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1. UNIVALENT FUNCTIONS 

We consider functions that are analytic in the unit disk 

D := {z E 63 ( (zj < I}. 

A function is called utzivulerzl (or schlicht) if it is one-to-one. The Riemann mapping 
theorem guarantees the existence of a univalent map f : D + G for each bimpiy 
connected plain domain G # C. Moreover f with given f (0) is uniquely determined 
except of the composition with rotations z H e L a z  of D. 

If we speak about convergence of a sequence (f,) of analytic functions, we mean 
locally uniform convergence and write f, -+ f .  The family A of atza@ic futzctioru 
of D together with this topology is a FrCchet space, i.e. a locally convex complete 
metrizable linear space. 

A sequence of univalent functions not converging locally uniformly to co is nor- 
mal, and there is a convergent subsequence. The limit function is univalent or con- 
stant. 

The family S of univalent functions that are normalized by f (0) = 0, f ' (0 )  = 1, 
i.e. 

f (2) = z + a2z2 + u3z3 + . . .  , (1) 

is a compact subset of A. 
A function f E A is caiied m-foid symmetric ~f i t  has the special form (m E N) 

'This work is part of the author's "Habilitationsschrift" accepted by the Free University of Berlin in July 
1990. 
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GEOMETRICAL AND ANALYTICAL PROPERTIES 179 

vertices of inner angles t r k ~  (k = 1 , .  . ., n). We d o  not suppose f to be univalent, so 
that cuk > 2  is possible, whereas for univalent polygons 

If we have a bounded vertex then 

If a vertex lies at infinity we measure the angle on the Riemann sphere and have 

where n k  = 0 is a zero angle which corresponds ro two paraiiei rays of DF. 
Let now xk be the prc~wticrs ,  i.e. the preimages under f of the vertices f ( x k ) .  

--.. 
i ilen the  Schwan-c"i'zrisroj7rl formulo is the representation 

where 
( 1  - a k ) r  if f ( x k )  is bounded 

" = { ( I  + a )  if f ( x k )  is u n h ~ u n d e d  

denc?!e !he m ! e r  mg!cs. The f:::mu!a 

corresponds in the bounded (univalent) case both to the rule for the sum of angles 
in an  n-gon and to the fact that the increment of the tangent direction is exactly 2r  
when surrounding the polygon on DF one time. 

O n  the other hand, if j fulfills (8) and (10) with xk E DD for k  = 1,. . . , n ,  then the 
Riemann image surface f (D) is a polygon. 

I f f  ( x k )  is bounded then relation (6) yields 

Pk < ;, 

whereas for unbounded f (xk) relations (7) and ( 9 )  give 

,,. \ 1 
Y K '  2 '  

I f f  is univalent, then (5 )  leads to 

/" 2 -; ( k  = 1, ..., n). 

(References: [20], [35].) 
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W. KOEPF 

4. CONVEX FUNCTIONS 

A function J t A is called coinvx if it maps [3 univalently onto  a convex domain. 
Therefore it is necessary and sufficient that 

Let K  denote the family of convex functions that a re  normalized by (1) .  

5. FUNCTIONS OF BOUNDED BOUNDARY ROTATION 

The hw1111~1ry r o f ~ ~ i o l l  of il polygon F i b  the total change of thc tangent direction 
when surrounding the boundary of the polygon one time and can he  calculated as 
the sum of the absolute ~ a l u e  of the outer angles 

The  boundary rotation of the corresponding Schwarz-Christoffd mapping is defined 
to  be  the boundary rotation of its image polygon. A function J has boundary rota- 
tion K T ,  if it can be approximated by Schwarz-Christoffel mappings with respect to 
locally uniform convergence, i.e. if 

where 11. is a signed measure on  0D with the properties 

and 

Representation (16)  is called the Pmtcro represeizratioiz o f f .  
Let V ( K )  denote the family of functions of bounded boundary rotation at most 

KT that a r e  normalized by (1). So V ( K )  is the locally uniform closure of the corre- 
sponding family CIS normalized SchwarzXhristoffel mappings of bounded boundary 
rotation at most K T .  

Generalized polygons with an  infinite number of vertices w L ( k  E N)  of outer an- 
gle 21rk7r with Cy=:m=l / < cx,  are  examples of functions of bounded boundary rota- 
tion. (References: [27],  [35],  [13].) 
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GEOMETRICAL AND ANALYTICAL PROPERTIES 

6. LINEARLY ACCESS1 BLE DOMAINS AND CLOSE-TO-CONVEX 
FUNCTIONS 

A domain F is called (angularly) accessihle of order P (P E [(I, I ] ) ,  i f  i t  is the comple- 
ment <if the union of rays that are p i rwise  disjoint except that the origin of one ray 
may lie on another one of the rays, such that every ray is the biscctor c)f a sector of 
angle ( I  - j l ) ~  which wholly lies in the complement of F. If /I = 1 then F is called 
(sirictly) litzeur@ accessible (see [4], [34], [31]). A function f is called close-lo-convex 
of order (p 2 0), if there exist a convex function g and a function p E P such that 
the representation 

~ ' = K ' . P ?  (19) 

holds. It turns out that for jl E [0, 11 / is close-to-convex of order P if and only if J 
is univaient and j j D )  is accessible of order /j (see e.g. [IY!). 

7. INVARIANTS UNDER SIMILARITIES AND THE NEHARI CRITERION 

If / E S, I.e. / is a univ.!rnt fnnc!im !ha! is mrmal!zcd by I!). then !he :em: 
midized composition g of J with a univalent automorphism L! : CP + D of the unit 
disk 

z + a 
W ( Z )  := x- a E D, 1x1 = 1, 

1 + az' (20) 

given by 

lies in S. Pommerenke [29]-[3O] called families with this property linearly invariant, 
and showed that many results about univalent functions are  effected by this prop- 
erty. The  function g is called Koehe transform of f ,  it has (in the univalent case) 
a range G which is similar to the range F of f ,  i.e. G = a F  + b(a, h E C ) ,  and all 
normalized functions with a similar domain have this form. The second coefficient 
of g has for x = 1 absolute value 

We call K the Koehe expression of f . 
For a locally univalent function f we define the order of J by 

It represents the order of the linearly invariant family Lin(J) generated by J,  and it 
is bounded if and only if Lin(f) is normal (see [29], Folgerung 1.1). 

