Arch. Math., Vol. 49, 420-433 (1987)

On the Fekete-Szegö problem for close-to-convex functions II

By

WOLFRAM KOEPF

Let $C(\beta)$, $\beta \ge 0$, denote the family of normalized close-to-convex functions of order β . For $\beta = 1$ this is the usual set of close-to-convex functions, which had been defined by Kaplan.

In a previous paper [3] we solved the Fekete-Szegö problem of maximizing $|a_3 - \lambda a_2^2|$, $\lambda \in [0, 1]$, for close-to-convex functions. The largest number λ_0 for which $|a_3 - \lambda_0 a_2^2|$ is maximized by the Koebe function $z/(1-z)^2$ is $\lambda_0 = 1/3$.

Now we generalize this result to $C(\beta)$, $\beta \ge 1$, showing that the largest number $\lambda_0(\beta)$ for which $|a_3 - \lambda_0(\beta) a_2^2|$ is maximized over $C(\beta)$ by k_β with

$$k_{\beta}(z) = \frac{1}{2(\beta+1)} \left(\left(\frac{1+z}{1-z} \right)^{\beta+1} - 1 \right)$$

is $\lambda_0(\beta) = \frac{2}{3} \frac{\beta}{\beta+1}$.

On the other hand, for all $\beta \ge 0$, $|a_3 - \frac{2}{3}a_2^2|$ is maximized over $C(\beta)$ by the odd function h_β with

$$h'_{\beta}(z) = \frac{(1+z^2)^{\beta}}{(1-z^2)^{\beta+1}}, \quad h_{\beta}(0) = 0,$$

similarly as in the case $\beta = 1$.

Another interesting case is $\lambda = 1$, where we get

$$|a_{3} - a_{2}^{2}| \leq \begin{cases} \frac{1}{3}(1+2\beta) & \text{if } \beta \leq 1\\ \frac{1}{3}(\beta^{2}+2\beta) & \text{if } \beta \geq 1, \end{cases}$$

with equality for h_{β} and k_{β} if $\beta \leq 1$ and $\beta \geq 1$ respectively, generalizing the well-known elementary inequality for $\beta = 1$, which is a consequence of the univalence.

From these results we conclude that

$$||a_3| - |a_2|| \le \frac{\beta}{3}(1 + 2\beta)$$

if $\beta \ge 1$ with equality for k_{β} , and

$$||a_3| - |a_2|| \le \frac{1}{3}(1 + 2\beta)$$

if $\beta \leq 1/2$ with equality for h_{β} .

In the last section we give the sharp bound of a Nehari type condition for $C(\beta)$, generalizing therefore Neharis result that convex functions satisfy the Nehari univalence criterion.

1. Introduction. Let S denote the family of univalent functions f of the unit disk \mathbb{D} , normalized by

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$$

Let St denote the subset of starlike functions, i.e. functions that have a starlike range with respect to the origin. A function f, normalized by (1), is called close-to-convex of order β , $\beta \ge 0$, if there exist a starlike function g and a real number α , so that

$$\left|\arg\left(e^{i\alpha}z\,f'(z)/g(z)\right)\right| \leq \beta\frac{\pi}{2}$$

Let $C(\beta)$ denote the family of close-to-convex functions of order β . For $\beta \leq 1$ it turns out that a function is close-to-convex of order β , if and only if it maps the unit disk univalently onto a domain whose complement E is the union of rays, which are pairwise disjoint up to their tips, so that every ray is the bisector of a sector of angle $(1 - \beta)\pi$ which also lies in E (see [7], p. 176).

In a previous paper [3] we solved the Fekete-Szegö problem of maximizing $|a_3 - \lambda a_2^2|$, $\lambda \in [0, 1]$, for close-to-convex functions of order 1. Now we generalize this result to $C(\beta)$. For $\beta > 1$ we are able to show that there is a number $\lambda_0 > 0$ such that $|a_3 - \lambda_0 a_2^2|$ is maximized over $C(\beta)$ by the function k_β with

$$k_{\beta}(z) = \frac{1}{2(\beta+1)} \left(\left(\frac{1+z}{1-z} \right)^{\beta+1} - 1 \right) = \sum_{n=1}^{\infty} A_n z^n$$

The largest number with this property is $\lambda_0 = \frac{2}{3} \frac{\beta}{\beta+1}$. For all $\beta \ge 0$ we show that $|a_3 - \frac{2}{3}a_2^2|$ is maximized over $C(\beta)$ by the odd function h_β with

$$h_{\beta}(z) = \int_{0}^{z} \frac{(1+\zeta^{2})^{\beta}}{(1-\zeta^{2})^{\beta+1}} \,\mathrm{d}\zeta = \sum_{n=1}^{\infty} B_{n} z^{n}$$

similarly as in the case $\beta = 1$. If $\lambda = 1$, then the result splits:

$$|a_3 - a_2^2| \leq \begin{cases} B_3 - B_2^2 = B_3 & \text{if } \beta \leq 1 \\ A_2^2 - A_3 & \text{if } \beta \geq 1 \end{cases}.$$

This seems to be the most interesting result of this paper, especially in the case $\beta \leq 1$, because it generalizes the well-known estimate for $\beta = 1$, which is a consequence of the univalence.

