On the Fekete-Szegö problem for close-to-convex functions II

By
Wolfram Koepf

Let $C(\beta), \beta \geqq 0$, denote the family of normalized close-to-convex functions of order β. For $\beta=1$ this is the usual set of close-to-convex functions, which had been defined by Kaplan.

In a previous paper [3] we solved the Fekete-Szegö problem of maximizing $\left|a_{3}-\lambda a_{2}^{2}\right|$, $\lambda \in[0,1]$, for close-to-convex functions. The largest number λ_{0} for which $\left|a_{3}-\lambda_{0} a_{2}^{2}\right|$ is maximized by the Koebe function $z /(1-z)^{2}$ is $\lambda_{0}=1 / 3$.

Now we generalize this result to $C(\beta), \beta \geqq 1$, showing that the largest number $\lambda_{0}(\beta)$ for which $\left|a_{3}-\lambda_{0}(\beta) a_{2}^{2}\right|$ is maximized over $C(\beta)$ by k_{β} with

$$
k_{\beta}(z)=\frac{1}{2(\beta+1)}\left(\left(\frac{1+z}{1-z}\right)^{\beta+1}-1\right)
$$

is $\lambda_{0}(\beta)=\frac{2}{3} \frac{\beta}{\beta+1}$.
On the other hand, for all $\beta \geqq 0,\left|a_{3}-\frac{2}{3} a_{2}^{2}\right|$ is maximized over $C(\beta)$ by the odd function h_{β} with

$$
h_{\beta}^{\prime}(z)=\frac{\left(1+z^{2}\right)^{\beta}}{\left(1-z^{2}\right)^{\beta+1}}, \quad h_{\beta}(0)=0
$$

similarly as in the case $\beta=1$.
Another interesting case is $\lambda=1$, where we get

$$
\left|a_{3}-a_{2}^{2}\right| \leqq\left\{\begin{array}{llc}
\frac{1}{3}(1+2 \beta) & \text { if } & \beta \leqq 1 \\
\frac{1}{3}\left(\beta^{2}+2 \beta\right) & \text { if } & \beta \geqq 1
\end{array}\right.
$$

with equality for h_{β} and k_{β} if $\beta \leqq 1$ and $\beta \geqq 1$ respectively, generalizing the well-known elementary inequality for $\beta=1$, which is a consequence of the univalence.

From these results we conclude that

$$
\left|\left|a_{3}\right|-\left|a_{2}\right|\right| \leqq \frac{\beta}{3}(1+2 \beta)
$$

if $\beta \geqq 1$ with equality for k_{β}, and

$$
\left|\left|a_{3}\right|-\left|a_{2}\right|\right| \leqq \frac{1}{3}(1+2 \beta)
$$

if $\beta \leqq 1 / 2$ with equality for h_{β}.

In the last section we give the sharp bound of a Nehari type condition for $C(\beta)$, generalizing therefore Neharis result that convex functions satisfy the Nehari univalence criterion.

1. Introduction. Let S denote the family of univalent functions f of the unit disk \mathbb{D}, normalized by

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1}
\end{equation*}
$$

Let $S t$ denote the subset of starlike functions, i.e. functions that have a starlike range with respect to the origin. A function f, normalized by (1), is called close-to-convex of order $\beta, \beta \geqq 0$, if there exist a starlike function g and a real number α, so that

$$
\left|\arg \left(e^{i \alpha} z f^{\prime}(z) / g(z)\right)\right| \leqq \beta \frac{\pi}{2}
$$

Let $C(\beta)$ denote the family of close-to-convex functions of order β. For $\beta \leqq 1$ it turns out that a function is close-to-convex of order β, if and only if it maps the unit disk univalently onto a domain whose complement E is the union of rays, which are pairwise disjoint up to their tips, so that every ray is the bisector of a sector of angle $(1-\beta) \pi$ which also lies in E (see [7], p. 176).

In a previous paper [3] we solved the Fekete-Szegö problem of maximizing $\left|a_{3}-\lambda a_{2}^{2}\right|$, $\lambda \in[0,1]$, for close-to-convex functions of order 1 . Now we generalize this result to $C(\beta)$. For $\beta>1$ we are able to show that there is a number $\lambda_{0}>0$ such that $\left|a_{3}-\lambda_{0} a_{2}^{2}\right|$ is maximized over $C(\beta)$ by the function k_{β} with

$$
k_{\beta}(z)=\frac{1}{2(\beta+1)}\left(\left(\frac{1+z}{1-z}\right)^{\beta+1}-1\right)=\sum_{n=1}^{\infty} A_{n} z^{n} .
$$

The largest number with this property is $\lambda_{0}=\frac{2}{3} \frac{\beta}{\beta+1}$. For all $\beta \geqq 0$ we show that $\left|a_{3}-\frac{2}{3} a_{2}^{2}\right|$ is maximized over $C(\beta)$ by the odd function h_{β} with

$$
h_{\beta}(z)=\int_{0}^{z} \frac{\left(1+\zeta^{2}\right)^{\beta}}{\left(1-\zeta^{2}\right)^{\beta+1}} \mathbf{d} \zeta=\sum_{n=1}^{\infty} B_{n} z^{n},
$$

similarly as in the case $\beta=1$.
If $\lambda=1$, then the result splits:

$$
\left|a_{3}-a_{2}^{2}\right| \leqq \begin{cases}B_{3}-B_{2}^{2}=B_{3} & \text { if } \\ A_{2}^{2}-A_{3} & \text { if } \\ \beta \leqq 1\end{cases}
$$