For an analytical expression to have a geometrical meaning the expression must 
have a certain invariance property with respect to the composition with automor- 
phisms of D, because the range is invariant under this composition. 
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W. KOEPF 

We have for the Koebe expression 

L ~ M M A  I  I f f  t A ir locally ut~ir~ulenf clrui  w is defined by (ZO), fhcvz f i r  g = f o w  

ll oldr 
h ( g ; z )  = ~ ( f  ;w(z)) (Z  E D). (23) 

Proof The relations 

and 
+ 2 + a  (1 - ii12)(; - la[2) 

I  - 1u(z)j2 = 1 - -- - - 
1  + 712 1  + a7 ( 1  + a z ) ( l +  a i )  

Moreover, rc as a function of f  does only depend on f I r / f ' ,  so that it is also 
invariant under similarities of the range. From this it f o l l o w s ~ r ( f o r  univalent f )  
the expressions 

ord( f )  and inf ~ ( f  ; a )  
OED 

as well as 
limsuph;(f ; u )  and lim inf ~ ( f ;  a )  
a-DD a-DD 

represent geometric properties which are invariant under similarities. 
The same is true for the expression a, which is defined with the aid of the 

Schwarzian derivative Sf of  1, i.e. 

namely ( a  E D) 
a ( f ; n )  := ( 1  - l a12 )21~ f (a ) l .  
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GEOMETRICAL AND ANALYTICAL PROPERTIES 183 

LEMMA 2 If f t A is locully utzivuletzt utul w is defitml by (20), rhcw for g = f ow 
11 ou..~ 

a(g;z)  = a(f ;w(z)) (z t D). (26) 

Proof The well-known invariance property of the Schwamian derivative 

implies the result similarly as in the above case. rn 
We call cr the Ndzuri expression of f ,  because Nehari has shown that a(/;  z) < 2 

implies univalence, and on the other hand univalent functions satisfy cr(f;z) 5 6. 
Moreover, convex Functions fuitiii cr(/;z) 5 2 (see i i j j ,  [ i b j  and [Ll j ) .  

8. LOGARITHMIC DERIVAT!VE AND THE BECKER CR!TER!ON 
. . .qnc>tl!r: imr,c~~:in( ur:iv;i!rilce cri$rr;c,n ifi~~.i,l\,es the logarithmic dci-ir.ati:v.c and is 

dile :o Recker, We call ( ( I  E D) 

the Becker expressiotz of f .  Beckers criterion states that X(f ; z )  5 1 implies the uni- 
valence o f f .  On the other hand univalent functions satisfy X(f ;z) 5 6 (see [2]). 

Let us note the following correspondence between the Nehari and Becker condi- 
tions. 

Proof Statement (a) is proved in [7]. (A sharper version of it is given in [37]). 
For to prove (b) observe that the functions f satisfying a(f; z) 5 cr (z E D) form a 
linearly invariant family of order (I + cr/2)'I2 (see [29], Folgerung 2.3). Therefore 
h;(f;z) 5 ( 1  + ~ / 2 ) ' / ~  (see [29], Lemma 1.2) which implies the result. 

9. THE KOEBE, NEHARl AND BECKER EXPRESSIONS FOR POLYGONS 

Let F = f(D) be a polygon with inner angles t r k r  (k = I, ..., n), so that f has a 
Schwam-Christoffel representation 
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1 84 W. KOEPF 

where 2 p k r  (k = 1 ,..., n )  are the outer angles (9) and xk (k = 1 ,..., n )  are the 
prevertices. 

We write z = re'' and define 

Obviously Ibk 1 = 1 (k = I , .  . . , n )  for all z  E D. We 
and Nehari expressions 

(29) 

get then for the Koehe! Becker 

finaily 

a(f;z) = ( 1  - I Z ( ~ ) ~ ~ S ~ ( Z ) )  

The following lemma will be used to examine the boundary behaviour of these 
expressions. 

LEMMA 4 Let lxkl = 1, then 
- if o" = a-- - -  i - r lg ~k 

lim 
r-1 reie - xk 0 otherwise 
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GEOMETRICAL AND ANALYTICAL PROPERTIES 185 

If now e l B  # X X ,  then the last fraction is bounded, so that the right hand side tends 
to zero, while f o r  e'" 1~ we have (1 - r ) / ( l  - re1'%) = I. 

Therefore we get from (30&(33): 

( 4 1 1 ~ ~ 1  if O=argxk 
(b> !im A /  f .  rL,i'\  - 

('"- 0 
9 

r-1 otherwise 

lim inf ti(/; z )  = min 11 - 214 1 = min t r k ,  
2-00 0 j k  I n  O l k i n  

We remark that (a) can be interpreted in the following way: the limsup of the 
Koebe expression measures the largest inner angle divided by x, where we have 
to take into consideration the angle ?r of each smooth boundary point, whereas 
the liminf of the Koebe expression measures the smallest inner angle divided by 
T. It is a special property of polygons that every boundary point is either smooth 
or a vertex. We shall see later that these considerations can be generalized to a 
larger class of functions whose images have this property, namely to functions with 
bounded boundary rotation. 

On the other hand, by reason of (11)-(12) the limsup of the Becker expression 
rrleasurcs wilcihcr ihc poiygon is bounded: 

COROLLARY 1 If / is a Sclzwan-Clzrist(,f/eI rnuppitzg (281, utld if t r k  5 2 ( k  = 

1, .  . . , n )  (ill particulur, if / is utzivaletit), then 
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1% W. KOEPF 

10. DOMAINS WITH THE ANGLE PROPERTY 

Let F b e  a simply connected plain domain or Riemann surface. Then we say that 
F has the arzgle property. if each boundary point is either smooth. i.e. there is a 
tangent there, or  i t  is a vertex, i.e. there exist two halftangents corresponding to the 
left and right derivatives of some parametric representation of the boundary curve. 
A n  analytic function f : D + F which extends continuously to the boundary of D 
has the angle property if its Riemann image surface F has it. 

If  F has the angle property, then at each boundary point we define the irzner 
arzgle to  be the angle between the halftangents measured from the interior of F. 
TL-  : ---- ,.--I- - 1  ...-..., ,... :..A,. ..-A 1- - ---L LL 
1 IIC I I I I I C I  a l l g l c  ~ I W ~ Y S  GAISLS ~ I I U  G ~ U ~ I S  II ai C ~ L I I  S I I I L X J L I I  tmundary point. 'v'v'iiii 
(rrn,7r and trm;,7r we denote the supremum and the infimum of the inner angles of 
F and w e  speak about the !i;,-,.i..:.! and the smo!!a: inner aiigic of F. 

