
Efficient Computation of Truncated Power
Series:

Direct Approach versus Newton’s Method

Wolfram Koepf, Department of Mathematics, University of Kassel,
Heinrich-Plett-Str. 40, D-34132 Kassel, Germany,

koepf@mathematik.uni-kassel.de

Abstract

Newton’s method is used to approximate the zeros of a real function
f (x). In the generic case, Newton’s method is quadratically convergent, i. e.
in each step the number of correct decimal digits roughly doubles. It is
also well-known that Newton’s method can be similarly used to compute
the Taylor coefficients of a functionx(t), given implicitly by f (t, x(t)) = 0,
in an iterative way such that in each iteration step the number of correct
coefficients doubles.

In this paper, we present implementations of higher order iteration sche-
mes generalizing Newton’s method which enable us to triple,quadruple,
quintuple etc. the number of correct Taylor coefficients of an implicitly given
function in each iteration step. These algorithms are of theoretical interest,
but in practice they turn out to be not as efficient as the “usual” Newton
method since the expression swell generated by the complexity of the for-
mulas is higher than the advantage by the higher order of the method.

We give examples inMathematicaand inMaple showing that in certain
cases Newton’s (implicit) method is faster than the direct (explicit) compu-
tation.

Keywords: Implicit functions; computation of Taylor polynomials; Newton-Raphson
method; quadratically convergent iteration; cubic and quartic iteration; generating
functions; Catalan numbers; Lambert’sW function.

1

1 Newton’s Method

A general assumption of this article is that the functions occurring are often enough
differentiable or else they are members of a suitable differential field so that the
statements make sense.

In this section, the functionf : R ® R should be differentiable. Then to find a
zeroΞ of f , one can approximate the function by its linear approximation

f (x) » f (x0) + f ¢(x0) (x - x0) , (1)

hence the graph off is approximated by its tangent. If we are lucky (i. e. iff is
not too wild in a neighborhood ofΞ), then we will get a better approximation ofΞ
if we search for a zero of (1) which gives

x1 = x0 -
f (x0)

f ¢(x0)
,

which is the zero of the tangent considered. It is “graphically evident” that if one
is near enough toΞ then x1 should be a better approximation ofΞ thanx0, see
Figure 1.

-1 1 2 3

-1

1

2

Figure 1: Graphical representation of the Newton-Raphson method starting at
x0 = 2.

Iterating this procedure yields the iteration scheme

xn+1 = xn -
f (xn)

f ¢(xn)
, (2)

2

which is called Newton’s method or the Newton-Raphson method. It turns out
that this scheme converges locally (i. e. ifx0 is near enough toΞ) towardsΞ under
very mild restrictions onf and the convergence is even quadratic under still very
mild restrictions (see e. g. [11], Satz 10.10). That the convergence is quadratic,
means that

|xn+1 - Ξ| 5 M |xn - Ξ|
2

for some constantM Î R. Note that this inequality implies that the number of
correct decimal digits roughly doubles in each iteration step.

The convergence of Newton’s method is generically quadratic if f has a zero of
order one. Assuming thatf (x) = (x - Ζ) j(x), then one obtains (e. g. using a
computer algebra system) that

xn+1 - Ζ =
(xn - Ζ)

2j¢(xn)

j(xn) - Ζj
¢(xn) + xnj

¢(xn)
, (3)

which shows the quadratic effect.

For f (x) = x2 - a, Newton’s method boils down to Heron’s method

xn+1 =
1
2
Kxn +

a
xn
O

which is a more than two thousand years old quadratically convergent method for
the iterative computation of the square root ofa > 0. In this particular case the
quadratic convergence is given by the formula

x2
n+1 - a =

Ix2
n - aM2
4x2

n

which is easily established. Table 1 shows Heron’s iteration for the approximation
of
0

9.