2. On the Fekete-Szegö problem. The following notations will be used throughout the present section. For $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in C(\beta)$ there is representation of the form

(2)
$$f'(z) = \frac{g(z)}{z} \cdot \tilde{q}(z).$$

with some function $g(z) = z + b_2 z^2 + b_3 z^3 + \dots \in St$ and some function

$$\tilde{q}(z) = 1 + \tilde{q}_1 z + \tilde{q}_2 z^2 + \cdots$$

with $\tilde{q}(z) = (\tilde{p}(z))^{\beta}$, $\tilde{p}(z) = 1 + \tilde{p}_1 z + \tilde{p}_2 z^2 + \cdots$ and Re $(e^{i\alpha} \tilde{p}(z)) > 0$, $\alpha \in [-\pi/2, \pi/2[$. Note that

(3)
$$\tilde{q}_1 = \beta \tilde{p}_1,$$
$$\tilde{q}_2 = \beta \left(\tilde{p}_2 + \frac{\beta - 1}{2} \tilde{p}_1^2 \right).$$

The function $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$, defined by

(4)
$$\tilde{p}_n = \cos \alpha \cdot e^{-i\alpha} \cdot p_n, \quad n \in \mathbb{N}$$

has positive real part. Comparing coefficients in (2) one gets

$$\begin{split} 3 \, a_3 &= b_3 + \tilde{q}_1 \, b_2 + \tilde{q}_2, \\ 2 \, a_2 &= b_2 + \tilde{q}_1, \end{split}$$

so that with aid of (3) it follows that

(5)
$$a_{3} - \lambda a_{2}^{2} = \frac{1}{3} \left(b_{3} - \frac{3}{4} \lambda b_{2}^{2} \right) + \frac{\beta}{3} \left(\tilde{p}_{2} - \left(\frac{3}{4} \lambda \beta - \frac{\beta - 1}{2} \right) \tilde{p}_{1}^{2} \right) + \beta \tilde{p}_{1} b_{2} \left(\frac{1}{3} - \frac{\lambda}{2} \right).$$

Now we consider the case $\lambda = 2/3$.

Theorem 1. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \dots \in C(\beta)$. Then

$$|a_3 - \frac{2}{3}a_2^2| \le B_3 - \frac{2}{3}B_2^2 = \frac{1}{3}(1 + 2\beta).$$

Proof. From (5) and the triangle inequality it follows that

$$\left| a_3 - \frac{2}{3} a_2^2 \right| \leq \frac{1}{3} \left| b_3 - \frac{1}{2} b_2^2 \right| + \frac{\beta}{3} \left| \tilde{p}_2 - \frac{1}{2} \tilde{p}_1^2 \right|.$$

Now $|b_3 - \frac{1}{2}b_2^2| \le 1$ (see e.g. [3], Lemma 3). Further in the proof of Theorem 2 in [3] it was shown that

$$\left|\tilde{p}_2 - \frac{1}{2}\tilde{p}_1^2\right| \leq \cos\alpha \left(2 - \frac{|p_1|^2}{2}(1 - |\sin\alpha|)\right),$$

using the inequality $|p_2 - p_1^2/2| \le 2 - |p_1|^2/2$ (see e.g. [3], Lemma 2), so that

$$\left|a_{3} - \frac{2}{3}a_{2}^{2}\right| \leq \frac{1}{3} + \frac{2\beta}{3}\cos\alpha - \beta\cos\alpha \frac{|p_{1}|^{2}}{2}(1 - |\sin\alpha|) \leq \frac{1}{3}(1 + 2\beta). \quad \Box$$

422

Next we choose $\lambda = \frac{2}{3} \frac{\beta}{\beta + 1}$.