The definitions also apply if F is unbounded considering tangents and halftan- 
Eciiis ijii the Riciii,iiin spiicrc. "iibi,uii&.~ iiiig;c /, . .. ..:.. - - L ~ ) , L I  iy I I A U ~ :  i i C i v c  

an inner angle also at each point on i iF  whicn is unbounded. 
T L  . .. . .r .. 
I i l c  ~ r u ~ c r  angle at sonic vertex is defined a s  in ihc cx,c d pviygon> by (Y j ,  

:;nd is a!x;l;i:e vzlt;e mi:;i:;iires :he c h a ~ g c  of the iailgciii dii~ciii;i;  at ;he veriei  
discarding the direction of the change. The  outer  angle at some smooth boundary 
point equals zero. By 2prn,7r and 21rrnin7r we denote the supremum and the infimum 
of the absolute value of the outer angles of F. Remark that in the unbounded case 
the outer  angle has not the same geometrical meaning as  in the bounded case, in 
particular if m is a smooth boundary point, then the corresponding outer angle 
21rkn does not equal zero but equals 27r. 

11. THE KOEBE, NEHARI AND BECKER EXPRESSIONS FOR 
FUNCTIONS OF BOUNDED BOUNDARY ROTATION 

In this section we generalize some of the results for Schwarz-Christoffel mappings 
to  functions of bounded boundary rotation. It is a result essentially due  to Paatero 
that functions of bounded boundary rotation have the angle property (see [27]),  so 
that there exist the largest and the smallest inner and outer  angles cr,, ' ,~, cr , , ,~ ,  
2pmW7r and 2prn,,7r. This result is contained in the following 

THEOREM 2 Let f E V ( K )  have bourtdary rotutiotl K T .  Tlzetz f lzus tlze Pmtcro 
represen taliotz 

for some sipled measure 11 on DD, arzd it has a splzerically conrinuou~ exteraion f : 
- 
D 4 c. Each boutuiury poi,zt f ( x )  ( x  = e i e )  has eitller 

(a) u local tangent of direction 

7r 
T ( 6 )  = lim arg ( r i8  f ' ( re" ) )  + i, 

r-1 

wlliclz corresporuls to tlze fact that p ( { x ) )  = 0, 
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GEOMETRICAL AND ANALYTICAL PROPERTIES 

(b) two local halftartgents, so that f ( x )  is a vertex of df (D) of an outer mgle 
2 p ( { x } ) ~ ,  which corresponds to the fact that p({x)) # 0. 

In particular: f has the angle property. 
Moreover the images of the radial rays fs(r) := f (reie)  ( r  E [O, 11) divide the itwer 
angle of Df (13) at f (x) in two equal parts. 

Proof Let f have boundary rotation KT. Then there is a Paatero representa- 
tion (34). In this context it is more convenient to write (34) as a Stieltjes integral 
representation with the distribution function m : [ 0 , 2 ~ ]  -+ R of /L defined by 

where C E R is such that 

The Paatero representation (34) then reads 

Therefore it  follows by integration (using the normalization f '(0) = 1) that 

LZrr In(1- e-"z)dt = 0 (z E D). 

Observe that m(t) - t l ( 2 ~ )  is periodic with period 2n by (38), so that an integration 
by parts gives with the aid of (37) that 

from which it follows that 

arg f '(z) = Re 
1 + e-"z ( 2;) 
1 - e-itz 

m(t) - - d t  

2rr 1 - r2  
m(r) - - d t .  =l 1 - 2 r c o s ( t - ~ ) + r 2 (  i n )  
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188 W. KOEPF 

By the definition (36) of nz it follows (see e.g. [lo], p. 336) that ( z  = re'" 1 

lim argfl(z)  = 2x 
r-l 

so that 
lim argz f '(2) = 2 m ( 8 ) ~  
r-1 

This implies that 
N ( @ )  := lim argz f '(2) 

r-1 

exists for each @ t [ 0 , 2 ~ ]  and is a function of bounded variation with 

To gct (a) and (b) we now use Paatero's result that f has a continuous extension to 
- 
D, and that at cach finitc boundary point f (eiQ) there is either a tangent t o  Of ( 0 )  
of direction T(H) if m is continuous at 8, or two half-tangents of direction T(H - 0) 
and T(@ + 0) such that Oj(Dj has a vertex at f (e iO)  whose outer angle equals the 
total jump of m at @ (see [27], $7). An inspection of Paatero's proof shows that 
the same conclusion follows if f (x) = ,m, replacing the euclidean by the spherical 
distance and measuring angles and directions spherically. 

Finally observe that a rgz j l (z )  gives the normal direction of the level curve fr(@) 
:= f (reid)(@ E [O, 2 ~ 1 )  at the point z = reid, so that argz f '(2) + 7r/2 is the direction 
of iiie taiigeni. On tile uiher hand the image of the radial ray J's cuts I', perpendic- 
ularly for all r ~ ] 0 , 1 [  as f is locally conformal. By (a) this remains true for r = 1, 
if at f (x)  there exists a tangent, implying that fe  divides the inner angle (namely T) 
in two equal parts. If f (x) is a vertex of 8f (D), then by (36) the same conclusion 
follows. 

Each signed measure / L  on BD has a Lebespe decomposition as the sum of some 
discrete, some continuously singular and some absolutely continuoiu part with re- 
spect to Lebesgue measure XI, i.e. 

(see e.g. [24], p. 218, problem 4.3.12) where 

(6, is the Dirac measure at x). We write p,,, := psing + pab for the continuoru part 
of P. 

The theorem has the consequence that 

COROLLARY 2 Let f E V ( K )  such that the corresponding sipzed measure p has a 
decomposition /L = pd, ,  + pCont. Then Df(D) is smooth up to a countable number of 
vertices f (xi) ( k  E N) of outer angles 2pkn, say, md there is a ime-:+one correspon- 
dence between those boundary points and pd;, such tltar (45) holds. 
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GEOMETRICAL AND ANALYTICAL PROPERTIES 189 

For the largesf attd the smallest inner and outer arzgles n,n, n,,,n, 2lr,,n atld 
2pmlnn if fi)llow~ 

(a l )  

Proof We have only to prove that the desired maxima and minima exist. But 
ihis foiiows easily as (a): p k  + O for k + m, and SO O is ihe o11iy C ~ U S ~ C I  poini of 
{ / I ; .  j k r W ) ?  and (h): {/lk j k F N) !:s hounded. rn 

Part (b2) of the corollary is obviously equivalent to the existence of some sniooth 
'nounciary point. The existence o f  the maxima and minima considered shows that 

- - 
! Y ~ , ~ ~ . K ~  i t r r l ; E x j  L//.,,*T 2// .Eif i~ i r ~  :ac;i rcprcbc!!~ khc !TI~LX~IIILIII~ 2iiid ~ i i i i i i m ! ~ ~ ~ ~  !-I!' 

