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Abstract 
 

The paper’s aim is to note a remarkable (and apparently unknown) relation for right triangles, 
its  generalization to arbitrary  triangles and the possibility to derive these and some related re-
lations by elimination using Groebner basis computations with a modern computer algebra sys-
tem. 

 

1 The Pythagorean group of theorems 
 
We start by noting the Pythagorean group of theorems. Assume a right triangle T with vertices ,A B  
and C  in standard notation is given. Hence the right angle of T is at the vertex C, a BC=  and 
b AC=  denote the lengths of the two catheti and c AB=  denotes the length of the hypotenuse.1 

 
Figure 1: The standard notation in a right triangle 

 
Furthermore, the length of the altitude CH with the hypotenuse as base is denoted by h. Finally by 
q AH=  and p HB=  we denote the lengths of the hypotenuse sections. Of course by construction 
the equation c p q= +  is valid. 

The Pythagorean theorem is given in the whole triangle ACB as 
 
 2 2 2a b c+ =  
 
as well as in the two smaller right angled triangles AHC and BHC as 
 

                                                 
1 There seems to be no worldwide standard terminology. We will use this terminology throughout the paper. 
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 2 2 2p h a+ =  
 
and 
 

2 2 2q h b+ =  
 
respectively. 

Furthermore, the following well-known identities are valid in the triangle T: 
 
• (Area Identity) The double area of T can be computed as ab and as ch, hence ab = ch. 
• (Altitude Theorem) The square of the altitude equals the product of the two hypotenuse 

sections 2h pq= . 
• (Cathetus Theorems) The square of a cathetus equals the product of its adjacent hypote-

nuse section and the hypotenuse; hence 2a pc=  and 2b qc= . 
 
In Section 3, we will show that all these identities can be computed from our starting equations 
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by elimination of variables. 
 
2  A new identity 
 
Next, we present the relation between the two catheti and the altitude of our right triangle T. This 
relation states that the sum of the reciprocal squares of the two catheti equals the reciprocal square 
of the altitude, i.e. 
 

 .111
222 hba

=+  (1) 

 
This identity was given in [1]. 

The statement can easily be proven in different ways. Using the Pythagorean theorem and 
the area identity 2 2 2 2a b c h= , we immediately get 
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where we have used the Pythagorean as well as the cathetus and the altitude theorem. 

A third proof can be given as follows: 
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Finally, we can derive the assertion also by eliminating p, q and c in the relations 
 
 ,222 cba =+  (2) 
 ,2 pca =  ,2 qcb =  (3) 
 h .2 pq=  (4) 
 
Starting with (4), substituting p and q by means of (3), we get 
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Now, using (2) we get 
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and this is again the above assertion. 
  
3 Elimination of variables 
 
In the previous section we showed how elimination of variables can be used to obtain new identi-
ties. The computation of Groebner bases with respect to lexicographical monomial orderings by 
Buchberger’s algorithm makes elimination of variables in a polynomial system an algorithmic 
process, see e.g. [2]. For this purpose we use the Maple computer algebra system. 

A Groebner basis of a set of polynomials consists of polynomials generating the same ideal. 
In particular, if the starting polynomials are zero, then all the Groebner basis polynomials are zero, 
too. 

Let us start with the trivial statement 
 

01 =−−= qpcP  
 
and the Pythagorean identities 
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These are four polynomial equations in the six variables a, b, c, h, p, q.  Hence we would like to 
eliminate any three of our variables to obtain a polynomial identity in the other three. This is ex-
actly what Groebner basis computations with respect to lexicographical monomial orderings do. 

We define our four polynomials in Maple2 
> eqs:={c-p-q,a^2+b^2-c^2, p^2+h^2-a^2,q^2+h^2-b^2}; 

 := eqs { }, , , +  − a2 b2 c2  −  − c p q  +  − q2 h2 b2  +  − p2 h2 a2
 

and load the Groebner basis package: 
> with(Groebner): 
To obtain the Altitude Theorem we have to eliminate the variables a, b and c. Hence, for the 
Groebner basis computation, we use a lexicographical ordering with a, b and c on top of the other 
variables: 
> GB:=gbasis(eqs,plex(a,b,c,p,q,h)); 

 := GB [ ], , ,−  + h2 p q  −  − c p q −  −  + q2 h2 b2 −  −  + p2 h2 a2
 

The computed Groebner basis of the ideal constituted by our four polynomials contains the 
polynomial 
> op(1,GB); 

