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On Close-to-convex Functions and 
Linearly Accessible Domains 

WOLFRAM KOEPF 

Freie Universitat Berlin, Fachbereich Mathernatik, lnstitut fur Mathernatik, 
Arnimallee 3, 7000 Berlin 33, F.R. G. 

Lewandnwski 1r91 and [lo]) proved that a function is close-to-convex if and only if its image domain is 
linearly access~ble L2.I. The proof of both impiicatio~ia was osivfiishiiig:y complicalcd, so Lewandorvskl 
himself looked for some simpler argument. He and Bielecki [ I ]  finally gavc an elegant proof that a 
close-to-convex function is linearly accessible wing a Liiwner type argument. but the prohlcm OF g ~ v i r ~ g  

a simpler proof for the other implication remained open. 
Pommerenke [ I  11 introduced the notion of close-to-convex functions of order P and gave a geometr~cal 

description of their image domains without proof. 
We give here an elementary proof of Lewandowski's and Pommerenke's results using the Caratheodory 

kernel theorem. Schwarz-Christoffel mappings and a certain approximation argument for functions with 
positive real part. which seems to be of some interest by its own. 

AMS No. 30C45 
Communicated: R .  P. Gilbert 
(Received Sepremher 27. 1988) 

1. UNIVALENT FUNCTIONS 

We consider functions that are analytic in the unit disk 

A function is called univalent (or schlichr) if it is one-to-one. The Riemann mapping 
theorem guarantees the existence of a univalent map f: D -. G for each simply 
connected domain G 5 @. Moreover j' is uniquely determined except of the 
composition with rotations z + + e i a z  of D. 

If (G,) is a sequence of simply connected domains with a~ G,, n E N ,  then the largest 
domain G containing a and having the property that each compact subset of G lies 
in all but a finite number of the domains G, is called the kernel of (G,). If no such 
domain exists then the kernel is { a ) .  A sequence (G,) is said to converge to G ,  if each 
subsequence has the kernel G. We write G, -, G .  The Cararhkodory kernel theorem 
states that a sequence (f,) of univalent functions with f,(O) = a and f : (O)  > 0 converges 
locally uniformly to S, if and only if f ,(D) converges to f (LCD). 
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If we xpcak about convcrgencc of a wqucncc ( J,,) of analytic f~inctions. we meari 
locally uniform convergence and write /,, -- /: The family 1 of an;~lytic functions of 
tl togcthcr ~ i t h  this topology ih ;I k'rkchct space. i.e. a luca!ly conbcx complete 
metric-able linear space. 

A seqticncc c;f iiniva!~!?! fu!istion:, :?or co! :~c r~ i : :~  i::c::!!;. ::nif:::m!y :i: ,,. is nc;;;;;d, 
iiiid there is ;i ctini'ei-gi-rri xubsequence. The iirnit func~ion is univalent or constant. 
(SCC ( 7 1 .  141. [12] ) 

2. FUNCTIONS WITH POSITIVE REAL PART 

Let P denote the 5~1bsct of A of funct~on\ p w ~ t h  povtlve real part th'it arc normal~/cd 

by I ' (O )  - 1 
A funct~on of the form 

whcl-e 11 dcno~us  a Borci proh:lhl~ity rncarure on ( It?. clearly has  posillvc rca! pa!-1. 
beci:::sc !he kcrncl knciififis have  ihis pitipei-iy. The Famous iit~r~!io!z r - ~ ~ ~ ~ r . ~ v c ~ ~ ~ r t r t i o ~ !  
tjle<)rckn st:i!es ?h2! the cc;n.vre;.;c I.; lrijc. This is rqiiivii~ei2i 
ertrcnzr points of P (i.e. the points which have no proper convcx representation within 
the convex set P)  arc the kernel functions of representation ( I ) ,  which map LX 
univalcntly onto the right halfplane {wt@ 1 Re w > O )  (see e.g. 1131, 151); we write 

I + 23 
E P  = /, - I XEPID]. By Ilic Kreili Milman theorem their cb l rd  conlvx Bidlco(tPI 

( 1  -h;l J 

is all of P and so their t . o n ~ . ~  h ~ r l l  co(EP)  lies dense in P with respect to the topology 
of locally unifc>sm convergence (which makes P compact). Thus each function p t t-' 
can be locally unil'ormly approximated by functions p, of the form 

The functions of representation (2)  form the so-called Cilrc~/ht;odory hounrlury of P. 
A function 1' is called suhordinlrrc to y. if  f '  = y rv for somc function w F A with 

w ( O )  = O and w ( E j  c E ;  we write , j '<g .  if $1 is univalent then f < q  ~f and only if 
1 + z  

j ( 0 )  = q(0)  and f (03) c q(D) ,  and so p E P iff p < 
1 -- 2 

A similar compact family of some interest is the class P of functions p normalized 
by p ( O )  = i for which there is some . j [ ~  such that the real part of ciap is positivc. 

