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Abs t r ac t .  There is a one-to-one correspondence between formal power 

series (FPS) ~ akx k with positive radius of convergence and corre- 
k = 0  

sponding analytic functions. Since a goal of Computer Algebra is to work 
with formal objects and preserve such symbolic information, it should be 
possible to automate conversion between these forms in Computer Alge- 
bra Systems (CASs). However, only MACSYMA provides a rather limited 
procedure powerser• to calculate FPS from analytic expressions in 
certain special cases. 
We present an algorithmic approach to compute an FPS, which has been 
implemented by the author and A. Rennoch in MATHEMATICA, and by 
D. Gruntz in MAPLE. Moreover, the same algorithm can be reversed to 
calculate a function that corresponds to a given FPS, in those cases when 
an initial value problem for a certain ordinary differential equation can 
be solved. 
Further topics of application like infinite summation, and asymptotic 
expansion are presented. 

1 I n t r o d u c t i o n  

We consider formal power series (FPS) of the form 

oo 

F := ~ a k x  k 

k = 0  

with coefficients ak E C (k E ]No). All the algebraic operations for FPS like addi- 
tion, multiplication, division, and substitution, can be done by finite algorithms 
if one truncates the resulting FPS, i.e. only evaluates the first N coefficients of it 
(where N is an arbi trary fixed positive integer), which gives a t runcated power 
series. These algorithms are implemented in certain Computer  Algebra Systems 
(CAS), e.g. in AXIOM 1, MACSYMA 2, MAPLE 3, MATHEMATICA 4, and REDUCE 5 
(see [1], [10], [11], [16], and [7], respectively). 

1 AXIOM is a trademark of the Numerical Algorithms Group Ltd. 
2 MACSYMA is & registered trademark of Symbolics, Inc. 
3 MAPLE is a registered trademark of Waterloo Maple Software. 
4 MATHEMATICA is a registered trademark of Wolfram Research, Inc. 
5 REDUCE is a trademark of the RAND Corp. 
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Moreover, all CAS provide a procedure to find a truncated power series ex- 
pansion for a function f .  By Taylor's Theorem the power series coefficients of a 
function f can be calculated by the formula 

ak . -  k!  ' 

which provides an algorithmic procedure to calculate a truncated power series of 
certain degree N.  The Taylor algorithm, however, does not generate an explicit 
formula for ak. Moreover it generally has exponential complexity in the order N: 
The differentiation of a product  by the product  rule may generate 2 N summands. 

s in  ~9 Furthermore in the general case, e.g. for f ( x )  := ~ , the evaluations f(k)(0) 
must be replaced by limits 

lim f ( k ) (x )  
x--*0 

ak . -  k! 

whose evaluation are, in general, of exponential complexity as well. Moreover, the 
larger the number N,  the larger the chance that  the CAS even fails to evaluate 
these limits, when the expressions f(k) get more and more complicated. 

For the following derivative free approach to generate the Taylor coefficients 
ak of a function f recursively which is purely based on limits, similar restrictions 
apply. If 

f ( x )  if k = 0 

S (x) : =  - S -l(x) 
x i f k  EI~  

then the Taylor coefficients are given by 

: =  

Most decisive, however, is the fact that  none of these algorithms leads to a 
formula for ak, i.e. the formal transformation "function expression of variable x 
towards coefficient expression of variable k" cannot be supported. 

Thus in existing CAS the work with power series is restricted to truncated 
power series. Some of the systems, like Axiom (previously SCRATCHPAD) and 
MAPLE, internally work with streams, and lazy evaluation, i.e. series objects 
are given by a finite number of initial terms, and an (internally used) formula to 
calculate further coefficients, see e.g. [12]. Infinite series representations, however, 
are not supported in these systems, either. 

We shall give an outline of how to resolve these issues for FPS of some special 
types, including many special functions. Our procedure then produces the exact 
formal result, i.e. an explicit formula for the coefficients ak. Obviously this solves 
the complexity problem, and as only a small number of limits have to be found, 
the chance to succeed is even larger than in the truncated case. 
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2 L a u r e n t - P u i s e u x  S e r i e s  o f  H y p e r g e o m e t r i c  T y p e  

We require an assumption that  every FPS F has positive radius of convergence 
r := 1/l imsup]ak] 1/k. In this situation the FPS represents an analytic func- 

o o  

tion f(x) = ~ akx k =: F in its disk of convergence Dr := {x E C I lxl < r},  
k=O 

i.e. its sum converges locally uniformly in D~ to f .  So there is a one-to-one 
correspondence between the functions f analytic at the origin and the FPS F 
with positive radius of convergence represented by their coefficient sequences 
(ak)ke~0. We denote this correspondence by f +-+ F.- As we are interested in 
the conversion f+-+F the restriction to FPS with positive radius of convergence 
makes sense even though algebraically this restriction is not necessary. 

