
Orthogonal Polynomials and Computer Alge-
bra

Wolfram Koepf

Abstract. Classical orthogonal polynomials of the Askey-Wilson scheme have
extremely many different properties, e.g. satisfying differential equations, re-
currence equations, having hypergeometric representations, Rodrigues formu-
las, generating functions, moment representations etc. Using computer algebra
it is possible to switch between one representation and another algorithmi-
cally. Such algorithms will be discussed and implementations are presented
using Maple.

Mathematics Subject Classification (2000). Primary 33C20, 33F10; Secondary
30B10, 68W30.

Keywords. Computer algebra; classical orthogonal polynomials; Askey-Wilson
scheme.

1. Orthogonal Polynomials

Given: a scalar product

〈f, g〉 :=

∫ β

α

f(x)g(x) dµ(x)

with non-negative Borel measure µ(x) supported in the interval [α, β]. The follow-
ing special cases are most important:

• absolutely continuous measure dµ(x) = ρ(x) dx with weight function ρ(x),
• discrete measure µ(x) = ρ(x) supported in Z,
• discrete measure µ(x) = ρ(x) supported in qZ.

A system of polynomials (Pn(x))n=0

Pn(x) = knx
n + k′nx

n−1 + k′′nx
n−2 + · · · , kn 6= 0 (1.1)
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is called orthogonal (OPS) w.r.t. the positive-definite measure dµ(x), if

〈Pm, Pn〉 =

{
0 if m 6= n

hn > 0 if m = n
.

Using the Gram-Schmidt orthogonalization procedure one can compute the or-
thogonal polynomials Pn(x) iteratively up to a constant standardization factor.
One option is to compute the monic system with kn = 1.

We define the scalar product of the Legendre polynomials Pn(x):

> ScalarProduct:=proc(f,g,x) int(g*f,x=-1..1) end proc:

and declare the Gram-Schmidt procedure
> GramSchmidt := proc (n, x) local j, k, g, liste;
> liste := [seq(x^j, j = 0 .. n)]; g(0) := 1;
> for j to n do g(j):=op(j+1,liste)-
> add(ScalarProduct(op(j+1,liste),g(k),x)*g(k)/
> ScalarProduct(g(k), g(k), x), k = 0 .. j-1) end do;
> [seq(g(j), j = 0 .. n)]
> end proc:

Now we can compute using the Gram-Schmidt procedure.

> SEQ1 := GramSchmidt(10, x);

SEQ1 := [1, x, x2 − 1/3, x3 − 3/5x, x4 +
3

35
− 6/7x2, x5 +

5x

21
− 10x3

9
,

x6 − 5

231
+

5x2

11
− 15x4

11
, x7 − 35x

429
+

105x3

143
− 21x5

13
,

x8 +
7

1287
− 28x2

143
+

14x4

13
− 28x6

15
, x9 +

63x

2431
− 84x3

221

+
126x5

85
− 36x7

17
, x10 − 63

46189
+

315x2

4199
− 210x4

323
+

630x6

323
− 45x8

19
]

This computation has created the first 11 monic Legendre polynomials. Of course,
Maple knows the Legendre polynomials internally as LegendreP(k,x):

> SEQ2:=expand([seq(LegendreP(k,x),k=0..10)]);

SEQ2 := [1, x,−1

2
+

3

2
x2,

5

2
x3 − 3

2
x,

3

8
+

35x4

8
− 15x2

4
,

63x5

8
− 35x3

4
+

15x

8
,

− 5

16
+

231x6

16
− 315x4

16
+

105x2

16
,

429x7

16
− 693x5

16
+

315x3

16
− 35x

16
,

35

128
+

6435x8

128

− 3003x6

32
+

3465x4

64
− 315x2

32
,

12155x9

128
− 6435x7

32
+

9009x5

64
− 1155x3

32
+

315x

128
,

− 63

256
+

46189x10

256
− 109395x8

256
+

45045x6

128
− 15015x4

128
+

3465x2

256
]

Obviously the ratios of the corresponding polynomials must be constant:

> normal([seq(op(k,SEQ2)/op(k,SEQ1),k=1..11)]);

[1, 1, 3/2, 5/2,
35

8
,

63

8
,

231

16
,

429

16
,

6435

128
,

12155

128
,

46189

256
]
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Every OPS has the following main properties:

• (Three-term Recurrence) Every OPS satisfies

xPn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x) .