2 Taylor Series of Implicit Functions

Now assume thatf : R2 ® R, and the functionx : R ® R is given implicitly by
the equation

f (t, x(t)) = 0

3

n xn

0 5.000
1 3.400
2 3.023529411764705882352941176470588235294117647
3 3.000091554131380178530556191348134584573128862
4 3.000000001396983862248478425258881977121085389
5 3.000000000000000000325260651745651330219868255
6 3.000000000000000000000000000000000000017632415
7 3.000

Table 1: Heron’s iteration gives a 45 digits approximation of
0

9 starting with
x0 = 5.

with one given pointx(0) = x0 such thatf (0, x0) = 0,1 hence we search again
for a zerox of f with initial value x0(t) = x0. Assume thatx(t) is often enough
differentiable so that it has a Taylor polynomial approximation around the origin

x(t) =
Nâ

k=0

ak tk + O(tN+1) (4)

or elsex(t) Î K[[t]] for a suitable fieldK. We can now use Newton’s method again
by setting

xn+1(t) = xn(t) -
f (t, xn(t))
¶ f
¶x (t, xn(t))

+ O(t2n
) (5)

with constant starting value
x0(t) := x0 .

Note that (5) is to be understood as an approximation inK[[t]], hence the fraction
occurring there is converted to a Taylor polynomial of degree 2n. Therefore the
order of the Taylor approximation in thenth iteration step is 2n, hence doubling
the number of correct coefficients in each step. It turns out that this algorithm
is correct [1, 6], i. e., thenth iteration step indeed generates 2n correct initial
coefficients. This is essentially shown by (3). Note that already Newton himself

1If x(t0) = x0, then one considers a Taylor expansion aroundt = t0.

4

might have used this method to compute the power series of theinverse function,
see e. g. [4], Chapter 8.

Note that a decimal approximation is also of type (4) witht = 1/10. The reason
why the number of decimal places in thenth iteration step only doubles “approxi-
mately” is given by the fact that sinceak Î {0,¼, 9} in decimal arithmetic carries
occur. This is not the case for Taylor expansions, whereak Î K for some field
K, e. g.K = R or K = Q. Here the contributions for the coefficients oftn are
completely independent of the contributions totn+1. This is unfortunately not so
for the decimal case. Therefore in this sense Newton’s method is “simpler” in the
Taylor case than in the decimal case.

We will give an example for this method in Section 4.

3 Higher Order Iteration Schemes

Next, we will develop a cubic scheme. Rather that linearizing f as we did for
Newton’s method, we can use a second-order approximation

f (x) » f (x0) + f ¢(x0) (x - x0) +
f ¢¢(x0)

2
(x - x0)

2 , (6)

hence the graph off is now approximated by a fitting parabola atx0. To linearize
the computation again, we can approximate the quadratic term (x - x0)

2 in (6)
by -(x - x0)

f (x0)

f ¢(x0)
, hence replacing one of these factors by Newton’s formula (2).

Therefore we solve the equation

0 = f (x0) + f ¢(x0) (x - x0) -
f ¢¢(x0)

2
f (x0)

f ¢(x0)
(x - x0) ,

which gives

x1 = x0 -
2 f (x0) f ¢(x0)

2 f ¢(x0)
2 - f ¢¢(x0) f (x0)

,

and iteratively

xn+1 = xn -
2 f (xn) f ¢(xn)

2 f ¢(xn)
2 - f ¢¢(xn) f (xn)

. (7)

Note that this iteration formula is more complicated than Newton’s (2). This
method is attributed to Halley [8]. Its cubic convergence for f (x) = (x - Ζ) j(x)

5

results from the computation

xn+1 - Ζ = (xn - Ζ)
3 Ij(xn)j

¢¢(xn) - 2j¢(xn)
2M �

J - 2j¢(xn)
2x2

n + j(xn)j
¢¢(xn)x

2
n + 4Ζj¢(xn)

2xn - 2j(xn)j
¢(xn)xn

-2Ζj(xn)j
¢¢(xn)xn-2j(xn)

2-2Ζ2j¢(xn)
2+2Ζj(xn)j

¢(xn)+Ζ
2j(xn)j

¢¢(xn)N .

