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oo
Formal power series (FPS) of the form Z ar(z — z0)* are important in calculus and
k=0
complex analysis. In some Computer Algebra Systems (CASs) it is possible to define an
FPS by direct or recursive definition of its coefficients. Since some operations cannot be
directly supported within the FPS domain, some systems generally convert FPS to finite
truncated power series (TPS) for operations such as addition, multiplication, division,
inversion and formal substitution. This results in a substantial loss of information. Since
a goal of Computer Algebra is — in contrast to numerical programming — to work with
formal objects and preserve such symbolic information, CAS should be able to use FPS
when possible.

There is a one-to-one correspondence between FPS with positive radius of convergence
and corresponding analytic functions. It should be possible to automate conversion be-
tween these forms. Among CASs only MACSYMA provides a procedure powerseries to
calculate FPS from analytic expressions in certain special cases, but this is rather limited.

Here we give an algorithmic approach for computing an FPS for a function from
a very rich family of functions including all of the most prominent ones that can be
found in mathematical dictionaries except those where the general coefficient depends
on the Bernoulli, Euler, or Eulerian numbers. The algorithm has been implemented by
the author and A. Rennoch in the CAS MATHEMATICA, and by D. Gruntz in MAPLE.

Moreover, the same algorithm can sometimes be reversed to calculate a function that
corresponds to a given FPS, in those cases when a certain type of ordinary differential
equation can be solved.

1. Introduction

The methods we describe for combining formal power series (FPS) require that all series
be expanded at the same point. Without loss of generality we take z( := 0, since by the
substitution x — (x — z¢) we get FPS with point of development xy. Let us therefore
consider FPS to be of the form

F = Zakxk (1.1)
k=0

with coefficients a € C (k € Np).
The derivative F’ of an FPS F is defined by

Fr=Y"kapa™™ =D (k + Daggaa® (1.2)
k=0 k=0
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and the antiderivative f F of an FPS F is given by

— Ok k+1 _ o~ Tkl
F:= = : L.
/ k1t 2t (13)

All the algebraic operations for FPS like addition, multiplication, division, and substi-
tution, can be done by a finite algorithm if one truncates the resulting FPS, i. e. only
evaluates the first NV coefficients of it (where N is an arbitrary fixed positive integer),
which gives a truncated power series. These algorithms are implemented in certain Com-
puter Algebra Systems (CAS), e. g. in MAPLE (see MAPLE Reference Manual).

If one is interested in the exact formal result, i. e. in an explicit formula for the
coeflicients a, one knows, however, that most algebraic operations are quite difficult
and cannot be done by a finite algorithm.

We shall give an outline of how to resolve these issues for FPS of some special types,
in order to implement manipulations of FPS algorithmically in a CAS. This FPS domain
should be rich enough for doing calculus, and on the other hand restricted enough to be
implementable in a CAS. Our class includes many special functions, but unfortunately
does not necessarily deal with linear (or worse) combinations of such general functions.
These problems are not trivial, as the examples arctanz + e* and sec? xz — tan® z can
illustrate. In the first case the individual terms can be treated by our approach, but the
sum of the two cannot, whereas in the second case the entire sum is covered, but each
term individually is not.

2. Series of Hypergeometric Type

We require an assumption that every FPS F' has positive radius of convergence r :=
1/limsup |ag|'/*. In this situation the FPS represents an analytic function f(z) =
k— o0

o0
> aprk =: F in its disc of convergence D, := {zx € C | |z| <r} , i. e. its sum con-
k=0

verges locally uniformly in ID, to f. So there is a one-to-one correspondence between the
functions f analytic at the origin and the FPS F' with positive radius of convergence
represented by their coefficient sequences (ax)rem,. We denote this correspondence by
f < F. As we are interested in the conversion f <« F the restriction to FPS with
positive radius of convergence makes sense even though algebraically this restriction is
not necessary.

From the analytical point of view a reasonable family of power series should include
the power series of the rational functions and the elementary transcendental functions
and their inverses, i. e.

N
1 the polynomials P := Y pra* (N € IN),
k=0

M
2 the rational functions P/Q, where P and Q:= Y qiz* (M € IN) are polynomials
k=0
with qo 7é 0,

3 and the elementary functions, i. e.

(a) the binomial series By := > ( % )xk — (1+ x)*, where ( % ) denotes the
k=0
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binomial coefficient defined by
e 1 ifk=0
(k) T alesbeloskb) o p e N
and k! denotes the factorial
. 1 if k=0
Tl 1-2--4k ifkelN
(b) the ezponential series EXP := Y La* « exp(x),
k=0
(c) the logarithmic series LN Z za® —In(1 — x),
o)
(d) the sine and cosine series SIN := kgo (g;_‘_)lk)lac%“ — sin(z) ,
S~ (DF ok )
COS = Z: G < cos(x),
(e) the hyperbolic sine and cosine series SINH := > m;ﬁk“ < sinh(z) ,
and COSH := kzjo (22)!5’3% « cosh(z),
(f) the tangent and cotangent series TAN := kz—:l (=" 1?;,£§k_1)32k 2=l

tan(z) , and x- COT : Z = 1222),3” 2k« x-cot(x), where B, are the

Bernoulli numbers that are recurswely defined by
1 ifn=0
b= n+12(n+1>Bk ifnelN

(see e. g. Walter (1985), p. 161),
(g) the hyperbolic tangent and cotangent series TANH := °
k=1

tanh(z) , and x- COTH := Z 4(2%" 22 « 2. coth(z),

(h) the inverse sine and tangent series

ARCSIN =z + E %x2k+l < arcsin(z) , and

ARCTAN := Z %x%“ < arctan(z),

(i) and the inverse hyperbolic sine and tangent series

ARSINH :=z + Z (CDPL35-(2k=1) 2kt1 , arginh (z), and
=

2F KT (2k+1)

ARTANH := Y =2+ o artanh (z).
k=0

o0
i 1)B2k 22k

(2.1)

—

From the point of view of an algorithmic approach it seems to be impossible to include
all cases where coefficients with dynamically growing recursions like (2.1) occur, so that

we exclude those functions from our considerations.
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On the other hand, to include many special functions, and to place the remaining
above FPS in a more general setting, it is a good idea (and one of the essential ones of
this paper) to include

4 the (generalized) hypergeometric series

ai ao [P ap
qu < bl b2 - bq

L o0 (a1)g - (a2)gk - (ap)k i
x) = kZ:o (b1)k - (b2)k -+ (bg)r k! (2.2)

where (a)r denotes the Pochhammer symbol (or shifted factorial) defined by

1 ifk=0
(a)k:{a-(a—l—l)"'(a‘i‘k_l) ifkeN

(@ _ (a+k—1
Note that k‘!k = ( i .

o0
The coefficients Aj, of the hypergeometric series Y. Ajz* are the unique solution of
k=0
the special recurrence equation (RE)

_ (k+ta) (k+az) - (k+ap)
At = Gy ) b+ 1) Ak (FED) (2:3)

with the initial condition

A()Z:l.

