Efficient Computation of Truncated Power
Series:
Direct Approach versus Newton’s Method

Wolfram Koepf, Department of Mathematics, University ofdsal,
Heinrich-Plett-Str. 40, D-34132 Kassel, Germany,
koepf@mathematik.uni-kassel.de

Abstract

Newton’s method is used to approximate the zeros of a reatifum
f(x). In the generic case, Newton’s method is quadratically eagent, i. e.
in each step the number of correct decimal digits roughlybtisu It is
also well-known that Newton’s method can be similarly usead¢ampute
the Taylor coefficients of a functiox(t), given implicitly by f(t,x(t)) = 0,
in an iterative way such that in each iteration step the nunobeorrect
coefficients doubles.

In this paper, we present implementations of higher or@éeaiion sche-
mes generalizing Newton’s method which enable us to trigledruple,
quintuple etc. the number of correct Taylor coefficientsroimaplicitly given
function in each iteration step. These algorithms are dfrtitical interest,
but in practice they turn out to be not as efficient as the “lisNawton
method since the expression swell generated by the conplaixthe for-
mulas is higher than the advantage by the higher order of #thad.

We give examples iMathematicaand in Maple showing that in certain
cases Newton’s (implicit) method is faster than the diregplicit) compu-
tation.

Keywords: Implicit functions; computation of Taylor polynomialsgMton-Raphson
method; quadratically convergent iteration; cubic andttideration; generating
functions; Catalan numbers; Lambe#tisfunction.

1 Newton’'sMethod

A general assumption of this article is that the functiorguogng are often enough
differentiable or else they are members of a suitable diffeal field so that the
statements make sense.

In this section, the functiori : R - R should be differentiable. Then to find a
zeroé of f, one can approximate the function by its linear approxiomati

fX) ~ T(X%) + /(%) (X=X , (1)

hence the graph of is approximated by its tangent. If we are lucky (i. efifs
not too wild in a neighborhood &f), then we will get a better approximation of
if we search for a zero of (1) which gives

_ ., fe)
Xl - XO f/(XO) ’

which is the zero of the tangent considered. It is “graphyoatident” that if one
is near enough tg thenx; should be a better approximation &fthanx,, see
Figure 1.

Figure 1: Graphical representation of the Newton-Raphsethad starting at
Xy = 2.

Iterating this procedure yields the iteration scheme

f(x,)
_ , 2
70 (2)

Xn+1:Xn

which is called Newton’s method or the Newton-Raphson nekthib turns out
that this scheme converges locally (i. ex{fis near enough té) towards¢ under
very mild restrictions orf and the convergence is even quadratic under still very
mild restrictions (see e. g. [11], Satz 10.10). That the eogence is quadratic,
means that

Xnp1 = €1 S MIx, = &2
for some constar¥l € R. Note that this inequality implies that the number of
correct decimal digits roughly doubles in each iteratia@pst

The convergence of Newton’s method is generically quadrati has a zero of
order one. Assuming that(x) = (X — {) ¢(X), then one obtains (e. g. using a
computer algebra system) that

(X, — %@’ (X,)
PX,) = L@' (%) + X' (X))

which shows the quadratic effect.

X1 — (= (3)

For f(x) = x* — a, Newton’s method boils down to Heron’s method

1 a

X1 = 5| %0t X

which is a more than two thousand years old quadraticallye@ent method for
the iterative computation of the square rootaof 0. In this particular case the

guadratic convergence is given by the formula
2 2

Xt —a

}(2+1 _a= ()

2
4xe

which is easily established. Table 1 shows Heron'’s itendtio the approximation

of V0.

2 Taylor Seriesof Implicit Functions

Now assume that : R? » R, and the functiorx : R — R is given implicitly by
the equation
f(t,xt) =0

3

X
5.000

3.400
3.023529411764705882352941176470588235294117647
3.000091554131380178530556191348134584573128862
3.000000001396983862248478425258881977121085389
3.000000000000000000325260651745651330219868255
3.000000000000000000000000000000000000017632415
3.000

~No ok~ WNE OIS

Table 1: Heron’s iteration gives a 45 digits approximatidny® starting with
Xy = 5.