the inner and outer angles. 
Now we are ready to generalize Theorem 1 to functions of bounded boundary 

rotation. Therefore we deduce the following formulas for the Knebe, Becker and 
Nehari expressions for functions of bounded boundary rotation with a representa- 
tion (34) similar to (30)-(33): let 

then 

l - r  
Z - X 

and, since 

. r - 2 2 1 

o ( ~ ; z )  = '(1 + r I 2  / 5 z - x  i p ( x )  - (lD = d l ~ ( x l j  z - x  1 
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190 W. KOEPF 

THEOREM 3 Let f E V ( K )  such thut the corresponding sipzed mcasure 11 lzas dis- 
crere parf pd lX  of form (45). Then 

I i m s u p ~ ( j  ; z )  = a,,, 
z-8D 

liminf ~ ( j ;  z) = Q,;,, 
z -BD 

Procf LC! f F V ( K )  wi!h corrcspondlng signed measure /I.. As usual we write 
/ I  = IL~I;.. + /I,,,,, such thiit ( 4 5 )  holds. Then CTL, /pk i < K / 2 .  Let F ,> 0 be given. 
Now choose n N large enough that 

and that the maximal value mawk,, Ipk( = Ilrkol is attained for ko < n. 
Let us first consider (b) .  The integral on the right hand side of (48) can be de- 

composed in three terms (Z  = reio)  

For 1, we get by Lemma 4 

- , L ~ %  if O=argxk ( k = 1 ,  ..., 12) 
lim l l ( r e io )  = , 
r-1 otherwise 

by the choice of n and by Corollary 2. Thus it remains to show that 12 and I3 tend 
to zero as r tends to 1. This follows for 12 from (51) and for I? from the continuity 
of p,,,,, (see e.g. [l  I]), which finishes the proof for (b). 
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GEOMETRICAL AND ANALYTICAL PROPERTIES 

(a) As above we have a decomposition (see (47)) 

%(I -2pk)  if e = a r g x k  ( k = L  ...,rt) 
lim h( re ie )  = ( r-1 1 otherwise 

." - ." - 
an* i imr - , j 2 j r e i c ,  = i ,m,, ,~3jrei~, = ", as lh(z ;xk) l  is bou~ded  by i iui  
z E D and x ~ :  G 319. 

(cj The same procedure shows that for lirn,,,rr(j;rei" aim the discrete part of 
is decisive, 

As consequence we have 

COROLLARY 3 Let f E V(K). Then 

limsupX(f; z) = 0 H f is bounded and Bf(D) is smooth. 
z-8D 

Proof By Theorem 3 the left hand side is equivalent to / I . ,  = 0, and this obvi- 
ously is equivalent to the fact that pdisc = 0, which by Corollary 2 is equivalent to 
the smoothness and boundedness of af (D). 

Moreover 

COROLLARY 4 Let f E V(K) such that the correspotuiing signed measure 11 has dis- 
crete part pdisc of form (45). If further pk > -112 (k E N )  (in particular, iff is uni- 
valent), then 

< 2 )  ( f is bounded 
limsupX(f;z) > 2 f is unbounded 
z-8D 

= 2 f (D) has a vertex of inner angle zero 

Proof By Theorem 3 the expression l ims~p,- ,~X(f;z)  equals 411,. Let now 
first this term be less or greater than 2. Then by Theorem 2 f (D) has vertices of 
outer angles 2/ lkr  (k E N), and so is bounded and unbounded respectively by the 
definition of a vertex at m. On the other hand, if it equals 2, then necessarily there 
is a vertex which correspoiibs to ji, = !/2 of otitei angle w, which gives the result. 
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192 W. KOEPF 

Becker ( [ 3 ] ,  p. 414) conjectured that for f E S with Jordan domain f(D) the con- 
dition 

limsupX(f; z) < 2 
1-80 

( 5 3 )  

implies that f has a quasiconformal extension to C. This conjecture is true for 
funct~ons of bounded boundary rotation. 

COROLLARY 5 LA f t S llat~e houruied houruiary rotation. Then (53) implies that 
f lms (I qua.sicor~formrrl exferniori to C. 

Proof Suppose f E V(K). As f is univalent, by Corollary 4 condition (53) im- 
piies that f is bounded. By Theorem 3 it follows moreover that p,, =: + ( I  - E) for 
some E > 0. So for all vertices the relation 11 - cuk 1 < 2p,,, = 1 - f holds, and there- 
fore c 5 trk ; 2 - f ( k  C so that there is a vertex of smal!est ang!e (Y,~~, ,T > FT 

and a vxrtex of largest angle tr,,n < (2 - f)n. Because pi + 0 as k c7c therc are 
oniy a iinite number oi vertices with an nutrr angle near f a  (i.e. an inner an- 
gle -- 0 or nk.rr - 2a), so that the local characterization of quasicircles due  to 
Ahltors ( i l l ,  see 1221, chapter 11, @) shows that v ( D )  is a quasicircie. 

Corollary Z gives a me-to-one correspondence bctwccn the discrete part of the 
signed measure 11, associated with f and the vertices of Df(D). Therefore it is of 
some interest to decide what kinds of boundary smoothness are typical for the parts 
of 11, absolutely continuous and continuously singular with respect to Lebesgue niea- 
sure. Ilere we get a partial result. 

LEMMA 6 Let f t V ( K )  wit11 ( D )  = F ntd  z0 = r'O0 .suc/z t h t  f (zn) i\ a poirzr 
w11cre tf1c hourlda~y curve f ( r lH)  i.\ ailiilytic. Tlzeil the functiurl rn ri.r.sociut~d with J 
by (38) is a Cw-function ir: a nciglzhorl~ood cif Ho. 

Proof As DF is analytic at f (zo) the Schwarz reflection principle shows that f 
has an analytic extension at 20. So in particular f is analytic in a certain neigtibor- 
hood U of zo on the boundary of D, and so is f '. We deduce that moreover f '(21) # 
0 for zl = elH1 t U .  Suppose the contrary, then f '  has an expansion (tul # 0) 

for some k t N, which leads to 

with H analytic in U. By the identity theorem for analytic functions (54) holds also 
in D so that by Theorem 2 Of (D) has a vertex at f (2,) (of outer angle k n ) ,  in 
contrast to the analycity. Therefore f r ( z l )  # 0, and so k = 0 in (54), i.e. f " / f l  is 
anajyiic ai zl, and XI is irl(jlj. in pariicuiar arg j'je'" is in C" at 1 9 ~  and so in ii. 
Ry (42) the conclusion follows. 