Theorem 2. Let $\beta \ge 1$ and $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in C(\beta)$. Then

$$\left|a_3 - \frac{2}{3}\frac{\beta}{\beta+1}a_2^2\right| \le A_3 - \frac{2}{3}\frac{\beta}{\beta+1}A_2^2 = 1 + \frac{2}{3}\beta.$$

Proof. Let be $\lambda \in [0, 2/3]$ and consider Eq. (5). Then we have the estimate $|b_3 - \frac{3}{4}b_2^2| \leq 3 (1 - \lambda)$, which is a consequence of [3], Lemma 3, further Eqs. (4) and $|b_2| \leq 2$, getting

$$\begin{aligned} |a_3 - \lambda a_2^2| &\leq 1 - \lambda + \frac{\beta}{3} \cos \alpha \left| p_2 - \left(\frac{3}{4} \lambda \beta - \frac{\beta - 1}{2}\right) \cos \alpha \cdot e^{-i\alpha} p_1^2 \right| \\ &+ \beta \cos \alpha \left(\frac{2}{3} - \lambda\right) |p_1|. \end{aligned}$$

Writing

$$\left(\frac{3}{4}\lambda\beta-\frac{\beta-1}{2}\right)\cos\alpha\cdot e^{-i\alpha}=\frac{1}{2}-\mu,$$

we have $|2\mu|^2 = 1 - \cos^2 \alpha (1 - \beta^2 (1 - \frac{3}{2}\lambda)^2)$, which implies with aid of [3], Lemma 2, and the triangle inequality

$$\begin{vmatrix} p_2 - \left(\frac{3}{4}\lambda\beta - \frac{\beta - 1}{2}\right)\cos\alpha \cdot e^{-i\alpha}p_1^2 \end{vmatrix}$$
$$\leq 2 + \frac{|p_1|^2}{2} \left(\sqrt{1 - \cos^2\alpha \left(1 - \beta^2 \left(1 - \frac{3}{2}\lambda\right)^2\right)} - 1\right),$$

so that – using the notations $y := \cos \alpha$, $p := |p_1|$ and $\gamma := 2 - 3\lambda$ – it follows that

(6)
$$3|a_3 - \lambda a_2^2| \leq 1 + \gamma + \beta y \left(2 - \frac{p^2}{2} \left(1 - \sqrt{1 - y^2 \left(1 - \frac{\gamma^2 \beta^2}{4}\right)}\right)\right) + \beta \gamma y p$$

Now we specialize, substituting $\lambda = \frac{2}{3} \frac{\beta}{\beta+1}$, i.e. $\gamma = \frac{2}{\beta+1}$, and have finally

$$3 \left| a_3 - \frac{2}{3} \frac{\beta}{\beta + 1} a_2^2 \right|$$

$$\leq 1 + \frac{2}{\beta + 1} (1 + \beta y p) + \beta y \left(2 - \frac{p^2}{2} \left(1 - \sqrt{1 - y^2 \left(1 - \frac{\beta^2}{(\beta + 1)^2} \right)} \right) \right)$$

$$=: F_{\beta}(p, y).$$

W. KOEPF

Now we shall show that F_{β} attains its maximal value for $(p, y) \in [0, 2] \times [0, 1]$ at the point (2, 1). Observe that

(7)
$$F_{\beta}(2,1) = 3 + 2\beta$$
,

which leads to the statement of the theorem.

Suppose now, that F_{β} attains its maximal value at an interior point $(p_0, y_0) \in [0, 2[\times]0, 1[$. Then the partial derivative $\partial F_{\beta}/\partial p$ vanishes at (p_0, y_0) , which implies the relation

$$p_0\left(1-\sqrt{1-y_0^2\left(1-\frac{\beta^2}{(\beta+1)^2}\right)}\right)=\frac{2}{\beta+1}.$$

Therefore at (p_0, y_0) the value of F_{β} becomes

$$F_{\beta}(p_{0}, y_{0}) = 1 + \frac{2}{\beta + 1} + \frac{2\beta y_{0} p_{0}}{\beta + 1} + 2\beta y_{0} - \frac{\beta y_{0} p_{0}}{2} \cdot \frac{2}{\beta + 1}$$
$$= 1 + \frac{2}{\beta + 1} + \frac{\beta y_{0} p_{0}}{\beta + 1} + 2\beta y_{0}$$
$$< 1 + \frac{2}{\beta + 1} + \frac{2\beta}{\beta + 1} + 2\beta = 3 + 2\beta,$$

contradicting our assumption that the value is maximal. So F_{β} attains its maximal value at a boundary point. In both cases y = 0 or p = 0 an easy computation shows that the value (7) is not attained. If y = 1 we have

$$F_{\beta}(p,1) = 1 + \frac{2}{\beta+1} + 2\beta + \frac{\beta}{\beta+1} \cdot \frac{p}{2}(4-p) \le 1 + \frac{2}{\beta+1} + 2\beta + \frac{2\beta}{\beta+1} = 3 + 2\beta.$$

If p = 2, then

$$F_{\beta}(2, y) =: H_{\beta}(y) = 1 + \frac{2}{\beta + 1} (1 + 2\beta y) + 2\beta y \sqrt{1 - y^2 \left(1 - \frac{\beta^2}{(\beta + 1)^2}\right)}.$$

A calculation shows that H_{β} is increasing for $y \in [0, 1]$, which implies the result. \Box

R e m a r k. We note that we conjecture the truth of the statement of Theorem 2 also for $\beta < 1$, but our method does not work in this case, because it is only sharp if y = 1, and the maximal value of F_{β} is not attained at such a point if $\beta \in [0, 1[$.