with one given poini(0) = X, such thatf(0,x,) = 0, hence we search again
for a zerox of f with initial value x,(t) = X,. Assume thak(t) is often enough
differentiable so that it has a Taylor polynomial approxiimia around the origin

N
Xt) = > 3 th+ oM (4)

k=0

or elsex(t) € K[[t]] for a suitable field. We can now use Newton’s method again
by setting
f(t, x, () on
A0 =X 0 - ———— + O(t*) (5)
TR

with constant starting value

Xo(t) := X%, .
Note that (5) is to be understood as an approximatidg{jh]], hence the fraction
occurring there is converted to a Taylor polynomial of deggé Therefore the
order of the Taylor approximation in theh iteration step is'2 hence doubling
the number of correct coefficients in each step. It turns bat this algorithm

is correct [1, 6], i. e., theath iteration step indeed generates@rrect initial
coefficients. This is essentially shown by (3). Note thatadty Newton himself

LIf x(ty) = X,, then one considers a Taylor expansion arduad,.

might have used this method to compute the power series afitbese function,
see e. g. [4], Chapter 8.

Note that a decimal approximation is also of type (4) with 1/10. The reason
why the number of decimal places in thi iteration step only doubles “approxi-
mately” is given by the fact that sineg € {0, ..., 9} in decimal arithmetic carries
occur. This is not the case for Taylor expansions, wieggre K for some field
K, e. g.K = R orK = Q. Here the contributions for the coefficientst8fare
completely independent of the contributiongte'. This is unfortunately not so
for the decimal case. Therefore in this sense Newton’s ndathtsimpler” in the
Taylor case than in the decimal case.

We will give an example for this method in Section 4.

3 Higher Order Iteration Schemes

Next, we will develop a cubic scheme. Rather that lineagzinas we did for
Newton’s method, we can use a second-order approximation

f//(xo)

f(x) ~ f(xy) + f'(xo)(x—xo)+7(x—xo)2, (6)

hence the graph df is now approximated by a fitting parabolaxgt To linearize
the computation again, we can approximate the quadratic ter x,)? in (6)

by —(X — Xy) %’ hence replacing one of these factors by Newton'’s formula (2
Therefore we solve the equation

f(x,) f
0= 00) + 10 00— 3) = <2 28 tx—x)
which gives
2 (%) /(%)

X, = -)
1 XO 2 f/(XO)Z _ f”(xo) f(xo)
and iteratively
2f(x) f'(x)

- : 7
T 2107~ 10 fxy)
Note that this iteration formula is more complicated thanwddm’s (2). This
method is attributed to Halley [8]. Its cubic convergence ff(x) = (X — £) ¢(X)

Xn+1 =

5

results from the computation
X1 = £ = 06 = 0% (006" 06) = 20(%)?) /

(= 26700028 + 006 (6 + AL¢ (X)X, = 2006)' (%)%,
200" (%)%= 29057 = 2020 (%, + 2L (X, (%) + L2000 ()

For f(x) = x* — a, the method boils down to a method given by Dedekind [3]

_%06-39)
X1 = 3¢ +a

which is a cubic iterative method for the computation of thaage root ofa. In
this particular case the cubic convergence is given by timadta

3
2 4 bﬁ"@
Xp—a= 32 +ay

Table 2 shows Dedekind’s iteration for the approximation/6t

Xn

5.000
3.095238095238095238095238095238095238095238095
3.000022888270905574438379052654467218273995491
3.000000000000000333066907387546980616016966545

3.000

A WNPEF OIS

Table 2: Dedekind’s iteration for a 45-digits approximatiof v/9 starting with
Xy = 5.

We can now iterate the above method to get algorithms of higtaker. In the next
step, we use a cubic approximationfof

f//(xo)
2

fl/l
FX) ~ (%) + /(%) (X=X%p) + (X—xo)z+¥(X—xo)3- (8)

To linearize the computation again, we can approximateulae gtic ternix—x,)?
in (8) by —(x — X,) Zf,(inf)?i“i,f(’i:;)f(xn), hence replacing one of these factors by the
formula (7) of the last iteration, and similarly for the remag cubic factor in

(8). Solving forx leads to the iteration

3104 (2106)% = Foo)f N(Xn))z_
2f"(x,)

Xn+1 = Xn (9)

1
BF0x,)* =9 0¢,) £ (3%,) £ ()% + F ()7 77 () T/ (%) +3F () ? £ (%)
Note that this iteration formula is again much more compéidahan the previous
one (7). That this method is generically quartic convergeshown in a similar
way as before with a lengthy result of the form
X1 — ¢ = % = O Hg, %, 0) .

