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Lewandowski (97 and [10]) proved that a function is closc-to-convex if and only if its image domain is
linearly accessibie [2]. The proof of both impiications was astonishingly complicated, sc Lewandowsks
himself looked for some simpler argument. He and Bielecki [1] finally gave an elegant proof that a
close-to-convex function is linearly accessible using a Lowner type argument, but the problem of giving
a simpler proof for the other implication remained open.

Pommerenke [ 117 introduced the notion of close-to-convex functions of order f§ and gave a geometrical
description of their image domains without proof.

We give here an elementary proof of Lewandowski’s and Pommerenke’s results using the Carathéodory
kernel theorem, Schwarz-Christoffel mappings and a certain approximation argument for functions with
positive real part, which seems to be of some interest by its own.
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1. UNIVALENT FUNCTIONS
We consider functions that are analytic in the unit disk
D:={zeC ||| <1}

A function is called univalent (or schlicht) if it is one-to-one. The Riemann mapping
theorem guarantees the existence of a univalent map f:D — G for each simply
connected domain G < C. Moreover f is uniquely determined except of the
composition with rotations z— e“z of D.

If (G,) is a sequence of simply connected domains with ae G,, ne N, then the largest
domain G containing a and having the property that each compact subset of G lies
in all but a finite number of the domains G, is called the kernel of (G,). If no such
domain exists then the kernel is {a}. A sequence (G,) is said to converge to G, if each
subsequence has the kernel G. We write G, = G. The Carathéodory kernel theorem
states that a sequence ( f,) of univalent functions with £,(0)=aand f,(0) > 0converges
locally uniformly to f, if and only if f,(D) converges to f(D).
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270 W. KOEPE

If we speak about convergence of a sequence { £} of analytic functions. we mean
b= Jn
locally uniform convergence and write f, — f. The family 4 of analytic functions of
s
0 together with this topology is a Fréchet space. i1.¢. a locally convex complete
metrizable linear space.
A sequience of univalent functions not converging locally uniformly to » is normal,
I

A ibh ient or constant.

and therc is a convergent subsequence. The fimit function is unival

)
(See [31.14]. [12])

2]

2. FUNCTIONS WITH POSITIVE REAL PART

Let P denote the subsct of A of functions p with positive real part that are normalized
by p(0) - 1.
A function of the form

NITINS! iy

clearty has positive real part,

<
=
5
=
i

enotes a Borel probabiiity measure on ¢
1 N T
I

[ M . U o O R TN . .
nctions have this property. The lamous Hergioiz representation

at the converse is also truc. This is equivalent to the fact that the

extreme points of P (i.c. the points which have no proper convex representation within

the convex set P) arc the kernel functions of representation (1), which map D

univalently onto the right halfplanc {weC | Re w >0} (sce e.g. [13]. [5]): we write

EP— { e

g} — XJ|

is all of P and so their convex hull co(EP) lics dense in P with respect to the topology

of locally uniform convergence (which makes P compact). Thus cach function pe P
can be locally uniformly approximated by functions p, of the form

xXe (”[[Dl. By the Krein- Milman theorem their closed convex hull co(EP)
)

" I 4+ x,z
)= e -, Ik =1, we>0, k=1,....n,
k=1 I —xz
Y =1, neN. (2)
k=1

The functions of representation (2) form the so-called Carathéodory boundary of P.
A function [ is called subordinate to g. if {=g-w for some function we A4 with
w{0) =0 and w(iD) < ; we write f <g. I ¢ 1s univalent then f <g if and only if

. . 14z
F(0)=g(0) and (D)< g(Db), and so pe P iff p< | )

A similar compact family of some intcrest is the class P of functions p normalized
by p(0) =1 for which there is some x €| such that the real part of ¢p is positive,

~ . 1 +yz
One secs that pe P iff p< | J , where y=e¢"

—Z

2 and a slight modification of
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Herglotz's theorem gives that cach function pe P can be approximated by functions
of the form

" I+ vy, Z
pn(:): Z Hi o

i_\‘(:l,Vk‘:l. >0, k=1....,n,
k-1 1-.,\:

i W =1, neN. (2)
k=1
Hence the following lemma holds
LEMMA 2.1 The functions of the form (3) form a dense subset of P
(For details see e.g. [5, Chapter 3], and [7].)