• (Zeros) All zeros of an OPS are simple, lie in the interior of [α, β] and have
some nice interlacing properties.
• (Hankel Matrix: Representation by Moments)

Pn(x) = Cn

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn
µ1 µ2 · · · µn+1

...
...

...
...

µn−1 µn+1 · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
,

where µn :=
∫ b
a
xndµ(x) denote the moments of dµ(x).

We can compute the moment matrix by

> Momentmatrix := proc (n)
> local j, k;
> convert([seq([seq(ScalarProduct(x^j, x^k, x), j = 0 .. n)],
> k = 0 .. n)], Matrix)
> end proc:

> H := Momentmatrix(5);
2 0 2/3 0 2/5 0
0 2/3 0 2/5 0 2/7

2/3 0 2/5 0 2/7 0
0 2/5 0 2/7 0 2/9

2/5 0 2/7 0 2/9 0
0 2/7 0 2/9 0 2/11


and the Hankel matrix is given by

> Hankelmatrix := proc (n)
> local j, k, m;
> m := [seq([seq(ScalarProduct(t^j,t^k,t),j=0..n)],k=0..n-1)];
> m := [op(m), [seq(x^k, k = 0 .. n)]];
> convert(m, Matrix)
> end proc:

Its determinant gives a multiple of the orthogonal polynomial whose degree is the
size of the square matrix minus 1. The determinant of the following matrix is
therefore a multiple of P5(x):

> Hankelmatrix(5);
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2 0 2/3 0 2/5 0
0 2/3 0 2/5 0 2/7

2/3 0 2/5 0 2/7 0
0 2/5 0 2/7 0 2/9

2/5 0 2/7 0 2/9 0
1 x x2 x3 x4 x5


and the first 6 multiples of the Legendre polynomials are given by

> SEQ3:=[seq(LinearAlgebra[Determinant](Hankelmatrix(n)),n=0..5)];

SEQ3 :=
[
1, 2x, 4/3x2 − 4/9,

32x3

135
− 32x

225
,

256x4

23625
− 512x2

55125
+

256

275625
,

32768x5

260465625
− 65536x3

468838125
+

32768x

1093955625

]
Again, the ratios of the corresponding polynomials must be constant:

> normal([seq(op(k,SEQ3)/op(k,SEQ1),k=1..6)]);

[1, 2, 4/3,
32

135
,

256

23625
,

32768

260465625
]

2. Classical Orthogonal Polynomials

The classical OPS (Pn(x))n=0 can be defined as the polynomial solutions of the

differential equation:

σ(x)P ′′n (x) + τ(x)P ′n(x)− λnPn(x) = 0 . (2.1)

Substituting (1.1) into (2.1), we conclude:

• n = 1 yields τ(x) = dx+ e, d 6= 0,
• n = 2 yields σ(x) = ax2 + bx+ c,
• The coefficient of xn yields λn = n(a(n− 1) + d).

These classical families can be classified (modulo linear transformations) ac-
cording to the following scheme (Bochner (1929), [2])

• σ(x) = 0 powers xn,
• σ(x) = 1 Hermite polynomials,
• σ(x) = x Laguerre polynomials,
• σ(x) = 1− x2 Jacobi polynomials,
• σ(x) = x2 Bessel polynomials.

For the theory one needs

• a representing basis fn(x), here the powers fn(x) = xn;
• an operator, here the derivative operator D, with Dfn(x) = n fn−1(x).