For a different fourth order scheme (Householder’'s metked)[18], [9], [17] and
[21].

X,
5.00

3.02352941176470588235294117647058823529411765
3.00000000139698386224847842525888197712108539
3.00000000000000000000000000000000000001763241
3.00

A WNPEF OIS

Table 3: Fourth order iteration for a 45-digits approxiroatof v/9 starting with
Xy = 5.

For f(x) = x?—a, the above method was considered in [13], and gives thdiiara

scheme
_ X} + 6ax? + a?

T4 (@ + a)
which is a quartic iterative method for the computation @ sigjuare root od. In
this particular case the quartic convergence is given byaimeula

g G-a
16C0E +a)°

2
+1

7

Table 3 shows this quartic iteration for the approximation/@.

Iterating the above procedure yields algorithms of highnet laigher order. The
formulas connected with these algorithms get more and meodved thouglt. In
the next section we will consider these algorithms for theajgotation of Taylor
approximations.

4 Generating the Catalan Numbersusing Newton’s
Method

The well-known Catalan numbe@; are generated by the function

X(t) = Z C, t
k=0

satisfying the implicit equation
ft,x)=tx*-x+1=0 (10)

with the initial valuex(0) = 1. Of course, in this specific example one can easily
solve the quadratic equation (10) and gets the expliciesgrtation

Vi—4t-1
2t

of the generating functior(t) from which one can deduce the series representa-

tion
Vi-4 —122 1 (2K)
2t k:O k

X(t) =

X = K+l

(using the binomial series, or algorithmically, see e. §])%o that the represen-
tation

1 [(2k
G= i1 (k) (11)
for the Catalan numbers is valid.

Nevertheless, to demonstrate the method we would like topotenthe Catalan
sequence iteratively using the quartic method given ini&e&. To compute the

2The printout of the fifth order iteratiox,,; = g(x,) is already half a page long.

8

first 64 Catalan numbers using this method needs onlydég- 3 iteration steps.
Below this computation is given usingathematic420].3

We define
In[1]:= n =63
Qut[1] = 63

Inf[2]:=x0 =1
Qut[2]=1

In[3]:=f =tx2-x+1
Qut[3]=tx®-x+1

In[4]:= F[z_]1 =Normal [(f/.x > 2z) +O[t 1"*]
Qut[4]= tx2-x+1

and the quartic Newton term (9):

I n[5]:= quartic :=
Normal [(# - (3F[#]
((2F [#1%-)
FL#1 F [#1)%)/
(2F'[#]
(6 F' [#]*-
OF [#] F [#]12F" [#]+
3F[#1%2 F [#]1%+
FI#1° F [#]
F”"[#1)))&[approx 1]

With
I n[6] := approx =x0
Qut[6]=1

we can now start the first iteration:

Inf[7]:= k=1
Qt[7]=1

We apply the quartic Newton term (9):

3For the computations in this paper, we usddthematicss.2 andMaple 11.

I n[8] : = approx = quartic
1 3t (22t - 1% - 2t%)°
22t -1)(12t* - 182t - 1?2+ 6(2t — 1Y

Qut [8]
In the given case, this yields a rational function. In thetfitsration step this
function must be converted towards a Taylor polynomial ofieation order 4:

In[9]:
Qut[9]

approx = Normal [approx + Ot]4k]
5t3+2t2+t+1

The second iteration yields:

In[10]:= k=2

Qut [10]

I n[11]: = approx = quartic ;

In this step, the termination order i$:4

In[12]: = approx = Normal [approx +O[t]4k]

Qut [12] = 9694848 + 2674444 + 7429003+
20801212 + 58786t + 1679610+
4862t° + 1430t8 + 429t7 + 132t%+
4215 + 144 + 53 + 212+t + 1

Finally the third iteration gives the requested 64 corréattsig coefficients:

In[13]: = k = 3
Qut [13] =

I n[14] : = approx = quartic ;

