
Integral Transforms and Special Functions
Vol. 17, No. 8, August 2006, 559–576

A generic polynomial solution for the differential equation of
hypergeometric type and six sequences of orthogonal

polynomials related to it

WOLFRAM KOEPF*† and MOHAMMAD MASJED-JAMEI‡

†Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
‡Department of Mathematics, K.N. Toosi University of Technology, Sayed Khandan, Jolfa Avenue,

Tehran, Iran

(Received 6 January 2005)

In this work, we present a generic formula for the polynomial solution families of the well-known
differential equation of hypergeometric type

σ(x)y′′
n (x) + τ(x)y′

n(x) − λnyn(x) = 0

and show that all the three classical orthogonal polynomial families as well as three finite orthogonal
polynomial families, extracted from this equation, can be identified as special cases of this derived
polynomial sequence. Some general properties of this sequence are also given.
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1. Introduction

Let us consider the differential equation

σ(x)y ′′
n(x) + τ(x)y ′

n(x) − λnyn(x) = 0 (1)

and search for its polynomial solutions in form Pn(x) = knx
n + kn−1x

n−1 + · · ·
We will often consider the monic case kn = 1. Substituting this form in equation (1) for

n = 1 shows that τ(x) = dx + e must be a polynomial of degree 1, and substitution for n = 2
shows that σ(x) = ax2 + bx + c is a polynomial of degree at most 2. Finally, equating the
coefficients of xn yields λn = n(n − 1)a + nd as the eigenvalue parameter depending on
n = 0, 1, 2, . . .

We denote the polynomial solution of equation (1) by Pn

(
d e

a b c

∣∣∣∣ x
)

.
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Extensive research has been done on equation (1) and its polynomial solutions up to now.
In 1929, Bochner [1] classified the polynomial solutions of equation (1). He showed that the
only polynomial systems up to a linear change of variable arising as eigenfunctions of the
differential equation (1) are

(i) Jacobi polynomials {P (α,β)
n (x)}∞n=0, (α, β, α + β + 1 /∈ {−1, −2, . . . , })

(ii) Laguerre polynomials {L(α)
n (x)}∞n=0, (α /∈ {−1, −2, . . . , })

(iii) Hermite polynomials {Hn(x)}∞n=0

(iv) Bessel polynomials {B(α,β)
n (x)}∞n=0, (α /∈ {0, −1, −2, . . . , } and β �= 0).

It turns out that, for certain parameter constellations (α, β > −1), the first three classes are
orthogonal families in a real interval, whereas the fourth class is orthogonal on the unit circle.
Nevertheless, for certain parameter instances, there are finite orthogonal families in a real
interval in the Bessel case too.

Then, in 1988, Nikiforov and Uvarov [2] gave some general properties of Pn

(
d e

a b c

∣∣∣∣ x
)

,

such as a generating function for the polynomials, a Cauchy integral representation etc. in
terms of given σ(x) = ax2 + bx + c and τ(x) = dx + e. Their approach is based on the
Rodrigues representation of the polynomials and is not expressed in an explicit form.

Before deriving a generic solution for equation (1), we give an algebraic identity, which is
easy to prove but important.

1.1 An identity

If a, b and Ck(k = 0, 1, . . . , n) are real numbers then

n∑
k=0

Ck(ax + b)k =
n∑

k=0

(
n−k∑
i=0

(
n − i

k

)
bn−iCn−i

) (ax

b

)k

=
n∑

k=0

(
k∑

i=0

(
n − i

k − i

)
bk−iCn−i

)
(ax)n−k. (2)

For instance, if we set

Ck = (−n)k(p2)k(p3)k · · · (pm)k

(q1)k(q2)k · · · (qm−1)kk!
such that (r)k = r(r + 1) · · · (r + k − 1) denotes the Pochhammer symbol, then we get

mFm−1

(−n, p2, . . . , pm

q1, q2, . . . , qm−1

∣∣∣ax + b

)