From Theorem 2 and the well-known bound $|a_2| \leq 1 + \beta = A_2$ (see e.g. [1]) it follows immediately

Corollary 1. Let
$$\beta \ge 1, 0 \le \lambda \le \frac{2}{3} \frac{\beta}{\beta+1}$$
. Then
$$\max_{f \in C(\beta)} |a_3 - \lambda a_2^2| = A_3 - \lambda A_2^2.$$

We remark that for fixed β the number $\lambda_0 = \frac{2}{3} \frac{\beta}{\beta + 1}$ is best possible in the sense that for each $\lambda \in [\lambda_0, 2/3]$ there is a function $f \in C(\beta)$ with

$$|a_3 - \lambda a_2^2| > A_3 - \lambda A_2^2.$$

Examples come from the choice

$$g(z) = \frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \cdots$$

and $(t \in [0, 1])$

$$\tilde{p}(z) = t\left(\frac{1+z}{1-z}\right) + (1-t)\left(\frac{1+z^2}{1-z^2}\right) = 1 + 2tz + z^2 + \cdots,$$

for which – writing again $\gamma := 2 - 3\lambda$ – it follows that

$$3(a_3 - \lambda a_2^2) = 1 + \gamma + 2\beta + 2\beta\gamma t + t^2\beta(\gamma\beta - 2) =: F(t).$$

The relation $F'(t_0) = 0$ implies that

$$t_0 = \frac{\gamma}{2 - \gamma \beta}.$$

If now $\lambda \in]\lambda_0, 2/3[$, i.e. $\gamma \in]0, 2/(\beta + 1)[$, then this number t_0 lies between 0 and 1 which shows that F has a local maximum at t_0 , so that k_β does not give the maximum.

These arguments hold also if $\beta < 1$.

Now we come to the case $\lambda = 1$, which seems to be the most interesting part of this paper, because it generalizes the well-known estimate $|a_3 - a_2^2| \leq 1$ for close-to-convex functions, which is a consequence of the univalence. Here we shall also study the question which functions give equality. Therefore we shall use the following

Lemma. Let be
$$g(z) = z + b_2 z^2 + b_3 z^3 + \dots \in St$$
. Then

$$\left| b_3 - \frac{3}{4} b_2^2 \right| \le 1 - \frac{|b_2|^2}{4}.$$

Proof. This follows from the fact that for each $g \in St$ the function $\int_{0}^{z} (g(\zeta)/\zeta) d\zeta$ is convex and from a corresponding result for convex functions (see e.g. [9]).

We get

Theorem 3. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \dots \in C(\beta)$. Then

$$|a_3 - a_2^2| \le \begin{cases} B_3 - B_2^2 = \frac{1}{3}(1+2\beta) & \text{if} \quad \beta \in [0,1] \\ A_2^2 - A_3 = \frac{1}{3}(\beta^2 + 2\beta) & \text{if} \quad \beta \ge 1 \,. \end{cases}$$

W. KOEPF

Equality holds if and only if

$$f(z) = \begin{cases} h_{\beta}(xz), & |x| = 1 \quad \text{if} \quad \beta \leq 1 \\ k_{\beta}(xz), & |x| = 1 \quad \text{if} \quad \beta \geq 1 \\ \end{cases}.$$

Proof. From (5) we deduce by the same procedure as in Theorem 2, using the Lemma, that

$$3|a_3 - a_2^2| \le 1 - \frac{b^2}{4} + \beta y \left(2 - \frac{p^2}{2} (1 - \sqrt{1 - y^2 (1 - \beta^2/4)})\right) + \frac{\beta y p b}{2}$$

=: F_{\theta}(p, b, y),

where $p := |p_1|$, $b := |b_2|$ and $y := \cos \alpha$.

From this the result follows at once if $\beta = 0$. (The case of equality is considered at the end of the proof.)

We shall show that F_{β} takes its maximal value in $Q := [0, 2]^2 \times [0, 1]$ at the point (2, 2, 1) if $\beta \ge 1$ and at the point (0, 0, 1) if $\beta \le 1$, which gives the result.

Let firstly $\beta \ge 2$. Then the coefficient of p^2 is nonnegative so that F_{β} is maximized at p = 2. Furthermore

$$F_{\beta}(2, b, y) = 1 - \frac{b^2}{4} + 2\beta y \sqrt{1 + y^2(\beta^2/4 - 1)} + \beta y b$$
$$\leq 1 - \frac{b^2}{4} + \beta^2 + \beta b,$$

which takes its maximal value for $b \in [0, 2]$ at b = 2, as is easily veryfied.