This seems to be the most interesting result of this paper, especially in the case $\beta \leqq 1$, because it generalizes the well-known estimate for $\beta=1$, which is a consequence of the univalence.
2. On the Fekete-Szegö problem. The following notations will be used throughout the present section. For $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$ there is representation of the form

$$
\begin{equation*}
f^{\prime}(z)=\frac{g(z)}{z} \cdot \tilde{q}(z) \tag{2}
\end{equation*}
$$

with some function $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots \in S t$ and some function

$$
\tilde{q}(z)=1+\tilde{q}_{1} z+\tilde{q}_{2} z^{2}+\cdots
$$

with $\tilde{q}(z)=(\tilde{p}(z))^{\beta}, \tilde{p}(z)=1+\tilde{p}_{1} z+\tilde{p}_{2} z^{2}+\cdots$ and $\left.\operatorname{Re}\left(e^{i \alpha} \tilde{p}(z)\right)>0, \alpha \in\right]-\pi / 2, \pi / 2[$. Note that

$$
\begin{align*}
& \tilde{q}_{1}=\beta \tilde{p}_{1} \\
& \tilde{q}_{2}=\beta\left(\tilde{p}_{2}+\frac{\beta-1}{2} \tilde{p}_{1}^{2}\right) \tag{3}
\end{align*}
$$

The function $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$, defined by

$$
\begin{equation*}
\tilde{p}_{n}=\cos \alpha \cdot e^{-i \alpha} \cdot p_{n}, \quad n \in \mathbb{N} \tag{4}
\end{equation*}
$$

has positive real part. Comparing coefficients in (2) one gets

$$
\begin{aligned}
& 3 a_{3}=b_{3}+\tilde{q}_{1} b_{2}+\tilde{q}_{2} \\
& 2 a_{2}=b_{2}+\tilde{q}_{1}
\end{aligned}
$$

so that with aid of (3) it follows that

$$
\begin{align*}
a_{3}-\lambda a_{2}^{2}= & \frac{1}{3}\left(b_{3}-\frac{3}{4} \lambda b_{2}^{2}\right)+\frac{\beta}{3}\left(\tilde{p}_{2}-\left(\frac{3}{4} \lambda \beta-\frac{\beta-1}{2}\right) \tilde{p}_{1}^{2}\right) \\
& +\beta \tilde{p}_{1} b_{2}\left(\frac{1}{3}-\frac{\lambda}{2}\right) \tag{5}
\end{align*}
$$

Now we consider the case $\lambda=2 / 3$.
Theorem 1. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$. Then

$$
\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| \leqq B_{3}-\frac{2}{3} B_{2}^{2}=\frac{1}{3}(1+2 \beta)
$$

Proof. From (5) and the triangle inequality it follows that

$$
\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| \leqq \frac{1}{3}\left|b_{3}-\frac{1}{2} b_{2}^{2}\right|+\frac{\beta}{3}\left|\tilde{p}_{2}-\frac{1}{2} \tilde{p}_{1}^{2}\right| .
$$

Now $\left|b_{3}-\frac{1}{2} b_{2}^{2}\right| \leqq 1$ (see e.g. [3], Lemma 3). Further in the proof of Theorem 2 in [3] it was shown that

$$
\left|\tilde{p}_{2}-\frac{1}{2} \tilde{p}_{1}^{2}\right| \leqq \cos \alpha\left(2-\frac{\left|p_{1}\right|^{2}}{2}(1-|\sin \alpha|)\right)
$$

using the inequality $\left|p_{2}-p_{1}^{2} / 2\right| \leqq 2-\left|p_{1}\right|^{2} / 2$ (see e.g. [3], Lemma 2), so that

$$
\left|a_{3}-\frac{2}{3} a_{2}^{2}\right| \leqq \frac{1}{3}+\frac{2 \beta}{3} \cos \alpha-\beta \cos \alpha \frac{\left|p_{1}\right|^{2}}{2}(1-|\sin \alpha|) \leqq \frac{1}{3}(1+2 \beta)
$$

Next we choose $\lambda=\frac{2}{3} \frac{\beta}{\beta+1}$.
Theorem 2. Let $\beta \geqq 1$ and $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$. Then

$$
\left|a_{3}-\frac{2}{3} \frac{\beta}{\beta+1} a_{2}^{2}\right| \leqq A_{3}-\frac{2}{3} \frac{\beta}{\beta+1} A_{2}^{2}=1+\frac{2}{3} \beta .
$$

Proof. Let be $\lambda \in[0,2 / 3]$ and consider Eq. (5). Then we have the estimate $\left|b_{3}-\frac{3}{4} b_{2}^{2}\right| \leqq 3(1-\lambda)$, which is a consequence of [3], Lemma 3, further Eqs. (4) and $\left|b_{2}\right| \leqq 2$, getting

$$
\begin{aligned}
\left|a_{3}-\lambda a_{2}^{2}\right| \leqq & 1-\lambda+\frac{\beta}{3} \cos \alpha\left|p_{2}-\left(\frac{3}{4} \lambda \beta-\frac{\beta-1}{2}\right) \cos \alpha \cdot e^{-i \alpha} p_{1}^{2}\right| \\
& +\beta \cos \alpha\left(\frac{2}{3}-\lambda\right)\left|p_{1}\right|
\end{aligned}
$$