Note that % is rational in k. Moreover if % is a rational function @Q(k) in the

variable k then the corresponding function f is connected with a hypergeometric series;
i. e, if k= —11is a pole of Q, then f corresponds to a hypergeometric series evaluated at
some point ax (where a is the quotient of the highest coefficients of the numerator and
the denominator of Q)); whereas, if k = —1 is no pole of @, then f may be furthermore
shifted by some factor z° (s € Z).

We further mention that the function f corresponding to the hypergeometric series

o a1 as e ap
f<—>F.—qu<b1 b - by J:)
satisfies the differential equation (DE)
0@ +b1—1)---(0+b;—1)f=x(0+a1) - (0+ap)f (2.4)

where 0 is the differential operator x% . An inspection of the hypergeometric DE (2.4)
shows that it is of the form (Q := max{p,q} + 1)

Q Q
Z chkzjf(k) =0 (2.5)

k=0 j=0

with certain constants c;p € C (j,k =0,...,Q). Because of their importance in our de-
velopment, we call a DE of the form (2.5), i. e. a homogeneous linear DE with polynomial
coefficients, simple. In Theorems 2.1 and 8.1 we show the existence of a simple DE for
more general families of functions.

It is remarkable that the elementary functions that we did not exclude
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B, — 1Fo(—a|z), EXP= oFo(z), LN=z-,F 121 2)
SIN= 2 oFy (3/2]-%) , c0s= oy (1/2]-%) |
SINH = z - oF, (3/2’%) . COSH= ,F, (1/2‘%2) ,

ARCSIN = z - ,F, ( 1/2 1/2 )gﬂ) . ARCTAN = 2 - ,F, ( 1/2 1 ‘—aj2>,

3/2 3/2
1/2 1/2 12 1] ,
3/2 3/2 |* > ’
all can be represented by hypergeometric series.

Note that a function of the form f(z™) and so an FPS of the form F(x™) is called
m-fold symmetric. Even functions are 2-fold symmetric and odd functions are shifted
2-fold symmetric functions.

By the above examples one is led to the following more general definition. First we
extend the considerations to formal Laurent series (FLS) with a representation

ARSINH=z - 2F1 < ’ - (E2> 5 ARTANH =« - 2F1 (

Fi= Y apz®  (ak, #0) (2.6)

k=ko

for some kg € Z. FLS are shifted FPS, and they correspond to meromorphic f with a
pole of order —kq at the origin.

DEFINITION 2.1. (FUNCTIONS OF HYPERGEOMETRIC TYPE) An FLS F with represen-
tation (2.6) — as well as its corresponding function f — is called to be of hypergeometric
type if it has a positive radius of convergence, and if its coefficients ay satisfy a RE of
the form

akym = R(k)ar fork > ko (2.7)
ap = Ak fork:ko,k0+l,...,k0+m—1

for somem e N, A, € C(k=ko+ 1, ko+2,....ko+m—1), Ay, € C\ {0}, and some
rational function R. The number m is then called the symmetry number of (the given
representation of) F. A RE of type (2.7) is also called to be of hypergeometric type.

We want to emphasize that the above terminology of functions of hypergeometric type is
slightly more general than the terminology of generalized hypergeometric functions. The
function sin x e. g. is not a generalized hypergeometric function as obviously no RE of the
type (2.7) holds for its series coefficients with m = 1. So sinz is not of hypergeometric
type with symmetry number 1; it is however of hypergeometric type with symmetry
number 2. A more difficult example of this kind is the function e***™* which is neither
even nor odd, and nevertheless turns out to be of hypergeometric type with symmetry
number 2, too (see (9.3)).

Note that a function f may be of hypergeometric type (with respect to the origin)
whereas it is not of hypergeometric type with respect to another point zy # 0, i. e.
f(z — x9) may not be of hypergeometric type. An example for this situation is the
Sin x

which is of hypergeometric type; the function %;:”), however, is not of

function
hypergeometric type for zy # 0.
If f is m-fold symmetric, then there is a hypergeometric representation (2.7) with
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symmetry number m, whereas such a representation does not guarantee any symmetry. In
fact, if f is of hypergeometric type with symmetry number j, then it is of hypergeometric
type with each multiple mj (m € IN) of m as symmetry number since by induction we
get the RE

akyjm = R(k) R(k+ j) R(k +2j)--- R(k + (m—1)j) ax ,

and R(k)R(k + j) R(k + 2j)--- R(k + (m — 1)j) is rational, too. In particular, each
hypergeometric type function with symmetry number 7 = 1 is of hypergeometric type
for arbitrary symmetry number m.

On the other hand, it is clear that each FLS with symmetry number m can be repre-
sented as the sum of m shifted m-fold symmetric functions.

We extend the definition of the derivative to FLS by the rule

Flo="kapa™' = ) (k4 Dagpah (2.8)
k=ko k=ko—1

Now we give a list of transformations on FLS that preserve the hypergeometric type.

LEMMA 2.1. Let F be an FLS of hypergeometric type with representation (2.6). Then
(a) aF, (b) FJz, (¢) F(Az) (A€ ©),
F(z) £ F(—x)
2 )
are of hypergeometqic)iyp(e, L;OO. If F has symmetry number m, then F(x™) has symmetry
F(x)*XF(—x
2

(d) F(") (neN), (e) f) F',

number nm, and has symmetry number 2m. If F' is an FPS, then so is

(8) JF.