1 + y z  
One sees that ~ f f  p< , where = e-'", and a s l~ght  mod~fica t~on of 

I - z  
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LINEARLY AC('ESS1HL.E DOMAINS 27 1 

Herglotz's theorem gives that cach function pep can be approximated by functions 
of the form 

Hence the following lemma holds 

LEMMA 2.1 The ,functions of' tlir ,firm ( 3 )  ,/i)rrn u drnse subset q f  !f. 

(For details see e.g. [5, Chapter 31, and [ 7 ] . )  

LEMMA 3.2 EtrcA firnction of' tlic j imn ( 3 )  htrs u r.cpr.c~scnt~~tion 

arg x l  < arg jl < arg .u2 < arg y ,  < . . . < arg x, < arg y, < arg s, + 277. ( 6 )  

Proof' The function pn given by ( 3 )  is rational in of degree n with exactly n 
poles at the points .uk. and p,,(O) = 1, so that (4) holds. As a convex combination of 

I + yz I + yz 
functions subordinate to . also p , i  - , and so p, (D)  lies in some halfplane 

1 - 2  1 - 7  
H whose boundary contains the origin, and in particular p, is nonvanishing in D. 
From this i t  follows that I y k I  5 1 ,  k = 1 , .  . . . n. On the other hand 

so that n = I ,  which leads to (5). From (4) it follows with the aid of the identity 
k =  l 

that for eie # xi, j,, k = 1, . . . , n 

so that the curve (pn(e i e ) ]  lies on a line 1 through the origin, and p, (D)  c H then 
implies that p,(D) = H where H denotes that halfplane with I = 8 H  and 1 E H. In 
particular. p,(eiol does not contain a turning point 61, where p ~ ( e i o ~ ' )  = 0 .  Suppose 
now that ( 6 )  does not hold. Then there exist two zeros of p,(eiH), O 1  and 02, say, 
without pole between them (on 8D), so that p,(ei" must change its direction on I 
for some 61, ~ 1 0 , .  02[. Here pb(ei") = 0, and we have a contradiction. 
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272 W. KOEPF 

O n  the other hand, functions of the form (4 )  (6)  are elements of P as the following 
lemma shows. 

LEMMA 2.3 The junctions of' rhr jiwm (4)-(6) f i r m  tr ticnsc suhsct of P 

Proyf' By Lemma 2.1 the functions of form ( 3 )  are dense in P. and by Lemma 
2.2 they have a representation of the form (4)-(6). Now we show that functions of 
the form (4)-(6) lie in P ,  which gives the result. 

As above we get (8), and the curve Cpn(eie)) lies on a line 1 through the origin. 
Now we shall show that pk(z) # 0 for z ESD, and from this it follows that pn(D) must 
lie on one side of I ,  because pn(ri@) does not change its direction by moving on I while 
0 varies from 0 to 27~, and this gives that p e p .  

The zeros I; and the poles .< of pn are pairwise different by (6). so that they have 
order one and pL(.<), Ph(.K) # 0, k = 1 .  . . . , n. It remains to show that 

From representation (4) il follows for Z E  ?jiii that 

The real part of this sum equals zero because the same is true for each summand. 
O n  the other hand, we get for z = eiB 

(Pk - e Im(z 2 (z,)=; jl (cot - - cot *LO) 
2 2 ' 

if wc write 
rp, := arg 3,; $,:= arg j,. 

Now let OE[O, 2711 be given. Then rearrange the values of cpk and $, modulo 2?c, 
such that 

holds which is possible by (6) if 6) 2 (P,, $,, k = I ,  . . . , n. Write 

* k -  Q. a,:= cot --- 9, - 0 b,:=cot- 
2 ' 2 '  

then 
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L I N E A R L Y  ACCESSIBLE DOMAINS 273 

Suppose now. (9)  holds. then h, - ( 1 ,  > 0. k = I . .  . . . n. because the function cot is 
strictly decreasing in 10, n [ .  SO that Imtp;  ,p , , (z))  > 0. If  ( l o )  holds i t  follows similarly 
that Im(zp;,lp,,)) < 0. This finishes the proof that zp,!p,, has no zcro on i D .  