To deal with many special functions, it is a good idea to consider the (gen- 
eralized) hypergeometric series 

pFq (al a2""apl ) ~o (al)k'(a2)l:'"(aP)~ x ~ b 1 b 2 bq x : :  = (b--~-k:ib--~-k: (b---~k~] (1)  

where (a)k denotes the Pochhammer symbol (or shifted factorial) defined by 

1 i f k = O  
: =  a . ( a + l ) . . . ( a + k - 1 )  if k E IN 

Note that  ~ = (a+k-k 1), where ( k ) i s  the binomial coejficienZ 

(;){ 1 
:= ~.(~-1)...(~-k+1) 

k! i f k  E ~  

and k! denotes the factorial 

k! :=  ( 1 . 2 1  i f k = 0  
�9 -.k if k E IN 

The coefficients Ak of the hypergeometric series ~ Akx k are the unique solution 
k----0 

of the special recurrence equation (RE) 

( k + a l ) - ( k + a 2 ) . . . ( k + % )  -Ak ( k e l N )  
Ak+l := (k + bl). (k + b2)...(k + bq)(k + 1) 

with the initial condition 
A0 := 1 . 

Ak+1 Note that  ~Ak+l is rational in k. Moreover if--7-~,k is a rational function R(k) in the 
variable k then the corresponding function f is connected with a hypergeometric 
series; i.e., if k = - 1  is a pole of R, then f corresponds to a hypergeometric series 
evaluated at some point Ax (where A is the quotient of the leading coefficients 
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of the numerator and the denominator of R); whereas, if k = -1  is no pole of 
R, then f may be furthermore shifted by some factor x s (s C Z). 

We further mention that the function f corresponding to the hypergeometric 
series 

( a l a 2 . . . a p ] )  
f +-+ F := pFq bl b2 bq x 

satisfies the differential equation (DE) 

0(0 + bl - 1) . . -(8 + bq -  1 ) / =  x(8 + a l ) . . . ( 8  + ap)/  (2) 

where 8 is the differential operator x d An inspection of the hypergeometric 
d x  " 

DE (2) shows that it is of the form (Q := max{p, q} + 1) 

Q Q 

E E = o 
j = 0  I=0 

(3) 

with certain constants clj E C (l,j = 0 , . . . ,Q) .  Because of their importance in 
our development, we call a DE of the form (3), i.e. a homogeneous linear DE 
with polynomial coefficients, simple. We will show the existence of a simple DE 
for a more general family of functions. 

It is remarkable that many elementary functions can be represented by hy- 
pergeometric series. 

( l+x)  ~ 1Fo(-•]x),  e=~oFo(x) ,  - l n ( 1 - x ) ~ x . 2 F 1  (121 x ) ,  
X / 

sinx ~ x.  o['1 (312 - ~ ) ,  cosx ~ 0F1 (112 J - Q ) ,  

arcsinx~-~x. 2F1 ( 1 / 2  1/21 ) ( 1 / 2 1 1  ) 3/2 x 2 , arctanx ~-~ x. 2F1 3/2 - x2 " 

Note that an FPS of the form F(x m) is called m-fold symmetric. Even functions 
are 2-fold symmetric and odd functions are shifted 2-fold symmetric functions. 

By the above examples one is led to the following more general definition. 
First we extend the considerations to formal Laurent-Puiseux series (LPS) with 
a representation 

F := f i  akx k/'~ (ako # 0) (4) 
k = k o  

for some k0 E Z, and n ~ iN. LPS are formal Laurent series, evaluated at ~/x. 
A formal Laurent series (n = 1) is a shifted FPS, and corresponds to a mew- 
morphic f with a pole of order -k0 at the origin. The number n in development 
(4) is called the Puiseuz number of (the given representation of) f .  

Def in i t ion  (Funct ions  of h y p e r g e o m e t r i c  type) .  An LPS F with repre- 
sentation (4) - -  as well as its corresponding function f - -  is called to be of 
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hypergeometric type if it has a positive radius of convergence, and if its coeffi- 
cients ak satisfy a RE of the form 

a ~ + ~ = R ( k )  a~ f o r k > k 0  (5) 

ak = Ak for k = k0,k0 + 1 , . . . , k0  + m -  1 

for s o m e m  E IN, Ak E C (k = k 0 + l ,  k 0 + 2 , . . . , k 0 + m - 1 ) , A k o  E C \ { 0 ) ,  
and some rational function R. The number m is then called the symmetry num- 
ber of (the given representation of) F.  A RE of type (5) is also called to be of 
hypergeometric type . /~  

We Want to emphasize that  the above terminology of functions of hypergeometric 
type is definitely more general than the terminology of a generalized hyperge- 
ometric function. It covers e.g. the function sin x which is nol a generalized 
hypergeometric function as obviously no P~E of the type (5) holds for its series 
coefficients with m = 1. So sin x is not of hypergeometric type with symmetry 
number 1; it is, however, of hypergeometric type with symmetry number 2. A 
more difficult example of the same kind is the function e arcsin x which is neither 
even nor odd, and nevertheless turns out to be of hypergeometric type with sym- 
metry number 2, too (see [8], Sect. 9). Further functions like s in  x x~ are covered by 
the given approach. Moreover the terminology covers composite functions like 
sin V~, which do not have a Laurent, but a Puiseux series development. 