= (−b)n(p2)n · · · (pm)n

(q1)n(q2)n · · · (qm−1)n

n∑
k=0

(
n

k

)

× mFm−1

(
k − n, 1 − q1 − n, . . . , 1 − qm−1 − n

1 − p2 − n, 1 − p3 − n, . . . , 1 − pm − n

∣∣∣1

b

) (ax

b

)k

= (−ax)n(p2)n · · · (pm)n

(q1)n(q2)n · · · (qm−1)n

n∑
k=0

(
n

k

)

× mFm−1

( −k, 1 − q1 − n, . . . , 1 − qm−1 − n

1 − p2 − n, 1 − p3 − n, . . . , 1 − pm − n

∣∣∣1

b

) (
b

ax

)k

(3)
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where

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣x)
=

∞∑
k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k

xk

k!
denotes the generalized hypergeometric function of order (p, q) [3, Chapter 2]. The coefficient
of a hypergeometric function is called a hypergeometric term.

Note that, for computing the relations (3), we have generally used the two identities


�(r + k) = �(r)(r)k

�(r − k) = �(r)(−1)k

(1 − r)k

=⇒ (r)n−i = (−1)i(r)n

(1 − r − n)i
; r ∈ R; k, n, i ∈ Z+. (4)

An interesting case that takes place for equation (3), when m = 2, a = b = 1, is considered.
In this case, we have

2F1

(−n|, p2

q1

∣∣∣x + 1

)
= (−1)n(p2)n

(q1)n

n∑
k=0

(
n

k

)
2F1

(
k − n|, 1 − q1 − n

1 − p2 − n

∣∣∣1)
xk

= (−x)n(p2)n

(q1)n

n∑
k=0

(
n

k

)
2F1

(−k|, 1 − q1 − n

1 − p2 − n

∣∣∣1)
x−k,

(5)

which according to Gauss’ identity [3, p. 31]

2F1

(
a|, b

c

∣∣∣1)
= �(c)�(c − a − b)

�(c − a)�(c − b)
(6)

simplifies to

2F1

(−n|, p2

q1

∣∣∣x + 1

)
= (q1 − p2)n

(q1)n
2F1

( −n|, p2

1 − q1 + p2 − n

∣∣∣ − x

)

= (−x)n(p2)n

(q1)n
2F1

(−n|, q1 − p2

1 − p2 − n

∣∣∣ − 1

x

)
. (7)

The first identity of equation (7) can be found in ref. [4, (15.3.6)] and the second identity of
equation (7) is a special case of ref. [4, (15.3.7)] for integer upper parameter.

Now we are in a good position to state the main theorem of finding a generic polynomial
solution for equation (1).

2. Theorem

The monic polynomial solution P̄n

(
d e

a b c

∣∣∣x)
of the differential equation

(ax2 + bx + c)y ′′
n(x) + (dx + e)y ′

n(x) − n((n − 1)a + d)yn(x) = 0; n ∈ Z+ (8)

is given by the formula

P̄n

(
d e

a b c

∣∣∣x)
=

n∑
k=0

(
n

k

)
G

(n)
k (a, b, c, d, e)xk, (9)
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where

G
(n)
k =

(
2a

b + √
b2 − 4ac

)k−n

× 2F1


k − n|, 2ae − bd

2a
√

b2 − 4ac
+ 1 − d

2a
− n

2 − d/a − 2n

∣∣∣∣∣ 2
√

b2 − 4ac

b + √
b2 − 4ac


 .

For a = 0, the equality can be adapted by limit considerations and equation (9) can be given
with

G
(n)
k (0, b, c, d, e) = lim

a→0
G

(n)
k (a, b, c, d, e) =

(
b

c

)k−n

2F0

(
k − n,

cd − be

b2
+ 1 − n

−

∣∣∣∣ b2

cd

)
,

which is valid for c, d �= 0, leading to

P̄n

(
d e

0 b c

∣∣∣x)
=

(
b

d

)n (
eb − cd

b2

)
n

1F1

( −n
eb − cd

b2

∣∣∣∣−d

b
x − cd

b2

)
.