Next we show that for $\beta \in [0, 2[$ the maximal value of F_{β} is attained at the boundary of Q. Suppose, the maximal value of F_{β} were attained at an interior point (p_0, b_0, y_0) of Q, then the partial derivatives vanish there. The equation $\frac{\partial F_{\beta}}{\partial b}(q_0, b_0, y_0) = 0$ gives the relation

 $(8) b_0 = \beta y_0 p_0,$

and $\frac{\partial F_{\beta}}{\partial p}(p_0, b_0, y_0) = 0$ implies

(9)
$$b_0 = 2 p_0 \left(1 - \sqrt{1 - y_0^2 \left(1 - \beta^2 / 4\right)}\right),$$

so that, using both (8) and (9), we get

(10)
$$1 - \sqrt{1 - y_0^2 (1 - \beta^2/4)} = \frac{\beta y_0}{2}.$$

A simple calculation then gives

(11)
$$y_0 = \beta.$$

For $\beta \ge 1$ this contradicts our assumption, that F_{β} has its maximal value at (p_0, b_0, y_0) , whereas for $\beta < 1$ we get

$$F_{\beta}(p_0, b_0, y_0) \stackrel{(8)}{=} 1 + \frac{\beta^2 y_0^2 p_0^2}{4} + \beta y_0 \left(2 - \frac{p_0^2}{2} (1 - \sqrt{1 - y_0^2 (1 - \beta^2/4)}) \right)$$
$$= 1 + 2\beta y_0 - \frac{\beta y_0 p_0^2}{2} \left(1 - \sqrt{1 - y_0^2 (1 - \beta^2/4)} - \frac{\beta y_0}{2} \right)$$
$$\stackrel{(10)}{=} 1 + 2\beta y_0 < 1 + 2\beta,$$

such that here we get a contradiction, too, and the maximal value is attained (only) at the boundary of Q.

Now we are able to get our conclusion for $\beta = 1$ (which is known as a consequence of the univalence of close-to-convex functions of order 1). Because of (11) we know that the maximum is attained at y = 1, where

$$F_1(p, b, 1) = 3 - \frac{1}{4}(b - p)^2 \le 3.$$

Now it remains to show that

(12)
$$F_{\beta}(p, b, y) \leq \begin{cases} 1+2\beta & \text{for } \beta \in]0, 1[\\ \beta^2+2\beta & \text{for } \beta \in]1, 2[\end{cases}$$

on the boundary of Q. For y = 0, p = 0 and for b = 0 the easy proof of (12) is left to the reader. Thus we must show (12) for the open faces $\{y = 1\}$, $\{p = 2\}$ and $\{b = 2\}$ of Q as well as the edges $\{p = b = 2\}$, $\{p = 2, y = 1\}$ and $\{b = 2, y = 1\}$. For $\beta \neq 1$ the maximal value is not attained on the open face $\{y = 1\}$ because of (11).

Consider now the open face $\{p = 2\}$. There

$$F_{\beta}(2, b, y) =: G(b, y) = 1 - \frac{b^2}{4} + \beta y (b + 2\sqrt{1 - y^2(1 - \beta^2/4)}).$$

The relation $\partial G/\partial b = 0$ implies

 $(13) b = 2\beta y.$

If furthermore $\partial G/\partial y = 0$ then

(14)
$$b + 2\sqrt{1 - y^2(1 - \beta^2/4)} = 2y^2 \frac{1 - \beta^2/4}{\sqrt{1 - y^2(1 - \beta^2/4)}},$$

and substituting Eq. (13) yields

$$y^2 = \frac{1}{2+\beta}$$
 or $y^2 = \frac{1}{2-\beta}$

so that

(15)
$$y\sqrt{1-y^2(1-\beta^2/4)} = \frac{1}{2}$$

and

$$G(b, y) \stackrel{(13)}{=} 1 + \beta^2 y^2 + 2\beta y \sqrt{1 - y^2 (1 - \beta^2/4)}$$
$$\stackrel{(15)}{=} 1 + \beta^2 y^2 + \beta < 1 + \beta^2 + \beta,$$

which implies (12).

Consider the open face $\{b = 2\}$. Then

$$F_{\beta}(p, 2, y) =: H(p, y) = \beta y \left(2 - \frac{p^2}{2} (1 - \sqrt{1 - y^2 (1 - \beta^2/4)}) + p \right).$$

The relation $\partial H/\partial p = 0$ implies

$$p(1 - \sqrt{1 - y^2(1 - \beta^2/4)}) = 1,$$

so that

$$H(p, y) = \beta y \left(2 - \frac{p}{2} + p\right) = \beta y \left(2 + \frac{p}{2}\right) < 3\beta,$$

which gives (12).