−  + h2 p q  

The previous computation has shown that under our hypotheses the equation 02 =+− pqh  is 
valid, hence we have derived and proved the Altitude Theorem. 
 Similarly, to detect the first Cathetus Theorem, we eliminate the variables b, h and q: 
> GB:=gbasis(eqs,plex(b,h,q,a,c,p)); 

 := GB [ ], , , − a2 c p −  +  + c p q  −  + h2 c p p2  −  + b2 c2 c p  

> op(1,GB); 
 − a2 c p  

In a similar fashion, the second Cathetus Theorem is deduced. 
 Next, we generate the theorem of Section 2 again: 
> GB:=gbasis(eqs,plex(c,p,q,a,b,h)); 

GB −  +  − b2 h2 b2 a2 h2 a2  +  − q2 h2 b2  −  + h2 q a2 q h2 p  − b2 p a2 q −  + h2 p q, , , , ,[ := 
 +  − p2 h2 a2  −  − c p q, ]

 

> op(1,GB); 
−  +  − b2 h2 b2 a2 h2 a2

 

Division by 222 hba  yields (1) again. 
 Eliminating other variables, the above method yields a polynomial identity in any three of 
the variables .,,,,, qphcba  
 Finally, how can we derive the Area Identity from our starting identities? Since the vari-
ables cba ,,  and h should survive, we choose the lexicographical term order p > q > h > a > b > c  
and get 
> GB:=gbasis(eqs,plex(p,q,h,a,b,c)); 

GB [ := 
, , , , , +  − a2 b2 c2  +  − b4 c2 h2 b2 c2 −  + b2 c q  −  + c h2 b2 c q b2  +  − q2 h2 b2 −  +  + c p q ]

 

                                                 
2 For efficiency reasons Maple does not sort output alphabetically, but by memory allocation. 
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Of course, the first polynomial of the resulting Groebner basis is our starting one ,222 cba −+  
but the second polynomial contains also h: 
> op(2,GB); 

 +  − b4 c2 h2 b2 c2
 

We can combine the corresponding identities properly to deduce the Area Identity. The following 
computation shows how this can be accomplished: 
 

( )4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 20 .b c h c b b c a c h c b c h a b= + − = − + − = −  
 
Note that although the polynomial 2222 bahc −  is a member of the ideal considered, the polyno-
mial ch – ab is not: 
> normalf(c^2*h^2-a^2*b^2,GB,plex(p,q,h,a,b,c)); 

0  

> normalf(c*h-a*b,GB,plex(p,q,h,a,b,c)); 
 − c h a b  

From the point of view of ideal theory ch – ab = 0 does not follow from our assumptions. How-
ever, since in a triangle all variables ,0,,, >hcba  from 2222 hcba =  the identity a b = c h can be 
deduced. 
 
4 Identities in a general triangle 
 
The Altitude and Catheti Theorems are restricted to right angles. Therefore, it might be of interest 
how these theorems can be generalized to arbitrary triangles T. This is the goal of this section. 
Therefore we start with the following polynomials 
 

01 =−−= qpcP , 
 
the Cosine Theorem in T 
 

,0cos2222
2 =−−+= γbacbaP  

 
which constitiutes the generalized version of the Pythagorean theorem in a general triangle, and the 
Pythagorean identities 
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Note that these polynomials depend on the angle γ  at C. 

To continue, we define therefore3  
> eqs:={c-p-q,a^2+b^2-c^2-2*a*b*cosgamma,p^2+h^2-a^2,q^2+h^2-b^2}; 
                                                 
3 Note that the Groebner package cannot deal with the expression cos γ   which we therefore replaced by the variable 
cosgamma. 
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 := eqs { }, , , −  − c p q  +  − q2 h2 b2  +  − p2 h2 a2  +  −  − a2 b2 c2 2 a b cosgamma
 

Elimination of  b, h and q yields a generalized first Cathetus Theorem 

> GB:=gbasis(eqs,plex(b,h,q,a,c,p)); 
GB  −  +  +  −  − a4 cosgamma2 a4 cosgamma2 a2 c2 2 c p a2 2 c p a2 cosgamma2 p2 c2,[ := 

−  +  + c p q  +  − p2 h2 a2 cosgamma2 a c2 cosgamma b p c cosgamma2 a3 +  + , ,
2 a cosgamma2 c p a3 a c p −  −  +  −  + a b cosgamma a2 c p  −  −  + b2 a2 c2 2 c p, , ]

 

given by the following polynomial 
> res:=subs(cosgamma=cos(gamma),op(1,GB)); 

 := res  −  +  +  −  − a4 ( )cos γ 2 a4 ( )cos γ 2 a2 c2 2 c p a2 2 c p a2 ( )cos γ 2 p2 c2
 

This is of course a much more difficult statement than the Cathetus Theorem. Nevertheless, if 
/ 2,γ π=  then we get 

> factor(eval(res,gamma=Pi/2)); 
−( )−  + a2 c p

2
 

by factorization. Note that we did not find any other rational multiple angle of π  such that factori-
zation, and therefore simplification, occurs in this statement. 