The corresponding weight function ρ(x) satisfies the Pearson Differential Equation

d

dx

(
σ(x)ρ(x)

)
= τ(x)ρ(x) . (2.2)
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Hence the weight function is given by

ρ(x) =
C

σ(x)
e
∫ τ(x)
σ(x)

dx .

The following properties are equivalent, each defining the classical continuous fam-
ilies:

• Differential equation (2.1) for (Pn(x))n=0.

• Pearson differential equation (2.2) (σ ρ)′ = τ ρ for the weight ρ(x).
• With (Pn(x))n=0 also (P ′n+1(x))n=0 is an OPS.

• Derivative Rule:

σ(x)P ′n(x) = αn Pn+1(x) + βn Pn(x) + γn Pn−1(x) .

• Structure Relation: Pn(x) satisfies

Pn(x) = ân P
′
n+1(x) + b̂n P

′
n(x) + ĉn P

′
n−1(x) .

• Rodrigues Formula: Pn(x) is given as

Pn(x) =
En
ρ(x)

dn

dxn

(
ρ(x)σ(x)n

)
.

3. Classical Discrete Orthogonal Polynomials

The classical discrete OPS can be analogously defined as the solutions of the
difference equation (Lesky (1962), [12]):

σ(x)∆∇Pn(x) + τ(x)∆Pn(x)− λnPn(x) = 0 (3.1)

where ∆f(x) = f(x+ 1)− f(x) and ∇f(x) = f(x)− f(x− 1) denote the forward
and backward difference operators. As in the continuous case, we get

• n = 1 yields τ(x) = dx+ e, d 6= 0,
• n = 2 yields σ(x) = ax2 + bx+ c,
• The coefficient of xn yields λn = n(a(n− 1) + d).

The classical discrete families can be classified (modulo linear transformations)
according to the following scheme (Lesky (1962), [12], see also, [14]):

• σ(x) = 0 falling factorials xn = x(x− 1) · · · (x− n+ 1),
• σ(x) = 1 shifted Charlier polynomials,
• σ(x) = x Charlier, Meixner, Krawtchouk polynomials,
• deg(σ(x), x) = 2 Hahn polynomials.

For the theory one needs

• a representing basis fn(x), here the falling factorial fn(x) = xn;
• an operator, here the operator ∆, with ∆ fn(x) = n fn−1(x).

The corresponding discrete weight function ρ(x) satisfies the Pearson difference
equation

∆
(
σ(x)ρ(x)

)
= τ(x)ρ(x) .
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Hence it is given by the term ratio

ρ(x+ 1)

ρ(x)
=
σ(x) + τ(x)

σ(x+ 1)
. (3.2)

We would like to put our results into the general framework of hypergeometric
functions.

The power series

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=

∞∑
k=0

Ak z
k ,

whose summands αk = Akz
k have a rational term ratio

αk+1

αk
=
Ak+1 z

k+1

Ak zk
=

(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq)

z

(k + 1)
,

is called the generalized hypergeometric series. The summand αk = Akz
k of a

hypergeometric series is called a hypergeometric term.
The relation (3.2) therefore tells that the weight function ρ(x) of the classical

discrete orthogonal polynomials is a hypergeometric term w.r.t. the variable x.
For the coefficients of the generalized hypergeometric series one gets the fol-

lowing formula

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣∣ z
)

=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!

using the Pochhammer symbol (a)k = a(a+ 1) · · · (a+ k − 1) = Γ(a+k)
Γ(a) .