For a = b = 0 and d �= 0, we finally get

P̄n

(
d e

0 0 c

∣∣∣x)
= lim

a→0
b→0

P̄n

(
d e

a b c

∣∣∣x)
=

(
x + e

d

)n

2F0

(
−n

2
, −n − 1

2−

∣∣∣∣ 2cd

(dx + e)2

)
.

Proof Consider the differential equation (8) and suppose that x = pt + q. Therefore,
equation (8) changes to

(
t2 + 2aq + b

ap
t + aq2 + bq + c

ap2

)
d2y

dt2
+

(
d

a
t + e + dq

pa

)
dy

dt
− n

a
(d + (n − 1)a)y = 0.

(10)
Now if, in equation (10), aq2 + bq + c = 0 and (2aq + b)/ap = −1 are assumed, then

p = ∓
√

b2 − 4ac

a
and q = −b ± √

b2 − 4ac

2a
. (11)

Thus equation (10) is simplified as

t (t − 1)
d2y

dt2
+

(
d

a
t + 2ae − bd ± d

√
b2 − 4ac

∓2a
√

b2 − 4ac

)
dy

dt
− n

a
(d + (n − 1)a)y = 0. (12)

Equation (12) is a special case of the Gauss hypergeometric differential equation [3, p. 26]:

t (t − 1)
d2y

dt2
+ ((α + β + 1)t − γ )

dy

dt
+ αβy = 0 (13)

for α = −n, β = n − 1 + d/a and

γ = 2ae − bd ± d
√

b2 − 4ac

∓2a
√

b2 − 4ac
,
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respectively. Hence, by considering Pn

(
d e

a b c

∣∣∣x)
as a preassigned solution to equation (8)

and comparing the relations (12) and (13), we must have

Pn

(
d e

a b c

∣∣∣∣∣∓
√

b2 − 4ac

a
t + −b ± √

b2 − 4ac

2a

)
= K2F1


 −n|, n − 1 + d/a

2ae − bd ± d
√

b2 − 4ac

±2a
√

b2 − 4ac

∣∣∣∣∣∣ t



(14)
or written in terms of the variable x

Pn

(
d e

a b c

∣∣∣x) = K2F1


 −n|, n − 1 + d/a

2ae − bd ± d
√

b2 − 4ac

±2a
√

b2 − 4ac

∣∣∣∣∣∓
(

ax√
b2 − 4ac

+ b ∓ √
b2 − 4ac

2
√

b2 − 4ac

)
.

(15)
From equation (15), the following sub-cases are obtained

(i) P̄n

(
d e

a b c

∣∣∣x) = K∗
2F1


 −n|, n − 1 + d/a

2ae − bd + d
√

b2 − 4ac

2a
√

b2 − 4ac

∣∣∣∣∣ −ax√
b2 − 4ac

− b − √
b2 − 4ac

2
√

b2 − 4ac


,

(ii) P̄n

(
d e

a b c

∣∣∣x)
= K∗∗

2F1




−n|, n − 1 + d/a

−(2ae − bd) + d
√

b2 − 4ac

2a
√

b2 − 4ac

∣∣∣∣∣∣
ax√

b2 − 4ac
+ b + √

b2 − 4ac

2
√

b2 − 4ac


 .

(16)

Note that both the above relations only differ by a minus sign in the argument of the second
formula (ii), which does not affect on the differential equation (8).

In other words, if in the first formula (i) we consider the case P̄n

( −d −e

−a − b − c

∣∣∣x)
, then

we will reach the second formula of equation (9). Therefore, only the formula (ii) must be con-
sidered as the main solution. To compute K∗∗, it is sufficient to obtain the leading coefficient
of 2F1(· · · | · · · ) corresponding to formula (ii), which is given by

K∗∗ =
n!

