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1. TAYLOR POLYNOMIALS OF EXPLICIT FUNCTIONS 

Assume a real function f : I +  R is n times differentiable in an interval I contain- 
ing the point xo. Then the polynomial 

is called the Taylor polynomial of order n off .  Often it represents a global approx- 
imation converging to f (x) in I when n + ax The function 

e-'lxZ if x f O 
f (x) := 

otherwise 

has Taylor polynomials T,(f,x,O) - 0 for all n E N, which shows that this is not 
always the case. Locally near xo, however, the Taylor polynomial T, gives an ap- 
proximation off of order O((x - xo)"). 

If a function f is explicitly given then (1) is an algorithm for an iterative calcula- 
L,.~ Llu,, of the Taylor po!ymmia!s; We mention that in general, however, (1) has to be 

replaced by 
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24 W. KOEPF 

This is as the functional expression by which f is given may not be valid for x = xo. 
An example of that type is f (x) = sinxlx (x f 0) at xo = 0 with 

x cos x - sin x 
f '(0) : = lim f '(x) = lim 

x 2  
= 0, 

x -0 x-0 

2x cos x + (x2 - 2) sin x 1 
f "(0) : = lim fl '(x) = lim - - -- 

x -0 x-0 x3 3'  

and so on. Another example is function (2). 
The calculation of Taylor polynomials for explicit functions is implemented in 

most Computer Algebra systems available. In this note, we use DERIVE [j], a Com- 
pute; A!get;ia system :hat is especialljl easy to use, running =n every IBM com- 
patible personal computer, and on the other hand having strength enough for all 
computations we'll do. However, the following restrictions apply. If the order n 
of the iayior poiynomiai searched for is too iarge, DERIVE may faii by reasons of 
memory overflow or time restrictions Further DERIVE does not support all special 
functions that may be of interest. 

The DERIVE function TAYLOR(fjw,xO,n) generates the Taylor pniynnmia! of order 
n of f at the point xo with respect to the variable x. For example we get the 
following calculations of Taylor polynomials at the origin 

function DERIVE input DERIVE output after /Expand1 

cosx - 1 x x 6  x 4  .I2 1 
TAYLOR((COS(x) - 1)/xA2,x, 0: 8) - - + - - - + - - -  

x2 3628800 40320 720 24 2 

We mention that in the case of explicitly given functions also an algorithm (see 
[I], [2], and [3]) is available with which in many cases one can find a closed form 
representation of the Taylor series 

for f ,  i.e. a formula for f @i(xo) for symbolic k .  

2. TAYLOR POLYNOMIALS OF IMPLICIT FUNCTIONS 

In applications, functions often are given only implicitly by an equation 
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TAYLOR POLYNOMIALS O f  IMPLICIT FUNCTIONS ? c LJ 

where y = g(x)  is considered to be a function of the variable x. The implicit func- 
tion theorem guarantees under certain weak conditions the local existence of such 
a function g for which F!x.g(x,)) = 0 in a neighborhood of a given point (xo, yo) for 
which F(xo, yo) = 0. 

A typical example is the equation of the unit circle 

where for each (xo,yo) with xi  + y; = 1 and yo > 0 the function 

arid for each (xo,)ioj with x i  + y; = 1 and y, < 0 the function 

are corresponding explicit functions locally. 
F i r r e  we present ar! iterative procedure t o  generate the Taylor polynomials of an 

impiiciily given function. Differzntiating iilc i c i i ~ i i ~ i g  ~yud i iu i i  

by the two-dimensional chain rule, we get 

and thus 

To get the higher derivatives of g successively, we may differentiate now Fl by the 
chain rule to produce 

further 

and so on, inductively. By this procedure we produce a list of the first n derivatives 
of g in terms of x and y, and by taking the limits for y 4 yo and x + xo, we may 
produce the Taylor polynomial of order n. 
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26 W. KOEPF 

As an example we consider again 

with (xo, yo) = (0,l). By the above procedure we get 

and iteratively 

and 

The fourth order Taylor polynomial thus is given by 

DERIVE (like other Computer Algebra systems) does not directly support the calcu- 
lation of Taylor polynomials of implicit functions. On the other hand, we can easily 
implement our given algorithmic procedure into DERIVE. The DERIVE function 

calculates the Taylor polynomial of order n of the function y = g(x) given by 
the equation F(x,y) = 0 using limits where aux represents the list of derivatives g', 
g",. . . , g ( n ) .  If yprime is the first derivative, then the derivative list is produced by 
the command 

ITERATES(DIF(g_, y)*yprirne + DIF(g_,x), g-, yprirne, n - 1). 