PROOF. Suppose, for the coefficients of F' the RE (2.7) holds.

(a) The operations (a) and (b) are shift operations. F' has the coefficients by, := ap_1,
and so the RE bg 1y = a(y—1)4m = R(k—1)ar_1 = R(k—1) by, holds. As R is rational in
the variable k, so is R(k—1), and o F is of hypergeometric type.

(b) Similarly we have here by, = R(k+1) bg.

(c) F(Az) has the coefficients by, := A* a,, and so the RE

brym = AFT™ ap 0 = R(E) AFT™ ap = R(K) A™by,

holds.
(d) The coefficients by, of F(x™) satisfy b, := ax, and so we have

bnk+nm = bn(k+m) = Ak+m = R(k) ai = R(k) bnk 5
and finally bgtpnm = R(k/n) by.
(e) The FLS G := w represents the even part of F. Thus its odd coefficients

vanish whereas its even coefficients by agree with those of F, i. e. by = aj. Therefore for
an even index k we have

bitom = Gptam = R(k+m) aprm = R(k+m) R(k) a, = R(k+m) R(k) by, .

This formula obviously holds for the odd coefficients, too, and so G is of hypergeometric

F(z)—F(—x)
2

type with symmetry number 2m. As the FLS represents the odd part of F,

a similar argument can be applied in that case.
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(f) By its definition (2.8) F’ has coefficients by, := (k+1) ar+1, and so the hypergeometric
type RE

k+1+
bk:er = (k + 1+ m) Ok+14+m = (k + 1+ m)R(k+1) Ak4+1 = #R(k“‘rl) bk
holds.
(g) Here we have by, := “:=*, and 50 byym = HLmR(kfl) b,. O
i p i oi® _o—iz

We note that as cosz = and sinz = “—=%— a combination of (c) and (e) shows
that the hypergeometric type of cosx and sinz follows from that of the exponential
function.

We remark further that in § 8 we will extend the definition of functions of hypergeo-
metric type to include also the functions defined in (g) for arbitrary FLS, and to be able
to reverse the process of (d). Note that these functions, in general, do not represent FLS.

It is essential for our development that functions of hypergeometric type satisfy a
simple DE.

THEOREM 2.1. FEach FLS of hypergeometric type satisfies a simple DE.

PRrROOF. Let F be given by

F .= i apz® (ar, #0) .

k=ko

Next, we mention a nice property of the differential operator 6. As

OF = Z kapa® |
k=ko

it follows by induction that for all j € IN
G F = Z Kagz® .
k=ko

This shows that moreover, if P is any polynomial, we may formally write

PO)F =Y P(k)axz" . (2.9)
k=ko
This commuting property is the reason why the differential operator # is much more
appropriate for the current discussion than the usual differential operator %.
Now, from RE (2.7) we get for k € IN
P(k)
apym = R(k) a, = ag
where P, and @) are polynomials. We write this as
Q(k) Ak4m = P(k) ar , (210)

and we assume without loss of generality that the polynomials P and @ are chosen such
that Q(ko—1) = Q(ko—2) = - - = Q(ko—m) = 0. This goal can be reached by multiplying
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both P and @ with the factors (k—ko+j) (j = 1,...,m). From (2.9) and (2.10), it is
easy to derive a DE for F'; we get

Ql—m)F = Z Q(k—m) apz® by (2.9), as @ is a polynomial
k=ko

= Y Qk—m)apa® as Q(ko—1) = Q(ko—2) = --- = Q(ko—m) = 0

k=ko+m

= Z Q(k) apymatt™ by an index shift
k=ko

=z Z P(k) apx® by (2.10)
k=Fko
= 2mP(O)F by (2.9) again.

This represents a DE for F' which turns out to be of form (2.5). Note that for m = 1 and
ko = 0 we have exactly (2.4). U

Now assume, a function f representing an FLS is given. In order to find the coefficient
formula, it is a reasonable approach to search for its DE, to transfer this DE into its
equivalent RE, and you are done by an adaption of the coefficient formula for the hyper-
geometric function corresponding to the transformations given in the proof of Lemma 2.1.
In § 3 we give the details of this algorithm, and in § 4-7 we present finite algebraic algo-
rithms for its particular steps.

3. The First Conversion Procedure

There are two obvious transformation procedures: f +— F and F' — f. At the mo-
ment we want to emphasize on the first situation. This transformation procedure f +—
powerseries(f, x,x0) is implemented in MACSYMA (see MACSYMA Reference Manual).
The implementation in MACSYMA is not based on an algorithm but uses a chain of certain
steps which give the result in some cases. MACSYMA’s procedure is at follows:

1 MACSYMA tries to expand f in the variable x — x¢, e. g. using addition theorems,
!/

2 logarithms In f are handled by the rule In f = / f—,

3 for rational functions a (real) partial fraction decomposition (PFD) is used,
4 the power series expansions of the standard elementary functions with point of
development xy = 0 are implemented.

This procedure has the following disadvantages: it fails

1 to find the result for all rational functions, e. g. for f := because of the

use of a real PFD,

2 to find the result for f := m e. g., as the partial fraction implementation fails
to find nonrational roots of the denominator,

3 to solve powerseries (exp(x)*exp(y),x,0) as the internal simplifier changes the
input into e*T¥ before proceeding,

1
r2422+27
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4 to get powerseries(atan(x+a),x,0) or powerseries(atan(x),x,b) because of

the lack of an addition formula for the inverse tangent function,

5 to solve the problem for products correctly. Usually (e. g. for f := €® sinx) a product

of power series is returned instead of the power series of the product as requested.

Here we present an algorithm corresponding to a function call PowerSeries[f,x,0]
— we use MATHEMATICA syntax as our implementation is written in MATHEMATICA
language — i. e. producing a Laurent series expansion of the function f with respect
to the variable x at the point of development xg = 0. For our algorithmic procedure the
latter is no real restriction and will be eliminated later.

ALCORITHM 3.1. (for PowerSeries[f,x,0]) .