LEMMA 2.2 Each function of the form (3) has a representation

n ye -

H Vi i AN
pn(:,: [l . l4)
ke L =X
N .
where
I =lmi=1 k=Ll....n (5)
and
arg x, <argy, <argx, <argy, <---<argx,<argy, <argx; + 2m. 6)

Proof The function p, given by (3) is rational in € of degree n with exactly n
poles at the points x,, and p,(0) =1, so that (4) holds. As a convex combination of
. . 1+ yz | + )z ..
functions subordinate to - Y= also pa< | Y , and so p,(D) lies in some halfplane
|

H whose boundary contains the origin, and in particular p, is nonvanishing in .
From this it follows that |y, <1, k=1,....n. On the other hand

n n

Vi
puloc)=—y ¥ w=—-y=1[] .

k=1 k=1 Xk

sothat [] |y = 1, whichleads to (5). From (4) it follows with the aid of the identity

k=1
arg(l +x)=largx, |x]=1, x# -1, (7)
that for e #x,, y,. k=1,...,n
arg(p,(e™) =3 arg< I1 y") (mod ), (8)
k=1 Yk

so that the curve {p,(¢®)! lies on a line [ through the origin, and p,(D) = H then
implies that p,(D)=H where H denotes that halfplane with /=7H and 1€ H. In
particular. p,(¢®) does not contain a turning point 0, where p,(¢”’)=0. Suppose
now that (6) does not hold. Then there exist two zeros of p,(¢”), 0, and 0,, say,
without pole between them (on ¢D), so that p,(¢®) must change its direction on /
for some 0,€10,. 0,[. Here p,(e"*) =0, and we have a contradiction. |
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On the other hand, functions of the form (4) (6) are elements of P as the following
lemma shows.

LEMMA 2.3 The functions of the form (4)—(6) form a dense subset of P.

Proof By Lemma 2.1 the functions of form (3) are dense in P. and by Lemma
2.2 they have a representation of the form (4)-(6). Now we show that functions of
the form (4)-(6) lic in P, which gives the result.

As above we get (8), and the curve {p,(e’)} lies on a line I through the origin.
Now we shall show that p;,(z) # 0 for ze éD, and from this it follows that p,(D) must
lie on one side of I, because p,(e'’) does not change its direction by moving on [ while
0 varies from 0 to 2r, and this gives that pe P.

The zeros y, and the poles x, of p, are pairwise different by (6), so that they have
order one and p,(x,), pa(yy) #0. k=1, ..., n. It remains to show that

Pn

2 (z)=0 for zecD, z#x,3. k=L ..., n

From representation (4) it follows for ze o that

, n l N\,
P (2)= Z B ———
Pn 1— yk 1 — X Z
The real part of this sum equals zero because the same is true for each summand.
On the other hand, we get for z = e

pn - _1 < ~ (pk“G_R l//k_‘g\
lm< (A)>— Zl<bot 5 cot 5 }

Pn

if we write
Pr=arg X;; Yrr=arg y,.

Now let 0€[0, 2n] be given. Then rearrange the values of ¢, and Y, modulo 2nx,
such that

O<on<Yn<Ons 1 <Uni1 < <@, <Y, <@, <y, <

<@y <Yy <b0+2n )
or
O<Yy<on<Yni 1 <Oy 1< - <Y, <@, <Y, <, <

<Yy 1<On_,<0+2n (10)
holds which is possible by (6) if 6 # ¢, ¥, k=1,...,n. Write

—0 —0
a,:=cot Vi ; bk:=COt(p"(7 s
2 2

o)L

then
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Suppose now. (9) holds. then hy —a, >0. k=1..... n. because the function cot is
strictly decreasing in 0. [ so that Im(zp;, ‘p,()) > 0. If (10) holds it follows similarly
that Im(zp./p,)) < 0. This finishes the proof that zp,/p, has no zcro on M. [ ]