If F is m-fold symmetric, then there is a hypergeometric representation (5) 
with symmetry number m, whereas such a representation does not guarantee 
any symmetry. In fact, if F is of hypergeometric type with symmetry number 
j ,  then it is of hypergeometric type with each multiple mj (m E ~q) of m as 
symmetry number since by induction we get the I~E 

a k + j m  ~- R(k) R(k + j) R(k + 2j) . . .  R(k + (m- 1)j) a~ , 

and R(k) R(k+j) R(k+2j)... R(k+(m-1)j)is rational, too. In particular, each 
hypergeometric type function with symmetry number j = 1 is of hypergeometric 
type for arbitrary symmetry number m. 

On the other hand, it is clear that  each LPS with symmetry number m, 
and Puiseux number n, can be represented as the sum of nm shifted m-fold 
symmetric functions. 

The derivative and the antiderivative of an LPS given by (4) are given by 
the rules 

1 co cx~ 
r '  : = -  ka x /o-i = L (k + , 

n n 
k=ko k = k o - 1  

F : =  k-=ko ' ~  k/n+lak x~/n+l+a_llnx=n~_~=ko+l ak- lxk /n  + a-1 l n x k  " 

~#-1  k#0 

Now we give a list of transformations on LPS that  preserve the hypergeometric 
type. 
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L e m m a  Let F be an LPS of hypergeometric type with representation (4). Then 
(a) xJF ( j 6 ~ ) ,  (b) F/x j ( jEIN) ,  (c) F(Ax) ( A E C ) ,  

(d) F ( x ~ )  (p, qe~q) ,  (e) F(x)+F(-x)2 ' (f) F ' ,  

are of hypergeometric type, too. Ira-1 = O, then also 

(g) f F is of hypergeometrie type. [] 

For a proof of this Lemma we refer to ([8], Lemma 2.1, Theorem 8.1). We note 
elX.Fe-iX eix e-ix 

that  as cos x - '2 and sin x - 2i , a combinatipn of (c) and (e) 
shows that  the hypergeometric type of cos x and sin x follows from that  of the 
exponential function. 

We remark further that  one can extend the definition of functions of hyper- 
geometric type to include also the functions defined in (g) for arbitrary LPS 
(see [8], Sect. 8). Note that  because of the logarithmic terms these functions, in 
general, do not represent LPS. 

It is essential for our development that  functions of hypergeometric type 
satisfy a simple DE. 

T h e o r e m  Each LPS of hypergeometric type satisfies a simple DE. 

Proof. Let F be given by 

F := ~ akx k/'~ (ako r O) . 
k=ko 

Define the differential operator 0,~ := nx d working on a function of variable x. 
0n has the property 

OnF = ~ kakx k/n , 
k:ko 

and by induction for all j C ~l 

oo 

OJ F =  E kJakxk/n 
k=-ko 

This shows that  moreover, if P is any polynomial, we may formally write 

oo 

P(O)F = E P(k) akx k/'~ (6) 
k:ko 

This commuting property is the reason why the differential operator 0~ is much 
more appropriate for the current discussion than the usual differential operator 

d 
dx" 

If the representation of F has symmetry  number m, we know that  there is 
also a representation with symmetry  number nm 

Q(k) a~+n.~ = P(k)  a~ (7) 
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with two polynomials P,  and Q, and we may assume without loss of generality 
that  the polynomials P and Q are chosen such that  Q(ko-1)  = Q(k0-2)  = . . .  = 
Q(ko-nm) = 0. This goal can be reached by multiplying both P and Q with 
the factors (k-ko-t-j) ( j  = 1 , . . . ,  nm). From (6) and (7) we get 

Q(O,~-nm)F = ~ Q(k-nm)akx k/'~ by (6), as Q is a polynomial 
k=ko 

oo 

= E Q(k-nm)akxk/'~ as Q(ko-1 )  . . . . .  Q(ko-nrn) = 0 
k = k o + n m  

= ~ Q(k) ak+~mx ~/'*+'~ by an index shift 

k=ko 

= x p(k)a x by (7) 

= x"~P(O)F by (6) again. 

