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CLOSE-TO-CONVEX FUNCTIONS 

AND LINEAR-INVARIANT FAMILIES 

WOLFRAM KOEPF 

1. Introduction. Landau showed in 1925 [6] that in the class S of norma-

lized schlicht functions on the unit disk we can get a distortion theorem for the 

«-th derivative if we have ensured the first n Bieberbach coefficient estimates to be 

correct. 

We shall modify this result for linear-invariant families. Families of close-

to-convex functions and of functions of bounded boundary rotation will be showed 

to be linear-invariant. 

Because of the coefficient estimate for close-to-convex functions and functions 

of bounded boundary rotation derived by Aharonov and Friedland [1], it is pos-

sible to get the distortion theorem for the n-th. derivative for all n, but here we 

obtain the same conclusion more elementarily (and without using the linear-in-

variance), just because the coefficient estimate is given for all n. 

All functions / considered here are analytic functions on the unit disk with 

normalization /(0)=0,//(0)=l, and they are locally schlicht, i.e., {z|/'(z)=O}=0. 

Let N be the class of such functions. 

Pommerenke defined a linear-invariant family in [9] and showed some pro-

perties of such families. A subset F of N is called linear-invariant if it is closed 

under the re-normalized composition with a schlicht automorphism of the unit 

disk. If the modulus of the second Taylor coefficient is bounded in F, we define 

the order a of the linear-invariant family to be 

(1) a:= 

An example of a linear-invariant family of order 2 is the class S of normalized 

schlicht functions on the unit disk. 

Pommerenke [9] (pp. 115—116) generalized the well-known Bieberbach distor 

tion theorems [2] (see [12] p. 178) for S to the concept of linear-invariant families 

and showed for a linear-invariant family F of order a the relations 

(2) 

-1 
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We want to give further examples of linear-invariant families. Let Vk be the 

class of functions of bounded boundary rotation kn (see Lehto [7]) 

Vk--lf£N Vr€[0,l[|/ Re fl + z^-JIdS ̂  kn], z = rei9\ 

for k£[2, ~[. Let further Cß be the class of close-to-convex functions of order 

ß defined by Reade [11] and Pommerenke [10], 

Cß := \f£N 3<P schlichtwith convex ränge argJ-y ^ß — \l, 

for ß£[0, oo[. 

Properties of these classes are given in the book of Schober [12] (Chapter 2). 

As Special cases we have V2=CQ, the well-known class of normalized convex 

functions, and Cl5 the class of close-to-convex functions defined by Kaplan [5]. 

The classes Vk and Cß are increasing in k and ß, respectively, and until k=4 

and ß=l they contain only schlicht functions. 

Aharonov and Friedland [1] showed that the Taylor coefficients of functions 

in Cß as well as in Vk are dominated in modulus by the corresponding coefficients 

of the function ha defined by 

-1 

_! we have with a:=k/2 resp. a:=j8 + l. Thatmeans: For f£V2a or 

(3) l/(fI)(0)NMM)(0). 

In the proof of this inequality they used the inclusion 

(4) V2aczCa^ 

As closed normal families all classes Vk and Cß are compact with respect to the 

topology of locally uniform convergence. 

Now we prove the linear-invariance of these classes. 

2. Lemma. For every ß€[0, °°[ the family Cß is linear-invariant of order 

For every k£[2, °°[ the family Vk is linear-invariant of order k/2. 

Proof Reade [11] and Pommerenke [10] showed the desired property for 

Cß if ß€[0, 1]. In this case the functions are all schlicht and so this property follows 

from a geometrical description of the classes. 