3. POLYGONS AND SCHWARZ-CHRISTOFFEL MAPPINGS

Let /€ A be continuous in D and have a Riemann surface F as image domain whose
boundary consists of a finite number of linear arcs, such that the boundary
correspondence ¢D) — ¢F is one-to-one. Then F is called a polygon. Let F have n
vertices of interior angles z,m, k=1,..., n. We do not suppose f to be univalent.
so that o, > 2 is possible, whereas for univalent polygons

%5 =2, k=1,..., n. (11)

If we have a bounded vertex then

%, >0. (i2)
If a vertex lies at infinity we mcasure the angle on the Riemann sphere and have
%, =0, (13)

where o, =0 is a zero angle which corresponds to two parallel rays of (F.
Let now x, be the prevertices, i.e. the preimages under f of the vertices f(x;). Then
the Schwarz-Christoffel formula is the representation

" WA
=2y B (14)
f k=12 — Xk
where
i {(1 —)m i.f fi(Xk) ?s bounded (s
(14+o)n if  f(x,)is unbounded
denotes the outer angles. The formula
Y =1 (16)

k=1

in the bounded (univalent) case corresponds both to the rule for the sum of angles
in an n-gon and to the fact that the increment of the tangent direction is exactly 2z
when surrounding the polygon on JF one time.

On the other hand, if / fulfills (14) and (16), such that x, el for k=1..... n,
then the Riemann image surface f([D) is a polygon.

If f(x,) is bounded then relation (12) yields

<3, (17)
whereas for unbounded f(x,) relations (13) and (15) give

=} (18)
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If f is univalent, then (11) leads to

W= =5 (19)
(See [8]. [15])

4. CONVEX AND STARLIKE FUNCTIONS

A function feA is called convex if it maps D univalently onto a convex domain,
and it is called starlike if it maps D univalently onto a domain which is starlike with
respect to f(0)=0.

Clearly a polygon is convex if o, <1, k=1,..., n or equivalently 1if g, >0.
k=1,...,n. So by (14) it follows that
1" " |+ x,z
L+z7 (2)= ) 1, ke (20)
] B
if one uses (16). Thus
1+:" ep (21)

On the other hand, if (21) holds, then by (2) f can be approximated by convex

Schwarz - Christoffel mappings, and the Carathéodory kernel theorem shows that

f(D) is convex. So (21) is a necessary and sufficient condition for f to be convex.
It is well known that a function f is starlike if and only if

z ‘!—; epP (22)
S/
(see e.g. [12]).
By (2) and Lemmas 2.1 and 2.2 the function zf"/f can be approximated by functions
of the form

f n l+xz " 1—yz
2 @=pE)= Y p L ) e

1, l—xkz =11 —x,2

,xklzlykl=1’ w.>0, k=1,...,n, Zﬂk:l’ neN

with the property (6). so that

—1 / n_
pn(z) +pn — 2 Z

fi_pe)—1 w12
‘)’k

- X,

K n

3 Z
I z Pn k=1
from which we can see that f, is a Schwarz—Christoffel mapping with » finite vertices
of interior angle 27, and alternating n vertices at o. This is a special case of linear
accessibility which will be considered now.
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5. LINEARLY ACCESSIBLE DOMAINS AND CLOSE-TO-CONVEX
FUNCTIONS

A domain F is called (angularly) accessible of order 8. f€ [0, 1].if it is the complement
of the union of rays that are pairwise disjoint except that the origin of one ray may
lie on another one of the rays, and such that every ray is the bisector of a sector of
angle (1 — ) which wholly lies in the complement of F. If f=1 then F is called
(strictly) linearly accessible (see [2], [14]. [11]). A function f is called close-to-convex
of order f. fe[0, 1], (for reasons which shall be seen later) if /(D) is accessible of
order . We shall give an analytical characterization for f to be close-to-convex of
order B, which is for =1 originally due to Lewandowski [9]-[10] and for f <1
to Pommerenke [11] (who did not give a proof for his statement) and has been the
original definition of close-to-convexity due to Kaplan [6]. Therefore we use
Lemma 2.3.

THEOREM 3.1  Let f
conrex function g and a function pe P such that the representation

t 1 H | — ) anN + o S e » 3 1<
be unicaleni und [{D) accessible of order 5. Then there exist a

=g " (23)
holds.