In[15] : = approx = Normal [approx +O[t]4k]

Qut [15] = 94295850558771979787935384946380F25
24139737743045626825711458546273812
6182127958584855650487080847216(5836
1583850964596120042686772779038586
40594499512757698573064344336 7112
104088460289122304033498318812(780
26700952856774851904245220912684
68524569278448734975496584648F2
1759414616608818870992479875972
4519597180279534714476095094%4

10

11615787145578243425055384538%
29869166945772625950142417%%2+

7684785670514316385230816136+
1978261657756160653623774458+
509552245179617138054608572+
131327898242169365477991998+
338687737571910468864294606+
8740328711533173390046376+
22571178540772480732537¢0+
583300119592996693088041+
150853479205085351660765+
39044429911904443959245+
10113918591637898134028 +
262212704227649210882P+
6804253717299758003%¢°-+
1767338627870067014@8°+
45950804324621742364"+
1195979838586045349%+
3116285494907301263°+
812944042149730764%+
212336130412243118° + 55534064877048198%+
14544636039226908" + 3814986502092304°+
1002242216651368° + 2637479517503668+
69533550916004' + 18367353072158%%+
4861946401459° + 1289904147324+
3430596136507° + 91482563640%%+
24466267020° + 6564120420°°+
176726319Q*° + 47763870018 + 1296447901+
353576701 + 9694845:1° + 267444024+
742900t12 + 208012112 + 58786t 1+

16796t10 + 4862t° + 1430t8 + 429t"+

132t% + 42t° + 14t* + 53 + 22+t + 1

11

Note, however, that to compute the first 1024° = 2° Catalan numbers using
five iterations of this quartic scheme is more time consuntirag 10 iterations
of the “normal” Newton method. This is evident since thedtem step given by
formula (9) needs more than the double amount of computatseriteration step
(2). Unfortunately, none of the regarded higher order mdthse therefore sym-
bolically more efficient than the original version. Nevetiss, in our opinion,
the designed higher order algorithms are of theoreticarest. With regard to
computations with decimal arithmetic, if the underlyingrfulas are compiled,
the higher order schemes should be more efficient. Detadstaimings with
Mathematic420] andMaple[16] can be found in Tables 4-45.

Newton (2) quartic (9) formula(11) hypergeom.
n=2%10 2.16 4.0 0.14 0.03
n=2% 217 438 6.5 0.06

Table 4: Several methods to compute the fir€€atalan numbers usingathe-
matica

Newton (2) quartic (9) formula(11) hypergeom.
n=2%10 3.83 19.0 2.47 0.078
n=2% 0 o 71.6 1.74

Table 5: Several methods to compute the fir€tatalan numbers usingaple

It is interesting to note that iMaple the “closed formula” (11) is not much more
efficient than the Newton iteration! The reason for thisuielis that the computa-
tion of the binomial coefficients is not efficient enough. §ban be resolved by a
“hypergeometric computation” (see [12]) of the truncatedesy;_, C, t* using,
e. g., the code

cat al ansum =pr oc(n)
| ocal tnp, summ k;
tnp: =1; summ =1;
for k from1 to n do

4All timings are in seconds and were done with Mathematicd Maple 11 and a laptop with
Intel Core Duo T 2600, 2.16 GHz CPU and 2 GB RAM. The signdicates that the computation
took longer than one hour.

12

tnp: =2x(2xk-1)/ (k+1) *t np;
summ =sunmmtt npxt "~k
end do;

summ
end proc:

This computation uses exclusively rational arithmeticndeeno factorials and
only simple gcd computations are necessary.

This gives the last column of Table 5. A similar computatianMathematica
usingAppl y gives the last column in Table 4.

Nevertheless, if no “closed form” is available — and undetaie circumstances
even with closed form — then Newton’s method is a very efficreathod to com-
pute the Taylor coefficients of an implicitly given functiohhis will be shown in

the next section.