From this we get 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
0
9
:
5
2
 
1
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9
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Proof If DF is analytic everywhere, then by the Lemma m is in Cm([0,2r]) and 
d m  = mf(@)ci@, where m' in particular is integrable and its integral gives m, so m 
and thus p is absolutely continuous. If there is at most a countable number of points 
of nonanalycity on af(D), then-as there is no vertex-rn is the sum of the above 
constructed absolutely continuous part and some continuously singular part m,;,,, 
with mi,,, = 0 a.e. Moreover m:,,, is continuous in [ 0 , 2 ~ ]  except of some countable 
set 0 by the Lemma. So it  has a unique continuous extension to [O,2r]\0 which 
vanishes. Finally psi,, must vanish as it is continuous in [O,~T] and its support 0 is 
countable. 

S:-: "-1.. not.- ;C thnrn 
lllll!allj llllb L1lblb UICl  .bl ,ices 

THEOREM 5 Let f E V ( K )  with f (D) = F such that d F  is ana&ic except of at most 
rr routltahfe turnher oSpoitlts where DF has a tat~gmt and a cou tmh l  tlumher of vvc- 
[ices wk = f ( x k )  of outer atlgIe 2pk.rr(k c N). Tlwtz the signed measure p associated 
widl f fidfillr /I = pdls i  + p,h SUCII fltal (45) /lolls. 

12. THE KOEBE, NEHARI AND BECKER EXPRESSIONS FOR CONVEX 
FUNCTIONS 

The results of the last section appIy to convex functions. In this section we shall 
show that in the special case of convex functions also corresponding results for 
the terms sup,,,~(z), i n fZeD~(z )  and sup,,,u(z) are available. On the other hand 
our results give analytic representations for a,, amin and 2 1 1 ~ .  We remark that 
Pnmmerenke gave the fn!!owing representation for the maximal outer angle 

(see [28], Theorem 1). 

THEOREM 6 Let f E K, then 

sup ~ ( f ;  z) = a ,  = 1, 
ZED 

it1 fact, (a l )  is equivalettt to the cotlvexity off 

1 - a )  if f is bounded 
(b) limsupX(f ;z)  = 4p,, 

Z-BD 2(1 + a,;,) if f is unbounded ' 

(cl) lim supa(f;  z )  = 8pm, (1 - p,,) = 2(1- a;;,). 
z-BD 

If furthermore f is ut~bounded, then 
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194 W. KOEPF 

and nmin.rr is rhr at@ of a f (D) at m.  

Proof 

(al)  That this is equivalent to the convexity of f follows from the fact that the 
universal linearly invariant family of order 1 is the family of convex functions 
(see [29], Folgerung 1.1 and Folgerung 2.4). On the other hand by Theorem 3 
this is equivalent to the geometrical fact that all nonsmooth boundary points 
of a f  (D) have interior angles less than 7r and the existence of some smooth 
boundary point. 

(b) For convex functions and all k E N we have p k  €10, I], so that because of 
the relation crk = I I - 2/lk I the value a k ,  = amin is attained if the distance of 
/ltkn and 112 is minimal. I f f  is unbounded. then p,, > 112, and this value is 
easily seen to minimize the distance to 112. Otherwise also the largest value 
p,;, < 112 minimizes this distance. so that finally 

which leads tcl the result by Theorem 3. 
(cl) By Theorem 3 it follows that 

As /l,k > 0 (k E N) and because that value of {pk)  nearest 112 is p,, we see 
that this value maximizes the right hand side of (56) implying the result. 

(a2) If f is unbounded, then i)f (D) has a vertex at m nf angle crl?r = a,;,x with 
corresponding outer angle 2pln = 2p-7r. 

Because f(D) can be approximated by unbounded convex polygonal do- 
mains with fixed angle a17r at m ,  it is sufficient to consider those Schwarz- 
Christoffel mappings with p1 = (1 + a1)/2 and xi,2pk = (1 - m1)/2. 
Therefore we get with (30) as Ibk 1 = 1 (k = I , .  . . , n) 

Theorem 3 shows that liminf,,80~(f ;z )  = a l ,  which gives the result. 
(c2) Without loss of generality consider the same unbounded convex polygons 

with fixed angle a17~ at m.  Then by (33) and (30) we get 
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On the other hand by (cl) limsup,-,,c~(f; z) = 2(1 - akin), which finishes 
the proof. W 

We remark that (c2)  for unbounded convex functions in much stronger than the 
result given in [18], Theorem 3, where the question was solved, which convex func- 
tions attain the maximal value 2 for the supremum of the Nehari expression. 

We conjecture that the statement (c2) remains true if f is bounded, because it 
seems to be true numerically. Moreover we conjecture that for bounded convex 
functions infZErpk(f; z) = 0. 

The statement (al) shows in particular that for the Koebe expression the sup 
and the lim sup coincide. We shall show in the sequel that for convex functions the 
Koebe expression satisfies moreover a certain maximum principle. Therefore we 
need the 

LEMMA 7 LC{ f (z) = z + a2z2 + a3z3 + - - - he local(y univalettr. If the Koehe expres- 
sion ~ ( f ;  z) llas u local nzarimum at zu = 0, then 

in particular 

Proof Let 

and 
G(r,8) := F(r,O). F(r,8) = ~ ( f  

then for a local maximum of ~ ( f  ;z) at the origin obviously 

holds for all H E R. From 

and 

we get therefore for all 8 E R the relation 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
0
9
:
5
2
 
1
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9



1% W. KOEPF 

This implies either a? = &which leads to a local minimum of ~ ( f ;  z)  at the origin- 
or, using the notatlnns ( p  > 0) 

and 

we get for all H t R 

Re ((cos 0 - i sin H - (cos 6 + i sin O)(x + iy ))p(cos p + i sin p)} 

= / , .Re{( ( !  - -- ~ ) ~ n c ~ + y s i n H i ( ( l  1 Lk'-7v + xjsiiiQ+ y - c . i r ~ O j j ( ~ o ~ p  + i s in? ) )  

so that the coefficients of the terms ccisH and sine must vanish. This implies the 
ielaiiiiiis 

(1 - x)coscp = y sinp,  (61) 

( I  + x)s inp  = -y  cosp, (62) 

from which we deduce by multiplication that 
1 7  

Ihl- = x r  + y" 1, 

and so j%j. Now we substitute b = x + iy  =: e'Ii into (61) and (62), and a short 
calculation gives the two equations 

cos(cp + p)  = cosy,  (63) 

sin(cp + 0) = - sinp,  (64) 

which finally lead to the unique solution = -2p implying the result. w 
The next lemma shows that only every special convex functions satisfy (58). 