(√
b2 − 4ac

)n ((
bd − 2ae + d

√
b2 − 4ac

) / (
2a

√
b2 − 4ac

))
n

an(−n)n(n − 1 + d/a)n
. (17)

On the other hand, according to identity (3), it can be concluded in general that

2F1

(−n|, p

q

∣∣∣rx + s

)
= (−1)n(p)n

(q)n

n∑
k=0

(
n

k

)
sn−k

2F1

(
k − n|, 1 − q − n

1 − p − n

∣∣∣1

s

)
(rx)k.

(18)
So, by considering the main solution (16) and




p = n − 1 + d

a
, q = bd − 2ae + d

√
b2 − 4ac

2a
√

b2 − 4ac

r = a√
b2 − 4ac

, s = b + √
b2 − 4ac

2
√

b2 − 4ac
,

(19)
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equation (18) becomes

2F1


 −n|, n − 1 + d/a

bd − 2ae + d
√

b2 − 4ac

2a
√

b2 − 4ac

∣∣∣∣∣ ax√
b2 − 4ac

+ b + √
b2 − 4ac

2
√

b2 − 4ac




= (−1)n ((d/a) + n − 1)n(
bd − 2ae + d

√
b2 − 4ac

2a
√

b2 − 4ac

)
n

×
n∑

k=0

(
n

k

) (
b + √

b2 − 4ac

2
√

b2 − 4ac

)n−k (
a√

b2 − 4ac

)k

× 2F1


k − n|, 2ae − bd − (d + (2n − 2)a)

√
b2 − 4ac

2a
√

b2 − 4ac
−d/a − 2n + 2

∣∣∣∣∣ 2
√

b2 − 4ac

b + √
b2 − 4ac


 xk.

(20)

Simplifying this relation and substituting K∗∗ by equation (17), the monic polynomial solution
of equation (8) in the form of equation (9) is finally obtained. Hence, the first part of the theorem
is proved.

To deduce the limiting case when a → 0, we have used lima→0 ar(−(d/a) + 2 − 2n)r =
(−d)r and the following identity

1F1

(−n

p

∣∣∣rx + s

)
= �(1 − p − n)

�(1 − p)

n∑
k=0

(
n

k

)
2F0

(
k − n|, 1 − p − n

−
∣∣∣ − 1

s

) ( r

s
x
)k

,

(21)
which is a special case of identity (2) for Ck = ((−n)k/(p)kk!).

We would like to mention that the general formula G
(n)
k (a, b, c, d, e) is a suitable tool to

compute the coefficients of xk for fixed degree k and arbitrary a. If, for example, the coefficient

of xn−1 is needed in the generic polynomial P n

(
d e

a b c

∣∣∣x)
, then it is sufficient to calculate the

term

G
(n)
n−1(a, b, c, d, e) =

(
2a

b + �

)−1

2F1




−1|, 2ae − bd − (d + (2n − 2)a)�

2a�

−
(

d + (2n − 2)a

a

) ∣∣∣∣ 2�

b + �




=
(

b + �

2a

) (
1 + 2ae − bd − (d + (2n − 2)a)�

2a�
× 2�

b + �

a

d + (2n − 2)a

)

= e + (n − 1)b

d + (2n − 2)a
(22)

in which � = √
b2 − 4ac. Note that in the above simplified relation, all parameters a, b, c, d

and e are free and can adopt any value including zero as it is easy to show that neither the
values a and d nor the values b and e in equation (9) can vanish together. After simplifying
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G
(n)
k (a, b, c, d, e) for k = n − 1, n − 2, . . . , we eventually have

P̄n

(
d e

a b c

∣∣∣x)
= xn +

(
n

1

)
e + (n − 1)b

d + (2n − 2)a
xn−1

+
(

n

2

)
(e + (n − 1)b)(e + (n − 2)b) + c(d + (2n − 2)a)

(d + (2n − 2)a)(d + (2n − 3)a)
xn−2

+ · · · +
(

n

n

) (
b + √

b2 − 4ac

2a

)n

× 2F1



−n

2ae − bd − (d + (2n − 2)a)
√

b2 − 4ac

2a
√

b2 − 4ac

−
(

d + (2n − 2)a

a

)
∣∣∣∣∣∣∣∣∣

2
√

b2 − 4ac

b + √
b2 − 4ac


.