Writing

$$
\left(\frac{3}{4} \lambda \beta-\frac{\beta-1}{2}\right) \cos \alpha \cdot e^{-i \alpha}=\frac{1}{2}-\mu
$$

we have $|2 \mu|^{2}=1-\cos ^{2} \alpha\left(1-\beta^{2}\left(1-\frac{3}{2} \lambda\right)^{2}\right)$, which implies with aid of [3], Lemma 2, and the triangle inequality

$$
\begin{aligned}
& \left|p_{2}-\left(\frac{3}{4} \lambda \beta-\frac{\beta-1}{2}\right) \cos \alpha \cdot e^{-i \alpha} p_{1}^{2}\right| \\
& \quad \leqq 2+\frac{\left|p_{1}\right|^{2}}{2}\left(\sqrt{1-\cos ^{2} \alpha\left(1-\beta^{2}\left(1-\frac{3}{2} \lambda\right)^{2}\right)}-1\right),
\end{aligned}
$$

so that - using the notations $y:=\cos \alpha, p:=\left|p_{1}\right|$ and $\gamma:=2-3 \lambda$-it follows that

$$
\begin{equation*}
3\left|a_{3}-\lambda a_{2}^{2}\right| \leqq 1+\gamma+\beta y\left(2-\frac{p^{2}}{2}\left(1-\sqrt{1-y^{2}\left(1-\frac{\gamma^{2} \beta^{2}}{4}\right)}\right)\right)+\beta \gamma y p \tag{6}
\end{equation*}
$$

Now we specialize, substituting $\lambda=\frac{2}{3} \frac{\beta}{\beta+1}$, i.e. $\gamma=\frac{2}{\beta+1}$, and have finally

$$
\begin{aligned}
& 3\left|a_{3}-\frac{2}{3} \frac{\beta}{\beta+1} a_{2}^{2}\right| \\
& \quad \leqq 1+\frac{2}{\beta+1}(1+\beta y p)+\beta y\left(2-\frac{p^{2}}{2}\left(1-\sqrt{1-y^{2}\left(1-\frac{\beta^{2}}{(\beta+1)^{2}}\right)}\right)\right) \\
& \quad=: F_{\beta}(p, y) .
\end{aligned}
$$

Now we shall show that F_{β} attains its maximal value for $(p, y) \in[0,2] \times[0,1]$ at the point $(2,1)$. Observe that

$$
\begin{equation*}
F_{\beta}(2,1)=3+2 \beta, \tag{7}
\end{equation*}
$$

which leads to the statement of the theorem.
Suppose now, that F_{β} attains its maximal value at an interior point $\left.\left(p_{0}, y_{0}\right) \in\right] 0,2[\times] 0,1\left[\right.$. Then the partial derivative $\partial F_{\beta} / \partial p$ vanishes at $\left(p_{0}, y_{0}\right)$, which implies the relation

$$
p_{0}\left(1-\sqrt{1-y_{0}^{2}\left(1-\frac{\beta^{2}}{(\beta+1)^{2}}\right)}\right)=\frac{2}{\beta+1} .
$$

Therefore at $\left(p_{0}, y_{0}\right)$ the value of F_{β} becomes

$$
\begin{aligned}
F_{\beta}\left(p_{0}, y_{0}\right) & =1+\frac{2}{\beta+1}+\frac{2 \beta y_{0} p_{0}}{\beta+1}+2 \beta y_{0}-\frac{\beta y_{0} p_{0}}{2} \cdot \frac{2}{\beta+1} \\
& =1+\frac{2}{\beta+1}+\frac{\beta y_{0} p_{0}}{\beta+1}+2 \beta y_{0} \\
& <1+\frac{2}{\beta+1}+\frac{2 \beta}{\beta+1}+2 \beta=3+2 \beta
\end{aligned}
$$

contradicting our assumption that the value is maximal. So F_{β} attains its maximal value at a boundary point. In both cases $y=0$ or $p=0$ an easy computation shows that the value (7) is not attained. If $y=1$ we have

$$
\begin{aligned}
F_{\beta}(p, 1) & =1+\frac{2}{\beta+1}+2 \beta+\frac{\beta}{\beta+1} \cdot \frac{p}{2}(4-p) \leqq 1+\frac{2}{\beta+1}+2 \beta+\frac{2 \beta}{\beta+1} \\
& =3+2 \beta
\end{aligned}
$$

If $p=2$, then

$$
F_{\beta}(2, y)=: H_{\beta}(y)=1+\frac{2}{\beta+1}(1+2 \beta y)+2 \beta y \sqrt{1-y^{2}\left(1-\frac{\beta^{2}}{(\beta+1)^{2}}\right)} .
$$

A calculation shows that H_{β} is increasing for $y \in[0,1]$, which implies the result.
Remark. We note that we conjecture the truth of the statement of Theorem 2 also for $\beta<1$, but our method does not work in this case, because it is only sharp if $y=1$, and the maximal value of F_{β} is not attained at such a point if $\left.\beta \in\right] 0,1[$.