For f (x) = x2 - a, the method boils down to a method given by Dedekind [3]

xn+1 =
xn (x

2
n - 3a)

3x2
n + a

which is a cubic iterative method for the computation of the square root ofa. In
this particular case the cubic convergence is given by the formula

x2
n+1 - a =

Ix2
n - aM3

(3x2
n + a)2

.

Table 2 shows Dedekind’s iteration for the approximation of
0

9.

n xn

0 5.000
1 3.095238095238095238095238095238095238095238095
2 3.000022888270905574438379052654467218273995491
3 3.000000000000000333066907387546980616016966545
4 3.000

Table 2: Dedekind’s iteration for a 45-digits approximation of
0

9 starting with
x0 = 5.

We can now iterate the above method to get algorithms of higher order. In the next
step, we use a cubic approximation off

f (x) » f (x0) + f ¢(x0) (x - x0) +
f ¢¢(x0)

2
(x - x0)

2 +
f ¢¢¢(x0)

6
(x - x0)

3 . (8)

6

To linearize the computation again, we can approximate the quadratic term(x-x0)
2

in (8) by -(x - x0)
2 f (xn) f ¢(xn)

2 f ¢(xn)
2- f ¢¢(xn) f (xn)

, hence replacing one of these factors by the
formula (7) of the last iteration, and similarly for the remaining cubic factor in
(8). Solving forx leads to the iteration

xn+1 = xn -
3 f (xn) I2 f ¢(xn)

2 - f (xn) f
¢¢(xn)M2

2 f ¢(xn)
× (9)

1

6 f ¢(xn)
4-9 f (xn) f

¢¢(xn) f
¢(xn)

2+ f (xn)
2 f ¢¢¢(xn) f

¢(xn)+3 f (xn)
2 f ¢¢(xn)

2 .

Note that this iteration formula is again much more complicated than the previous
one (7). That this method is generically quartic convergentis shown in a similar
way as before with a lengthy result of the form

xn+1 - Ζ = (xn - Ζ)
4 H(j, xn, Ζ) .

For a different fourth order scheme (Householder’s method)see [18], [9], [17] and
[21].

n xn

0 5.00
1 3.02352941176470588235294117647058823529411765
2 3.00000000139698386224847842525888197712108539
3 3.00000000000000000000000000000000000001763241
4 3.00

Table 3: Fourth order iteration for a 45-digits approximation of
0

9 starting with
x0 = 5.

For f (x) = x2-a, the above method was considered in [13], and gives the iteration
scheme

xn+1 =
x4

n + 6a x2
n + a2

4xn (x
2
n + a)

which is a quartic iterative method for the computation of the square root ofa. In
this particular case the quartic convergence is given by theformula

x2
n+1 - a =

(x2
n - a)

4

16x2
n(x

2
n + a)

2 .

7

Table 3 shows this quartic iteration for the approximation of
0

9.

Iterating the above procedure yields algorithms of higher and higher order. The
formulas connected with these algorithms get more and more involved though.2 In
the next section we will consider these algorithms for the computation of Taylor
approximations.

4 Generating the Catalan Numbers using Newton’s
Method

The well-known Catalan numbersCk are generated by the function

x(t) =
¥â

k=0

Ck tk

satisfying the implicit equation

f (t, x) = t x2 - x + 1 = 0 (10)

with the initial valuex(0) = 1. Of course, in this specific example one can easily
solve the quadratic equation (10) and gets the explicit representation

x(t) =

0
1- 4 t - 1

2t

of the generating functionx(t) from which one can deduce the series representa-
tion

x(t) =

0
1- 4 t - 1

2t
=

¥â
k=0

1
k + 1
K2k

k
O tk

(using the binomial series, or algorithmically, see e. g. [10]) so that the represen-
tation

Ck =
1

k + 1
K2k

k
O (11)

for the Catalan numbers is valid.