Now we study the edges of Q. For a local maximum of F_{β} on the edge $\{p = b = 2\}$ we get (14) so that

$$1 + \sqrt{1 - y^2 (1 - \beta^2/4)} = y^2 \frac{1 - \beta^2/4}{\sqrt{1 - y^2 (1 - \beta^2/4)}},$$

which implies

$$\sqrt{1-y^2(1-\beta^2/4)}=\frac{1}{2},$$

and so it follows

$$F_{\beta}(2, 2, y) = 2\beta y (1 + \sqrt{1 - y^2 (1 - \beta^2/4)}) = 3\beta y \leq 3\beta,$$

which gives (12).

For a local maximum of F_{β} on the edge $\{p = 2, y = 1\}$ we get from (8) that

$$(16) b = 2\beta.$$

For $\beta > 1$ this statement is false so that there exists no local maximum on $\{p = 2, y = 1\}$. For $\beta \in [0, 1[$ we get using (16) that

$$F_{\beta}(2, b, 1) = 1 - \frac{b^2}{4} + \beta^2 + \beta b = 1 + 2\beta^2 < 1 + 2\beta.$$

For a local maximum of F_{β} on the edge $\{b = 2, y = 1\}$ we get from (9) that

$$(17) p = \frac{2}{2-\beta}.$$

428

429

For $\beta > 1$ this statement is false so that there exists no local maximum on $\{b = 2, y = 1\}$. For $\beta \in [0, 1]$ we get using (17)

$$F_{\beta}(p, 2, 1) = \beta \left(2 - \frac{p^2}{2} \left(1 - \frac{\beta}{2} \right) + p \right) = 2\beta + \frac{\beta}{2 - \beta} < 1 + 2\beta.$$

A calculation of F_{β} at the corners of Q finishes the proof of inequality (12).

Now we study the case of equality. An inspection of the proof shows that equality holds if and only if y = 1 and

$$\beta \leq 1 \quad \text{and} \quad |b_2| = |p_1| = 0$$

$$\beta \ge 1 \quad \text{and} \quad |b_2| = |p_1| = 2$$

Now let $|b_2| = |p_1| = 2$. Then

$$g(z) = \frac{z}{(1 - xz)^2}, \quad |x| = 1$$

and

or

$$\tilde{p}(z) = \frac{1 + wz}{1 - wz}, \quad |w| = 1$$

(see e.g. [8], Theorem 1.5 and Corollary 2.3). An easy computation gives now that equality implies w = x, and so $f(z) = k_{\beta}(xz)$. If $|b_2| = |p_1| = 0$, then the use of $|b_3 - \frac{3}{4}b_2^2| \le 1 - |b_2|^2/4$ and $|p_2 - p_1^2/2| \le 2 - |p_1|^2/2$ establishes that equality implies $|b_3| = 1$ and $|p_2| = 2$. So $|p_1| = 0$ and $|p_2| = 2$, which gives

$$\tilde{p}(z) = \frac{1 + w z^2}{1 - w z^2}, \quad |w| = 1$$

(see [8], Corollary 2.3). Also from $|b_2| = 0$ and $|b_3| = 1$ it follows elementarily (using again [8], Corollary 2.3) that

$$g(z) = \frac{z}{1 - x z^2}, \quad |x| = 1$$

A computation shows now that equality implies w = x, and so $f(z) = h_{\beta}(xz)$.

From Theorem 1 and Theorem 3 it follows with the triangle inequality

Corollary 2. Let $\beta \in [0, 1]$, $\lambda \in [2/3, 1]$. Then

$$\max_{f \in C(\beta)} |a_3 - \lambda a_2^2| = B_3 - \lambda B_2^2 = \frac{1}{3} (1 + 2\beta).$$

3. On successive coefficients. From the results of Sect. 2 it follows

Theorem 4. Let $\beta \ge 1$, $f(z) = z + a_2 z^2 + a_3 z^3 + \dots \in C(\beta)$. Then

$$||a_3| - |a_2|| \le A_3 - A_2 = \frac{\beta}{3}(1 + 2\beta).$$

Proof. At first we show

(18)
$$|a_3| - |a_2| \leq \frac{1}{3} (2\beta^2 + \beta).$$

We use Corollary 1, choosing $\lambda = 1/3$, and get

$$\begin{aligned} |a_3| - |a_2| &\leq |a_3 - \frac{1}{3}a_2^2| + \frac{1}{3}|a_2|^2 - |a_2| \\ &\leq \frac{1}{3}(\beta^2 + 2\beta + 2) + \frac{1}{3}|a_2|^2 - |a_2| = :F(|a_2|). \end{aligned}$$

Because F defines a convex parabola, it takes its maximum at the boundary of its interval of definition. Furthermore the relation

$$F(|a_2|) = \frac{1}{3}(2\beta^2 + \beta)$$

implies that $|a_2| = 2 - \beta$ or $|a_2| = 1 + \beta$, so that

(19)
$$f(|a_2|) \leq \frac{1}{3}(2\beta^2 + \beta)$$
 for $|a_2| \in [2 - \beta, 1 + \beta]$.