From the differential equation (2.1) one can compute a recurrence equation
for the corresponding power series coefficients [16]. Using Maple, we get

> sigma := a*x^2+b*x+c; tau := d*x+e;

σ := ax2 + xb+ c

τ := dx+ e

> DE := sigma*(diff(F(x), x$2))+tau*(diff(F(x), x))-n*(a*n-a+d)*F(x);

DE :=
(
ax2 + xb+ c

) d2

dx2
F (x) + (dx+ e)

d

dx
F (x)− n (an− a+ d)F (x)

This differential equation is converted towards the recurrence equation

> RE := gfun[diffeqtorec](DE, F(x), A(k));

RE :=
(
ak2 + (−a+ d) k − an2 + an− dn

)
A (k)

+
(
bk2 + (b+ e) k + e

)
A (k + 1) +

(
ck2 + 3 c k + 2 c

)
A (k + 2)

The Laguerre polynomials have the data

> laguerre := {a = 0, b = 1, c = 0, d = -1, e = alpha+1};
laguerre := {a = 0, b = 1, c = 0, d = −1, e = α+ 1}

so that we get for their power series coefficients Ak
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> laguerreRE := subs(laguerre, RE);

laguerreRE := (−k + n)A (k) +
(
k2 (2 + α) k + α+ 1

)
A (k + 1)

Therefore their quotient Ak+1/Ak is given in factored form by

> quotient := factor(solve(laguerreRE, A(k+1))/A(k));

quotient :=
k − n

(k + 1) (k + α+ 1)

from which one can read off directly the hypergeometric representation

> lag := hypergeom([-n], [alpha+1], x);

lag := 1F1(−n; α+ 1; x)

By an internal command, Maple can convert this towards

> convert(lag, StandardFunctions);

Γ (n+ 1) Γ (α+ 1)LaguerreL (n, α, x)

Γ (n+ α+ 1)
back, again. We have therefore seen that using this approach one gets for the
Laguerre polynomials

Lαn(x) =

(
n+ α

n

)
1F1

(
−n
α+ 1

∣∣∣∣∣x
)

=

n∑
k=0

(−1)k

k!

(
n+ α

n− k

)
xk .

Another example are the Hahn polynomials which are given by

Q(α,β)
n (x,N) = 3F2

(
−n,−x, n+ 1 + α+ β

α+ 1,−N

∣∣∣∣∣ 1
)
.

Similarly, all the other classical systems have a hypergeometric representation.
These can be found in every book about OPS, e.g. in [7], and on the CAOP web
page [8].

4. Classical q-Orthogonal Polynomials and the Askey-Wilson
Scheme

The classical q-OPS can be analogously defined as the polynomial solutions of the
q-difference equation (Hahn (1949), [6]):

σ(x)DqD1/qPn(x) + τ(x)DqPn(x)− λn,qPn(x) = 0 (4.1)

where Dqf(x) = f(x)−f(qx)
(1−q)x is the Hahn operator. As before, we can conclude

• n = 1 yields τ(x) = dx+ e, d 6= 0,
• n = 2 yields σ(x) = ax2 + bx+ c,

• The coefficient of xn yields λn,q = [n]q(a[n−1]q+d[n]q) where [n]q = 1−qn
1−q

is the q-bracket.
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The classical q-discrete families of the Hahn class considered can be classified (mod-
ulo linear transformations) according to the following list: Big q-Jacobi polynomi-
als, q-Hahn polynomials, Big q-Laguerre polynomials, Al-Salam-Carlitz I poly-
nomials, discrete q-Hermite I polynomials, Little q-Jacobi polynomials, alterna-
tive q-Charlier polynomials, Little q-Laguerre polynomials, q-Meixner polynomi-
als, Stieltjes-Wigert polynomials, q-Laguerre polynomials, q-Charlier polynomials,
Al-Salam-Carlitz II polynomials, discrete q-Hermite II polynomials, see e.g. [7] and
[8].

For the theory one needs:

• two representing bases fn(x), here fn(x) = xn and gn(x) = (x; q)n where
(x; q)n = (1− x)(1− xq) · · · (1− xqn−1) is the q-Pochhammer symbol;
• an operator, here the operator Dq, with Dq fn(x) = [n]q fn−1(x) and a similar

relation for gn(x).