L E M M A  8 Let f E K .  Therl relation (58) implies that 

f "  t I - t  - ( z )  = - 2 ---- - 
f '  

2- 
z - x  z f x  

for some t E [O, 11 uttd some x t DD, in particular: f (D) is either a halfplane, a sector 
or a parallel srrip. 

Proof If f (2) = z + a2z2 + a3z3 + . . .  E K ,  then p(z)  = 1 + z ( f  "1 f ')(z) = 
i t p l z +  p2z2 +. . .  t P. 50 

with equality if and only if 
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fo r  w m e  r c [O, 11 and aorn t .  x F 8lP ( w e  e.g. [32], Corollary 2.3). T h ~ s  Elves the 
r e h ~ ~ l t .  

Now we have 

T H E O R E M  7 1x1 f C K . Tizctl l l ~ e  Kochc c.xpre.ssiotz &( f ; z )  srrtisfics (I  rnrm'rnum 
pritzciplt~, i.c. it 1nkc.v i1.s mtlximum over euch dornuitz D which i s  properh conruitted 
it1 D ( .FUC/~ 11lr11 irx cloxurc lit's it1 D, too) U I  the hourtdary of D.  It1 prirticulur: the 
~tt1cliotl 

Proo! Wt, cha!! prow that for 1. F K a local maximum of the expression ~ ( j  ;z) 
can only occur at r t  p ~ i r ~ t  zo c L) if f ( D )  is either a haif-plme o r  a sector, and in 
those cases the extrernal value is attained at H curve joining zo with the boundary, 
namely :I! a Stt.inei circle, i.e. the image of the segment ] - 1, I [  under an autonwr- 
phism ot LP, which gives the resuit. 

Suppose first that ~ ( f ;  z j  has a local mauimum at 0. Then by Lemma 7 (58) holds 
and by Lemrni~ 8 / is of form (65). From this representation one deduces that 

and especially for z := r x  ( r  t ] - 1, I[)  it follows that 

S o  A-,( f ;z)  is constant on some diameter of LP, which was to prove. In the case of a 
parallel strip (I = 112) the extremal value of ~ ( f ; z )  obviously is a minimum, so that 
this case must not be considered. 

O n  the other hand, if tc ( f ;z )  has a local maximum at a point zo f 0, then by 
Lemma 1 the information which we deduced at the origin can be transformed by 
an automorphism w of D, as the family K of convex functions is linearly invariant. 
This gives the result. 

13. CONVEX FUNCTIONS WITH VANISHING SECOND COEFFICIENT 

then f, + z as m - cxi. Hence f,(D) tends to  a disk in the sense of Carathiodory 
kernel convergence (iff,,, are univalent). S o  it seems to be plausible that the geom- 
etry o f  f,,(IP) will be restricted in some sense in connection with the restriction of 
some analytic properties. 
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198 W. KOEPF 

The next theorem gives a sharp version of these considerations in the case of 
convex functions. Therefore we need the 

LEMMA 9 Let f 4 g and r ~ 1 0 ,  I]. Then 

(see eg. [32], p. 35, formula (4)). 

THEOREM 8 LA m E N and fm E K of form (66). Then X(fm;zj 5 4/m, and this 
result is slzarp for rlze function Gm with 

By Tltcorem 6 this lzns the geometric coruequence that for fm(D) Itold 

(a) 21hnxk < ( l / m ) 2 ~ ,  
(b) for m > 2 moreover a,;,a 2 (1 - 2/m)a, 
(c) and for m 2 3 f,, is bounded. 

Proof For a convex function of the given form it is well-known that 

(see e.g. [9]). This statement is equivalent to In fk 4 Ink' := -(2/m)In(l - z), so 
that by the lemma we only have to observe that 

For the function G,,, defined by (67), one gets, choosing z = r > 0, that 

which establishes the statement about equality. 

We remark that the statements (b) and (c) are obvious geometrical facts for m- 
fold symmetric convex functions, and the theorem generalizes these facts. 

For co.nvex functions with vanishing second coefficient we have as a 

COROLLARY 6 Let f E K with az(f)  = 0. Then either f is hounded or f is un- 
bouruied and ltas a zero utzgle at co. 
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Proof Applying the theorem for m = 2 we get p,, 5 112. By the geometrical 
interpretation as outer angle the result follows. H 

Finally we have the 

COROLLARY 7 LRI f (z) = z + a2z2 + a3z3 + - - . E K with a2 = a3 = ad = 0. Then f 
fulfills the Beckcr univalence criterion. 

14. CONVEX FUNCTIONS WITH ANGLE cra AT m 

In Corollary 6 geometrical conditions had been given for f E K with az( f )  = 0: 
either 1 is bounded or f is unbounded and f (D) has a zero angle at co. 

In this section we consider unbounded convex functions with given angle at x 
and get results in the opposite direction. 

For tr t 10. I )  let K(tr) C K denote the family of unbounded convex functions with 
inner angle nn at x. Obviously K(1) consists only of half-plane mappings, so 

The family K(cu) is a linearly invariant family of order 1. 
The compactness of K shows that if a -+ 1 then fa E K ( a )  implies that fa + f E 

K ( l ) ,  and so la,,(fn)l -+ 1 for all n E N. The following theorem gives more detailed 
information for the second and third coefficients. 

THEOREM 9 Let a E [O, I ]  and f E K(a).  Then 

If ~ ( f  ; a )  := lu3((f ow - f ow O))/(f o w)'(O))(, w(z) = ( z  + a)/(] + Zz) and p = 
(1 + a)/2, tlten for a > 1/2( 2 13 - 3) = 0.3027.. .furthermore 

For all f E K holds 

(e) lim inf,-oor(f; z) = 5(3 - 8p,, + 8 p L ) ,  

in p a r t i n h r  for f E K (a)  

(f) liminf,-mr(f ;z) = i ( 3  - 811 + 8p2) = j ( l  + 2a2). 

Proof The statements (a), (b) and (c) are obvious consequences of Theorem 6. 
Let us now consider the absolute value ~ ( f  ; a )  of the third coefficient of the Koebe 
transform It := (f ow - f o w(O))/(f o u)'(O). If f is a polygonal function with an 
angle aa at oo then without loss of generality p1 = p, and so ~~,Z,!ik = 1 - p. By 
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200 W. KOEPF 

(29)-(33) and as 1 hh ([!)I < 1 ( k  = 1, .  . . , r t ) ,  we have 

which gives the result by approximation. 
(ej, (f): This is proved in a way similar to the proof of Theorem 3. 

We remark that the right hand side of inequality (d) tends to 1 as  a -4 1, and 
s o  gives a rather sharp estimate for values of a near 1. The  statement (a) shows 
that K ( t r )  is an example of a linearly invariant family for which inffeK(a,la2(f)l is 
bounded from below. 