3. POLYGONS AND SCHWARZ-CHRISTOFFEL MAPPINGS 

Let j ' ~  A be continuous in D and have a Riemann surface F as image domain whose 
boundary consists of a finite numbcr of linear arcs. such that the boundary 
correspondence SD -* ?F is one-to-one. Then F is called a polvgon. Let F have n 
vertices of interior angles xkn,  k = 1 .  . . . , n. We do not suppose ,f to be univalent. 
so that crk > 2 is possible, whereas for univalent polygons 

2 ,  k =  I , . .  . , n .  ( 1  1 J 

If we have a bounded vertex then 

I f  it vertex lies at infinity wc mcasure the angle on the Riemann sphere and have 

where cr, = 0 is a zero angle which corresponds to two parallel rays of ? F .  
Let now x, be the preoertices. i.e. the preimages under f of the vertices f'(x,). Then 

the Schwarz-ChristqfliA jormulu is the representation 

where 
(1  - a k ) n  if f ( x k )  is bounded 

211) ?f := 
( 1 + a , ) n  if . f ' ( x k )  is unbounded 

denotes the outer angles. The formula 

in the bounded (univalent) case corresponds both to the rule for the sum of angles 
in an n-gon and to the fact that the increment of the tangent direction is exactly 27t 
when surrounding the polygon on d F  one time. 

On the other hand, if f fulfills (14) and (16), such that x, ~ i ' f i  for k = 1. . . . . n. 
then the Riemann image surface f (D)  is a polygon. 

I f f  (.u,) is bounded then relation (12) yields 

whereas for unbounded f ( x , )  relations (13) and (15) give 
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274 W. KOEPF 

If ,f is univalent. then ( I  1 ) leads to 

4. CONVEX A N D  STARLIKE FUNCTIONS 

A function .f E A is called c0nt.e.r if it maps D univalently onto a convex domain, 
and it is called starlike if it maps D univalently onto a domain which is starlike with 
respect to f ( 0 )  = 0. 

Clearly a polygon is convex if a, < 1 ,  k = 1 ,  . . . , n or equivalently if p, > 0, 
k = I , .  . . . n. So by (14)  it follows that 

if one uses i 16 1. Thus 
f"' 1 + ; ' ; F P  
. f 

On the other hand, if (21) holds, then by (2) f can be approximated by convex 
Schwarz-Christoffel mappings, and the Carathkodory kernel theorem shows that 
, f (D)  is convex. So (21) is a necessary and sufficient condition for f '  to be convex. 

It is well known that a function f is starlike if and only if 

(sce e.g. [12]). 
By (2) and Lemmas 2.1 and 2.2 the function z f  '1 f'can be approximated by functions 

of the form 

with the property (6). so thac 

from which we can see that j: is a Schwarz-Christoffel mapping with n finite vertices 
of interior angle 27c, and alternating n vertices at x. This is a special case of linear 
accessibility which will be considered now. 
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LINEARLY ACCESSIBLE D O M A I N S  275 

5 .  LINEARLY ACCESSIBLE DOMAINS AND CLOSE-TO-CONVEX 
FUNCTIONS 

A domain F is called (~ir~yultrr-I).) t~cc~es.sihl~ of order P. /i E [O. I]. if it  is the complement 
of the anion of rays that are pairwise disjoillt except tha! the origin of one ray may 
lie on another one of the rays, and such that every ray is the bisector of a sector of 
angle ( 1  - /3)n which wholly lies in the complement of F. I f  /I = I then F is called 
(strictlj) linc~lrlj ncc~~sihle  (see [2], [14], [l 11). A function f is called close-to-convex 
of order /?, [O, I ] ,  (for reasons which shall be seen later) if f ( D I  is accessible of 
order p. We shall give an analytical characterization for f '  to be close-to-convex of 
order p, which is for /? = 1 originally due to Lewandowski [9]-[lo] and for P < 1 
to Pommerenke [ I  I ]  (who did not give a proof for his statement) and has bccn the 
original definition of close-to-convexity due to Kaplan [6 ] .  Therefore we use 
Lemma 2.3. 