The corresponding q-discrete weight function ρ(x) satisfies the Pearson q-
difference equation

Dq

(
σ(x)ρ(x)

)
= τ(x)ρ(x) .

Hence it is given by the term ratio:

ρ(qx)

ρ(x)
=
σ(x) + (q − 1)xτ(x)

σ(qx)
. (4.2)

The power series

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q ; z

)
=

∞∑
k=0

Ak z
k ,

whose summands αk = Akz
k are given by

Ak z
k =

(a1; q)k · · · (ar; q)k
(b1; q)k · · · (bs; q)k

zk

(q; q)k

(
(−1)kq(

k
2)
)1+s−r

is called the basic hypergeometric series. The summand αk = Akz
k of a basic

hypergeometric series is called a q-hypergeometric term.

The relation (4.2) therefore tells that the weight function ρ(x) of the classical
q-orthogonal polynomials is a q-hypergeometric term w.r.t. the variable x.

In CAOP [8] you saw all the families of the Askey-Wilson Scheme. This
scheme contains

• continuous measures supported in an interval (classical continuous OPS);
• discrete measures supported in Z (classical discrete OPS);
• discrete measures supported in qZ (Hahn tableau);
• discrete measures supported on a quadratic lattice (Wilson tableau);
• discrete measures supported on a q-quadratic lattice (Askey-Wilson tableau).

It turns out that the last two classes can be treated in a similar way as the
continuous and the discrete cases resulting in a similar theory [3].
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5. Computer Algebra Applied to Classical Orthogonal Polynomials

Using linear algebra one can compute the coefficients of the following identities—
expressed through the parameters a, b, c, d and e from the defining equations (2.1),
(3.1) or (4.1)—(Lesky (1985), [13]):

(RE) xPn(x) = an Pn+1(x) + bn Pn(x) + cn Pn−1(x)

(DR) σ(x)P ′n(x) = αn Pn+1(x) + βn Pn(x) + γn Pn−1(x)

(SR) Pn(x) = ân P
′
n+1(x) + b̂n P

′
n(x) + ĉn P

′
n−1(x)

We define Pn(x), given by (1.1) in Maple, and substitute the three highest coefficients—
which will be sufficient for our purposes—into the differential equation:

> p := k[n]*x^n+kprime[n]*x^(n-1)+kprimeprime[n]*x^(n-2);

p := knx
n + kprimenx

n−1 + kprimeprimenx
n−2

> DE := sigma*(diff(p, x$2))+tau*(diff(p, x))-lambda[n]*p:

We divide by xn−4 so that the result is a polynomial of degree 4 (whose three
highest coefficients are those of x4, x3 and x2)

> de := collect(simplify(DE/x^(n-4)), x):

Equating the highest coefficients yields the relation for λn that we already met:

> rule1 := lambda[n] = solve(coeff(de, x, 4), lambda[n]);

rule1 := λn = n (an− a+ d)

Next, we substitute λn into the differential equation and equate the next highest
coefficient. This shows that the second highest coefficient k′n of Pn(x) is a rational
multiple of the leading coefficient kn:

> de := expand(subs(rule1, de)):

> rule2 := kprime[n] = solve(coeff(de, x, 3), kprime[n]);

rule2 := kprimen =
nkn (bn− b+ e)

2 an− 2 a+ d

In the last step we deduce that generically k′′n is also a rational multiple of kn:

> rule3 := kprimeprime[n] =
> solve(coeff(subs(rule2, de), x, 2), kprimeprime[n]);

rule3 := kprimeprimen = kn n

·
(
b2n3+2 acn2−4b2n2+2ben2−4acn+5b2n−5ben+cdn+e2n+2ac−2b2+3be−cd−e2

)
2 (2 an− 2 a+ d) (2 an− 3 a+ d)

In the sequel, we consider without loss of generality the monic case.

> k[n] := 1;

kn := 1
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To get information about the coefficients of the recurrence equation, we put it in
the following form to be zero.