15. THE KOEBE, NEHARI AND BECKER EXPRESSIONS FOR 
CLOSE-TO-CONVEX FUNCTIONS 

By Cm(Pj  we denote the family of m-fold symmetric close-to-convex functions of 
order p. I t  is easy tn see 11slng the ~rigfia!  &ve!~pmefi? [I41 J that -a-b the .. - rnrr-cnnnd;?n ..".. v"y"Hu., B 

function p E P is of the special form 

For to consider those functions we need the following 

LEMMA I0 Let x E DD, A E R +  and h' 4 ((1 + x z ) / ( l -  z))'I2. Then A(h;z) 5 A. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
0
9
:
5
2
 
1
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9
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I ' tooj  A\ uz h'ne Inh' < X/21n((l + xz),'(l - 2)). Lemma 9 Implies that 

J11" 1 / 1 + x  
sup (I - [zl-)  -(z) 5 - 1 h' 1 2 

A. 
z to. 

and so the result follows. rn 

Now we have 

Proof Let f have the properties considered. Then there is an m-fold symmetric 
convex function g ,  a complex number x E 3D and a function p + (1 + x z ) / ( l  - z) 
such that f '  = g '  . Thus we have by Theorem 8 and k m m a  10 with p := h' 

For the function I;,, defined by (70), one gets, choosing z = r > 0, that 

which establishes the  statement about equality. rn 

We remark that for m = 1 the statement is an immediate consequence of the 
linearly invariance of C([j) because for f E C(P) one has h:(f;z) < I + [j (see e.g. 
[29], Lemma 1.2), ~mplying that 

The  theorem gives 
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16. INTEGRAL MEANS 

For f E A and r E [O, 1 [ let 

denote the pth integral means. For p E ] O , X ]  !et HP demte  the family of functions 
f for which M p ( r ,  f )  remains bounded as  r + 1. 

M p ( r .  f )  turns nut rc, he a nondecreasing function of r and also nondecreasing as 
function of p. For f F H U h e  rad~a l  limit 

f (ele) := lim f ( reLe)  
r-1 

The  Lirtlewovd s~thordirlnriotl tlteorem states that f 3 F implies that M p ( r ,  f ) 5 
Mtn!r .F]  for all p F 10. x] and all r E LO: 11. 

If the derivative f' of some function f E A is in HP for some p t ]O ,m] ,  then so 
is f ,  i.e. 

j '  E H p *  {I if p 2 l  

f E H p l ( l - p )  otherwise 

Moreover if f t S maps D onto some bounded Jordan domain, then 

f L  E H' e af(D) is rectifiable. 

For functions f which are in HP for some p ~ ] O , c c ]  we define the Hnrdy-dimension 
of f by 

dimlrp(f)  := sup{p €]O,W] I f E H P ) .  

(References: [23]. [ 5 ] . )  

If f is a polygonal mapping normalized by (I), then by the Schwarz-Christoffel 
formula (8) one  has 
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From thls representation one can see at once that f' E HP for some p > 0 (namely 
tor all p . I j2 ,  see e.g. (121, p. MI), so  that J1(e")  exlsts tor almost all H t [ 0 , 2 ~ ]  
and 

For to get a sharp Hp-result for a polygonal mapping f depending only on the 
parameters o f  the Schwarz-Christoffel formula, hence on the geometry of the image 
surface of f ,  we assume without loss of generality that / ~ k  > 0 (k = I, ..., m )  and 
r~ := - / /n+, , ,  > 0 ( k  = 1, .  . . , tl - m )  and write yk := xk+, (k = 1 , .  . ., rz - m ) .  Then 

and so 

By (75)  we have to check the finiteness of 

Therefore suppose without loss of generality that xk (k = 1 , .  .., m )  are  ordered suc- 
cessively o n  DI3 and define (x ,+ I  := X I )  

Clearly d > 0 as  the points xk (k = 1, ..., m )  are  isolated. (On the other hand the 
value of d depends heavily on tz and for all sequences (xX-)kEN of unimodular num- 
bers d + 0 as 11 -t oc.) Now we decompose the integral (77) in m components. 
Choose r x  := (arg(xL)  + arg(xk - 1 ) )  ( k  = 1,. . . , m),  and observe that 

1 0  d 1 1  -%eiel = / r  - x k I  > - (k  = 1, ..., m) 
2 (79) 

for H 4 [tr - 1 ~ 1 ~ 1 ,  (I,,, + I  : = tl ). Now it follows for j = 1. . . . , m that 
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which is finite if and only if p < 1/(2/1,). So (77) is finite iff p <: 1,/(2/1:,,), where 
I I & ~  = max { l i k  1 k = I . .  . ., I Z  }. This gives 

LEMMA I I Lc: f he ii Schwarz-Cfzrisfoffci mapping. Tlzctz f '  E HP for ail p < 
1/(2/1;,,, ). r i d  r1zi.s bhorirzd is sharp, i.e. 

Analogously one gets for I /  f '  

Proof The wme procrdure as above shows that 1; f '  t HP f ) r  a11 p < 1/!'(31+,,', j 
where 11 ,,,:,, := rn; lxj~!~ k - 1 ...., 11 t n ) .  By (9) it !'oll:)ws that 21,~ ,:,, = ( 1  - ( t  ). 

r 
18. INTEGRAL MEANS FOR FUNCTIONS OF BOUNDED BOUNDARY 
ROTATION 

For funct~ons ot  hounded rotation K T  we have the usual representation (34) 

for S G ~ C  signcd i7lc:isiiic 11, with Lebcsgue dccompositioi; I L  = jidlsc + ~ i ~ ~ , ~ , .  Then - x 
= Lk - i  / l L h x l  for x-, E 3D (k E N)  and zr71 / i r k  / 5 K 12. Lxt now c j 0 be 

given and choose nz t N large enough that 
32 

C 114 /C 6 .  (80) 
k = m + l  

and that the maximal value /L,;,, = I / L ~ , , /  is attained for ko 5 m. We write yk := xk, 
(k > m) and get 

rn m 
d/~,<,", ( x )  

f '  z - xk z - x  k - i  

For the last expression we write 

so that an integration gives (without loss of generality f is always assumed to be 
normalized by (I)) ,  
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From this representation one can see at once that f '  E HP for some p > 0 (namely 
for all p < 112. see e.g. [12], p. &I), so that f ' (e ie)  exists for almost all B E [0,2?r] 
and 

2 n 

1 f ' ( r e ) p  dB = 1 1 f '(eie)lp do .  
r-1 

(75) 