This represents a DE for F which turns out to be of form (3). Note that  for 
m = 1, n = 1, and ko = 0 we have exactly (2). [] 

Now assume, a function f representing an LPS is given. In order to find the 
coefficient formula, it is a reasonable approach to search for its DE, to transfer 
this DE into its equivalent RE, and you are done by an adaption of the coefficient 
formula for the hypergeometric function corresponding to the transformations 
given in the Lemma. It turns out that  this procedure can be handled by an 
algebraic algorithm. 

3 T h e  F i r s t  C o n v e r s i o n  P r o c e d u r e  

There are two obvious transformation procedures: f ~ F and F H f .  At the 
moment  we want to emphasize on the first situation. This transformation pro- 
cedure f ~ p o w e r s e r i e s ( f ,  x, x0) is implemented in MACSYMA (see [10]): The 
implementation in MACSYMA, however, uses heuristic maneuvers, and is not 
based on an algorithm. It fails to convert many important  functions with a sim- 
ple development like e.g. 

p o w e r s e r i e s  ( 1 / ( x ' 2 + 2 * x + 2 ) , x ,  0), p o w e r s e r i e s  ( 1 / ( x ' 2 - 2 * x - 2 ) ,  x, 0), 
p o w e r s e r i e s  ( a t  an (x) ,x ,b) ,  p o w e r s e r i e s  ( a t  an (x+a) ,  x, 0 ), 
p o w e r s e r i e s  (exp (x) *exp (y ) ,  x,  0), p o w e r s e r i e s  (exp (x) * s i n ( x ) ,  x, 0). 

Here we present an algorithm corresponding to a function call of the form 
PowerSe r i e s  I f , x , 0 ]  - -  we use MATHEMATICA syntax as our implementation 
is written in MATHEMATICA language (see [16]) - -  i.e. producing a Laurent- 
Puiseux series expansion of the function f with respect to the variable x. 
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A l g o r i t h m  (for PowerSeries [f ,x,O] ) 

(1) Ra t i ona l  func t ions  (for details, see ([8], Sect. 4)) 
If f is rational in x, then use the rational algorithm by calculating a com- 
plex partial fraction decomposition of f (see e.g. [14], p. 171) which can be 
algorithmically done at least if the denominator has a rational factorization. 
Finally expand termwise by the binomial series. 

(2) F ind  a s imple  D E  (for details, see ([8], Sect. 5), where we prove that this 
procedure always succeeds in finding the simple DE of lowest degree for f )  
(a) Fix a number Nmax E IN, the maximal order of the DE searched for; a 

suitable value is Nmax := 4. 
(b) Set N := 1. 
(c) Calculate f (g)  ; either, if the derivative f(N) is rational, apply the rational 

algorithm, and integrate; 
(d) or  find a simple DE for f of order N 

N 

~-~pjf(J) = 0 
j=0 

where pj (j = 0, . . . ,  N) are polynomials in the variable x. Therefore 
decompose the expression 

f (g)(x)  + dN_l f (g-1) (X)  + . . "  + dof (x)  

in elementary summands (with respect to the constants Ao, . . . ,  AN- l ) .  
Test, if the summands contain exactly N rationally independent expres- 
sions. (Two expressions are called rationally independent if their ratio 
is not rational.) Just in that case there exists a solution as follows: Sort 
with respect to the rationally independent terms and create a system of 
linear equations by setting their coefficients to zero. Solve this system 
for the numbers Ao ,A1 , . . . ,AN-1 .  Those are rational functions in x, 
and there exists a unique solution. After multiplication by the common 
denominator of A0, A1, . . . ,  AN-1 you get the DE searched for. 

(e) If (d) was not successful, then increase N by one, and go back to (c), 
until N = Nm~x. 

(3) F ind  t he  co r r e spond ing  R E  (for details, see ([8], Sect. 6)) 
Suppose you found a simple DE in step (2), then transfer it into a RE for 
the coefficients ak. The RE is then of the special type 

M 

~ P j a k + j = O  , (8) 
j=o 

where Pj (j = 0 , . . . ,  M) are polynomials in k, and M e IN. This is done by 
the substitution 

xa f (j) ~-+ (k W l - l ) j  " ak+j-1 (9) 

into the DE. 
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(4) T y p e  o f  R E  (for details, see ([8], Sect. 7)) 
Determine the type o f  the RE according to the following list 
(a) If the RE (8) contains only two summands then f is of hypergeometric 

type, and an explicit formula for the coefficients can be found by the 
hypergeometric coefficient formula (1), and some initial conditions. 