5 Further Examples

If we write the steps of Newton’s method as a complhematicgorocedure,
we get [15]

I n[16] : = FastimplicitTaylor (f,x [t 1, x0_,n_]:=
Module [{F, z, approx },
Flz_] :=

Normal [(f/.Xx—>2) +O[t] " (n+1)1];
approx =x0;
Dol
approx =
Normal [# - F[#]1/ F' [#]&[approx]
+O[t 1" (2k) 1,
{k, 1, Log[2, n+11}1;
approx +O[t]” (n+1)
1/ ; IntegerQ [Log[2, n+1]]

where—for simplicity—we assume that- 1 is a power of 2. The corresponding
Maple code used for the Newton scheme is given as

SSimilary in the quartic scheme we assume thatl is a power of 4, e. g.

13

FastInplicitTayl or:=proc(f,x,t,x0,n)

| ocal G i, approx;

if not(type(sinplify(log[2](n+l)),integer))
then return 'procnanme(args)’

end if;

G =z->normal (subs(x=z,x-f/diff(f,x)));
appr ox: =x0;

for i from1l to sinplify(log[2](n+l)) do
appr ox: =convert (seri es(approx),t=0, 2"i), pol ynom ;
end do;

convert (series(approx,t=0,n+l), pol ynom;
end proc:

In this section, we would like to give some more examples toiuse. We are
interested particularly in examples for which this meth®thsterthan the direct
computation of the Taylor coefficients of @&xplicitly given function. Although
this seems to be a rather venturous wish, it neverthelessaapen. To com-
pute the Taylor coefficients of an explicitly given functidaylor approximations
for all subexpressions are computed and combined. HencéoNawnethod will
be most efficient if the subexpressions of the implicit repreation have easier
computable Taylor approximations than the subexpressarthe given explicit
expression. We will show that for this reason under certaitumstances New-
ton’s method can be faster.

As an example of this type we compute the Taylor polynomial fo

. 3t
X(t) = tan(sint) =t + 8~ 70 + e
up to order 8. We rewrite the equation
X = tan(sint) 12)
implicitly as
arctarx —sint = 0 (13)

and using Newton’s method we compute therefore

In[17]:= Timing [
serl = FastimplicitTaylor [
ArcTan [Xx] -Sin [t], x[t], O,
2% -11;1
Qut [17] = {1.875 SecongNull}

14

which takes about two seconds. However, the direct comipuataising (12)

I n[18]: = Timing [
ser2 = Series [Tan[Sin [t]],
{t,0,2°-1}1;1]
Qut [18] = {106.36 SecongNull}

which — of course — gives the same result

In[19]: = serl -ser2
Qut[19] = O(t?°)

has a much longer computation time. The higher the orderlatfyer the gap
between these two methods. The reason is the complicatéor Tapresentation
(seee.qg.[19], p. 472)

© 22k 22k -1
tant = Z(—l)k+1¥
k=1

o B, t%? (14)

which (at least asymptotically) cannot be computed veryciefiitly since the
Bernoulli numbersB, are difficult to compute [5]. On the other hand, all Tay-
lor approximations of the implicit equation (13), namelgtanx and sirt have
hypergeometric representations

1
arctanx = Z Z(k +) 7X G

: N (_1)k 2k+1
sint = —t ,
;ﬁ 2k + 1)!

and can be computed very efficiently. For the tangent fundicch a simple rep-
resentation does not exist (see e. g. [15], Satz 10.11). ®eese is the situation
for the examplex(t) = tan€ — 1), see Table 6.

Note, however, that iMaplethe situation is different sind&laple computes these
explicit Taylor polynomials much faster, see Table 6. Whsiaples ser i es
command needs 1.8 seconds to compute the Taylor polynofiéadtoof order 2°
using probably (14)Mathematicaneeds 87 seconds for the same purpose. This
proves thaMathematicdunnily seems not to use (14) for the computation of the
tangent series. But even Maple nevertheless, fax = tan(sint) asymptotically

the direct method should be slower than Newton. Howeves,dannot be tested
since already fon = 21° Maplethe Newton computation is out of memory.

15

However, there are also examples for whidaple's seri es command is very
weak, and Newton wins the game. This is so in particular i€ligic functions
occur. We have considered the exampigs — 1—In(1+1t) = 0 and(1-t3) x(t)? -
(1 +t?) = 0 which show this effect, see Table 6.

X(t) tansint) Newton| tané —1) Newton

Maple 1.0 3.9 2.1 7.2
Mathematica 106 1.9 525 6.9
xt) | YI+InT+1) Newton Lt Newton

Maple 54 10.3 392 11.0
Mathematica 1.0 5.0 2.4 11.7

Table 6: Explicit and implicit computation of Taylor appimations of order 2(
last example order?).