From Theorem 2 and the well-known bound $\left|a_{2}\right| \leqq 1+\beta=A_{2}$ (see e.g. [1]) it follows immediately

Corollary 1. Let $\beta \geqq 1,0 \leqq \lambda \leqq \frac{2}{3} \frac{\beta}{\beta+1}$. Then

$$
\max _{f \in C(\beta)}\left|a_{3}-\lambda a_{2}^{2}\right|=A_{3}-\lambda A_{2}^{2}
$$

We remark that for fixed β the number $\lambda_{0}=\frac{2}{3} \frac{\beta}{\beta+1}$ is best possible in the sense that for each $\lambda \in] \lambda_{0}, 2 / 3[$ there is a function $f \in C(\beta)$ with

$$
\left|a_{3}-\lambda a_{2}^{2}\right|>A_{3}-\lambda A_{2}^{2}
$$

Examples come from the choice

$$
g(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\cdots
$$

and $(t \in[0,1])$

$$
\tilde{p}(z)=t\left(\frac{1+z}{1-z}\right)+(1-t)\left(\frac{1+z^{2}}{1-z^{2}}\right)=1+2 t z+z^{2}+\cdots
$$

for which - writing again $\gamma:=2-3 \lambda-$ it follows that

$$
3\left(a_{3}-\lambda a_{2}^{2}\right)=1+\gamma+2 \beta+2 \beta \gamma t+t^{2} \beta(\gamma \beta-2)=: F(t)
$$

The relation $F^{\prime}\left(t_{0}\right)=0$ implies that

$$
t_{0}=\frac{\gamma}{2-\gamma \beta}
$$

If now $\lambda \in] \lambda_{0}, 2 / 3[$, i.e. $\gamma \in] 0,2 /(\beta+1)\left[\right.$, then this number t_{0} lies between 0 and 1 which shows that F has a local maximum at t_{0}, so that k_{β} does not give the maximum.

These arguments hold also if $\beta<1$.
Now we come to the case $\lambda=1$, which seems to be the most interesting part of this paper, because it generalizes the well-known estimate $\left|a_{3}-a_{2}^{2}\right| \leqq 1$ for close-to-convex functions, which is a consequence of the univalence. Here we shall also study the question which functions give equality. Therefore we shall use the following

Lemma. Let be $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots \in$ St. Then

$$
\left|b_{3}-\frac{3}{4} b_{2}^{2}\right| \leqq 1-\frac{\left|b_{2}\right|^{2}}{4}
$$

Proof. This follows from the fact that for each $g \in S t$ the function $\int_{0}^{z}(g(\zeta) / \zeta) d \zeta$ is convex and from a corresponding result for convex functions (see e.g. [9]).

We get
Theorem 3. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leqq\left\{\begin{array}{lll}
B_{3}-B_{2}^{2}=\frac{1}{3}(1+2 \beta) & \text { if } & \beta \in[0,1] \\
A_{2}^{2}-A_{3}=\frac{1}{3}\left(\beta^{2}+2 \beta\right) & \text { if } & \beta \geqq 1
\end{array}\right.
$$

Equality holds if and only if

$$
f(z)=\left\{\begin{array}{lll}
h_{\beta}(x z), & |x|=1 & \text { if } \\
k_{\beta}(x z), & |x|=1 & \text { if }
\end{array} \quad \beta \geqq 1 .\right.
$$

Proof. From (5) we deduce by the same procedure as in Theorem 2, using the Lemma, that

$$
\begin{aligned}
3\left|a_{3}-a_{2}^{2}\right| & \leqq 1-\frac{b^{2}}{4}+\beta y\left(2-\frac{p^{2}}{2}\left(1-\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}\right)\right)+\frac{\beta y p b}{2} \\
& =: F_{\beta}(p, b, y)
\end{aligned}
$$

where $p:=\left|p_{1}\right|, b:=\left|b_{2}\right|$ and $y:=\cos \alpha$.
From this the result follows at once if $\beta=0$. (The case of equality is considered at the end of the proof.)

We shall show that F_{β} takes its maximal value in $Q:=[0,2]^{2} \times[0,1]$ at the point $(2,2,1)$ if $\beta \geqq 1$ and at the point $(0,0,1)$ if $\beta \leqq 1$, which gives the result.

Let firstly $\beta \geqq 2$. Then the coefficient of p^{2} is nonnegative so that F_{β} is maximized at $p=2$. Furthermore

$$
\begin{aligned}
F_{\beta}(2, b, y) & =1-\frac{b^{2}}{4}+2 \beta y \sqrt{1+y^{2}\left(\beta^{2} / 4-1\right)}+\beta y b \\
& \leqq 1-\frac{b^{2}}{4}+\beta^{2}+\beta b
\end{aligned}
$$

which takes its maximal value for $b \in[0,2]$ at $b=2$, as is easily veryfied.
Next we show that for $\beta \in] 0,2\left[\right.$ the maximal value of F_{β} is attained at the boundary of Q. Suppose, the maximal value of F_{β} were attained at an interior point (p_{0}, b_{0}, y_{0}) of Q, then the partial derivatives vanish there. The equation $\frac{\partial F_{\beta}}{\partial b}\left(q_{0}, b_{0}, y_{0}\right)=0$ gives the relation

$$
\begin{equation*}
b_{0}=\beta y_{0} p_{0} \tag{8}
\end{equation*}
$$

and $\frac{\partial F_{\beta}}{\partial p}\left(p_{0}, b_{0}, y_{0}\right)=0$ implies

$$
\begin{equation*}
b_{0}=2 p_{0}\left(1-\sqrt{1-y_{0}^{2}\left(1-\beta^{2} / 4\right)}\right) \tag{9}
\end{equation*}
$$

so that, using both (8) and (9), we get

$$
\begin{equation*}
1-\sqrt{1-y_{0}^{2}\left(1-\beta^{2} / 4\right)}=\frac{\beta y_{0}}{2} \tag{10}
\end{equation*}
$$