> RE := x*P(n)-a[n]*P(n+1)-b[n]*P(n)-c[n]*P(n-1);

RE := xP (n)− anP (n+ 1)− bnP (n)− cnP (n− 1)

After substituting Pn(x), given by (1.1), and the previous results about k′n (rule2)
and k′′n (rule3), and by equating again the three highest coefficients, we get:

> RE:=subs({P(n)=p,P(n-1)=subs(n=n-1,p),P(n+1)=subs(n=n+1,p)}, RE):

> RE:=subs({rule2,rule3,subs(n=n-1,rule2),subs(n=n-1,rule3),
> subs(n = n+1, rule2), subs(n = n+1, rule3)}, RE):

> re := simplify(numer(normal(RE))/x^(n-3)):

> rule4 := a[n] = solve(coeff(re, x, 4), a[n]);

rule4 := an = 1

> rule5 := b[n] = factor(solve(subs(rule4, coeff(re, x, 3)), b[n]));

rule5 := bn = −2 abn2 − 2 abn+ 2 bdn− 2 ae+ de

(2 an− 2 a+ d) (2 an+ d)

> rule6 := c[n] =
> factor(solve(subs(rule5, subs(rule4, coeff(re, x, 2))), c[n]));

rule6 := cn = − n (an− 2 a+ d)

(2 an− 2 a+ d)
2

(2 an− 3 a+ d) (2 an− a+ d)
·(

4a2cn2−ab2n2−8a2cn+2ab2n+4acdn− b2dn+4a2c−ab2−4acd+ae2+b2d−bde+ cd2
)

Such relations were given generically in the paper [9] for the continuous and the
discrete cases, and in later papers extended to the q-case ([10], [4]) and to the
quadratic case ([5], [15], [17]).

They can be used to compute power series coefficients, inversion coefficients,
connection coefficients and parameter derivatives, as e.g. [9]

∂

∂α
L(α)
n (x) =

n−1∑
m=0

1

n−m
L(α)
m (x) .

We have shown that the coefficients of the recurrence equation of the classical
systems can be written in terms of the coefficients a, b, c, d, and e of the differential
/ difference equation.

If one uses these formulas in the backward direction, then one can determine
the possible differential / difference equations from a given recurrence. For this
purpose one must solve a non-linear system.

Assume the following recurrence equation is given:

Pn+2(x)− (x− n− 1)Pn+1(x) + α(n+ 1)2Pn(x) = 0 .

Does this equation have classical OPS solutions?
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We find out [10] that the solutions of this equation are shifted Laguerre
polynomials for α = 1/4. For α < 1/4 the recurrence has Meixner and Krawtchouk
polynomial solutions.

> read "hsum17.mpl";

‘Package "Hypergeometric Summation", Maple V - Maple 17‘

‘Copyright 1998-2013, Wolfram Koepf, University of Kassel‘

> read "retode.mpl";

‘Package "REtoDE", Maple V - Maple 8‘

‘Copyright 2000-2002, Wolfram Koepf, University of Kassel‘

> RE := P(n+2)-(x-n-1)*P(n+1)+alpha*(n+1)^2*P(n) = 0;

RE := P (n+ 2)− (x− n− 1)P (n+ 1) + α (n+ 1)
2
P (n) = 0

> REtoDE(RE, P(n), x);

‘Warning: parameters have the values‘

{a = 0, α = 1/4, b = −d/2, c = −d/4, d = d, e = 0}[
1/2 (2x+ 1)

∂2

∂x2
P (n, x)− 2x

∂

∂x
P (n, x) + 2nP (n, x) = 0,[

I = [−1/2,∞], ρ (x) = 2 e−2 x
]
,
kn+1

kn
= 1
]

> REtodiscreteDE(RE, P(n), x);

For the last computation we omit the lengthy output and just state that the
difference equation and weight of the Meixner and Krawtchouk polynomials is
discovered.