(1)
(2)

Rational functions (see § 4)
If f is rational in x, then use the rational algorithm of § 4.
Find a simple DE (for details, see § 5)

(a) Fix a number Ny,,x € IN, the maximal order of the DE searched for; a suitable
value is Npyax := 4.

(b) Set N :=1.

(c) Calculate f(N); either, if the derivative f(V) is rational, apply the rational
algorithm of § 4, and integrate;

(d) or find a simple DE for f of order N

N
S opf® =0 (3.1)
k=0

where pr (k=1,...,N) are polynomials in the variable x.

(e) If (c) was not successful, then increase N by one, and go back to (c¢), until
N = Nmax-

Find the corresponding RE (see § 6)
Suppose you found a simple DE in step (2), then transfer it into a RE for the
coefficients a,,. The RE is then of the special type

M
Apy1 = Zman_k , (3.2)
k=0

where 1, (k= 0,..., M) are rational functions in n, and M € IN. This is done by
the substitution

2l fO) s (1= )k - angnj (3.3)

into the DE.
Type of RE (see § 7)
Determine the type of the RE according to the following list

(a) If the RE (3.2) contains only one summand rja,—; on its right hand side,
then f is of hypergeometric type; it has symmetry number m = j + 1, and
an explicit formula for the coefficients can be found by the hypergeometric
coefficient formula (2.2), and some initial conditions.
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(b) If the DE has constant coefficients (¢ € C (k =0,...,Q))

Q
S af® =0,
k=0

then f is of exp-like type. In this case the substitution b, := n!-a,, leads to the
RE

Q
Z Crbpir =0, (3.4)
k=0

which has the same constant coefficients as the DE, and can be solved by a
known algebraic scheme using the first @ initial coefficients.

(c) If the RE is none of the above types, try to solve it by other known RE solvers (a
few are implemented in the MATHEMATICA package DiscreteMath‘RSolve°,

e. g.).

We shall present the details of the single parts of the algorithm in the next sections. Here
we prefer to give some examples for the use of the algorithm.

1 Suppose f(x) = e"sinz, so f/'(x) = e“’(sinm + cosx) and f”(z) = 2e”cosz.

The first step of the algorithm does not apply. In the second step for N := 1 the
expression Ag = — (1 +cot x) is not rational in . For IV := 2 we get the expression

AL f - Agf = 2e cos o+ Aje” (sin x + cos a:) + Ape® sin .
Under the summands

2e¥cosx, Aiesinx, Aje’cosx, Ape’sinz

there are exactly the two rationally independent terms e® cos z and e* sinz. We set
the coefficient sums of these expressions to zero. The linear equations system

2+A1:0, A1+A0:0
has the solution A; = —2, Ay = 2, and leads so to the DE for f
f"=2f +2f=0. (3.5)

This DE has constant coefficients, so f is of exp-like type. For b,, := n!a,, we have
the RE

bsa — 2bnst + 2b, = 0.

The initial conditions are

f'(0)
1!

For a RE with constant coefficients the setup b,, := A™ leads to a solution. Possible

values for A are solutions of the equation \"*2 — 2)\"*1 4 2)\" = 0, or solutions of

the equivalent characteristic equation

AN —204+2=0,

bo =ag = f(0) =0, and by =a1 = =1.

and so the values A; o := 1414. Superposition (the RE is linear) leads to the general
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solution b, = AN} + BAy with constants A, B € C. The initial conditions lead then
to the linear equations system for A and B

0=by=A+18, 1=b=A1+i)+B(1-1),
whose solution is A = 1 , B = —2-. So we have finally
by 1 (1 1-— 1 . 1 S L S
ap=— (149" ( D" =—Im(1+4)"=—Im (\/5614) =—22 smﬂ,
n! n! 21 n! n! n! 4
and

o0

1 9%
E — 2sm—x
— nl

Suppose next f(z) = arcsinz, so f'(z) = ﬁ and f"(z) = ﬁ The second
step of the algorithm leads to the DE for f
AQ—a2f" —af =0, (3.6)
and the transformation via the rule (3.3) generates then the RE
(n+2)(n+ Dapys — n’a, =0,

which is of hypergeometric type as only two summands occur. Moreover one sees
immediately that the symmetry number m equals 2. The fact that f(0) = 0 tells
us that f is odd. So it will be convenient to work with the FPS

H(z):= Z cp®

k=0

for which f(z) = zh(2?), and so ¢; = agxs1. The substitution n — 2k + 1 then
leads to the RE for ¢

The initial condition is ¢y =

cn — k ( )k _ (2k)!
FTTE) R @k DaR(R2

and

F 2k+1 )
Z 2k+1 4k k') v

Now we look at the error functlon

2
flz) =erf (z —/
f
0
Here f'(x) = %e*ﬁ and f"(x) = f%xe*x . The algorithm leads to the DE
4 2af =0, (3.7)

and so to the RE
(n+2)(n+ 1)apt2 + 2na, =0.
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This is also of hypergeometric type, and the same argumentation as in Example 2
shows that f is odd. We use the same substitutions and get for the coefficients ¢y,
of H

k+ 3
Cht1 = — c
mH (k+ Hk+1)"
with initial condition ¢y = a1 = f'(0) = ==, so that finally

(%) _ 2 (D

2
= (g) K VE k4 DR
and
— 2 (=DF 4
F=Y ) %41
kZ:O V7 (2k+ Dk "
Let’s now look at f(z) = arctanx. Here f/(z) = sz is rational. So we apply the

rational algorithm (see § 4), and integrate. We find the complex PFD

1 1 1 1
! — — —
f(x)_1+x2_2<1—|—ix+1—ix) ’

o0
from which we deduce for the coefficients b,, of the derivative F'(z) = 3 b,z™ by
n=0

using the binomial series that

1
b= 5 (" (") = 5 (4 (1))
By the calculation
Z'2k+1 2kt 1
bog4+1 = (1 + (—1) ) =0

it follows that F’ turns out to be even. Moreover
2k

o (1+ (D)%) = (-1)*,

boy, =

so that by integration

— (-1 p2k+1
F= .
DT

[\

We remark that the arctan function can also be handled by the hypergeometric
procedure similarly as Example 2

Finally we look at a rational example. Let f(x) = m We apply the rational
algorithm, and find the complex PFD

() 1 7 1 n 1 1 1 1 1 1 1
)= — R L. .
22 +20+2 2 \x+l-i  a+1+i 2 1—i 1475 2 140 142

so that for the coefficients a,, of the corresponding FPS F' it follows

N T N A T S
= 5 \155 2\ 144
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s n+1 _sm N\ nt+1l
(G e
= _ = = sin ((n +1 7) )
21 ﬂ 2 +1 ( )4

F = i (_i)jl sin ((k + 1)E> zk

4
k=0

>

and

3

Finally, we remark that if one is interested in the Laurent series at another point of
development than zero, the procedure (in MATHEMATICA code)

PowerSeries[f_,x_,x0_] := Module[

{y},

PowerSeries[f/.x->y+x0,y,0] /. y->x-x0
]

which establishes two simple substitutions, gives then the Laurent series expansion at
the point xzg.