(23)

The above relation implies that

P̄n

(
d e

a b c

∣∣∣0)
=

(
b + √

b2 − 4ac

2a

)n

× 2F1



−n

2ae − bd − (d + (2n − 2)a)
√

b2 − 4ac

2a
√

b2 − 4ac

−
(

d + (2n − 2)a

a

)
∣∣∣∣∣∣∣∣∣

2
√

b2 − 4ac

b + √
b2 − 4ac


.

(24)

Also, equation (23) shows, for example, that if n = 0, 1, 2, 3 then


P̄0

(
d e

a b c

∣∣∣x
)

= 1

P̄1

(
d e

a b c

∣∣∣x
)

= x + e

d

P̄2

(
d e

a b c

∣∣∣x
)

= x2 + 2
e + b

d + 2a
x + c(d + 2a) + e(e + b)

(d + 2a)(d + a)

P̄3

(
d e

a b c

∣∣∣x
)

= x3 + 3
e + 2b

d + 4a
x2 + 3

c(d + 4a) + (e + b)(e + 2b)

(d + 4a)(d + 3a)
x

+2c(d + 3a)(e + 2b) + ce(d + 4a) + e(e + b)(e + 2b)

(d + 4a)(d + 3a)(d + 2a)

(25)

�

3. A special case of the generic polynomials (9)

In the sequel, we would like to apply Gauss’identity, expressed in relation (6). So, let us assume
that (2

√
b2 − 4ac/(b + √

b2 − 4ac)) = 1 in equation (9), which implies ac = 0. If c = 0
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is supposed, then the following special case for the generic polynomial (9) is derived:

P̄n

(
d e

a b 0

∣∣∣x)
=

n∑
k=0

(
n

k

) (a

b

)k−n

2F1

(
k−n

2ae − bd

2ab
+ 1 − d

2a
− n

2 − d/a − 2n

∣∣∣∣∣ 1

)
xk

=
n∑

k=0

(
n

k

) (a

b

)k−n �(2 − 2n − d/a)�(1 − k − e/b)

�(2 − n − k − d/a)�(1 − n − e/b)
xk

= bn�(2 − 2n − d/a)�(1 − e/b)

an�(2 − n − d/a)�(1 − n − e/b)

× 2F1

(−n|, n − 1 + d/a

e/b

∣∣∣−a

b
x

)
.

(26)

On the other hand, let us review the Nikiforov and Uvarov approach and consider the differen-
tial equation (8) again. If this equation is written in self-adjoint form, then the weight function
W(x) satisfies Pearson’s differential equation (d/dx)(σ (x)W(x)) = τ(x)W(x) and therefore

W

(
d e

a b c

∣∣∣x)
= exp

(∫
(d − 2a)x + (e − b)

ax2 + bx + c
dx

)
(27)

is obtained. Hence, the Rodrigues representation of P̄n

(
d e

a b c

∣∣∣x)
is given by

P̄n

(
d e

a b c

∣∣∣x)
= 1(∏n

k=1 d + (n + k − 2)a
)
W

(
d e

a b c

∣∣∣x)

×
dn

(
(ax2 + bx + c)nW

(
d e

a b c

∣∣∣x))
dxn

. (28)

If we put c = 0 in this relation and use equation (26), we get

exp
(− ∫

((d − 2a)x + (e − b)|)/(ax2 + bx)dx
)

∏n
k=1 | (d + (n + k − 2)a)

× dn
(
(ax2 + bx)n exp

(∫
((d − 2a)x + (e − b)/(ax2 + bx)dx

))
dxn

= �(2 − 2n − d/a)

�(1 − n − e/b)

n∑
k=0

(
n

k

) (a

b

)k−n �(1 − k − e/b)

�(2 − n − k − d/a)
xk.