We now take an arbitrary ß€[0, «>[. Let f£Cß with convex cp such that 

arg 
f 

-
2' 
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Our first step will be to show that Cß has the rotation-invariance property, which 

means 

whenever |jc| == 1 and 

/,(*):= 

The function cpx defined by (px{z):=cp{xz)jx has convex ränge and obeys the 

inequality 

- r % 

So Cß inherits this property from Co. We show now that Cß inherits the 

linear-invariance property, too. Therefore it is enough to show that for 

and for f£Cp also the function 

i+rz 
r€[0,l[ 

_ fol-fol(0) 

is in Cß. Now we have to find a convex <p2 with 

Weget 

arg-77T -'f 

arS-f7T 

Since / is in Cß9 this expression will be less than or equal to ßn/2 if we take 

„ ._ <P°l 

One sees from the geometric definition that the convexity of cp implies the convexity 

of cp2. 

The order is given by the coefficient domination theorem (3). 

In the case of the families Vk the same argumentation gives the order. The 

linear-invariance property is a consequence of the geometrical interpretation of the 

definition. Because the ranges of /and g are similar, the limit boundary rotation 

of the two functions coincide, 

since the integrals are monotone in r (see [8], p. 12) and the suprema are equal. 

Lehto [7] (p. 12) already used the linear-invariance of Vk. D 
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Now we come to our main result. 

3. Theorem. Let a£[l, °°[, let F be a linear-invariant family of order 

a and n^2. Iffor all f£F and all m, l^m^n, 

then the corresponding distortion theorems 

hold for all r£[0,l[ and all 

In particular we get for all linear-invariant families of order a 

\f"{re»)\ S 2(a+r)^Zr£l\ = K(r). 

Froof We generalize a result due to Landau [6] (see [12], p. 179). 

We want to transform the information about |/(m)(0)| from the origin to an 

arbitrary point. Every linear-invariant family is of course rotation-invariant, and 

so we only need to consider a positive real point r. 

Let be f£F and / the Möbius-transform with 

v J l+rz 

and let g be the composition 

If g has the expansion 

g( Z 
m = 0 

we get for / 

Because of the generalized product rule 

and the formula 

we get 

/C-)(r)= 2ocm(^)ml[(l-i 

and further 

(5) /<»>(r) = n\ 2cmr»-m("T\ I (1 -^)~\ 
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Because of the linear-invariance property it follows from /£ F that 

g-g(Q)rF 

g'(0) 

and so the given coefficient estimate shows 

for all m ̂l n. 

If we take (5) with «:= 1 we get 

At that stage we utilize the linear-invariance property for the second time, using the 

distortion theorem (2) for the first derivative. Sc *ve get 

\cm\ ^ g , U—- for all 
1 ' m! U— r) 

and 

(as all terms here are positive). We shall show that the right-hand term equals 

h^\r). With f:=ha we get 

KoKz) =-t\\^rnk\ -11=4:11^:1 Iii4|-1 
and we write 

haol( 

with 

A 

So we have 

B = ha(r). 

and the right-hand side of (6) gets the form 

Looking back to formula (5) we see that this is an expression for /i£°(r). So we 

get our conclusion for the index m:=n. For m<« the proof coincides with the 

given one and our result follows. 
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In the Special case n:=2 we get the distortion theorem because of the defini-

tion of the order. (Bieberbach was the first who proved this distortion theorem 

in the class S [3].) □ 

4. Corollary. Let a£[l, °°[ and n£N0. Then the following equality holds: 

max max |/<B>(re'*)| = max max |/(/l)(re£d)| = h(anUr). 

Proof. Because of the compactness of the classes the maximum exists. For-

mulae (2) for «€{0,1} and our theorem for n^2 show what maximum we can 

hope to get. 

The well-known results 

KtVte and MQ-i 
make the results sharp. n 

5. Remark. The theorem we proved shows that the linear-invariance property 

helps us to obtain successive distortion theorems for the n-th derivative in an 

arbitrary linear-invariant family from the corresponding coefficient estimates. 

But if we have — as in the cases Cß and Vk — the coefficient estimates for 

all n, we can get the distortion theorems more elementarily and without using the 

linear-invariance property from the following Lemma. 

The Lemma arises from a note of Doppel and Volkmann [4], who used it solving 

a similar problem for another class. 

6. Lemma. Let in the unit disk 

□ 
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