Thus the DERIVE function IMPLICIT-TAYLOR(f,x,y,xO,yO,n), given by 

IMPLICIT_TAYLOR_YPRIME(f,x, y, xO, yo, n, yprirne) := 

ITERATES(DIF(g_, y)*yprime + DIF(g_,x), g-, yprime, n - 1)) 
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TAYLOR POLYNOMIALS OF IMPLICIT FUNCTIONS 

IMPLICIT-TAYLOR-AUX(f,x, y,xO, yo, n, 

IMPLICIT_TAYLOR(f,x, y,xO, yo, n) := 

!MPL!C!T-?.AVLnR_YPRIME(f.x. y. xO, yo. n, -DIF(f,x)/DIF(f, y)) 

results in the desired Taylor polynomjal where we used (1) to calculate g ' .  Here is a 
list of example calculations. 

DERIVE input DERIVE output after I Expand ( 

The last example is equivalent to the explicit example (2). Here the order of taking 
the iterated limit in IMPLICIT-TAYLOR-AUX is essential as a two dimensional 
limit does not exist. 

We mention that for implicitly given algebraic functions, i.e, if F(x,y)  is a poly- 
nomial in both x and y, then again, an algorithm [4] is available with which in many 
cases one can find a closed form representation of the Taylor series. 

3. TAYLOR POLYNOMIALS OF INVERSE FUNCTIONS 

The local inverse function g-l(y) of g(x) in a neighborhood of x = 0 is a special 
case of an implicit function: It is the local solution of the equation 

near (O,g(O)). An application of the general algorithm of the last section generates 
the Taylor polynomial of g-l at the point g(0j. This procedure is covered by the 
DERIVE function 

lNVERSETAYLOR(g,y,x, n) := IF(LIM(DIF(g,y),y,O) = 0, 
"Taylor expansion of inverse does not exist" 
IMPLICIT-TAYLOR(g - x,x,y,LIM(g,y,O),O, n) 

1 
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28 W. KOEPF 

We get for example 

DERIVE input DERIVE output after 

INVERSE-TAYLOR(X~~, x, y,5) "Taylor expansion of inverse does not exist", 

INVERSE_TAYLOR((#eAx + #e" - x)/2,x,y,5) "Taylor expansion of inverse does not exist". 

INVERSE-TAVLOR(EXP(X~~ - 1) x y 5) "Taylor expansion of inverse does not exist". 

One may use DERIVE'S graphical capabilities to explore the quality of the given 
approximations by plotting both g and the calculated Taylor polynomials of g-l.  
We consider the last example. The function g(x) := xeX has a local minimum at 
x = -1 of value -e-' z -0.367879. It follows from complex analysis that the radius 
of convergence of the Thylor series of the inverse function does not exceed e - I .  
Thus only in the interval (-e-l,e-') can we expect that the Taylor polynomials 
converge to g-l(y). As an illustration Figure 1 shows the graph of g together with 
the first five Taylor polynomials TI,.  . .,z of g-' that can be calculated by DERIVE 
simplifying 

VECTOR(INVERSE-TAYLOR(x*EXP(x), x, y, k), k, 1,s). 

We mention that the calculation of Taylor polynomials for inverse functions is 
implemented in some Computer Algebra systems, e.g. in MATHEMATICA [6], where 
the function 

InverseTaylor[g-,x-, y-, nJ := InverseSeries[Series[g,(x, 0, n)], y] 

does the job desired. This method of inverting the Taylor polynomial of order n of 
g to get the Taylor polynomial of order n of g-', however, is static with respect to 
the order n. If we decide to calculate the Taylor polynomial of order n + 1 later, 
we have to redo the whole calculation. With our method, in principle it is possible 
to work dynamically in the order as one may store the derivatives and limits up to 
order n that are already calculated in memory, i.e. one may work with streams and 
lazy evaluation. 
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TAYLOR POLITOMIALS OF IMPLICIT F!JNCT!ONS 29 

FIGURE 1. The graph of g ( x )  = xeX and the first 5 Taylor polynomials of g-I. 