(29)
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4. Some general properties of the main polynomials (9)

4.1 A linear change of variables

Using equation (28), one can derive a linear change of variables for P̄n

(
d e

a b c

∣∣∣x)
explicitly.

Assuming x = wt + v, the relation (28) changes to

P̄n

(
d e

a b c

∣∣∣wt + v

)

=
wndn

(
(aw2t2 + (2awv + bw)t + (av2 + bv + c))nW

(
d e

a b c

∣∣∣wt + v

))
∏n

k=1 (d + (n + k − 2)a) W

(
d e

a b c

∣∣∣wt + v

)
dtn

. (30)

On the other hand, W

(
d e

a b c

∣∣∣wt + v

)
is simplified as

W

(
d e

a b c

∣∣∣wt + v

)
= exp

(∫
(d − 2a)(wt + v) + (e − b)

aw2t2 + (2av + b)wt + av2 + bv + c
w dt

)

= W

(
dw2, (dv + e)w

aw2, (2av + b)w, av2 + bv + c

∣∣∣t) .

(31)

Therefore, equation (30) becomes eventually

P̄n

(
d e

a b c

∣∣∣wt + v

)
= wnP̄n

(
dw2, (dv + e)w

aw2, (2av + b)w, av2 + bv + c

∣∣∣t) (32)

showing the effect of a linear change of variables for the polynomials (9). For instance, if
w = −1 and v = 0 are considered, then we have

P̄n

(
d e

a b c

∣∣∣−t

)
= (−1)nP̄n

(
d, −e

a, −b, c

∣∣∣t) . (33)

4.2 A three-term recurrence equation

The second formula of equation (16) is a proper relation to compute the recurrence equation
for the generic polynomials (9). In order to reach this goal, one can use various identities of the
Gauss hypergeometric function. For example, the following identity is valid for 2F1(p, q, r; t)

[5]:

(p − q) ((p − q − 1)(p − q + 1)t + 2pq + r(1 − p − q)) 2F1(p, q, r; t)

+ q(r − p)(p − q + 1) 2F1(p − 1, q + 1, r; t)

+ p(r − q)(p − q − 1) 2F1(p + 1, q − 1, r; t) = 0.

(34)

Now using relation (ii) in equation (16) and its coefficient in equation (17), let us suppose in
equation (34) that

p = −n, q = d

a
+ n − 1, r = bd − 2ae + d

√
b2 − 4ac

2a
√

b2 − 4ac
and

t = a√
b2 − 4ac

x + b + √
b2 − 4ac

2
√

b2 − 4ac
. (35)
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After some computations, one finally gets

P̄n+1(x) =
(

x + 2n(n + 1)ab + (d − 2a)(e + 2nb)

(d + 2na)(d + (2n − 2)a)

)
P̄n(x)

+
n(d + (n − 2)a)(c(d + (2n − 2)a)2

−nb2(d + (n − 2)a) + (e − b)(a(e + b) − bd))

(d + (2n − 3)a)(d + (2n − 2)a)2(d + (2n − 1)a)
P̄n−1(x) (36)

in which P̄n(x) = P̄n

(
d, e

a, b, c

∣∣∣x)
and the initial values P̄0(x) = 1 and P̄1(x) = x + (e/d) are

given. For other approaches to deduce equation (36), see refs. [6, 7].