So it turns out that the success of our algorithm does not depend on the simplification
facilities which are available. However we note again that a function may be of hyper-
geometric type at one point of development, and fails to have this property at another
point.

4. The Rational Algorithm

The rational algorithm is as follows.
ALCGORITHM 4.1. (THE RATIONAL ALGORITHM) .

1 Calculate a complex PFD of f

- & Ck1 Ck2 Ckpy
f(x)Z($—2k+($—2k)2+'”+($_};}c)pk>

k=1

(see e. g. Walter (1985), p. 171) which can be algorithmically done at least if the
denominator has a rational factorization.

2 By this procedure f is the sum of expressions of the type

a;  (=Dey

(m - Zk>j Zi (1 _ i)j

Zk

which can be expanded by the binomial series, and have the coefficients

(*1)jckj J+n—1
Zj+n n :
k

(O‘n)w =

Note that exactly the rational functions correspond to a RE of type (3.2) with constant
coefficients r, (k=0,..., M) (see e. g. Walter (1985), p. 163 — 164).
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5. Simple Differential Equations

Suppose, a function f is been given, and we search for a DE for f of the form (2.5),
i. e. a simple DE. First of all we note that, if there exists one simple DE, then there
exists a second simple DE for f that is essentially different from the first one in the sense
that the corresponding RE’s are different (see § 6). E. g. for the exponential function
f(z) := e” we have the simple DE

f'=r, (5.1)
1

corresponding to the RE a,41 = 35a,. Differentiation shows that moreover f” = f’

(which is not essentially different as it leads to the same RE for the series coefficients),
and so by combination we get f” + 2f' = f' + 2f, or equivalently

fr =2, (5.2)
which is a DE essentially different from (5.1) as it is equivalent to the RE
(n+2)(n+ 1apta = —(n+ Daps1 + 2a,

which is not of hypergeometric type. We present here an algorithm that finds one simple
DE for f whenever one exists. The order of the DE found is minimal with respect to all
simple DE’s satisfied by f.

ALGORITHM 5.1. (SEARCH FOR A SIMPLE DE) .

(a) Find out whether there exists a simple DE for f of order N := 1. Therefore differ-
entiate f, and solve the linear equation

F'(@) + Aof(a) = 0
I (x)

for Ag;i. e. set Ag := — HOR Is A rational in x, then you are done after multipli-

cation with its denominator.
(b) Increase the order N of the DE searched for by one. Decompose the expression

FM (@) + Av_1 fN V(@) 4+ + Ao f(2)

in elementary summands (with respect to the constants Ag, A1,..., Ay_1). Test,
if the summands contain exactly N rationally independent expressions consider-
ing the numbers Ay, A1,...,Ay_1 as constants. Just in that case there exists a
solution as follows: sort with respect to the rationally independent terms and cre-
ate a system of linear equations by setting their coefficients to zero. Solve this
system for the numbers Ag, A1,..., Ay_1. Those are rational functions in z, and
there exists a unique solution. After multiplication by the common denominator of
A, Aq,...,Ay_1 you get the DE searched for. Finally cancel common factors of
the polynomial coefficients.
(¢) If part (b) was not successful, repeat step (b).

PRrROOF. We will have to prove, that if we are at step N of the algorithm searching for a
simple DE

FN) 4 AN fND 4 A 4+ Agf =0 (5.3)

for f (i. e. for all n < N the corresponding DE did not have exactly n rationally inde-
pendent summands), then either
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(a) the number of rationally independent summands of (5.3) equals N,

(b) the linear equations system that we get by setting the coefficients of the rationally
independent terms to zero, has a unique solution Ag, A1,..., An_1,

or

(¢) the number of rationally independent summands of (5.3) is larger than N, and there
is no solution.

Let f be given. We start with IV := 1. Then the DE (5.3) contains at least one rationally
independent term, namely f, as we excluded the rational functions from this procedure.
If the number of rationally independent terms equals 1 (and so f’ is a rational multiple
of f), then we get a unique solution Ay := —f’/f. If not, then the number of rationally
independent terms is at least 2, and we must proceed with N := 2.

In that case, suppose now the number or linearly independent terms is less than or
equal to 2. Then we are able to find a solution vector (Ag, A1), and it remains to show
that the solution is unique. Assume both

f"+Af +Af=0 and  f'+arf +af=0
are valid for f, then their difference
(A1 —a1)f' + (Ao —ag) f =0 (5.4)

is also a valid DE for f. Observe that (5.4) is also simple and has order 1. But by the
above step we know that there is no simple DE for f of order 1, so that it must follow
that all coefficients of (5.4) equal zero, i. e. ap = A (k = 1,2), and so the solution was
unique. In the other case, the number of rationally independent terms is larger than IV,
and we proceed with N := 3. The proof for general N is then by applying our argument
inductively. O

We mention that one cannot guarantee that for functions f of hypergeometric type the
algorithm produces a DE corresponding to a RE of hypergeometric type. Indeed, for the
function f(z) := e”sinz the algorithm produces the DE f” — 2f' + 2f = 0; transferring
this DE into its equivalent RE (see § 6) leads to

(n+2)(n+1)apse = 2(n+ apt1 — 2a,

which is not of hypergeometric type. However f also fulfills the fourth order DE f() 4+
4f = 0 corresponding to the hypergeometric RE

(n+4)(n+3)(n+2)(n+ Dapts = —4a, .