(b) If the DE has constant coefficients (cj E C (j  = 0 , . . . ,  N ) )  

N 

E cj f(J ) = 0 , 
j=O 

then f is of exp-like type. In this case the substitution bk := k! �9 ak leads 
to the RE 

N 

E cjbk+j = 0 , 
j = 0  

which has the same constant coefficients as the DE, and can be solved 
by a known algebraic scheme using the first N initial coefficients. 

(c) If the RE is none of the above types, try to solve it by other known RE 
solvers (a few of which are implemented in the MATHEMATICA package 
D• e.g., and in M A P L E ' s  1-solve). 

The details of the single parts of the algorithm are presented in [8]. Here we 
prefer to give some examples for the use of the algorithm. 

( E x p - l i k e  t y p e  case)  Suppose f ( x ) = e  ~: sin x, so f ' = e *  (sin x-k-cos x)  1. and 

f "  = 2e* cos x. The first step of the algorithm does not apply. In the second 

for N := 1 the expression A0 = - (1 + cot x) is not rational in x. For 
/ 

step 
% ] 

N := 2 we get the expression 

+ A l f '  + A o f  = 2e ~ cos x -F- Alex (sin x + cos x) -F- Aoe x sin x . I" \ / 

Under the summands 

2 e * c o s x ,  AleX s inx  , Ale~: cosx  , Aoe* s inx  

there are exactly the two rationally independent terms e= cos x and e* sin x. 
We set the coefficient sums of these expressions to zero. The linear equations 
system 

2 + A 1  = 0 ,  A I + A 0  = 0  

has the solution A1 = - 2 ,  A0 = 2, and leads so to the DE for f 

f ' - 2 f ' + 2 f = 0  . 

This DE has constant coefficients, so f is of exp-like type. For bk := k! ak we 
have the RE 

bk+2 - 2bk+l + 2bk = 0.  
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The initial conditions are 

b0 = a0 = f (0)  = 0 , and 
f'(o) 

bl = a l -  - -  - 1 . 

For a RE with constant coefficients the setup bk := s leads to a solution. 
Possible values for ~ are solutions of the equation Ak+2 _ 2,~k+1 + 2$k = 0, 
or solutions of the equivalent characteristic equation 

1 2 - 2 1 + 2 = 0  , 

and so the values ,~1,2 := 1 + i. Superposition (the RE is linear) leads to 
the general solution bk = A ~  + B)~ with constants A, B E C. The initial 
conditions lead then to the linear equations system for A and B 

/ 

0 = b 0 = A + B ,  l = b l = A ( l + i ) + B ( 1 - i )  , 

whose solution is A = • B = - ~ .  So we have finally 2i~ 

bk 1 ( 1 + i ) ~ - ( 1 - i )  k 

a k -  k! - k! 2i 
: l l m ( l  + i ) k : l im(x /~e i � 88  1 k krr ~ 2 ~  sin -~-, 

k. 

and 
f i l  ~ kTr zk 

F = ~2-~ sin T ' 
k=O 

2. ( H y p e r g e o m e t r i c  t y p e  P u l s e u x  se r i e s  case)  Suppose next f ( x )  = 
sinv/x. Then f '  = cosv~ f , _  sinv~ cosv~ 2v~ ' and - -  4= 4 ~ - "  The second step of the 

algori thm leads to the DE for f 

4x f"  + 2f '  + f =O , 

and the t ransformation via the rule (9) generates then the RE 

(2k + 1)(2k-4- 2)ak+l + ak = 0 , 

which is of hypergeometric type as only two summands  occur. From the fact 
1 of the polynomial  in front of ak+ 1 is nonintegral,  tha t  the largest zero k = - 3  

we realize tha t  we must  consider a Puiseux series with Puiseux number  2. 
So we make the t ransformation bk := akl2, i.e. consider g(x) := f ( x  2) = 
sin x = ~ bkx k rather than sin V ~ = ~ bk xk/2, and get ~ the hypergeometric  
type RE 

(k + 1)(k + 2)b~+2 + b~ = 0 

for bk with symmet ry  number  m = 2. 
The fact that  g(0) = 0 tells us that  g is odd. We work with the FPS 

0 3  

h(x) := E c xk 
k = 0  
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. 

for which g(x) = xh(x~), and so ck = b2k+l, leading to the RE for Ck 

1 1 

Ck+l = 4 (k + ~)(k+3 1) ck " 

The initial condition is co = b~ = g'(O) = 1, so that  finally by (1) 

( - 1 )  k ( - 1 )  k 

~k = 4~ (-~)~ k! - (2k + ~)! ' 

and 

( - )  :k+11~. F = ~ ~- ~ ' ~ ' !  . 
k=0 

( H y p e r g e o m e t r l e  t y p e  p o w e r  se r ies  ease )  Now we consider the func- 
tion 

l e f t ( t )  dt 
: (~)  : :  t 

0 

where erf denotes the error function 

,] erf ( ~ ) : =  ~ ~ - ~ d t  . 