- - -  - --. -.-. -r r. -.r A"-,-" *I 
4. TAYLOR POLYNOMIAL SOLU I IONS ~r r ~ R a  I vnvcn UIFFERENTIAL 
EQUATIONS 

We consider the soiution of an initial value priiblcn; give:: 5.j an explicit first order 
differential equation 

y' = F ( x ,  y )  (3) 

and initial data 

y(xo) = Yo. 

Then-if the solution g (x )  of (3)-(4) is n times differentiable-we search for its 
nth Taylor polynomial. A typical situation is an initial value problem (3)-(4) for a 
complex function g with analytic right hand side F. In this case the solution g is 
analytic in a neighborhood of the initial point xo (we hold on to use the symbol x 
rather than the usual z).  To find its Taylor coefficients, we use the same method as 
before. Obviously 
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and with the derivatives list 

an appiication of the aigoriiii~ii fur iiiiplicit fiiii~iiiiiis jiieid~ the Tqlnr polynoxia!. 
The DERIVE function 

DSOLVEl TAYLOR(f,x, y,xO,yO, nj := 

i iv iPi iCi i~i~f iOFi~A'di ; ( i ,x,  y ,xO,  yii,  n, ~TERATES(DIF(S_, yjrf  t i3ii-iy_,nj,d-,i, 1-1 - 7 ) )  

uses this approach. We give ihe fdlowirig examples. 

DERIVE input DERIVE output after / ww.r.t. x 

- DSOLVEl_TAYLOR(y/x,x, y,xO, yo, 5) 'OX, 
x o  

For the algorithmic construction of the Taylor series solution of homogeneous linear 
differentiai equations with poiynomiai coefficients (of arbii~ai-y order) rather than 
Taylor polynomial approximations we again refer to [I]. 

We remark further that the same method can be applied to solve explicit first 
order systems, with the only difference that here d F k / a y  then denotes the Jaco- 
bian. 
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TAYLOR POLYNOMIALS OF  IMPLICiT FUNCTIONS 

5. TAYLOR POLYNOMIAL SOLUTIONS OF HIGHER ORDER 
DIFFERENTIAL EQUATIONS 

In the case of an expiicit second order differentiai equation 

the nth order Taylor polynomial of the solution of (5 ) - (6 )  has the form 

and we can apply the same method as before after calculation of g 'k ) (xo)  (k > 2 ) .  
Let the given right hand side of ( 5 )  F ( x , y ,  u) he a function of the three varia'hies x ,  
I., and v that is :Iftf.r: p - n . . m h  A i C f e r e n t i ~ h l ~  ., ...-. -,Iu,,i. , , iLL.Li, . . ,aeiL.  Again; we iterative!:, d i f f ~ r ~ n t j t e  the 

defining equatim of g 
X'!J.X) = F ( X , ~ ( X ) ? ~ ' ( X ) )  

by the chain rule to get 

and iteratively 

To get g ( k ) ( ~ ~ )  (k 2 2 )  we have to evaluate g ( k ) ( x )  at the point x = xo, i.e. we take 
the limit for u -t yl, y  -t yo, and x  -t xo, which yields the result. This is done by the 
DERIVE function 

DSOLVE2-TAYLOR(f, x, y, u, xO, YO, y l  , n) : = DSOLVE2_TAYLORPUX(f, x, Y, u, xO, YO, Y 1 n. 

ITERATES(DIF(~-,u)*f + DIF(g_,y)*u + DIF(g-,x),g_,f, n - 2)) 
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3 2 W. KOEPF 

We present the following examples 

DERIVE input DERIVE output after v] 

ex4 x5 x3 
D S O L V E Z - T A Y L G ~ ~ E X P ~ U ) ~ ~ ~ ~  - SIN jx),x,y, i.i,O,O, 1,5) - + - - - + x .  

12 120 6 

This method-as in the first order case-works independent of the linearity of the 
differeiitial ecjiiatioii. For the lincar differefitia! equdon  

y J J ( x j  + p j x ) y l  j x )  + q jx ) ) ; ( x j  = r ( x j  

with initial conditions 

y(x0) = Yo and y l (xo)  = Y l  

the DERIVE function 

gives the Taylor polynomial solution of order n. The following are some examples 

DERIVE input DERIVE output after /Expand] 

We remark that there is an obvious generalization of thc given technique to explicit 
differential equations of higher order (m E N) 

with initial data 
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