Let us restate the new identity in the variables b, c, q and γ  valid in a general triangle T: 

( )2 2 2 2 2 2 2 2 2cos cos 2 2 cos .a a a c pc pc c pγ γ γ− + + − =  
In this form one can easily see how this statement generalizes the Cathetus Theorem. 

Our next computation concerns a generalization of the Altitude Theorem, derived by: 
> GB:=gbasis(eqs,plex(a,b,c,p,q,h)); 
GB p2 q2 2 q h2 p h4 cosgamma2 h4 cosgamma2 q2 p2 cosgamma2 h2 p2−  +  −  +  +  + [ := 

cosgamma2 q2 h2 +  −  − c p q −  −  + q2 h2 b2, , ,
 +  +  − b q p cosgamma a q2 cosgamma h2 a b h2 cosgamma h2 a p,

cosgamma a h2 q b q p2 b q p2 cosgamma2 b h2 p cosgamma2 h2 b q +  +  −  −  − ,
 −  +  + p q a h2 a cosgamma b p2 b cosgamma h2  +  − a b cosgamma p q h2, ,

−  −  + p2 h2 a2 ]

 

> res:=subs(cosgamma=cos(gamma),op(1,GB)); 
 := res −  +  −  +  +  +  + p2 q2 2 q h2 p h4 ( )cos γ 2 h4 ( )cos γ 2 q2 p2 ( )cos γ 2 h2 p2 ( )cos γ 2 q2 h2

 

resulting in the statement 
 

2 2 2 4 2 4 2 2 2 2 2 2 2 2 22 cos cos cos cos 0.p q qh p h h q p h p q hγ γ γ γ− + − + + + + =  
 
Of course, for / 2,γ π=  we get the Altitude Theorem by factorization: 
> factor(eval(res,gamma=Pi/2)); 

−( )−  + h2 p q
2

 

In this case, there is a second angle where factorization occurs, namely for / 4γ π=  or 45 degrees. 
We get 
> factor(eval(res,gamma=Pi/4)); 
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−
( )−  −  −  + h2 q h p h p q ( )−  +  +  + h2 q h p h p q

2  

We would like to determine which of the resulting relations 
 
 ( )2h pq ph qh pq ch= ± + = ±  (5) 
 
is valid. Since in a right triangle 2 ,h pq=  by lowering the angle at C and keeping h fixed, it is 
clear that both p and q must get smaller, hence the minus sign in (5) is impossible. Therefore we 
finally get for a triangle with angle / 4π  at  C  the identity 
 

2h pq ch= +  
 
or 
 

( )pq h h c= −  
 
in particular 
 

0h c− ≥    or   .h c≥  
 
Indeed, equality in this inequality occurs if the triangle is right-angled at A or B. 

Finally, we deduce the generalization of (1) by elimination of  c, p and  q. 
> GB: =gbasis(eqs,plex(c,q,p,a,b,h)); 
GB −  +  +  +  − b2 a2 h2 a2 b2 h2 a2 b2 cosgamma2 2 cosgamma b h2 a  +  − p2 h2 a2, ,[ := 

cosgamma2 b2 h2 q h4 q cosgamma b3 p a cosgamma3 b3 p a −  +  − 

cosgamma a p h2 b cosgamma2 b2 h2 p p b2 h2 h4 p −  +  +  − ,
 −  −  +  +  − h2 q a cosgamma b h2 q b2 p a b2 p a cosgamma2 a p h2 cosgamma b h2 p,

 −  −  + b2 p h2 p h2 q cosgamma a b q −  +  +  − h2 p cosgamma a b p a2 q h2 q, ,
 +  − a b cosgamma p q h2  +  − q2 h2 b2  −  − c p q, , ]

 

> res:=subs(cosgamma=cos(gamma),op(1,GB)); 
 := res −  +  +  +  − b2 a2 h2 a2 b2 h2 a2 b2 ( )cos γ 2 2 ( )cos γ b h2 a

 

After division by 2 2 2a b h  and replacing 21 cos γ−  by 2sin ,γ  this results in 
 

2

2 2 2

sin 1 1 2cos ,
h a b ab

γ γ
= + −  

 
which obviously generalizes (1) in a nice way. 
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