0 

Note that  f is not represented by means of elementary functions, however 

the algori thm still applies. We have f~ erf(~) f .  _ 2 ~-:~ ~rf(~) and = ,: , - - . / ~  ~ ~ , 
x 2 

f r o = _  4 e-~ ~ 4 e- •  77  - - 7 7 7 F T ~ - - ,  leading to the DE 

and thus the RE 

xf'" + (2x 2 + 2 ) / +  2xf' = 0 ,  

(k + 2)2(k + 1)ak+2 + 2k2ak = 0 . 

This is also of hypergeometric type, and the same argumentat ion as in Ex- 
ample 2 shows that  f is odd. We use the same substitutions and get for the 
coefficients ck of h 

(k+{)~ 
ek+l = (k + -~):(k + 1) ck 

with initial condition co = al = y ( 0 )  = 2 :;77, so that  finally 

2 ( - 1 )  k ((1)k)2 2 ( - 1 )  k 

C k - ' ~  V ~ 3 2 ~-- ((~)k) k~ ~ ( 2 k  + 1)2k! 

and 
oo 2 ( - 1 )  k X2k4_ 1 

F = ~ ~ (2k + 1)2k! 
k=0 
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4. ( R a t i o n a l  t y p e  case) Let's now look at f ( x )  =- arctan x. Here f '  1 = T4-~ is 
rational. So we apply the rational algorithm (see ([8], Sect. 4)), and integrate. 
We find the complex partial fraction decomposition 

f'(x)----- 1 1 ( 1 ~ / x  1 ) 
1 + x 2  - ~ + 1 _---J-~x , 

from which we deduce for the coefficients b2 of the derivative F' (x )  = 
o o  

b2x 2 by using the binomial series that  
k=0 

1 i 2 
b 2 = ~ ( i  2 + ( - 0 2  ) = ~ ( 1 + ( - 1 )  2) 

By the calculation 

i2k+l 
b22+1 = 2 (1 + (--1)  22+1) ---- 0 

it follows that F '  turns out to be even. Moreover 

so that  by integration 

i 22 
b22 = - V  ( 1 + ( - 1 ) 2 2 )  = ' 

( - 1 )  k  2k+1 

k=O 

We remark that  the arctan function can also be handled by the hypergeo- 
metric procedure similarly as Example 2. 

5. ( H y p e r g e o m e t r l c  t y p e  L a u r e n t  ser ies  case) We consider f ( x )  := 
arcsin=x Here the algorithm produces the DE ; g 4  " 

(x 5 - x3 ) f  ''' + (15x 4 - 12x~)f '' + (61x 3 - 36x)f '  + (64x 2 - 24)f  = 0 , 

converting to the hypergeometric type RE 

(k + 6)(k + 5)ak+2 - (k +4)2ak = 0 

with symmetry number 2. It follows that  a-6 = a-5 = 0, and thus for 
all k ~ - 5  we have ak = 0. Therefore we consider the shifted function 
g(x) := x4 f (x )  with the coefficients b2 = a2-4 for which the RE 

k 2 
b2+2 = (k + 2)(k + 1) b2 

holds. The hypergeometric coefficient formula finally leads to 

(k!) 24~ 22-2 
F = (2k + 1)!(k + 1) x 

2=0 
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4 S c o p e  o f  t h e  A l g o r i t h m  

In CAS's problems can be solved by means of 

- implemented data  bases, or 
- algorithmic calculations. 

In the first case, the implemented data base is fixed for all times until the soft- 
ware is released, whereas in the second case the use of the CAS generates a 
data base. Having an implementation of an algebraic algorithm makes a CAS an 
expert system: An arbitrary user may produce results, which had been unknown 
before, and can be added to a data base. Concerning the conversion of functions 
and power series [6] probably is the most exhaustive existing data  base. It is a col- 
lection of numerical series, power series, products, and other material. It is easy 
to observe that  most of its power series entries are of hypergeometric type, and 
so it is not surprising how many of them can be treated by our algorithm. The 
algorithm covers results about integrals that cannot be represented by elemen- 
tary functions like Fresnel integrals, Bessel functions, and many other functions. 
More examples are given in ([8], Sect. 9), and will be published elsewhere [9]. 

When using [6] to find a power series representation, the scope is restricted 
to its finite contents, and moreover the success depends on the user's ability to 
find the entry he's searching for: The problem is thus converted into a search 
problem. On the other hand, the use of the CAS implementation of our algorithm 
does not have this kind of limitations. It is only a question of time when new 
results are discovered by its use. 