A simple calculation then gives

$$
\begin{equation*}
y_{0}=\beta \tag{11}
\end{equation*}
$$

For $\beta \geqq 1$ this contradicts our assumption, that F_{β} has its maximal value at (p_{0}, b_{0}, y_{0}), whereas for $\beta<1$ we get

$$
\begin{aligned}
F_{\beta}\left(p_{0}, b_{0}, y_{0}\right) & \stackrel{(8)}{=} 1+\frac{\beta^{2} y_{0}^{2} p_{0}^{2}}{4}+\beta y_{0}\left(2-\frac{p_{0}^{2}}{2}\left(1-\sqrt{1-y_{0}^{2}\left(1-\beta^{2} / 4\right)}\right)\right. \\
& =1+2 \beta y_{0}-\frac{\beta y_{0} p_{0}^{2}}{2}\left(1-\sqrt{1-y_{0}^{2}\left(1-\beta^{2} / 4\right)}-\frac{\beta y_{0}}{2}\right) \\
& \stackrel{(10)}{=} 1+2 \beta y_{0}<1+2 \beta
\end{aligned}
$$

such that here we get a contradiction, too, and the maximal value is attained (only) at the boundary of Q.

Now we are able to get our conclusion for $\beta=1$ (which is known as a consequence of the univalence of close-to-convex functions of order 1). Because of (11) we know that the maximum is attained at $y=1$, where

$$
F_{1}(p, b, 1)=3-\frac{1}{4}(b-p)^{2} \leqq 3 .
$$

Now it remains to show that

$$
F_{\beta}(p, b, y) \leqq\left\{\begin{array}{lll}
1+2 \beta & \text { for } & \beta \in] 0,1[\tag{12}\\
\beta^{2}+2 \beta & \text { for } & \beta \in] 1,2[
\end{array}\right.
$$

on the boundary of Q. For $y=0, p=0$ and for $b=0$ the easy proof of (12) is left to the reader. Thus we must show (12) for the open faces $\{y=1\},\{p=2\}$ and $\{b=2\}$ of Q as well as the edges $\{p=b=2\},\{p=2, y=1\}$ and $\{b=2, y=1\}$. For $\beta \neq 1$ the maximal value is not attained on the open face $\{y=1\}$ because of (11).

Consider now the open face $\{p=2\}$. There

$$
F_{\beta}(2, b, y)=: G(b, y)=1-\frac{b^{2}}{4}+\beta y\left(b+2 \sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}\right)
$$

The relation $\partial G / \partial b=0$ implies

$$
\begin{equation*}
b=2 \beta y . \tag{13}
\end{equation*}
$$

If furthermore $\partial G / \partial y=0$ then

$$
\begin{equation*}
b+2 \sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}=2 y^{2} \frac{1-\beta^{2} / 4}{\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}} \tag{14}
\end{equation*}
$$

and substituting Eq. (13) yields

$$
y^{2}=\frac{1}{2+\beta} \quad \text { or } \quad y^{2}=\frac{1}{2-\beta}
$$

so that

$$
\begin{equation*}
y \sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}=\frac{1}{2} \tag{15}
\end{equation*}
$$

and

$$
\begin{aligned}
& G(b, y) \stackrel{(13)}{=} 1+\beta^{2} y^{2}+2 \beta y \sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)} \\
& \quad \stackrel{(15)}{=} 1+\beta^{2} y^{2}+\beta<1+\beta^{2}+\beta
\end{aligned}
$$

which implies (12).
Consider the open face $\{b=2\}$. Then

$$
F_{\beta}(p, 2, y)=: H(p, y)=\beta y\left(2-\frac{p^{2}}{2}\left(1-\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}\right)+p\right)
$$

The relation $\partial H / \partial p=0$ implies

$$
p\left(1-\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}\right)=1
$$

so that

$$
H(p, y)=\beta y\left(2-\frac{p}{2}+p\right)=\beta y\left(2+\frac{p}{2}\right)<3 \beta
$$

which gives (12).
Now we study the edges of Q. For a local maximum of F_{β} on the edge $\{p=b=2\}$ we get (14) so that

$$
1+\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}=y^{2} \frac{1-\beta^{2} / 4}{\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}}
$$

which implies

$$
\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}=\frac{1}{2}
$$

and so it follows

$$
F_{\beta}(2,2, y)=2 \beta y\left(1+\sqrt{1-y^{2}\left(1-\beta^{2} / 4\right)}\right)=3 \beta y \leqq 3 \beta
$$

which gives (12).
For a local maximum of F_{β} on the edge $\{p=2, y=1\}$ we get from (8) that

$$
\begin{equation*}
b=2 \beta \tag{16}
\end{equation*}
$$

For $\beta>1$ this statement is false so that there exists no local maximum on $\{p=2, \mathrm{y}=1\}$. For $\beta \in] 0,1[$ we get using (16) that

$$
F_{\beta}(2, b, 1)=1-\frac{b^{2}}{4}+\beta^{2}+\beta b=1+2 \beta^{2}<1+2 \beta
$$