:" ' U ,  P" 

holds. 

Proqf Suppose firstly, f i  = 1 .  Then by the geometrical definition we have 
f (D) = @ \  U y,, where ;I, are rays that are pairwise disjoint except that the origin of 

I E T  

one ray may lie on another one of the rays, and T is a suitably chosen parameter 
set. which is separable (e.g. T c R". Choose a dense subset j t ,  E T I n E N 1 of T and 
define ,f, by 

n 

.f;,(D)--= a= \ u Y,,. 
k - l  

(24) 

There is no loss of generality to assume that (y,,) are pairwise disjoint. because if 
some of the chosen rays have their origins lying on another ray, we shorten them by 
l/n and get the same conclusion. Obviously fn -, f, because f,(D) -, /(D) in the sense 
of Carathtodory kernel convergence. This shows that it suffices to show the conclusion 
for functions ,fn satisfying (24), because If,] is a normal family and the functions f '  
with representation (23)  form a closed subset of A .  

Observe that f, is a certain Schwarz-Christoffel mapping with n finite vertices at 
the points wk =: f;(G), say. The interior angle at each of those hairpin vertices is 2rr. 
The other n vertices alternate with w, and lie at cc =:,f,(<). say. The interior angles 

n 

M,TC at those vertices satisfy a, 2 0, and their sum fulfills ci,n = 27~. because .f, is 
k =  l 

univalent (in other words: the rays are traversed at K sy~ternafically with increasing 
argument when surrounding the polygon), so that by (14) and (15) 
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276 W. KOEPF 

The choise (4) gives a function p ~ p  as Lemma 2.3 shows because (5) and (6) are 
fulfilled. and 

gives a convex polygon. Then from (25) it follows that 

which is equivalent to f = g'.p. 
Now suppose 0 < p < 1. Then for each y,, t E T, the sector Sf of angle ( 1  - /j)n which 

is symmetric with respect to 7 ,  lies in C\ , f (D) .  Define here 

fcir a certain denbe biibbei { L , E  7 1 ne ki) uf 1. Tlir~i , I ,  + J,  and 11 suffice!, io show 

the conclusion for functions f, satisfying (26). 
Observe that j;iD J is a polygon with Zn vertices, n of them of interior angie i i + p)n 

at the origins of Sf,, k = 1 , .  . . , n. Let the sectors Sf, be ordered in the same way as 
their origins-which are vertices of .fn(D)-when traversing 2D in positive sense. 
Now the polygon ,f,(D) has a finite vertex between the origins Sf, and St,+, when 
surrounding .f,(D) if they intersect, and has a vertex at cc if they do not. Let a, be 
the angle between the directions of y, and yIk+ ,. Then in either case the outer angle 
is seen to be 2pk TC = (ak + p) TC, so that 

n 

Because 1 akn = 277, this gives the result as above. 
k = l  

It is decisive that the converse is also true. For this reason the functions are called 
close-to-convex. 

THEOREM 5.2 Let j €10, 11 and let f have a representation of the form (23) for some 
convex function g and some p E 13. Then f is univalent and f (D)  is accessible of order P. 

Proqf The function h = f 0 g-'  is defined in the convex domain g(D) and fulfils 
for z , ,  z ,  E ~ ( D )  

since Re(eiah') = Re(eiaj"/g') > Ofor some a E R, so that h and therefore f is univalent. 
We prove the rest of the result also by an approximation argument. Therefore we 

need to know that the family of domains that are accessible of order P is closed with 
respect to Carathtodory kernel convergence, i.e. a convergent sequence of domains 
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LINEARLY ACCESSIBLE DOMAINS 277 

which are accessible of order /i that does not converge to a singleton converges to 
a domain accessible of order /?. 

Suppose G ,  are accessible of order /I and G, + G. Each boundary point W E  ?G is 
the limit point of a sequence w, of boundary points of G,. Each br., is the vertex of 
a sector S, wh~ch lies in @ \ G,. Let 7 ,  denote the bisector of S,. Then one chooses a 
subsequence such 'that there is a limit direction of the directions of 7 ,  and thus a 
limit ray 7 .  Let S be the corresponding symmetric sector of angle ( I  - /l)lr. 
C'aratheodory kernel convergence shows that S c C ' , G .  Furthermorc a simple 
argument also shows that the rays which correspond to different boundary points 
of G arc pairwise disjoint. For the details see [2 ,  Lemma 31. 