Nevertheless, to demonstrate the method we would like to compute the Catalan
sequence iteratively using the quartic method given in Section 3. To compute the

2The printout of the fifth order iterationxn+1 = g(xn) is already half a page long.

8

first 64 Catalan numbers using this method needs only log4 64= 3 iteration steps.
Below this computation is given usingMathematica[20].3

We define

In[1]:= n = 63

Out[1]= 63

In[2]:= x0 = 1

Out[2]= 1

In[3]:= f = t x 2 - x + 1

Out[3]= t x2 - x + 1

In[4]:= F[z_] = Normal [(f /.x ® z) +O[t]n+1]

Out[4]= t x2 - x + 1

and the quartic Newton term (9):

In[5]:= quartic :=

Normal AI# - I3 F[#]

((2 F¢[#]2
-)

F[#] F¢¢[#])2M�
(2 F¢[#]

(6 F¢[#]4-

9 F[#] F¢[#]2 F¢¢[#]+

3 F[#]2 F¢¢[#]2+

F[#]2 F¢[#]

F¢¢¢[#]))M&[approx]E

With

In[6]:= approx = x0

Out[6]= 1

we can now start the first iteration:

In[7]:= k = 1

Out[7]= 1

We apply the quartic Newton term (9):

3For the computations in this paper, we usedMathematica5.2 andMaple 11.

9

In[8]:= approx = quartic

Out[8]= 1-
3 t (2 (2 t - 1)2 - 2 t2)

2

2 (2 t - 1) (12t4 - 18 (2 t - 1)2 t2 + 6 (2 t - 1)4)

In the given case, this yields a rational function. In the first iteration step this
function must be converted towards a Taylor polynomial of termination order 41:

In[9]:= approx = Normal Aapprox +O[t]4kE
Out[9]= 5 t3 + 2 t2 + t + 1

The second iteration yields:

In[10]:= k = 2

Out[10]= 2

In[11]:= approx = quartic ;

In this step, the termination order is 42:

In[12]:= approx = Normal Aapprox +O[t]4kE
Out[12]= 9694845t15+ 2674440t14 + 742900t13+

208012t12+ 58786t11+ 16796t10+

4862t9 + 1430t8 + 429t7 + 132t6+

42 t5 + 14t4 + 5 t3 + 2 t2 + t + 1

Finally the third iteration gives the requested 64 correct starting coefficients:

In[13]:= k = 3

Out[13]= 3

In[14]:= approx = quartic ;

In[15]:= approx = Normal Aapprox +O[t]4kE
Out[15]= 94295850558771979787935384946380125t63+