For a local maximum of F_{β} on the edge $\{b=2, y=1\}$ we get from (9) that

$$
\begin{equation*}
p=\frac{2}{2-\beta} . \tag{17}
\end{equation*}
$$

For $\beta>1$ this statement is false so that there exists no local maximum on $\{b=2, y=1\}$. For $\beta \in] 0,1[$ we get using (17)

$$
F_{\beta}(p, 2,1)=\beta\left(2-\frac{p^{2}}{2}\left(1-\frac{\beta}{2}\right)+p\right)=2 \beta+\frac{\beta}{2-\beta}<1+2 \beta
$$

A calculation of F_{β} at the corners of Q finishes the proof of inequality (12).
Now we study the case of equality. An inspection of the proof shows that equality holds if and only if $y=1$ and

$$
\beta \leqq 1 \quad \text { and } \quad\left|b_{2}\right|=\left|p_{1}\right|=0
$$

or

$$
\beta \geqq 1 \quad \text { and } \quad\left|b_{2}\right|=\left|p_{1}\right|=2
$$

Now let $\left|b_{2}\right|=\left|p_{1}\right|=2$. Then

$$
g(z)=\frac{z}{(1-x z)^{2}}, \quad|x|=1
$$

and

$$
\tilde{p}(z)=\frac{1+w z}{1-w z}, \quad|w|=1
$$

(see e.g. [8], Theorem 1.5 and Corollary 2.3). An easy computation gives now that equality implies $w=x$, and so $f(z)=k_{\beta}(x z)$. If $\left|b_{2}\right|=\left|p_{1}\right|=0$, then the use of $\left|b_{3}-\frac{3}{4} b_{2}^{2}\right| \leqq 1-\left|b_{2}\right|^{2} / 4$ and $\left|p_{2}-p_{1}^{2} / 2\right| \leqq 2-\left|p_{1}\right|^{2} / 2$ establishes that equality implies $\left|b_{3}\right|=1$ and $\left|p_{2}\right|=2$. So $\left|p_{1}\right|=0$ and $\left|p_{2}\right|=2$, which gives

$$
\tilde{p}(z)=\frac{1+w z^{2}}{1-w z^{2}}, \quad|w|=1
$$

(see [8], Corollary 2.3). Also from $\left|b_{2}\right|=0$ and $\left|b_{3}\right|=1$ it follows elementarily (using again [8], Corollary 2.3) that

$$
g(z)=\frac{z}{1-x z^{2}}, \quad|x|=1
$$

A computation shows now that equality implies $w=x$, and so $f(z)=h_{\beta}(x z)$.
From Theorem 1 and Theorem 3 it follows with the triangle inequality
Corollary 2. Let $\beta \in[0,1], \lambda \in[2 / 3,1]$. Then

$$
\max _{f \in C(\beta)}\left|a_{3}-\lambda a_{2}^{2}\right|=B_{3}-\lambda B_{2}^{2}=\frac{1}{3}(1+2 \beta) .
$$

3. On successive coefficients. From the results of Sect. 2 it follows

Theorem 4. Let $\beta \geqq 1, f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$. Then

$$
\left|\left|a_{3}\right|-\left|a_{2}\right|\right| \leqq A_{3}-A_{2}=\frac{\beta}{3}(1+2 \beta) .
$$

Proof. At first we show

$$
\begin{equation*}
\left|a_{3}\right|-\left|a_{2}\right| \leqq \frac{1}{3}\left(2 \beta^{2}+\beta\right) . \tag{18}
\end{equation*}
$$

We use Corollary 1 , choosing $\lambda=1 / 3$, and get

$$
\begin{aligned}
\left|a_{3}\right|-\left|a_{2}\right| & \leqq\left|a_{3}-\frac{1}{3} a_{2}^{2}\right|+\frac{1}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right| \\
& \leqq \frac{1}{3}\left(\beta^{2}+2 \beta+2\right)+\frac{1}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right|=: F\left(\left|a_{2}\right|\right) .
\end{aligned}
$$

Because F defines a convex parabola, it takes its maximum at the boundary of its interval of definition. Furthermore the relation

$$
F\left(\left|a_{2}\right|\right)=\frac{1}{3}\left(2 \beta^{2}+\beta\right)
$$

implies that $\left|a_{2}\right|=2-\beta$ or $\left|a_{2}\right|=1+\beta$, so that

$$
\begin{equation*}
f\left(\left|a_{2}\right|\right) \leqq \frac{1}{3}\left(2 \beta^{2}+\beta\right) \text { for }\left|a_{2}\right| \in[2-\beta, 1+\beta] \tag{19}
\end{equation*}
$$