Proof Suppose firstly, f=1. Then by the geometrical definition we have
f(D)=C\ [ J y,. where y, are rays that are pairwise disjoint except that the origin of
teT
one ray may lie on another one of the rays, and T is a suitably chosen parameter
set, which is separable (e.g. T = R*). Choosc a dense subset {1, T 1 neN} of T and
define f, by

f(D):=C\ {J 75, (24)

k=1

There is no loss of generality to assume that (y, ) are pairwise disjoint, because if
some of the chosen rays have their origins lying on another ray, we shorten them by
1/n and get the same conclusion. Obviously f, — f, because f,(D) — f(D) in the sense
of Carathéodory kernel convergence. This shows that it suffices to show the conclusion
for functions f, satisfying (24), because { f,} is a normal family and the functions f
with representation (23) form a closed subset of A.

Observe that f, is a certain Schwarz—Christoffel mapping with n finite vertices at
the points w, = f,(y,), say. The interior angle at each of those hairpin vertices is 2.
The other n vertices alternate with w, and lie at oo = f,(x,). say. The interior angles

a7 at those vertices satisfy o, =0, and their sum fulfills Y. om=2m, because f, is
k=1

univalent (in other words: the rays are traversed at oc systematically with increasing
argument when surrounding the polygon), so that by (14) and (15)

fiy= 2y T2y g (w2 Z( : - 1x>—2i w2 s
k I X

=1 I— Xy k=1 \Z — Vi k=1 < — X
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The choise (4) gives a function pe P as Lemma 2.3 shows because (5) and (6) are
fulfilled. and

g'(0):= £ ,(0)

12— X
gives a convex polygon. Then from (25) it follows that
fo_p 4 . ,
Il =410
foop oy
which is equivalent to f, =g -p.
Now suppose 0 < f§ < 1. Then for each y,, t € T, the sector S, of angle (1 — )z which
is symmetric with respect to 7, lies in C\ f(D). Define here

LAD)=Co S, (26)

k=1

for a certain dense subset {1, e 1 5 neiN} of 1. Then f,— f, and 1t suffices to show
the conclusion for functions f, satisfying (26).

Observe that f,(D)is a polygon with 2n vertices, n of them of interior angie (1 + f§)n
at the origins of S, k=1, ..., n. Let the sectors S, be ordered in the same way as
their origins— which are vertices of f,(D)—when traversing ¢ in positive sense.
Now the polygon f,(ID) has a finite vertex between the origins S, and S, , when
surrounding f,(D) if they intersect, and has a vertex at o if they do not. Let «, be
the angle between the directions of y, and v, , . Then in either case the outer angle
is seen to be 2y, m = (o, + f)n, so that

o 1 "oy /2

f k=1 \Z — Vi :*xk

n

Because ) o, =2m, this gives the result as above. ]
k=1
It is decisive that the converse is also true. For this reason the functions are called
close-to-convex.

THEOREM 5.2 Let €10, 1] and let f have a representation of the form (23) for some
convex function g and some pe P. Then f is univalent and (D) is accessible of order p.

Proof The function h= fcg~! is defined in the convex domain g(D) and fulfils
for z,,z,eg(D)

z2 1
h(zy)— h(z,) :J h(z)dz = (z, — :1),[ h(tzy+ (1 —1)z,)dr #0,
z1 0

since Re(eh’) = Re(e*f"/g’) > Ofor some o € R, so that h and therefore f is univalent.
We prove the rest of the result also by an approximation argument. Therefore we
need to know that the family of domains that are accessible of order f is closed with
respect to Carathéodory kernel convergence, i.e. a convergent sequence of domains
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which are accessible of order /i that does not converge to a singleton converges to
a domain accessible of order f.

Suppose G, are accessible of order ff and G, — G. Each boundary point we G is
the limit point of a sequence w, of boundary points of G,. Each w, is the vertex of
a sector S, which lies in C\ G,. Let 7, denote the bisector of S,. Then one chooses a
subsequence such ‘that there is a limit direction of the directions of 7, and thus a
limit ray ;. Let S be the corresponding symmetric sector of angle (1 —p)n.
Carathéodory kernel convergence shows that S< C'\G. Furthermorc a simple
argument also shows that the rays which correspond to different boundary points
of G arc pairwise disjoint. For the details see [2, Lemma 3].