On the other hand, this seems to be a rare situation. In all but very few cases hyperge-
ometric type FLS are recognized by the given algorithm.
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6. Getting the Recurrence Equation

The underlying method to find the RE from a simple DE was presented in § 3. We
have to prove the statements given there. So assume, an FLS F with a representation

satisfies the DE
Q Q ,
Z Z e’ F®(z) = 0. (6.1)

7=0 k=0
As by induction
F® =3 "(n+1-k)pana"", (6.2)
’I’L:ko

we may substitute (6.2) into (6.1) to get

Q Q oo
0 = Z chkxj Z (n+1-k) apx™ "
=0 k=0 n—ko
Q Q 00
= chjk (n+1-k) anxF I
J=0k=0  mn—ko
Q Q o)
= chgk Z (n4+1 =)k angr—jT
J=0k=0  n=ko—k+j
Q Q Fo+Q—1 5
= > ) ci S Al = franik+ Y, (n+1—franir; | 2"
Jj=0k=0 n=ko—k+j n=ko+Q
0o Q Q Q Q ko+Q—1
= Z Z Z cik(n+1=7)k anyr—jz" + Z Z Cjk Z (n4+1—j)k apgp—jx".
n=Fko+Q j=0 k=0 J=0k=0 n=ko—k+j

Equating coefficients leads to (3.3) for n > ko + @, whereas the finite number of initial
coefficients a,, (n < ko + @) have to be checked separately.

It remains to observe that as (n+ 1 — j)i is a polynomial in n for each fixed j and k,
the calculated RE is then of the special type (3.2) where 7 (k=0,..., M) are rational
functions in n, and M € IN.

We want to present here a rule oriented MATHEMATICA procedure subst[eq,x,a,n]
that calculates the left-hand side of the RE in the form > gx(n)an—r = 0 from the left-
hand side eq of the DE that is assumed to be of the formal form Y pi(x)diff [f, z, k] = 0,
using the rules above. Here diff [f,z, k] is a formal representation for the expression
f%)(z), and it is assumed that the function involved has the name f.

subst[g_+h_,x_,a_,n_] :=subst[g,x,a,n]+subst[h,x,a,n]
subst[c_*g_,x_,a_,n_]:=c*xsubst[g,x,a,n] /; FreeQlc,x] && FreeQlc,f]
subst[diff[f,x_,k_],x_,a_,n_] :=Pochhammer [n+1,k] *a[n+k]

subst [diff [f,x_],x_,a_,n_J]:=(n+1)*a[n+1]

subst[f,x_,a_,n_]:=aln]
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subst [x_"j_.*diff[f,x_,k_],x_,a_,n_]:=Pochhammer [n+1-j,k]*a[n+k-j]
subst [x_"j_.*diff[f,x_],x_,a_,n_]:=(n+1-j)*a[n+1-j]
subst[x_"j_.*f,x_,a_,n_]:=a[n-j]

subst[c_,x_,a_,n_]1:=0 /; FreeQlc,x]

subst[x_"j_.,x_,a_,n_]:=0 /; IntegerQ[j]

subst[x_,x_,a_,n_]:=0

subst[g_,x_,a_,n_] :=subst[Expand[g] ,x,a,n] /; (Head[gl==Times)

The function call subst [diff [f,x]-f,x,a,n] for the exponential function, e. g., pro-
duces the output

-a[n] + (1 + n) all + n]

For the inverse sine function, we call subst [(1-x~2)diff [f,x,2]-x*diff [f,x],x,a,n],
and get

-(n a[n]) - (-1 + n) n an] + (1 +n) (2 + n) a[2 + n]

7. Solution of the Recurrence Equation

We do not want to emphasize on the solution of a RE of hypergeometric type as
these details can easily be calculated with the use of the transformations presented in
Lemma 2.1.

We only mention that for symmetry number m # 1 the FLS F has to be decomposed
by m shifted m-fold symmetric series.

However, we consider the exp-like case. We have to prove that from the DE

Q
> kW) =0, (7.1)
k=0

with constants ¢ (k = 0,...,Q) relation (3.4) follows for the numbers b, := n!a,.

Indeed, substituting (6.2) into (7.1), we have

o
Ci, Z (n+1)gantrz™ Z ch (n+1)g n+k " Z chanrkx

k=0 W:kg n= k‘ok’ 0 n= k[)

Equating coefficients, we get (3.4).
Now we give the algebraic scheme to solve this kind of RE.

ALCGORITHM 7.1. (SOLUTION OF A CONSTANT COEFFICIENT RE) .

(1) Substituting the setting b, := A" into the RE (3.4) produces the characteristic
equation

Q
Z Cp /\k =
k=0

Solve that equation for A\, and produce the R pairwise different solutions A, (k =
1,..., R) which have multiplicities «y (k = 1,..., R), respectively.
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(2) The general solution has the form

R ap

b= Y > A I (7.2)
k=1 j=1
with the @ constants Ag; (k=1,...,R(j=1,...,a4)).
(3) Substituting @ initial values into (7.2) produces a linear system of @) equations for
the @ unknowns Ay; (k=1,...,R (j =1,...,a;)). This linear system is regular.
Solve this system to get a representation for b, .

PROOF. In the case that the @ solutions Ax (k=1,...,Q) all have multiplicity oy, = 1,
and so are pairwise different, the solution can be found e. g. in Walter (1985), p. 35,
Exercise 5. The general case is similarly proved by an induction argument. [

We remark that it may happen that for an exp-like function f Algorithm 5.1 finds a
DE which does not have constant coefficients, and so fails to recognize the exp-like type.
Clearly the found DE then has lower order than the constant coefficient DE which also
holds for f. This situation occurs e. g. for f(x) := (1+xz) e” for which Algorithm 5.1 finds
the simple DE (1 + z)f’ = (2 + x)f which has non-constant coefficients, and order one.
On the other hand, f is exp-like as it is solution of the second order constant coefficient
DE f” —2f'+ f=0.

8. Generalization

It turns out that for functions that do not represent an FLS, it may happen that the
algorithm formally leads to a RE of hypergeometric type.