From this (18) follows if $\beta \geqq 2$, because $\left|a_{2}\right| \leqq 1+\beta$ in $C(\beta)$. Let now $\beta \in[1,2[$. Then with aid of Theorem 1 we have furthermore that

$$
\begin{align*}
\left|a_{3}\right|-\left|a_{2}\right| & \leqq\left|a_{3}-\frac{2}{3} a_{2}^{2}\right|+\frac{2}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right| \\
& \leqq \frac{1}{3}(1+2 \beta)+\frac{2}{3}\left|a_{2}\right|^{2}-\left|a_{2}\right|=: G\left(\left|a_{2}\right|\right) . \tag{20}
\end{align*}
$$

The same procedure as above shows that

$$
G\left(\left|a_{2}\right|\right) \leqq \frac{1}{3}\left(2 \beta^{2}+\beta\right) \quad \text { for } \quad\left|a_{2}\right| \in\left[1-\beta, \beta+\frac{1}{2}\right]
$$

which, together with (19), gives (18).
Now we shall show that

$$
\left|a_{2}\right|-\left|a_{3}\right| \leqq \frac{1}{3}\left(2 \beta^{2}+\beta\right),
$$

which is trivially true if $\left|a_{2}\right| \in\left[0,\left(2 \beta^{2}+\beta\right) / 3\right]$. This gives the result for $\beta \geqq(\sqrt{7}+1) / 2$. For $\beta<(\sqrt{7}+1) / 2$ let now lie $\left|a_{2}\right|$ in the remaining interval $\left[\left(2 \beta^{2}+\beta\right) / 3,1+\beta\right]$. Then Theorem 3 gives

$$
\begin{aligned}
\left|a_{2}\right|-\left|a_{3}\right| & =\left|a_{2}\right|^{2}-\left|a_{3}\right|-\left|a_{2}\right|^{2}+\left|a_{2}\right| \leqq\left|a_{2}^{2}-a_{3}\right|-\left|a_{2}\right|^{2}+\left|a_{2}\right| \\
& \leqq \frac{1}{3}\left(\beta^{2}+2 \beta\right)-\left|a_{2}\right|^{2}+\left|a_{2}\right|=: H\left(\left|a_{2}\right|\right) .
\end{aligned}
$$

H takes its global maximum at $\left|a_{2}\right|=1 / 2$ which does not lie in the interval considered. Thus, for $\left|a_{2}\right| \in\left[\left(2 \beta^{2}+\beta\right) / 3,1+\beta\right], H$ is decreasing, and it remains to show that

$$
H\left(\left(2 \beta^{2}+\beta\right) / 3\right) \leqq \frac{1}{3}\left(2 \beta^{2}+\beta\right)
$$

i.e. $3 \beta^{2}+6 \beta \leqq\left(2 \beta^{2}+\beta\right)^{2}$, which obviously holds for $\beta \geqq 1$.

For $\beta<1$ one gets
Theorem 5. Let $\beta \leqq 1 / 2, f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$. Then

$$
\left|a_{3}\right|-\left|a_{2}\right| \leqq B_{3}-B_{2}=\frac{1}{3}(1+2 \beta) .
$$

Pro of. Theorem 1 implies (20). Because $\beta \leqq 1 / 2$ we have $\left|a_{2}\right| \in[0,3 / 2]$, and it follows easily that $G\left(\left|a_{2}\right|\right) \leqq(1+2 \beta) / 3$.

We are not able to show that $\left|a_{4}\right|-\left|a_{3}\right| \leqq A_{4}-A_{3}$ for $\beta \geqq 1$, but give a weaker result in this direction.

Theorem 6. Let $\beta \geqq 1, f(z)=z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+\cdots \in C(\beta)$. Then

$$
\left|\left|a_{4}\right|-\left|a_{2}\right|\right| \leqq A_{4}-A_{2}=\frac{(1+\beta)}{3}\left(\beta^{2}+2 \beta\right) .
$$

Proof. We use [2], Lemma, implying that with $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \in C(\beta)$ the function $h(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$, defined by $h^{\prime}(z)=\left(f^{\prime}\left(z^{2}\right)\right)^{1 / 2}, h(0)=0$, is an odd close-to-convex function of order $\beta / 2$. Now, because $\beta \geqq 1$, we can use the coefficient domination theorem for such functions [2], Theorem 1, and get

$$
\begin{equation*}
\left|b_{7}\right|=\frac{1}{7}\left|2 a_{4}-\frac{3}{2} a_{2} a_{3}+\frac{a_{2}^{3}}{2}\right| \leqq \frac{(1+\beta)}{42}\left(\beta^{2}+2 \beta+6\right) . \tag{22}
\end{equation*}
$$

If we consider b_{5}, we get once more Corollary 1 for $\lambda=1 / 3$, namely

$$
\begin{equation*}
\left|b_{5}\right|=\frac{3}{10}\left|a_{3}-\frac{1}{3} a_{2}^{2}\right| \leqq \frac{\beta^{2}+2 \beta+2}{10} . \tag{23}
\end{equation*}
$$