Recently Walter Van Assche asked me the question to find all OPS of the
Askey-Wilson scheme that satisfy a certain recurrence equation, see [19]? Dr.
Daniel Tcheutia solved this question completely [18] by extending the shown al-
gorithm to the quadratic lattice. The answer is: The adapted algorithm finds the
solutions to the first question (that were already know to Walter van Assche).
This algorithm also proves that the second recurrence equation does not have
such solutions.

The Legendre Polynomials Pn(x) of the Jacobi class have several representa-
tions as series:

Pn(x) =

n∑
k=0

(
n

k

)(
−n− 1

k

)(
1− x

2

)k
=

1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k

=
1

2n

bn/2c∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n

)
xn−2k .
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It is already non-trivial to identify that these three series represent the same func-
tions, but Zeilberger’s algorithm [11] computes the desired normal forms, namely
the corresponding (and identical) recurrence equations jointly with enough initial
values.

> legendreterm1:=binomial(n,k)*binomial(-n-1,k)*((1-x)*(1/2))^k;

legendreterm1 :=

(
n

k

)(
−n− 1

k

)
(1/2− x/2)

k

> legendreterm2 := binomial(n, k)^2*(x-1)^(n-k)*(x+1)^k/2^n;

legendreterm2 :=

((
n
k

))2
(x− 1)

−k+n
(x+ 1)

k

2n

> legendreterm3 :=
> (-1)^k*binomial(n, k)*binomial(2*n-2*k, n)*x^(n-2*k)/2^n;

legendreterm3 :=
(−1)

k (n
k

)(
2n−2 k

n

)
xn−2 k

2n

> RE1 := {sumrecursion(legendreterm1, k, P(n)),
> P(0) = add(subs(n = 0, legendreterm1), k = 0 .. 0),
> P(1) = add(subs(n = 1, legendreterm1), k = 0 .. 1)};

RE1 :=
{(n+ 2)P (n+ 2)− x (2n+ 3)P (n+ 1) + (n+ 1)P (n) = 0, P (0) = 1, P (1) = x}

> RE2 := {sumrecursion(legendreterm2, k, P(n)),
> P(0) = add(subs(n = 0, legendreterm2), k = 0 .. 0),
> P(1) = add(subs(n = 1, legendreterm2), k = 0 .. 1)};

RE2 :=
{(n+ 2)P (n+ 2)− x (2n+ 3)P (n+ 1) + (n+ 1)P (n) = 0, P (0) = 1, P (1) = x}

> RE3 := {sumrecursion(legendreterm3, k, P(n)),
> P(0) = expand(add(subs(n = 0, legendreterm3), k = 0 .. 0)),
> P(1) = expand(add(subs(n = 1, legendreterm3), k = 0 .. 1))};

RE3 :=
{(n+ 2)P (n+ 2)− x (2n+ 3)P (n+ 1) + (n+ 1)P (n) = 0, P (0) = 1, P (1) = x}
The above computations have computed the normal forms of each of the three
different series representations. Since they agree, we have proved that the series
represent the same family of functions.

Next, we compute their hypergeometric representations.

> Sumtohyper(legendreterm1, k);

Hypergeom ([n+ 1,−n], [1], 1/2− x/2)

> Sumtohyper(legendreterm2, k);

(x− 1)
n

2n
Hypergeom

(
[−n,−n], [1],

x+ 1

x− 1

)
> convert(Sumtohyper(legendreterm3, k), binomial);
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xnHypergeom
(
[−n/2, 1/2− n/2], [−n+ 1/2], x−2

) (
2n
n

)
2n

It can also be easily shown that they satisfy the same differential equation.