24139737743045626825711458546273312t62+

6182127958584855650487080847216336t61+

1583850964596120042686772779038896t60+

405944995127576985730643443367112t59+

104088460289122304033498318812080t58+

26700952856774851904245220912664t57+

6852456927844873497549658464312t56+

1759414616608818870992479875972t55+

451959718027953471447609509424t54+

10

116157871455782434250553845880t53+

29869166945772625950142417512t52+

7684785670514316385230816156t51+

1978261657756160653623774456t50+

509552245179617138054608572t49+

131327898242169365477991900t48+

33868773757191046886429490t47+

8740328711533173390046320t46+

2257117854077248073253720t45+

583300119592996693088040t44+

150853479205085351660700t43+

39044429911904443959240t42+

10113918591637898134020t41+

2622127042276492108820t40+

680425371729975800390t39+

176733862787006701400t38+

45950804324621742364t37+

11959798385860453492t36+

3116285494907301262t35+

812944042149730764t34+

212336130412243110t33+ 55534064877048198t32+

14544636039226909t31+ 3814986502092304t30+

1002242216651368t29+ 263747951750360t28+

69533550916004t27+ 18367353072152t26+

4861946401452t25+ 1289904147324t24+

343059613650t23+ 91482563640t22+

24466267020t21+ 6564120420t20+

1767263190t19+ 477638700t18+ 129644790t17+

35357670t16+ 9694845t15+ 2674440t14+

742900t13+ 208012t12+ 58786t11+

16796t10+ 4862t9 + 1430t8 + 429t7+

132t6 + 42 t5 + 14 t4 + 5 t3 + 2 t2 + t + 1

11

Note, however, that to compute the first 1024= 45 = 210 Catalan numbers using
five iterations of this quartic scheme is more time consumingthan 10 iterations
of the “normal” Newton method. This is evident since the iteration step given by
formula (9) needs more than the double amount of computations as iteration step
(2). Unfortunately, none of the regarded higher order methods is therefore sym-
bolically more efficient than the original version. Nevertheless, in our opinion,
the designed higher order algorithms are of theoretical interest. With regard to
computations with decimal arithmetic, if the underlying formulas are compiled,
the higher order schemes should be more efficient. Details about timings with
Mathematica[20] andMaple [16] can be found in Tables 4–5.4

Newton (2) quartic (9) formula (11) hypergeom.
n = 210 2.16 4.0 0.14 0.03
n = 212 217 438 6.5 0.06

Table 4: Several methods to compute the firstn Catalan numbers usingMathe-
matica

Newton (2) quartic (9) formula (11) hypergeom.
n = 210 3.83 19.0 2.47 0.078
n = 212 � � 71.6 1.74

Table 5: Several methods to compute the firstn Catalan numbers usingMaple

It is interesting to note that inMaple the “closed formula” (11) is not much more
efficient than the Newton iteration! The reason for this failure is that the computa-
tion of the binomial coefficients is not efficient enough. This can be resolved by a
“hypergeometric computation” (see [12]) of the truncated seriesÚn

k=0 Ck tk using,
e. g., the code

catalansum:=proc(n)
local tmp,summ,k;
tmp:=1; summ:=1;
for k from 1 to n do

4All timings are in seconds and were done with Mathematica 5.2/ Maple 11 and a laptop with
Intel Core Duo T 2600, 2.16 GHz CPU and 2 GB RAM. The sign� indicates that the computation
took longer than one hour.

12

tmp:=2*(2*k-1)/(k+1)*tmp;
summ:=summ+tmp*t^k
end do;

summ;
end proc:

This computation uses exclusively rational arithmetic, hence no factorials and
only simple gcd computations are necessary.

This gives the last column of Table 5. A similar computation in Mathematica
usingApply gives the last column in Table 4.

Nevertheless, if no “closed form” is available – and under certain circumstances
even with closed form – then Newton’s method is a very efficient method to com-
pute the Taylor coefficients of an implicitly given function. This will be shown in
the next section.

5 Further Examples

If we write the steps of Newton’s method as a completeMathematicaprocedure,
we get [15]

In[16]:= FastImplicitTaylor [f_ , x_[t_], x0_, n_] :=

Module [{F, z, approx },

F[z_] :=

Normal [(f /.x ® z) +O[t]ˆ (n + 1)];

approx = x0;

Do[

approx =

Normal [# - F[#]/F¢[#]&[approx]

+O[t]ˆ (2ˆk)],

{k, 1, Log[2, n + 1]}];

approx +O[t]ˆ (n + 1)

]/; IntegerQ [Log[2, n + 1]]

where—for simplicity—we assume thatn+1 is a power of 2.5 The corresponding
Maple code used for the Newton scheme is given as

5Similary in the quartic scheme we assume thatn + 1 is a power of 4, e. g.

13

FastImplicitTaylor:=proc(f,x,t,x0,n)
local G,i,approx;
if not(type(simplify(log[2](n+1)),integer))
then return ’procname(args)’
end if;
G:=z->normal(subs(x=z,x-f/diff(f,x)));
approx:=x0;
for i from 1 to simplify(log[2](n+1)) do
approx:=convert(series(G(approx),t=0,2^i),polynom);
end do;
convert(series(approx,t=0,n+1),polynom);
end proc:

In this section, we would like to give some more examples for its use. We are
interested particularly in examples for which this method is fasterthan the direct
computation of the Taylor coefficients of anexplicitly given function.Although
this seems to be a rather venturous wish, it nevertheless canhappen. To com-
pute the Taylor coefficients of an explicitly given functionTaylor approximations
for all subexpressions are computed and combined. Hence Newton’s method will
be most efficient if the subexpressions of the implicit representation have easier
computable Taylor approximations than the subexpressionsfor the given explicit
expression. We will show that for this reason under certain circumstances New-
ton’s method can be faster.