Suppose now, ,f has a representation ( 2 3 ) .  Then 

Each function of this form can be approximated by functions ~f ,  of the same form 
where (1 1s a convex Schwarz-Christokl rr~appiag and i i  has a rcprcscntation (4) ( 0 )  
as Lemma 2.3 shows. So we gct for the approximants 

l l k  

k = l  Z - X k  k = l  Z-yk Z - W k  

where the numbers .uk,p, alternate with each other on ?D. p, >0.  lbvkl = 1. 
m 

k = 1 ,  . . . , m, pk = 1,  and n,  9 2  E N. Without loss of generality we can assume that 
k =  1 

y is bounded (i.e. 11, < i, k = I ,  . . . , m )  because otherwise we approximate y by 
bounded convex polygons. On similar reasons we suppose that the numbers w, are 
pairwise different from .u, and )I,. 

From ( 2 8 )  one sees that /;(ED) is a polygon and because it has the form (27) it is 
a priori close-to-convex and hence univalent. 

Now suppose first, /? = I .  Then there are n vertices at CG of angle zero, and 
alternatively n finite hairpin vertices of angle 27-c. Furthermore there are m finite 
convex vertices. 

At first we prove that the complement E of F:= j i(D) contains the n rays y,, 
k = 1 ,  . . . , n, which come from the hairpin vertices 0,. Clearly a segment rr of ;., 
containing 0, lies in E. Suppose now that there is a point Q ~ y ,  which lies in F. Then 
there is a curve r which connects 0, with Q within F because 0, is an accessible 
boundary point. The segment of 7 ,  from 0, to Q and r encloses a bounded region. 
It contains points of i?F other than those of a, and without loss of generality we can 
assume that there are those which come after 0, when traversing on ?D in positive 
sense. Call the corresponding part of i?F from 0, to the next vertex at infinity 6 .  Now 
because d; is unbounded it must cross )I, between rr and Q. But this contradicts the 
fact that all vertices of ci are convex. Thus 7, c E. 

The rays yk, k = 1,  . . . , n, are pairwise disjoint because of the univalence. Let them 
be ordered in the same way as their origins 0, when traversing ?D in positive sense. 
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278 W. KOEPF 

When traversing from 0, to O,, , along ?F there is exactly one vertex at x (of 
angle zero) between 0, and 0, , , , because the numbers r,, y, are alternating on c'D. 
So the rays ;', are separated by half parallel strips and lie in components G, of E 
which are pairwise disjoint. 

Furthermore E = U G,, because in a neighborhood of infinity E has exactly n 
k =  1 

components ( f '  has exactly n poles on i D ) ,  so that an additional component would 
be bounded contradicting the simple connectivity of F. 

So, for to fill E with rays that are pairwise disjoint, it is enough to do this for the 
components G,. But this is easily done. 

Take the parallels of ;I, from 0, to the next vertex P, with origins on ?F. Because 
all vertices before the ncxt vertex at -/, are convex, we may choose from P, on as 
direction of a new family of parallel rays the boundary direction of F before P,. and 
fill the remaining sector arbitrarily. Note that in this case the origin of some ray lies 
on another one of the r a y .  Continue the procedure from P, to the ncxt vertex P, 
and so o n  until Pi = -r . Finally apply the same process from 0, to the last vertex at 
J- befvrc 0,. T h s  g~vcs a su~table represer~iai~cir~ of G, as unir.ir! ti[ fays tllat are 
pairwise dis.joint and finishes the proof for f i  = 1 .  

Now suppose, O -c /l< I .  Because p, < i, k = I ,  . . . , m, j'is bounded, i.e. all vertices 
are finite. There are exactly n vertices of angle ( i  - Pin, alternately n vertices of angle 
(1 + P)n, and finally m convex vertices. The vertices 0,. k = 1 ,  . . . , n, of interior angle 
(1 + 8)n  define sectors S,, k = 1 ,  . . . , n, of angle ( 1  - P)n which lie in E:=cC'\.f(D). 
Let 7 ,  denote the bisector of S,, k = 1,  . . . , n. Because all other n + m vertices are 
bounded and convex, E can be filled with rays y,, t E T, that are pairwise disjoint such 
that for each ;;, the symmetric sector S, of angle ( i  - fi)n lies in E, if we choose ;;, to 
be parallel to y, in a neighborhood of O,, k = 1 , .  . . , n. This finishes the proof. . 
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