Whereas, in the previous examples we considered compaositéidns, in some
instances, even the computation of the Taylor polynomial gbrimitive” func-
tion via Newton’s method may be faster than the “direct” comagion. InMath-
ematicathis is so, for example, for the inverse error functiawwer sekr f , the
inverse of the error function

2 (M .
erf(t):—f e dx
Vr Jo

as is shown by the computations

I n[20] : = Timing [
serl = FastimplicitTaylor [Erf [x]-t,

x[t1,0,2"-11;1
Qut [20] = {13.953 SecongNull}

In[21]:= Timing [
ser2 = Series [InverseErf [t],

{t,0,2"-131:1

Qut [21] = {21515 SecongNull}

In[22]:= serl -ser2
Qut [22] = O(t1?8

16

In this research | realized that computer algebra systekas\iathematicaand
Maple seem to use quite different methods to compute Taylor polyals of
“primitive” expressions that represe@Q{[x]] series. As seen above, well-known
formulas are sometimes just ignored so that the computainoes are indis-
putable. Table 7 gives some more examples showing thistéffec

X(t) | sint arcsint | tant arctart | cott arccot

Maple| 0.2 0.2/ 1.8 2.2 2.2 7.2

Mathematica] 0.02 0.02| 87 0.05| 126 o
xt) | erft)y erfit)| t& W)
Maple 0.7 47.4) 0.0 0.4
Mathematical 0.05 ¢ | 0.01 0.4

Table 7: Computation of Taylor approximations of ordé? for some inverse
functions.

Of course, cot is not aQ[[x]] series but has a pole of order one. This, however,
is not essential since there is a formula similar to (14) ésege [19], p. 472)

22k

2k-1
G Bat™

1 (o)
cott = = + Z(—l)k
t k=1

Mathematica’'problem with arccat is the branch cut of the principal value at the
origin. This leads for example to the output
In[23] : = Series [ArcCot [t], {t, 0, 5}]

_ 3 t° 6], 1, gy 2apu)
OJt[23]—(—t+§—§+0(t))+§(—1) bis
Therefore, the computation times for arctaand for arccot are quite different
with Mathematicaalthough for positive-values the relation

arctart + arccot = g
is valid. Maple decides instead for the specific branch given by arccet§.

Therefore the computation times are much better. Howeveliye a fair compar-
ison between the timings dflapleand Mathematicave should note tha¥aple's

5Note that the inverse error function €ttt) is denoted byrRoot Of (- er f (_Z) +t) in Maple

17

ser i es command does not ensure the requested order. It just cogiatday-
lor polynomials of the parts of the input expression and doebthem. Therefore
as result of the command

series(sin(x)/x¥ x=0, 21);
we get for example
1+ 0O(xtY .

Whereas the requested order is 20, the output has order 1Q0mila®y
series(tan(sin(t®)/sin(tan(t®),t=0,15); hasordeO(t!). On

the other handMathematicaises an adaptive approach producing the correct re-
sult

i 1y 10

I n[24] : = Series [Smx[f)é] {x, 0, 20}]
_ x*0 21

Qut[24] = 1- - +O(%)

Of courseMathematic& method is inherently more time consuming. Whereas
Maples method is easy to implement, but does not generally giga¢lquested
answerMathematica implementation ensures always the required order.

Some other special functions are better implementddathematica The com-
putation of the Taylor polynomial of the inverse functionxot t €, the so-called
LambertW functior, is quite efficient as can be also seen from Table 7. Note that
for this example obviously the formula (see e. g. [2])

kk— 1

Wi(t) = Z(—l)"‘l o tk
k=1 '

is utilized in both systems. Therefore, the explicit fornoigourse more efficient
than Newton’s implicit method. However, by changing theirigtive function”
slightly and considering the implicit equatior®” —t = 0 and therefore

o= 2L

t2
w(2t?)