4.3 The norm square value

Let [L, U ] be the predetermined orthogonality interval, which (besides for finite families, see
section 5) of course consists of the zeros of σ(x) = ax2 + bx + c or ±∞. Then, by using the
Rodrigues representation (28) of the polynomials (9), we have

∥∥P̄n

∥∥2 =
∫ U

L

P̄ 2
n

(
d e

a b c

∣∣∣x)
W

(
d e

a b c

∣∣∣x)
dx = 1∏n

k=1(d + (n + k − 2)a)

×
∫ U

L

P̄n

(
d e

a b c

∣∣∣x) (
dn

(
(ax2 + bx + c)nW

(
d e

a b c

∣∣∣x)) /
dxn

)
dx.

(37)

Integration by parts from right hand side of equation (37) eventually yields

∥∥P̄n

∥∥2 = n!(−1)n∏n
k=1 d + (n + k − 2)a

∫ U

L

(ax2 + bx + c)n
(

exp
∫

(d − 2a)x + (e − b)

ax2 + bx + c
dx

)
dx.

(38)

5. Six special cases of the generic polynomials (9) as classical orthogonal polynomials

From the main equation (1), one can extract six special sequences of orthogonal polynomials
on the real line. Jacobi, Laguerre and Hermite polynomials are three of them, which nowadays
are called the classical orthogonal polynomials. Furthermore, there are three other sequences
that are finitely orthogonal for some restricted values of n [8–10]. In this section, we use the
previous generic formulas to detect the properties of each of these six sequences.

5.1 Jacobi orthogonal polynomials

If a = −1, b = 0, c = 1, d = −α − β − 2, and e = −α + β are selected in equation (9), then

P (α,β)
n (x) = (n + α + β + 1)n

2nn! P̄n

(−α − β − 2, −α + β

−1, 0, 1

∣∣∣x)

= (n + α + β + 1)n

2nn!
n∑

k=0

(−1)k−n

(
n

k

)
2F1

(
k − n, −n − α

−2n − α − β

∣∣∣∣ 2

)
xk

(39)
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are the Jacobi orthogonal polynomials with weight function

W

(−α − β − 2, −α + β

−1, 0, 1

∣∣∣x)
= exp

(∫ −(α + β)x + β − α

−x2 + 1
dx

)
= (1 − x)α(1 + x)β

(40)
and orthogonality relation

∫ 1

−1
(1 − x)α(1 + x)βP (α,β)

n (x)P (α,β)
m (x) dx

= 2α+β+1

n!(2n + α + β + 1)

�(n + α + 1)�(n + β + 1)

�(n + α + β + 1)
δn,m, (41)

where δn,m =
{

0 if n �= m

1 if n = m
.

The mentioned polynomials can also be represented as

P̄n

(−α − β − 2, −α + β

−1, 0, 1

∣∣∣x)
= (−1)n(1 − x)n2F1

( −n, −α − n

−α − β − 2n

∣∣∣ 2

1 − x

)
,

which is one of the known hypergeometric representations for the Jacobi polynomials [4, 11].
As the Gegenbauer (ultraspherical), Legendre and Chebyshev polynomials of the first and

second kind are all special cases of the Jacobi polynomials, we get the following representations
straightforwardly.
Gegenbauer polynomials:

C(λ)
n (x) = 2n(λ)n

n! P̄n

(−2λ − 1 0
−1 0 1

∣∣∣x)

= 2n(λ)n

n! (−1)n(1 − x)n 2F1

(−n, 1/2 − λ − n

1 − 2λ − 2n

∣∣∣∣ 2

1 − x

)
, (42)

Legendre polynomials:

Pn(x) = (2n)!
(n!)22n

P̄n

( −2 0
−1 0 1

∣∣∣∣ x
)

= (2n)!
(n!)22n

(−1)n(1 − x)n 2F1

(−n, −n

−2n

∣∣∣∣ 2

1 − x

)
, (43)

Chebyshev polynomials of first kind:

Tn(x) = 2n−1P̄n

( −1 0
−1 0 1

∣∣∣∣ x
)

= 2n−1(−1)n(1 − x)n 2F1

(−n, 1/2 − n

1 − 2n

∣∣∣∣ 2

1 − x

)
, (44)