5 T h e  A l g o r i t h m  a s  a S i m p l i f i e r  

One of the main questions of Computer Algebra is to decide whether a given 
expression algebraically is equivalent to zero or not. A simple example of this 
kind is the rational expression 

2 1 1 
1 - x  2 1 - x  l + x  

which after an expansion with common denominator algebraically simplifies to 
zero. Much more difficult are nonrational algebraic or transcendental expressions 
like 

arcsin 1~ x/2 7r v / ~ +  1 + 1 _  ~ / 2 v ~ +  1 + x + 2 + 2 arctan -~- - ~ , 

! 

- , / r -  x , /1+  

z v ~  ' 

cos(4 arccos x) - (1 - 8x 2 + 8z4) ,  or cos(arcsin x) - x/1 - x 2 , 

all of which turn out to equal zero. In general, it cannot be decided if a given 
transcendental expression is equivalent to zero. Our algorithm, however, may 
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assist with this decision. Assume, an expression involving a variable x is given, 
and we apply our algorithm to it. In principle, all expressions which are equiv- 
alent to zero, are of hypergeometric type; indeed, every polynomial, especially 
the zero polynomial, is of hypergeometric type. It may happen, however, that  we 
cannot decide this since the hypergeometric type DE may not be found because 
of the lack of algebraic simplifications. If we are lucky, however, the expression 
is identified to be of hypergeometric type, in which case its series coefficients 
can be calculated, and are quotients of Pochhammer symbols. For this kind of 
expressions, however, it can be decided whether or not they are equivalent to 
zero, and so we will get the desired result. As examples, all :above mentioned 
expressions that  depend on x are recognized by the algorithm to equal zero. 

More results in this direction can be found in ([8], Sect. 10). We are convinced 
that  the use of the algorithm will lead to new identities. 

6 T h e  S e c o n d  C o n v e r s i o n  P r o c e d u r e  

The algorithm presented has a natural inverse F ~-~ f ,  calculating the function 
f from its LPS F.  We omit the details of that  procedure Convert  [F , x] that  
converts an LPS F into its equivalent function f with respect to the variable x. 
Given a formula for the general coefficient ak, the first step consists of finding 
a RE of the type (8). This step is algebraically equivalent to the search for the 
DE, presented in ([8], Sect. 5). 

The next step is then the back-substitution that  produces the left-hand side 
of the DE from the left-hand side of the RE, see ([8], Sect. 11). 

The main :part of the procedure Convert  is to solve the finally generated 
simple DE together with some initial conditions. At the moment,  with MATHE- 
MATICA Version 2.0, this is, at least in the case of DE's of order greater than 2, in 
general beyond its capabilities. On the other hand, all but very few examples that  
we tested were solved by MACSYMA'S ode procedure (version 417). By a theorem 
of Singer ([13], see e.g. [2], p. 192) there is an algorithm to decide whether the 
corresponding function has a representation in terms of elementary functions, 
in which case this representation is produced. It turns out, however, that  the 
initial value problem may involve rather complicated nonlinear equations for the 
occuring integration constants. 

This procedure Convert  moreover is able to produce a closed form represen- 
tation for (convergent) infinite sums 

O 0  

~ak 
/c=O 

whenever the numbers a~ satisfy a homogeneous, linear RE with polynomial 
coefficients Pj (j = 0 , . . . ,  M) 

M 

=o , 

j=O 
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and the generating function 

o o  

f(x) := ~ . k x  ~ 
k = 0  

of the sequence (ak) has a representation by means of elementary functions. 
Conver t  produces f ,  and finally 

(3O 

k=O 

by Abel's continuity theorem for power series (see e,g, [14], p, 149), 
This algorithm should be compared with the Gosper algorithm ([3], see e,g. 

[5], w 5,7) which finds ~ closed form representation for a sum A~ -- ~ ak with 
k=0  

variable upper bound, in the special case that  An is the n th  term of a hypergeo- 
metric function. In this case the generating function of the sequence (ak) turns 
out to be hypergeometric, too. 

Our procedure does not generate closed forms for sums with variable upper 
bound, except in the special case that  the given sequence (ak) satisfies ak = 0 
for k > n. This case, however, occurs e.g. when considering sums of products 
of binomial coefficients. Moreover, for infinite sums our algorithm has a much 
wider range of applicability. 

We consider two examples. 

