda+\left(\frac{2}{3}-\lambda\right) p-\frac{\lambda}{4} p^{2}
$$

Because $G_{\lambda}(2)=3-4 \lambda$ is not maximal, the local maximum at $p=4 /(3 \lambda)-2-$ given by $d G_{\lambda}(p) / d p=0$-is global. This leads to the maximal value (7).

Now it remains to prove that

$$
F_{\lambda}(p, y) \leq \frac{1}{3}+\frac{4}{9 \lambda}
$$

for $p=2, y \in] 0,1[$. This statement is equivalent to

$$
\begin{equation*}
H_{\gamma}(y):=2 y\left(\sqrt{1-\left(1-\frac{\gamma^{2}}{4}\right) y^{2}}+\gamma\right) \leq \frac{4}{2-\gamma}-\gamma \tag{11}
\end{equation*}
$$

for $\gamma=2-3 \lambda \in] 0,1\left[\right.$. Because we already know that $H_{\gamma}(y) \leq 4 /(2-\gamma)-\gamma$ when $y \in\{0,1\}$, it suffices to show (11) for points with $d H_{\gamma}(y) / d y=0$. This leads to

$$
\begin{equation*}
\left(1-\frac{\gamma^{2}}{4}\right) y^{2}=\frac{4-\gamma^{2}+\gamma \sqrt{8+\gamma^{2}}}{8} \tag{12}
\end{equation*}
$$

Observe that $0 \leq y \leq 1$ when (12) is satisfied. Squaring inequality (11) and substituting (12) gives the following inequality:

$$
\begin{align*}
& 4\left(\frac{4-\gamma^{2}+\gamma \sqrt{8+\gamma^{2}}}{8}\right)\left(\frac{\sqrt{8+\gamma^{2}}-\gamma}{4}+\gamma\right)^{2} \tag{13}\\
& \leq\left(1-\frac{\gamma^{2}}{4}\right)\left(\frac{4}{2-\gamma}-\gamma\right)^{2}
\end{align*}
$$

It remains to prove (13). A lengthy calculation gives-after multiplying with the number $(2-\gamma)$, which is positive-the equivalent version

$$
\begin{aligned}
\gamma(2-\gamma)\left(8+\gamma^{2}\right)^{3 / 2} & \leq(4+2 \gamma)\left(4-2 \gamma+\gamma^{2}\right)^{2}-(2-\gamma)\left(8+20 \gamma^{2}-\gamma^{4}\right) \\
& =48-24 \gamma-24 \gamma^{2}+28 \gamma^{3}-2 \gamma^{4}+\gamma^{5}
\end{aligned}
$$

The right-hand side turns out to be positive:

$$
\begin{aligned}
& 48-24 \gamma-24 \gamma^{2}+28 \gamma^{3}-2 \gamma^{4}+\gamma^{5} \\
& \quad>28 \gamma^{3}-2 \gamma^{4}+\gamma^{5}=\gamma^{3}\left(28-2 \gamma+\gamma^{2}\right)>\gamma^{3}\left(26+\gamma^{2}\right) \geq 0
\end{aligned}
$$

so that equivalently, squaring again

$$
\gamma^{2}(2-\gamma)^{2}\left(8+\gamma^{2}\right)^{3} \leq\left(48-24 \gamma-24 \gamma^{2}+28 \gamma^{3}-2 \gamma^{4}+\gamma^{5}\right)^{2}
$$

A further lengthy computation gives the equivalent reformulation

$$
\begin{aligned}
\gamma^{8}- & 2 \gamma^{7}+17 \gamma^{6}-12 \gamma^{5}-70 \gamma^{4}+184 \gamma^{3}-118 \gamma^{2}-72 \gamma+72 \\
& =(1-\gamma)^{2}\left(\gamma^{6}+16 \gamma^{4}+20 \gamma^{3}-46 \gamma^{2}+72 \gamma+72\right) \\
& =(1-\gamma)^{2}\left(\gamma^{6}+16 \gamma^{4}+20 \gamma^{3}+26 \gamma^{2}+72 \gamma(1-\gamma)+72\right) \geq 0
\end{aligned}
$$

which is trivially true. This finishes the proof of the inequality

$$
\left|a_{3}-\lambda a_{2}^{2}\right| \leq \frac{1}{3}+\frac{4}{9 \lambda} .
$$

From our considerations it follows that equality holds if $b_{2}=2$ and $b_{3}=3$ (so that g is a rotation of k), and if $\alpha=0, p_{2}=2$, and $p_{1}=4 /(3 \lambda)-2$; the function

$$
\tilde{p}(z)=t\left(\frac{1+z}{1-z}\right)+(1-t)\left(\frac{1+z^{2}}{1-z^{2}}\right), \quad t=\frac{2}{3 \lambda}-1,
$$

satisfies these conditions, which makes the result sharp.

References

1. A. Bielecki and Z. Lewandowski, Sur un théorème concernant les fonctions univalentes linéairement accessibles de M. Biernacki, Ann. Polon. Math. 12 (1962), 61-63.
2. P. L. Duren, Univalent functions, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1983.
3. M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Functionen, J. London Math. Soc. 8 (1933), 85-89.
4. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
5. W. Koepf, Coefficients of symmetric functions of bounded boundary rotation (to appear).
6. Z. Lewandowski, Sur l'identité de certaines classes de fonctions univalentes. I, Ann. Univ. Mariae Curie-Skłodowska 12 (1958), 131-146.
7. ___ Sur l'identité de certaines classes de fonctions univalentes. II, Ann. Univ. Mariae CurieSkłodowska 14 (1960), 19-46.
8. Ch. Pommerenke, Univalent functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.

Freie Universität Berlin, Fachbereich Mathematik, Arnimallee 3, 1000 Berlin 33, Federal Republic of Germany

[^0]: Received by the editors November 19, 1985 and, in revised form, May 30, 1986.
 1980 Mathematics Subject Classification (1985 Revision). Primary 30C45, 30C50.
 Key words and phrases. Close-to-convex functions, univalent functions.