For to get a sharp Hp-result for a polygonal mapping f depending only on the 
parameters of the Schwarz-Christoffel formula, hence on the geometry of the image 
surface of f ,  we assume without loss of generality that PI, > 0 (k = I,  ..., m) and 
vk := -IL~+,, ,  > 0 (k = 1,. . ., 11 - m) and write yk := xk+, (k = I , .  . ., n - m). Then 

By (75) we have to check the finiteness of 

Therefore suppose without loss of generality that xk (k = 1,. . ., m) are ordered suc- 
cessively on 0D and define (x,+I := xl )  

Clearly d > 0 as the points xk (k = I, ..., m) are isolated. (On the other hand the 
value of d depends heavily on n and for all sequences (xk)kEN of unimodular num- 
bers d + 0 as t t  -+ m.) Now we decompose the integral (77) in m components. 
Choose tk := +(arg(xk) + arg(xkPl)) (k = 1, ..., m), and observe that 

d 
I -%eie1 = lei' -xxl  > (k = 1, ..., m) (79) 

for 6 @ [ l k - l ,~k ] ,  := t l) .  Now it follows for j = 1,. . . , m that 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
o
e
p
f
,
 
W
o
l
f
r
a
m
]
 
A
t
:
 
0
9
:
5
2
 
1
9
 
F
e
b
r
u
a
r
y
 
2
0
0
9



204 W. KOEPF 

which is finite if and only if p < 1/(2pj) .  So (77) is finite iff p < 1/(2&,), where 
= miIX{lbk / k = I , .  . . ,n} .  This gives 

LEMMA 11 Lct f hc a Schwarz-Cfzristoffel mapping. Then f' E HP for all p < 
1/ (21~: ,~) ,  rrnd tlzis boiirui is sharp, i.e. 

Analogously one gets for I /  f' 

LEMMA 12 Let f he a Scltwarz-Christoffel mapping. 7hen l/ f' E HP for all p < 
I / ( c u , ,  - l ) ,  atui tlzis hound is sharp, i.e. 

Proof The same procedure as  above shows that l l f '  E HP for all p < lj(214,,,) 
where I ,~,; ,  : = mnx { l l L  k = 1,. . ., n m } .  By (9)  it fdlows that 2 ~ 1 , ~  = -(! - am). 

18. INTEGRAL MEANS FOR FUNCTIONS OF BOUNDED BOUNDARY 
ROTATlO N 

For functions of bounded rotation KT we have the usual representation (34) 

for some signed measure p with Lebesgue decomposition / L  = pdisc + pCont. Then 
/Ldisc = xrZl =l,rkS,, for x k  E dD (k E N )  and zEl 1 < K / 2 .  Let now 6 > 0 be 
given and choose m E N large enough that 

and that the maximal value / I ,  = Ipkol is attained for k o  < m. We write yk := xk, 
( k  > m )  and get 

For the last expression we write 

d ~ r m l ( ~ )  -. k'' (q, 2 L o  z - x  k' 

so that an integration gives (without loss of generality f is always assumed to  be 
normalized by (I)), 
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Now we go on a s  in the case of polygonal functions. Suppose without loss of gen- 
erality that n - ~  ( k  = I . .  . . .m) are ordered successively on (3TP and define (now set 
x ,  + ,  := x l ) d  > 0 by (78). Choose tk := i(arg(xk) + arg(xkpI))  (k = l . . . . ,m)  so that 
(79) holds for H q' [ lkp1, lL] ,  (f,,,+, := fl). 

Supposc now that k '  = 1.  Then it  follows for j = I , .  , r n  !hat 

by (Xi)) (%r ilii- I;ist step sci- ; i i ~  ji2], p. Xi) wi!ic:il is finite if 2nd o!?iv J -  if' p < 
1/(2(11, + t ) ) .  AS F was arbitrary we see that f '  E H r  for all p <- I/(2p;,.ix) where 
I":;,, := m a x k , ~  pk as in the polygonal case. This gives 

THEOREM 11 Lel f E V ( K )  will1 f(D) = F sudz that DF is litleur except of a count- 
uhk rlrlmher of ~vr1icc.s wp = f (xk)  of outer urlgle 2 1 ~ ~ ~  (k E N). Tlierl 

The result given here holds also if the function k '  defined by (81) is bounded 
in D. We conjecture that (H2)-(83) hold for all functions of bounded boundary ro- 
tation. Theorem 11 should be compared with results of Warschawski and Schober 
who showed the validity of (82) and (83) firstly for bounded univalent functions 
of bounded boundary rotation whose boundary curves Df (D) are furthermore of 
bounded arc length-chord length ratio and secondly for bounded univalent functions 
whose ranges have only a finite number of vertices and for which some further tech- 
n~cal  cond~t~ons  hold ([%], Theorems 2 and 3). We remark that our result does not 
at all depend on boundedness or univalence. 

19. INTEGRAL MEANS FOR CONVEX FUNCTIONS WITH VANISHING 
SECOND COEFFICIENT 

For convex functions the results of the last section apply. Moreover we get for 
functions w ~ t h  vanishing second coefficient 
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THEOREM 12 Lcl m E N arui fm E K of form (66). Tlterz fh E H P  for all p < m/2. 
Tjli.5 r twh is s/lnrp f i ~ r  l/te coilvex furzcfioiz f will1 f '(2) = 1 /(1 - z " ) ~ / ~ .  

Proof By (68) in the given situation fh(z)  < 1/(1 - zj21"' =: F1(z), so that the 
result follows by the Littlewood subordination theorem as 1/(1 - z)" E HP for all 
p < l i t?.  

For f f ( z )  = I / ( ]  - zrn)?/"' = F1(zm) we have 

2 lr 2 lr 

I/ ' (ref*)Pd8 = 1 ~Fl ( r e '~ ' ) IPd@ = 1 F ' ( r e l B ) l P d ~  

--. L--. A t .  I - - .  ........ r . - -  c 11  -...- 
W I I C I C  U I C  I ~ > L  C ; ~ U L ~ L ; O I I  1 ~ 1 l l ) ~ b  by the substitution 8 + m8 and from the peri~dicity 
of the exponential function. so that the result is sharp. rn 

As a co:o!l:iry we h : x  a generalization of Theorem 8(c). 

Pro01 .lhe theorem shows that I' E Hi. .4s f is bounded by Tineorem 8(cj (or 
by (73j) and J jw) tnererore 1s a Jordan domain, we get the conclusion. 

We remark that the theorem is a special case of our conjecture as functions of 
the given form satisfy 2p;, < 2/m (see Theorem 8(a)). 
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