We make this a formal definition to extend the class of functions of hypergeometric
type, and give three example classes of functions that are covered by this approach.

DEFINITION 8.1. (FUNCTIONS OF HYPERGEOMETRIC TYPE) A function f is called to
be of hypergeometric type, if the procedure of § 5 leads to a simple DE which by the
formal application described in § 6 is converted into a RE of hypergeometric type (2.7).

First we give some examples.

1 Let f(z) := Inz. Then the algorithm finds the DE f’ + 2f” = 0 for f. This DE
formally is transferred into the RE a,, = 0 (for n € IN) which is of hypergeomet-
ric type with rational function zero. Obviously this behaviour occurs as f’ is of
hypergeometric type (namely, a monomial with negative exponent).

Similarly for f(z) := [Inzdr = —z + xInz, we get the DE f —af’ + 22" = 0,
and the formal RE a,, = 0 (for n > 2) corresponding to the fact that f” equals a
monomial with negative exponent.

So our extended definition above covers antiderivatives of FLS’s. The antiderivative
of an FLS is defined by

/F = ka: kai_ﬁlxk“ +a_1lnz :]F; %mk +a_1lnz.
0 =ko+1

k-1 k#£0
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2 Let f(z) := eV®. We get the DE —f + 2f" 4+ 4z f” = 0, and the formal RE
21 +2n)(1 +n)ant1 = an . (8.1)
On the other hand, we know that

o0

1 1
_ VT _ S s
T)=e 1_Zk!x2_z(2n)!xn’

n=0

. Indeed,

where here the summation index n runs over all numbers n = 0, 1

for a,, = the RE (8.1) holds.

19 a2a"
(2n)'

Similarly, for f(z) := we get the DE

1
1— ¥z’
2f + (=2 + 38z) f' + (=182 + 452%) f"' + (—92% + 92°) ' = 0 ,

and the formal RE a,, 11 = a,, corresponding to the fact that f(z) = g(z'/3), and
g is the hypergeometric function g(z) = 1.
So our new definition covers functions of the form f(z'/") (n € IN) where f repre-
sents an FLS F' of hypergeometric type.

3 Let f(z) := e'/*. We get the DE f + 22 = 0, and the corresponding RE a, 1 =
—nay,. Here the RE contains the information that a; = 0, and so a; = 0 for all
k € IN. This guarantees that only coefficients with nonpositive indices occur, and

so the function g(x) := f(1/z) is an FPS. Indeed, from the usual exponential series

we see that
o

We shall show now that these three cases are covered by our new approach.

E?“y—l

THEOREM 8.1. Let f correspond to an FLS of hypergeometric type with representation
(2.6). Then
n 1
SIS o M wem. @ 7(3)

xT

are functions of hypergeometric type.

PROOF. Suppose, for the coefficients of F' the RE (2.7) holds.

(a) First we observe that [f fulfills a simple DE as its derivative does. Further for
the formal coefficients b,, of f f (. e. ignoring the logarithmic term) we have the same
situation as in Lemma 2.1.

(b) Assume F is an FLS of hypergeometric type with representation (2.6), and g(z) :=
f (xl/”). Then G has the representation

= Z apat/™ = Z brx® . (8.2)
k=ko k=(kotj)/n
j€INg

If the representation of F' has symmetry number m, we know that there is also a repre-
sentation with symmetry number nm

Q(k) Ak+nm = P(k’) ag
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with two polynomials P, and ). Using these polynomials and the differential operator
0, = nx% rather than € the same argumentation as in Theorem 2.1 shows that G
satisfies the DE

Q(0,, — nm)g =™ P(0,)g
which is simple. So G is covered by the given approach. For the coefficients by (k =
’“DT% (j € Ng)) of the formal series G of g by (8.2) the relation by = a,; holds so that
bk+m = Qnk4+m = R(’I’Lk‘) Qnk = R(?’Lk) b ,

and g is of hypergeometric type. We mention that g can be reconstructed as the sum of
n shifted FLS.

(c) As in (a) we observe that the existence of a simple DE for f implies the existence of
a simple DE for g(z) := f (1). Substituting k¥ by —k—m in the RE (2.7) gives

1
ke = R )
For the coefficients by of g we have by, = a_g, so that
1 1
b m — 0—k—m — -k = b )
htm = A=k R(—k—m) "™~ R(—k—m) "

and g is of hypergeometric type. [

We note that the rules of the lemma can be applied recursively without changing the hy-
pergeometric type. In our MATHEMATICA implementation, we covered these three cases,
too.

9. Some Results

Our implementation of the given algorithm in MATHEMATICA was tested on many
arguments. We want to mention here four unexpected examples of functions of hyperge-

ometric type
. 2 [e'e)
arcsinz )~ _ Z 4% (k1?2 2K 9.1)
T (I+k)(1+ 2k)!

k=0
arcsinh S (2k)' 2k
_ 2
‘ P DY Gy ER 52
k k 1 2 k k 1 2
arcsinx __ = 2k = 2k+1
¢ =2 20! Y e (93)

and

r a kZ:O 16%v/2 (2k)! (1 + Qk)!xk : (9.4)

Similar formulae can be calculated for odd powers of %

However, all of these examples essentially are known. Exafnple (9.1) can be found e. g.
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in Gradshteyn and Ryzhik (1980), p. 52, formula (1.645.1), or Hansen (1975), formula
(5.18.4), and it is a particular case of the so-called Clausen formula that tells in which
cases the square of a oF1 hypergeometric function is a 3F9 hypergeometric function. This
is exactly the case if the parameters are as in

2

) 2( 2a 2 a+b x):<2Fl ( o
)= (n (" |)

a+b+1/2 2a+2b
In our case, we have a = b = 1/2, and Clausen’s formula reads
The second example (9.2) follows easily from the representation

arcsinx 2_ I 1 1 1
T 32 3/2 2

earcsinhac =+ 1+ 2 (95)

for the inverse hyperbolic sine function. This is a representation as a binomial expression
which obviously has the power series representation (9.2) (see also Hansen (1975), formula
(10.49.32)). On the other hand, our algorithm found this representation independently
of an explicit knowledge of formula (9.5), a fact that we will consider in more detail in
§ 10.