As an example of this type we compute the Taylor polynomial for

x(t) = tan(sint) = t +
t3

6
-

t5

40
+µ

up to order 28. We rewrite the equation

x = tan(sint) (12)

implicitly as
arctanx - sint = 0 (13)

and using Newton’s method we compute therefore

In[17]:= Timing [

ser1 = FastImplicitTaylor [

ArcTan [x] - Sin [t], x[t], 0,

28
- 1];]

Out[17]= {1.875 Second, Null}

14

which takes about two seconds. However, the direct computation, using (12)

In[18]:= Timing [

ser2 = Series [Tan[Sin [t]],

{t , 0, 28
- 1}];]

Out[18]= {106.36 Second, Null}

which – of course – gives the same result

In[19]:= ser1 - ser2

Out[19]= O(t256)

has a much longer computation time. The higher the order, thelarger the gap
between these two methods. The reason is the complicated Taylor representation
(see e. g. [19], p. 472)

tant =
¥â

k=1

(-1)k+122k(22k - 1)
(2k)!

B2k t2k-1 (14)

which (at least asymptotically) cannot be computed very efficiently since the
Bernoulli numbersBk are difficult to compute [5]. On the other hand, all Tay-
lor approximations of the implicit equation (13), namely arctanx and sint have
hypergeometric representations

arctanx =
¥â

k=0

(-1)k

2k + 1
x2k+1 ,

sint =
¥â

k=0

(-1)k

(2k + 1)!
t2k+1 ,

and can be computed very efficiently. For the tangent function such a simple rep-
resentation does not exist (see e. g. [15], Satz 10.11). Evenworse is the situation
for the examplex(t) = tan(et - 1), see Table 6.

Note, however, that inMaple the situation is different sinceMaplecomputes these
explicit Taylor polynomials much faster, see Table 6. WhereasMaple’s series
command needs 1.8 seconds to compute the Taylor polynomial of tant of order 210

using probably (14),Mathematicaneeds 87 seconds for the same purpose. This
proves thatMathematicafunnily seems not to use (14) for the computation of the
tangent series. But even inMaple, nevertheless, forx = tan(sint) asymptotically
the direct method should be slower than Newton. However, this cannot be tested
since already forn = 210 Maple the Newton computation is out of memory.

15

However, there are also examples for whichMaple’s series command is very
weak, and Newton wins the game. This is so in particular if algebraic functions
occur. We have considered the examplesx(t)3-1- ln(1+ t) = 0 and(1- t3) x(t)2-
(1+ t2) = 0 which show this effect, see Table 6.

x(t) tan(sint) Newton tan(et - 1) Newton
Maple 1.0 3.9 2.1 7.2

Mathematica 106 1.9 525 6.9

x(t) 3
0

1+ ln(1+ t) Newton
1

1+t2

1-t3 Newton

Maple 54 10.3 392 11.0
Mathematica 1.0 5.0 2.4 11.7

Table 6: Explicit and implicit computation of Taylor approximations of order 28 (
last example order 210).