From this (18) follows if $\beta \ge 2$, because $|a_2| \le 1 + \beta$ in $C(\beta)$. Let now $\beta \in [1, 2[$. Then with aid of Theorem 1 we have furthermore that

(20)
$$\begin{aligned} |a_3| - |a_2| &\leq |a_3 - \frac{2}{3}a_2^2| + \frac{2}{3}|a_2|^2 - |a_2| \\ &\leq \frac{1}{3}(1 + 2\beta) + \frac{2}{3}|a_2|^2 - |a_2| =: G(|a_2|) \end{aligned}$$

The same procedure as above shows that

$$G(|a_2|) \leq \frac{1}{3}(2\beta^2 + \beta)$$
 for $|a_2| \in [1 - \beta, \beta + \frac{1}{2}]$,

which, together with (19), gives (18).

Now we shall show that

$$|a_2| - |a_3| \le \frac{1}{3}(2\beta^2 + \beta),$$

which is trivially true if $|a_2| \in [0, (2\beta^2 + \beta)/3]$. This gives the result for $\beta \ge (\sqrt{7} + 1)/2$. For $\beta < (\sqrt{7} + 1)/2$ let now lie $|a_2|$ in the remaining interval $[(2\beta^2 + \beta)/3, 1 + \beta]$. Then Theorem 3 gives

$$\begin{aligned} |a_2| - |a_3| &= |a_2|^2 - |a_3| - |a_2|^2 + |a_2| \le |a_2^2 - a_3| - |a_2|^2 + |a_2| \\ &\le \frac{1}{3}(\beta^2 + 2\beta) - |a_2|^2 + |a_2| =: H(|a_2|). \end{aligned}$$

H takes its global maximum at $|a_2| = 1/2$ which does not lie in the interval considered. Thus, for $|a_2| \in [(2\beta^2 + \beta)/3, 1 + \beta]$, *H* is decreasing, and it remains to show that

$$H((2\beta^{2} + \beta)/3) \leq \frac{1}{3}(2\beta^{2} + \beta)$$

i.e. $3\beta^2 + 6\beta \leq (2\beta^2 + \beta)^2$, which obviously holds for $\beta \geq 1$. \Box

For $\beta < 1$ one gets

Theorem 5. Let
$$\beta \leq 1/2$$
, $f(z) = z + a_2 z^2 + a_3 z^3 + \dots \in C(\beta)$. Then
 $|a_3| - |a_2| \leq B_3 - B_2 = \frac{1}{3}(1 + 2\beta)$.

Proof. Theorem 1 implies (20). Because $\beta \leq 1/2$ we have $|a_2| \in [0, 3/2]$, and it follows easily that $G(|a_2|) \leq (1 + 2\beta)/3$. \Box

We are not able to show that $|a_4| - |a_3| \leq A_4 - A_3$ for $\beta \geq 1$, but give a weaker result in this direction.

Theorem 6. Let
$$\beta \ge 1$$
, $f(z) = z + a_2 z^2 + a_3 z^3 + a_4 z^4 + \dots \in C(\beta)$. Then
 $||a_4| - |a_2|| \le A_4 - A_2 = \frac{(1+\beta)}{3} (\beta^2 + 2\beta).$

Proof. We use [2], Lemma, implying that with $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in C(\beta)$ the function $h(z) = z + b_2 z^2 + b_3 z^3 + \cdots$, defined by $h'(z) = (f'(z^2))^{1/2}$, h(0) = 0, is an odd close-to-convex function of order $\beta/2$. Now, because $\beta \ge 1$, we can use the coefficient domination theorem for such functions [2], Theorem 1, and get

(22)
$$|b_7| = \frac{1}{7} \left| 2a_4 - \frac{3}{2}a_2a_3 + \frac{a_2^3}{2} \right| \le \frac{(1+\beta)}{42} (\beta^2 + 2\beta + 6).$$

If we consider b_5 , we get once more Corollary 1 for $\lambda = 1/3$, namely

(23)
$$|b_5| = \frac{3}{10} \left| a_3 - \frac{1}{3} a_2^2 \right| \le \frac{\beta^2 + 2\beta + 2}{10}.$$

Now we get with aid of (22) and (23) that

$$\begin{aligned} |a_4| - |a_2| &\leq \left| a_4 - \frac{3}{4} a_2 a_3 + \frac{a_2^3}{4} \right| + \frac{3}{4} |a_2| \left| a_3 - \frac{1}{3} a_2^2 \right| - |a_2| \\ &\leq \frac{(1+\beta)}{12} (\beta^2 + 2\beta + 6) + \frac{3}{4} |a_2| \frac{(\beta^2 + 2\beta + 2)}{3} - |a_2| \\ &\leq \frac{(1+\beta)}{12} (\beta^2 + 2\beta + 6) + \frac{|a_2|}{4} (\beta^2 + 2\beta - 2). \end{aligned}$$