1. ( I n d e f i n i t e  s u m m a t i o n )  We search for a closed formula for (n E ]IN) 

k----0 

As n E  IN, the coefficients ak := (~) = 0 for k > n s o  that  we can consider 

An as an infinite sum 

k----0 

and the method applies. The first part of the procedure Conver t  produces 
the RE 

(It -}- 1)ak+l - -  ( n  - -  ] r  = 0 

for the coefficients of the generating function 

o o  

k = 0  

which is transferred by the back-substitution into the DE 

(1 + x ) I '  - n f  = 0 



2 1 0  

. 

for f .  The initial value problem 

( l + x ) f ' - n f = 0  , f (O)  = ao = 1 

has the solution 
f ( x ) = ( l + x )  n , 

and so we have finally 

A ~ = h ~ f ( ~ ) = ( l + l )  ~ = 2  ~ , 

the desired result. 
( In f in i t e  s u m m a t i o n )  As another example we consider the infinite sum 
which cannot be treated by Gosper's algorithm 

oo ~ (_1)  k 

E ak = 2 k + l  
k = 0  k = 0  

with generating function 

X-'~176 k = S--'~176 x k f ( x )  
 2k+l " 

k----0 k = 0  

An application of the first part of procedure Convert  produces the RE for 
the coefficients ak 

(2k + 3)ak+l + (2k + 1)ak = 0 , 

which holds for k >__ 0. if we multiply this by the factor (k + 1), the resulting 
RE 

(k + 1)(2k + 3)ak+l + (k + 1)(2k + 1)ak = 0 

holds for all k C 7/. The back-substitution yields the initial value problem 

( 2 x + 2 x 2 ) f "  + ( 3 + b x ) f '  + f = O, 

for f ,  which has the solution 

f ( x )  - 

1 
f (O)  = ao = 1 ,  f ' (O)  = al  = - -~  , 

arctan v @ 

,F  

Thus the original sum has the value 

2k(-1)k+ 1 7r - -  l imf (x)  = arctan 1 = 7 " 

x I l  
k=O 

We mention that the ability to deal with the conversion of series and generating 
functions algorithmically leads to the ability to produce binomial identities (see 
e.g. [15], w 4.3), to solve recurrence equations (see e.g. [5], w 7.3), and to solve 
problems in probability theory (see e.g. [5], w 8.3). 
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7 A s y m p t o t i c  S e r i e s  

One more field where the method described can be used, are asymptotics (see 
e.g. [5], Chap. 9). Assume, a function f on the real axis is given, and we are 
interested in an asymptotic expansion, i.e. a function g for which 

lim f ( ) )  = 1 . 

Asymptotic expansions by no means are unique; indeed each function is its own 
�9 asymptotic expansion, but there may exist much simpler asymptotic expansions 
as well. It is a special property of a function f if one of its asymptotic expansions 
forms a Laurent-Puiseux series 

F := E ak (ak0 ~= 0) , 
k=ko 

and if f has such a Laurent-Puiseux asymptotic expansion (LPA), then it is 
unique. Note that  as we consider only positive values x (or complex values x 
that  lie in a certain sector) the LPA is only one-sided. 

It is now easy to see that  a slight modification of the algorithm PowerSer i e s  
can be used to produce the LPA of a function f by the following procedure: 

1. Consider h(x):= f (~-). 
2. Find a DE for h, and a RE for its one-sided series coefficients 

o o  

h(x) = E akxk/'~ (x >__ O) 
k=ko 

by the PowerSer i e s  algorithm. 
3. Find the corresponding initial values by taking one-sided limits, e.g. 

a0 := l imb(x) �9 
xlO ' ' 

and solve the RE. 
4. Finally you have 

F = ak 

k=ko 

We mention that the one-sided limits considered are complex limits if and only 
if the function h(x) := xk~ (x '~) is analytic at ~ ,  and so the corresponding 
LPA of h equals its power series representation there. Moreover the radius of 
convergence equals zero, and so F is a divergent series, if one of the one-sided 
limits considered is not a complex limit. 

S i n c e  M A T H E M A T I C A  only supports the calculation of complex limits, there 
is no direct way for an implementation of this procedure. On the other hand, 
MAPLE has some capabilities to calculate one-sided limits, and thus the MAPLE 
implementation covers asymptotic series expansions. 

We give some examples of this procedure. 
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1. Suppose f ( x )  = eX(1 - erfx/~). The algorithm leads to the DE 

2x3h" + (2x + 3x2)h ' - h = 0 

for h ( x ) =  f ( ~ )  = e 1/~ ( 1 - e f t  ~ ) ,  and the transformation via the rule 

(9) generates then the RE 

ak+l 4- kak = 0 , 

which is of hypergeometric type. The initial values lead then to the asymp- 
totic series representation 

1 ~ ( - l ) k ( 2 k ) [  ( 1 )  k+1'2 

F = x/~ k=0 4kk! 

2. If f ( x )  := xe -ZEi  (x) where Ei denotes the exponential integral function 

Ei (x) := y 
- - O O  

with a Cauchy principal value taken. We get the DE 

x2h ' ' +  ( 3 x -  1)h' + h = 0 

for h(x) = f (~), and the RE 

ak+l = (k + 1)ak 

for its coefficients, leading to the asymptotic expansion 

F =  k! 
k=0 
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