Whereas, in the previous examples we considered composite functions, in some
instances, even the computation of the Taylor polynomial ofa “primitive” func-
tion via Newton’s method may be faster than the “direct” computation. InMath-
ematica, this is so, for example, for the inverse error functionInverseErf, the
inverse of the error function

erf(t) =
20
Π
à t

0
e-x2

dx

as is shown by the computations

In[20]:= Timing [

ser1 = FastImplicitTaylor [Erf [x] - t ,

x[t], 0, 27 - 1];]
Out[20]= {13.953 Second, Null}

In[21]:= Timing [

ser2 = Series [InverseErf [t],

{t , 0, 27
- 1}];]

Out[21]= {21.515 Second, Null}

In[22]:= ser1 - ser2

Out[22]= O(t128)

16

In this research I realized that computer algebra systems like Mathematicaand
Maple seem to use quite different methods to compute Taylor polynomials of
“primitive” expressions that representQ[[x]] series. As seen above, well-known
formulas are sometimes just ignored so that the computationtimes are indis-
putable. Table 7 gives some more examples showing this effect.6

x(t) sint arcsint tant arctant cott arccott
Maple 0.2 0.2 1.8 2.2 2.2 7.2

Mathematica 0.02 0.02 87 0.05 126 �

x(t) erf(t) erf-1(t) t et W (t)
Maple 0.7 47.4 0.0 0.4

Mathematica 0.05 � 0.01 0.4

Table 7: Computation of Taylor approximations of order 210 for some inverse
functions.

Of course, cott is not aQ[[x]] series but has a pole of order one. This, however,
is not essential since there is a formula similar to (14) (seee. g. [19], p. 472)

cott =
1
t
+

¥â
k=1

(-1)k
22k

(2k)!
B2k t2k-1 .

Mathematica’sproblem with arccott is the branch cut of the principal value at the
origin. This leads for example to the output

In[23]:= Series [ArcCot [t],{t , 0, 5}]

Out[23]= K - t +
t3

3
-

t5

5
+O(t6)O + 1

2
(-1)d 2 Arg(t)+Π

2 Π t Π
Therefore, the computation times for arctant and for arccott are quite different
with Mathematicaalthough for positivet-values the relation

arctant + arccott =
Π

2

is valid. Maple decides instead for the specific branch given by arccot 0= Π
2.

Therefore the computation times are much better. However, to give a fair compar-
ison between the timings ofMapleandMathematicawe should note thatMaple’s

6Note that the inverse error function erf-1(t) is denoted byRootOf(-erf(_Z)+t) in Maple.

17

series command does not ensure the requested order. It just computes the Tay-
lor polynomials of the parts of the input expression and combines them. Therefore
as result of the command

series(sin(x10)/x10,x=0,21);

we get for example
1+ O(x11) .

Whereas the requested order is 20, the output has order 10. Similarly
series(tan(sin(t5))/sin(tan(t5)),t=0,15); has orderO(t10). On
the other handMathematicauses an adaptive approach producing the correct re-
sult

In[24]:= Series A
Sin [x10]

x10 ,{x, 0, 20}E

Out[24]= 1-
x20

6
+OIx21M

Of courseMathematica’s method is inherently more time consuming. Whereas
Maple’s method is easy to implement, but does not generally give the requested
answer,Mathematica’s implementation ensures always the required order.

Some other special functions are better implemented inMathematica. The com-
putation of the Taylor polynomial of the inverse function ofx = t et , the so-called
LambertW function7, is quite efficient as can be also seen from Table 7. Note that
for this example obviously the formula (see e. g. [2])

W (t) =
¥â

k=1

(-1)k-1 kk-1

k!
tk

is utilized in both systems. Therefore, the explicit form isof course more efficient
than Newton’s implicit method. However, by changing the “primitive function”
slightly and considering the implicit equationx ex2

- t = 0 and therefore

x(t) =

0
2 t

2
1

t2

W (2t2)

,

Newton’s method gains again and wins inMaple, see the last entry of Table 8.

7namedLambertW in Maple andProductLog in Mathematica

18

x(t) W (t) Newton
0

2t

2

2
t2

W (2t2)

Newton

Maple 0.02 4.5 5.3 0.7
Mathematica 0.02 6.5 0.9 1.2

Table 8: Explicit and implicit computation of Taylor approximations of order 28.