Newton’s method gains again and winsMaple see the last entry of Table 8.

named_anber t Win MapleandPr oduct Log in Mathematica

18

xt) | W(t) Newton| —2L_ Newton

2
Maple | 0.02 4.5 5.3 0.7
Mathematical 0.02 6.5 0.9 1.2

Table 8: Explicit and implicit computation of Taylor appimations of order 2

Conclusion

In this paper we showed how Newton’s method can be extendeuber order
schemes for the computation of truncated power series $athtite number of
correct coefficients doubles, triples etc. in each iterasi@p.

Then we indicated how Newton’s method can be used for the atatipn of
truncated power series Maple and inMathematicasystems that have collected
know-how and experience for 28 and 20 years, respectivegveNheless as a
result it turns out that in many instances the implicit usé&efvton’s method is
faster than the built-in direct computations.

Acknowledgment

| would like to thank Peter Larcombe who was interested initifrative compu-
tation of the Catalan numbers which initiated the currestaech.

References

[1] Brent, P. P., and Kung, H. T.: Fast algorithms for manging formal power
series. Journal of the ACNI78, 1978, 581-595.

[2] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, Dahd Knuth, D,
E.: Onthe LambeNV function. Advances in Computational Mathema#gs
1996, 329-359.

[3] Dedekind, R.: Stetigkeit und irrationale Zahlen/ieweg, Braunschweig,
1965.

19

[4] Edwards, C. H.:The Historical Development of the Calculi@pringer, New
York, Berlin, 1979.

[5] Fee, G. and Plouffe, S.: An efficient algorithm for the qmrtation of
Bernoulli numbers. arXiv:math/0702300v2 [math.NT]

[6] von zur Gathen, J., Gerhard, Modern Computer Algebr&ambridge Uni-
versity Press, Cambridge, 1999.

[7] Graham, R. L., Knuth, D. E. and Patashnik, @oncrete Mathematics. A
Foundation for Computer Scienc&ddison-Wesley, Reading, Massachus-
sets, second edition, 1994.

[8] Halley, E.: A new, exact, and easy method of finding rodtary equations
generally, and that without any previous reduction (LatPhilos. Trans.
Roy. Soc. Londorl8, 1694, 136-148. English translation: Philos. Trans.
Roy. Soc. Londor3, 1809, 640-649.

[9] Kalantaria, B., Kalantari, I. and Zaare-Nahandici, R basic family of itera-
tion functions for polynomial root finding and its charactations. J. Comp.
Appl. Math.80, 1997, 209-226.

[10] Koepf, W.: Power series in computer algebra. J. Syncb@bmputatiorl3,
1992, 581-603.

[11] Koepf, W.: Mathematik mit DERIVE Vieweg, Braunschweig/Wiesbaden,
1993.

[12] Koepf, W.: Efficient computation of Chebyshev polynafsi In: M. Wester
(Ed.): Computer Algebra Systems: A Practical Guidehn Wiley, Chich-
ester, 1999, 79-99.

[13] Koepf, W.: DERIVE fir den Mathematikunterrichtvieweg, Braun-
schweig/Wiesbaden, 1998.

[14] Koepf, W. and Schmersau, D.Die reellen Zahlen als Fundament und
Baustein der Analysi©ldenbourg, Munich, 2000.

[15] Koepf, W.: ComputeralgebraSpringer, Berlin—Heidelberg—New York,
2006.

20

[16] Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G.rkéetter, S.
M., McCarron, J., DeMarco, P.: Maple ®dvanced Programming Guide.
Maplesoft, Waterloo, 2003.

[17] Sebah, P, Gourdon, X.: Newton's method and high ordenr- it
ations, http:// nunbers. conput ati on. free. fr/ Const ants/
Al gorit hns/ newt on. ht m , 2001.

[18] Snyder, R. W.: One more correction formula. Amer. Ma#onthly 62,
1955, 722-725.

[19] Stocker, H.:Taschenbuch mathematischer Formeln und moderner Ventahre
Harri Deutsch, Frankfurt, 4. Auflage, 1999.

[20] Wolfram, St.: The Mathematica BookNolfram Media und Cambridge Uni-
versity Press. Fourth Edition, Cambridge, 1999.

[21] Wikipedia: Householders’'s Methodht t p: // en. wi ki pedi a. or g/
wi ki / Househol der’ s_net hod, 2007.

[22] Ypma, T.Y.: Historical development of the Newton-Raph method. SIAM
Review37, 1995, 531-551.

21