The third expression (9.3), can be found e. g. in Hansen (1975), formula (5.27.2).
In Gradshteyn and Ryzhik (1980), p. 22, formula (1.216.1), however, the five initial
coefficients of e are given which shows that these authors did not know a general
formula for the power series coefficients of this function. Both formulas (9.2) and (9.3)
are the special cases a = 1 and a = ¢ (z — iz) of the identity

o X2k (2-k41)
2) — - \2 2 Tk .k
(4 VI+a2) _kzzo L+ k/a) k!

which holds in a neighbourhood of the origin, see e. g. Hansen (1975), formula (10.49.32),
and is also found by our implementation.
Formula (9.4) can be found e. g. by the identity

1-VIi-2z J1+yz—-1-x
T V2z
which holds in a neighbourhood of the origin.

Other successful examples of our implementation are (see Hansen (1975), formula
(5.10.28))

x \/gx T > 3 1
7)_2 -3 v - — s +3k
e e COS( 5 +3 ];)(1—4—31@!% ,

and (see Hansen (1975), formula (5.4.22))

1 1 = 2
3 In <1+i> —arctanx = kz_o mm3+4k

We expect that by a further use of the algorithm further, perhaps new, Laurent series
expansions may be found.
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10. The Algorithm as a Simplifier

In some sense, the algorithm can be used as a simplifier. If, namely, the resulting
FPS represents a finite sum, we have a polynomial. Often this polynomial representa-
tion may be different from the original input, in which case the corresponding equality
represents an identity, and the resulting polynomial simplifies the input. In many cases,
the resulting polynomial may even be the zero polynomial. As an example we consider
f(z) := cos(4 arccos z). An expert in analysis may know that this is a Chebyshev polyno-
mial. By algebraic means, however, there is no way to discover from the given representa-
tion that f is a polynomial so that the rational algorithm does not apply. An application
of our implementation yields the output

In[1] := PowerSeries[Cos[4 ArcCos([x]],x,0]
ps-info: 2 step(s) for DE:
2

-16 £ + x diff[f, x, 1] + (-1 + x ) diff[f, x, 2] =0

ps-info: RE for all n >= O:
(-4 + n) (4 +n) aln]
a[2 + n] = - -
(1 +n) (2 +n)

ps-info: function of hypergeometric type
ps-info: al0] =1
ps-info: a[1] = 0
ps-info: 2-fold symmetric function
ps-info: Cos[4 ArcCos[x]] =

Infinity k

---- 2 (-4 (1+x)! 2k

- (2 -r! (2K

2 4
OQut[1]l=1 -8x + 8 x

Thus our algorithm is able to find a closed form for the power series coefficients of f, as f
is of hypergeometric type with symmetry number 2, and to decide that f is a polynomial.
The following is a list of examples of simplifications that are done by the algorithm.

PowerSeries[Sin[x] "2+Cos[x]"2,x,0] -> 1
PowerSeries[Cos[ArcSin[x]]-Sqrt[1-x~2],x,0] -> O

PowerSeries [Exp[ArcSinh[x]]-Sqrt[1+x72],x,0] -> x
PowerSeries[ArcSin[x]+I ArcSinh[I x],x,0] -> O
PowerSeries[ArcTan[(x+y)/(1-x y)]-ArcTan[x],x,0] -> ArcTanl[y]
PowerSeries[ArcSin[x]+ArcCos[x],x,0] -> Pi/2

PowerSeries [Exp[x+y]/Exp[x],x,0] -> Exply]

PowerSeries [(Exply/x])~(x),x,0] -> Exply]

PowerSeries[Sin[3 ArcCos([x]]/Sqrt[1-x"2],x,0] -> -1 + 4 x"2
PowerSeries[Beta[x,1/2,2]8qrt[x],x,0] -> 2 x - (2 x72)/3

Note that these results are independent from prior knowledge, e. g. no addition theorems
or trigonometrical identities are used, but our procedure leads to this knowledge. Only
the knowledge about the derivatives, and implicitly the assumption (and the user’s knowl-
edge) of the existence of a Laurent series development, is used. Note further that some
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of the above identities do not hold for all real arguments. Indeed, it is the responsibility
of the user to check the domain of applicability.

We expect that a further use of the algorithm will lead to further, perhaps new, iden-
tities.

11. The Second Conversion Procedure

The algorithm given in § 3 has a natural inverse F' — f, that calculates the meromor-
phic function f from its FLS F. We omit the details of that procedure Convert [F,x]
that converts an FLS F' into its meromorphic equivalent f with respect to the variable
z. Given a formula for the general coefficient a,,, the first step consists of finding a RE of
the type (3.2). This step is algebraically equivalent to the search for the DE, presented
in § 5.

Rather we want to emphasize on the back-substitution that produces the left-hand side
of the DE from the left-hand side of the RE. This can be done, e. g., by the following
MATHEMATICA procedure backsubst [re,n,f,x] defined by the rules

thetal[f_,x_]:=x D[f,x]
backsubst[eql_+eq2_,n_,f_,x_]:=backsubst[eql,n,f,x]+backsubst[eq2,n,f,x]
backsubst[c_*eq_,n_,f_,x_] :=c*backsubst[eq,n,f,x] /;

(FreeQlc,n] && FreeQ[c,f] && FreeQlc,x])
backsubst[a[n_+m_.],n_,f_,x_]:=f[x]/x"m
backsubst[n”j_.*a[n_+m_.],n_,f_,x_]:=theta[backsubst[n”(j-1)*a[n+m],n,f,x],x]
backsubst[p_*a[n_+m_.],n_,f_,x_] :=backsubst [Expand [p*a[n+m]],n,f,x] /;

PolynomialQ [p]

The back-substitution of the RE for the exponential function

Simplify[backsubst [(n+1)*a[n+1]-a[n],n,f,x]]

e. g. produces the output -f[x] + £’ [x].

The main part of the procedure Convert is to solve the finally generated simple DE.
At the moment, with MATHEMATICA Version 2.0, this is, at least in the case of DE’s of
order greater than 2, generally beyond its capabilities. On the other hand, all but very
few examples that we tested were solved by MACSYMA’s ode procedure (version 417).
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