Conclusion

In this paper we showed how Newton’s method can be extended tohigher order
schemes for the computation of truncated power series such that the number of
correct coefficients doubles, triples etc. in each iteration step.

Then we indicated how Newton’s method can be used for the computation of
truncated power series inMaple and inMathematica, systems that have collected
know-how and experience for 28 and 20 years, respectively. Nevertheless as a
result it turns out that in many instances the implicit use ofNewton’s method is
faster than the built-in direct computations.

Acknowledgment

I would like to thank Peter Larcombe who was interested in theiterative compu-
tation of the Catalan numbers which initiated the current research.

References

[1] Brent, P. P., and Kung, H. T.: Fast algorithms for manipulating formal power
series. Journal of the ACM178, 1978, 581–595.

[2] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D,
E.: On the LambertW function. Advances in Computational Mathematics5,
1996, 329–359.

[3] Dedekind, R.: Stetigkeit und irrationale Zahlen. Vieweg, Braunschweig,
1965.

19

[4] Edwards, C. H.:The Historical Development of the Calculus.Springer, New
York, Berlin, 1979.

[5] Fee, G. and Plouffe, S.: An efficient algorithm for the computation of
Bernoulli numbers. arXiv:math/0702300v2 [math.NT]

[6] von zur Gathen, J., Gerhard, J.:Modern Computer Algebra. Cambridge Uni-
versity Press, Cambridge, 1999.

[7] Graham, R. L., Knuth, D. E. and Patashnik, O.:Concrete Mathematics. A
Foundation for Computer Science. Addison-Wesley, Reading, Massachus-
sets, second edition, 1994.

[8] Halley, E.: A new, exact, and easy method of finding roots of any equations
generally, and that without any previous reduction (Latin). Philos. Trans.
Roy. Soc. London18, 1694, 136–148. English translation: Philos. Trans.
Roy. Soc. London3, 1809, 640–649.

[9] Kalantaria, B., Kalantari, I. and Zaare-Nahandici, R.:A basic family of itera-
tion functions for polynomial root finding and its characterizations. J. Comp.
Appl. Math.80, 1997, 209–226.

[10] Koepf, W.: Power series in computer algebra. J. Symbolic Computation13,
1992, 581–603.

[11] Koepf, W.: Mathematik mit DERIVE.Vieweg, Braunschweig/Wiesbaden,
1993.

[12] Koepf, W.: Efficient computation of Chebyshev polynomials. In: M. Wester
(Ed.): Computer Algebra Systems: A Practical Guide.John Wiley, Chich-
ester, 1999, 79–99.

[13] Koepf, W.: DERIVE für den Mathematikunterricht.Vieweg, Braun-
schweig/Wiesbaden, 1998.

[14] Koepf, W. and Schmersau, D.:Die reellen Zahlen als Fundament und
Baustein der Analysis.Oldenbourg, Munich, 2000.

[15] Koepf, W.: Computeralgebra. Springer, Berlin–Heidelberg–New York,
2006.

20

[16] Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G., Vorkoetter, S.
M., McCarron, J., DeMarco, P.: Maple 9:Advanced Programming Guide.
Maplesoft, Waterloo, 2003.

[17] Sebah, P, Gourdon, X.: Newton’s method and high order iter-
ations, http://numbers.computation.free.fr/Constants/
Algorithms/newton.html, 2001.

[18] Snyder, R. W.: One more correction formula. Amer. Math.Monthly 62,
1955, 722–725.

[19] Stöcker, H.:Taschenbuch mathematischer Formeln und moderner Verfahren.
Harri Deutsch, Frankfurt, 4. Auflage, 1999.

[20] Wolfram, St.:The Mathematica Book.Wolfram Media und Cambridge Uni-
versity Press. Fourth Edition, Cambridge, 1999.

[21] Wikipedia: Householders’s Method.http://en.wikipedia.org/
wiki/Householder’s_method, 2007.

[22] Ypma, T. Y.: Historical development of the Newton-Raphson method. SIAM
Review37, 1995, 531–551.

21