Now we get with aid of (22) and (23) that

$$
\begin{aligned}
\left|a_{4}\right|-\left|a_{2}\right| & \leqq\left|a_{4}-\frac{3}{4} a_{2} a_{3}+\frac{a_{2}^{3}}{4}\right|+\frac{3}{4}\left|a_{2}\right|\left|a_{3}-\frac{1}{3} a_{2}^{2}\right|-\left|a_{2}\right| \\
& \leqq \frac{(1+\beta)}{12}\left(\beta^{2}+2 \beta+6\right)+\frac{3}{4}\left|a_{2}\right| \frac{\left(\beta^{2}+2 \beta+2\right)}{3}-\left|a_{2}\right| \\
& \leqq \frac{(1+\beta)}{12}\left(\beta^{2}+2 \beta+6\right)+\frac{\left|a_{2}\right|}{4}\left(\beta^{2}+2 \beta-2\right) .
\end{aligned}
$$

Because $\left(\beta^{2}+2 \beta-2\right) \geqq 0$ it follows now from $\left|a_{2}\right| \leqq 1+\beta$ that

$$
\left|a_{4}\right|-\left|a_{2}\right| \leqq \frac{(1+\beta)}{3}\left(\beta^{2}+2 \beta\right) .
$$

On the other hand, for $\beta \geqq 1$

$$
\left|a_{2}\right|-\left|a_{4}\right| \leqq\left|a_{2}\right| \leqq \frac{(1+\beta)}{3} \cdot 3 \leqq \frac{(1+\beta)}{3}\left(\beta^{2}+2 \beta\right)
$$

is trivially true.
4. Close-to-convex functions and the Schwarzian derivative. For $\sigma \geqq 0$ let $N(\sigma)$ denote the family of analytic and locally univalent functions of \mathbb{D}, which are normalized by (1)
and have the property that

$$
\begin{equation*}
s(f):=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right| \leqq \sigma \tag{24}
\end{equation*}
$$

Here $S_{f}:=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$ denotes the Schwarzian derivative of f.
The Nehari univalence criterion [4] states that $N(2) \subset S$. On the other hand it is easily seen that $S \subset N(6)$ (see e.g. [4]).

Note the well-known transformation property that if ω is an automorphism of \mathbb{D}, then

$$
\begin{equation*}
\left(1-|z|^{2}\right)^{2}\left|S_{f \circ \omega}(z)\right|=\left(1-|\omega(z)|^{2}\right)^{2}\left|S_{f}(\omega(z))\right| \tag{25}
\end{equation*}
$$

The following result generalizes the statements $K=C(0) \subset N(2)$ (see [5]), and $C(1) \subset N(6)$.

Theorem 7. Let $f \in C(\beta)$, and let $s(f)$ defined by (24). Then

$$
s(f) \leqq\left\{\begin{array}{lll}
2+4 \beta & \text { if } & \beta \leqq 1 \tag{26}\\
2 \beta^{2}+4 \beta & \text { if } & \beta \geqq 1
\end{array}\right.
$$

Equality holds for the functions f defined by

$$
f(0)=0, f^{\prime}(z)=\left\{\begin{array}{lll}
\frac{\left(1+z^{2}\right)^{\beta}}{\left(1-z^{2}\right)^{\beta+1}} & \text { if } & \beta \leqq 1 \tag{27}\\
\frac{(1+z)^{\beta}}{(1-z)^{\beta+2}} & \text { if } & \beta \geqq 1
\end{array}\right.
$$

Proof. Let $f \in C(\beta)$ and $a \in \mathbb{D}$. Then the function $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$, defined by

$$
g(z)=\frac{f\left(\frac{z+a}{1+\bar{a} z}\right)-f(a)}{f^{\prime}(a) \cdot\left(1-|a|^{2}\right)}
$$

also lies in $C(\beta)$ (see e.g. [1]). An application of Theorem 3 gives

$$
\left|b_{3}-b_{2}^{2}\right| \leqq\left\{\begin{array}{lll}
\frac{1}{3}(1+2 \beta) & \text { if } & \beta \leqq 1 \tag{28}\\
\frac{1}{3}\left(\beta^{2}+2 \beta\right) & \text { if } & \beta \geqq 1
\end{array},\right.
$$

so that the relation

$$
\left(1-|a|^{2}\right)^{2} S_{f}(a)=S_{g}(0)=6\left(b_{3}-b_{2}^{2}\right),
$$

which is a consequence of (25), implies the result, because a was arbitrary. The functions f, defined by (27), give the sharp bounds in (28), and so in (26).

References

[1] W. Koepf, Close-to convex functions and linear-invariant families. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8, 349-355 (1983).
[2] W. Koepf, Coefficients of symmetric functions of bounded boundary rotation. To appear.
[3] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions. Proc. Amer. Math. Soc. 100, to appear.
[4] Z. Nehari, The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55, 545-551 (1949).
[5] Z. Nehari, A property of convex conformal maps, J. Anal. Math. 30, 390-393 (1976).
[6] Ch. Pommerenke, On the coefficients of close-to convex functions. Mich. Math. J. 9, 259-269 (1962).
[7] Ch. Pommerenke, On close-to-convex analytic functions. Trans. Amer. Math. Soc. 114, 176-186 (1965).
[8] Ch. Pommerenke, Univalent functions. Göttingen 1975.
[9] S. Y. Trimble, A coefficient inequality for convex univalent functions. Proc. Amer. Math. Soc. 48, 266-267 (1975).

Eingegangen am 20.8. 1986
Anschrift des Autors:
Wolfram Koepf
Freie Universität Berlin
Institut für Mathematik I (WE1)
Arnimallee 3
D-1000 Berlin 33