> DE1 := sumdiffeq(legendreterm1, k, P(x));

DE1 :=

(
d2

dx2
P (x)

)
(x− 1) (x+ 1) + 2x

d

dx
P (x)− n (n+ 1)P (x) = 0

> DE2 := sumdiffeq(legendreterm2, k, P(x));

DE2 :=

(
d2

dx2
P (x)

)
(x− 1) (x+ 1) + 2x

d

dx
P (x)− n (n+ 1)P (x) = 0

> DE3 := sumdiffeq(legendreterm3, k, P(x));

DE3 :=

(
d2

dx2
P (x)

)
(x− 1) (x+ 1) + 2x

d

dx
P (x)− n (n+ 1)P (x) = 0

In the talk given by Naoures Ayadi [1], she introduced the Meixner type
polynomials

M̂β1,β2
n (x, c) = (β1)k (β2)k 2F2

(
−n,−x
β1, β2

∣∣∣∣∣ 1

c

)
.

Using Zeilberger’s algorithm, it is easy to get a recurrence equation forMβ1,β2
n (x, c).

> meixnersummand := pochhammer(beta[1], n)*pochhammer(beta[2], n)*
> hyperterm([-n, -x], [beta[1], beta[2]], 1/c, k);

meixnersummand :=
pochhammer (β1, n) pochhammer (β2, n) pochhammer (−n, k) pochhammer (−x, k)

(
c−1
)k

pochhammer (β1, k) pochhammer (β2, k) k!

> MeixnerRE := sumrecursion(meixnersummand, k, M(n));

MeixnerRE := −cM (n+ 3)

+
(
3 cn2 + 2 cnβ1 + 2 cnβ2 + cβ1β2 + 11 cn+ 4 cβ1 + 4 cβ2 + 10 c− n+ x− 2

)
M (n+ 2)

− (n+ 2) (1 + β2 + n) (1 + β1 + n) (3 cn+ cβ1 + cβ2 + 4 c− 1)M (n+ 1)

+ c (n+ 2) (n+ 1) (1 + β2 + n) (β2 + n) (1 + β1 + n) (β1 + n)M (n) = 0

The more complicated family

Mβ1,β2,β3
n (x, c) = (β1)k (β2)k (β3)k 2F3

(
−n,−x
β1, β2, β3

∣∣∣∣∣ 1

c

)

is similarly feasible.
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6. Epilogue

Software developers love when their software is used. But they need your support.
Hence my suggestion: If you use one of the packages mentioned for your scientific
work, please cite its use!
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senschaften, math.-naturwiss. Klasse 121, 1985, 29–33.

[14] Nikiforov, A. F., Suslov, S. K. and Uvarov, V. B.: Classical Orthogonal Polynomials
of a Discrete Variable. Springer, Berlin–Heidelberg–New York, 1991.

[15] Njionou Sadjang, P., Koepf, W. and Foupouagnigni, M.: On structure formulas for
Wilson polynomials. Integral Transforms and Special Functions 26, 2015, 1000–1014.



Orthogonal Polynomials and Computer Algebra 15

[16] Salvy, B. and Zimmermann, P.: GFUN: A Maple package for the manipulation of
generating and holonomic functions in one variable. ACM Transactions on Mathe-
matical Software 20, 1994, 163–177.

[17] Tcheutia, D. D., Njionou Sadjang, P., Koepf, W. and Foupouagnigni, M.: Divided-
difference equation, inversion, connection, multiplication and linearization formulae
of the continuous Hahn and the Meixner-Pollaczek Polynomials. Ramanujan Journal
45, 2018, 33–56.

[18] Tcheutia, D.: Recurrence equations and their classical orthogonal polynomial so-
lutions on a quadratic or q-quadratic lattice. J. Difference Equ. Appl. DOI:
10.1080/10236198.2019.1627346, 2019.

[19] Van Assche, Walter: Solution of an open problem about two families of orthogonal
polynomials. SIGMA 15, 2019, 005, 6 pages.

Wolfram Koepf
Institute of Mathematics
University of Kassel
Heinrich-Plett-Str. 40
D–34132 Kassel, Germany
e-mail: koepf@mathematik.uni-kassel.de