Suppose now, f has a representation (23). Then

’/,=g,+/fp
" g p

'

(27)

Each function of this form can be approximated by functions f, of the same form
where g 1s a convex Schwarz-Christollel mapping and p has a representation (4) (6)
as Lemma 2.3 shows. So we gct for the approximants

- n 3/2 n__ /,’2 m .
Basa§ B a5 PR m oy

Sa k=12 — Xi k=127 Yk k=12 — Wi

where the numbers X, y, alternate with each other on ¢D. g, >0, lwy| = 1.
m
k=1,...,m, ¥ =1, andn meN. Without loss of generality we can assume that
k=1
g is bounded (i.e. w,<}. k=1,...,m) because otherwise we approximate gy by
bounded convex polygons. On similar reasons we suppose that the numbers w, are
pairwise different from x, and y,.

From (28) one sees that f,(DD) is a polygon and because it has the form (27) it is
a priori close-to-convex and hence univalent.

Now suppose first, = 1. Then there are n vertices at oG of angle zero, and
alternatively n finite hairpin vertices of angle 2r. Furthermore there are m finite
convex vertices.

At first we prove that the complement E of F:=f,(D) contains the n rays 7y,
k=1.....n, which come from the hairpin vertices O,. Clearly a segment o of 7,
containing O, lies in E. Suppose now that there is a point Q €7y, which lies in F. Then
there is a curve I which connects O, with Q within F because O, is an accessible
boundary point. The segment of 7, from O, to Q and I' encloses a bounded region.
It contains points of OF other than those of o, and without loss of generality we can
assume that there are those which come after O, when traversing on ¢D in positive
sense. Call the corresponding part of 0F from O, to the next vertex at infinity 6. Now
because J is unbounded it must cross }, between a and Q. But this contradicts the
fact that all vertices of ¢ are convex. Thus y, < E.

The rays j,. k= 1, ..., n, are pairwise disjoint because of the univalence. Let them
be ordered in the same way as their origins O, when traversing D in positive sense.
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When traversing from O, to O, , along ¢F there is exactly one vertex at »x (of
angle zero) between O, and O, , ,. because the numbers x,. v, are alternating on ¢[).
So the rays 7, are separated by half parallel strips and lie in components G, of E
which are pairwise disjoint.

n
Furthermore E = U G,, because in a neighborhood of infinity E has exactly n
k=1
components ( f has exactly n poles on ¢D), so that an additional component would
be bounded contradicting the simple connectivity of F.

So, for to fill E with rays that are pairwise disjoint, it is enough to do this for the
components G,. But this is easily done.

Take the parallels of 7, from O, to the next vertex P, with origins on ¢F. Because
all vertices before the next vertex at »x are convex, we may choose from P, on as
direction of a new family of parallel rays the boundary direction of F before P,. and
fill the remaining sector arbitrarily. Note that in this case the origin of some ray lies
on another onc of the rays. Continue the procedurc from P, to the next vertex P,
and so on until P;= . Finally apply the same process from O, to the last vertex at
x before O,. This gives a suitable representation of G, as union of rays that are
pairwise disjoint and finishes the proof for f=1.

Now suppose, 0 < f§ < 1. Because g, < 3, k=1,...,m, fis bounded, i.e. all vertices
are finite. There are exactly n vertices of angle (1 - f)x, alternately n vertices of angle
(1 + B)r, and finally m convex vertices. The vertices O,, k =1, . .., n, of interior angle
(1 + B)n define sectors S, k=1, ..., n, of angle (I — ff)n which lie in E:=C\ f(D).
Let y, denote the bisector of S,, k=1,...,n. Because all other n +m vertices are
bounded and convex, E can be filled with rays y,, t € T, that are pairwise disjoint such
that for each y, the symmetric sector S, of angle (1 — ) lies in E, if we choose 7, to
be parallel to y, in a neighborhood of O, k=1, ..., n. This finishes the proof. W
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