Because $(\beta^2 + 2\beta - 2) \ge 0$ it follows now from $|a_2| \le 1 + \beta$ that

$$|a_4| - |a_2| \le \frac{(1+\beta)}{3}(\beta^2 + 2\beta).$$

On the other hand, for $\beta \ge 1$

$$|a_2| - |a_4| \le |a_2| \le \frac{(1+\beta)}{3} \cdot 3 \le \frac{(1+\beta)}{3} (\beta^2 + 2\beta)$$

is trivially true. \Box

4. Close-to-convex functions and the Schwarzian derivative. For $\sigma \ge 0$ let $N(\sigma)$ denote the family of analytic and locally univalent functions of \mathbb{D} , which are normalized by (1)

and have the property that

(24)
$$s(f) := \sup_{z \in \mathbb{D}} (1 - |z|^2)^2 |S_f(z)| \le \sigma.$$

Here $S_f := \left(\frac{f''}{f'}\right)' - \frac{1}{2}\left(\frac{f''}{f'}\right)^2$ denotes the Schwarzian derivative of f.

The Nehari univalence criterion [4] states that $N(2) \subset S$. On the other hand it is easily seen that $S \subset N(6)$ (see e.g. [4]).

Note the well-known transformation property that if ω is an automorphism of \mathbb{D} , then

(25)
$$(1 - |z|^2)^2 |S_{f \circ \omega}(z)| = (1 - |\omega(z)|^2)^2 |S_f(\omega(z))|.$$

The following result generalizes the statements $K = C(0) \subset N(2)$ (see [5]), and $C(1) \subset N(6)$.

Theorem 7. Let $f \in C(\beta)$, and let s(f) defined by (24). Then

(26)
$$s(f) \leq \begin{cases} 2+4\beta & \text{if } \beta \leq 1\\ 2\beta^2+4\beta & \text{if } \beta \geq 1 \end{cases}$$

Equality holds for the functions f defined by

(27)
$$f(0) = 0, \ f'(z) = \begin{cases} \frac{(1+z^2)^{\beta}}{(1-z^2)^{\beta+1}} & \text{if} \quad \beta \leq 1\\ \frac{(1+z)^{\beta}}{(1-z)^{\beta+2}} & \text{if} \quad \beta \geq 1. \end{cases}$$

Proof. Let $f \in C(\beta)$ and $a \in \mathbb{D}$. Then the function $g(z) = z + b_2 z^2 + b_3 z^3 + \cdots$, defined by

$$g(z) = \frac{f\left(\frac{z+a}{1+\bar{a}z}\right) - f(a)}{f'(a) \cdot (1-|a|^2)},$$

also lies in $C(\beta)$ (see e.g. [1]). An application of Theorem 3 gives

(28)
$$|b_3 - b_2^2| \le \begin{cases} \frac{1}{3}(1+2\beta) & \text{if } \beta \le 1\\ \frac{1}{3}(\beta^2 + 2\beta) & \text{if } \beta \ge 1 \end{cases}$$

so that the relation

$$(1 - |a|^2)^2 S_f(a) = S_g(0) = 6(b_3 - b_2^2)$$

which is a consequence of (25), implies the result, because *a* was arbitrary. The functions *f*, defined by (27), give the sharp bounds in (28), and so in (26). \Box

References

- W. KOEPF, Close-to convex functions and linear-invariant families. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8, 349-355 (1983).
- [2] W. KOEPF, Coefficients of symmetric functions of bounded boundary rotation. To appear.

- [3] W. KOEPF, On the Fekete-Szegö problem for close-to-convex functions. Proc. Amer. Math. Soc. **100**, to appear.
- [4] Z. NEHARI, The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55, 545-551 (1949).
- [5] Z. NEHARI, A property of convex conformal maps, J. Anal. Math. 30, 390-393 (1976).
- [6] CH. POMMERENKE, On the coefficients of close-to-convex functions. Mich. Math. J. 9, 259-269 (1962).
- [7] CH. POMMERENKE, On close-to-convex analytic functions. Trans. Amer. Math. Soc. 114, 176-186 (1965).
- [8] Ch. POMMERENKE, Univalent functions. Göttingen 1975.
- [9] S. Y. TRIMBLE, A coefficient inequality for convex univalent functions. Proc. Amer. Math. Soc. 48, 266-267 (1975).

Eingegangen am 20. 8. 1986

Anschrift des Autors:

Wolfram Koepf Freie Universität Berlin Institut für Mathematik I (WE1) Arnimallee 3 D-1000 Berlin 33