Chebyshev polynomials of second kind:

Un(x) = 2nP̄n

( −3 0
−1 0 1

∣∣∣∣ x
)

= 2n(−1)n(1 − x)n 2F1

(−n, −1/2 − n

−1 − 2n

∣∣∣∣ 2

1 − x

)
. (45)
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5.2 Laguerre orthogonal polynomials

If a = 0, b = 1, c = 0, d = −1, and e = α + 1 are considered in equation (9), then

L(α)
n (x) = (−1)n

n! P̄n

(−1 α + 1
0 1 0

∣∣∣x)
= (α + 1)n

n! 1 F1

( −n

α + 1

∣∣∣∣ x
)

(46)

are the Laguerre orthogonal polynomials with weight function

W

(−1, α + 1
0, 1, 0

∣∣∣x)
= exp

(∫ −x + α

x
dx

)
= xαe−x (47)

and orthogonality relation∫ ∞

0
xαe−xL(α)

n (x)L(α)
m (x)dx = (n + α)!

n! δn,m. (48)

5.3 Hermite orthogonal polynomials

If a = 0, b = 0, c = 1, d = −2, and e = 0 are selected in equation (9), then

Hn(x) = 2nP̄n

(−2 0
0 0 1

∣∣∣x)
= (2x)n · 2F0

(
−n

2
, −n − 1

2−

∣∣∣∣∣ − 1

x2

)
(49)

are the Hermite orthogonal polynomials with weight function

W

( −2, 0
0, 0, 1

∣∣∣x)
= exp

(∫
(−2x)dx

)
= exp(−x2) (50)

and orthogonality relation∫ ∞

−∞
exp(−x2)Hn(x)Hm(x)dx = n!2n

√
πδn,m. (51)

5.4 Finite classical orthogonal polynomials with weight function
W1(x, p, q) = (xq/(1 + x)p+q) on [0, ∞)

First let us compute the logarithmic derivative W ′
1(x)/W1(x) = (−px + q)/(x2 + x). Hence,

by Pearson’s differential equation or accordingly by equation (27), the main parameters are
given as

a = 1, b = 1, c = 0, d = −p + 2, e = q + 1. (52)

Note that in ref. [9] the family of polynomials of this type are called Romanovski-Jacobi
polynomials, see also ref. [8]. In ref. [10], the related polynomials are denoted by M

(p,q)
n (x),

for which we get

M(p,q)
n (x) = (−1)n(n + 1 − p)nP̄n

(−p + 2 q + 1
1 1 0

∣∣∣x)

= (−1)n(q + 1)n 2F1

(−n, n + 1 − p

q + 1

∣∣∣∣ − x

)
. (53)

Also, in ref. [10], it is shown that the finite set {M(p,q)
n (x)}n=N

n=0 is orthogonal with respect to the
weight function W1(x, p, q) on [0, ∞) if and only if q > −1 and p > 2N + 1. To compute
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the norm square value of the polynomials, we can use the general relation (38). According to
this relation, we have

∫ ∞

0

xq

(1 + x)p+q
P̄ 2

n

(−p + 2 q + 1
1 1 0

∣∣∣x)
dx

= n!(−1)n∏n
k=1 (−p + n + k)

∫ ∞

0
(x2 + x)n

xq

(1 + x)p+q
dx. (54)

Then, using equation (53) yields

∫ ∞

0

xq

(1 + x)p+q
(M(p,q)

n (x))2dx = n!(p − n − 1)!(q + n)!
(p − 2n − 1)(p + q − n − 1)! . (55)

Hence, the complete orthogonality relation is given by

∫ ∞

0

xq

(1 + x)p+q
M(p,q)

n (x)M(p,q)
m (x)dx = n!(p − n − 1)!(q + n)!

(p − 2n − 1)(p + q − n − 1)!δn,m, (56)

which is valid if and only if m, n = 0, 1, 2, . . . , N < (p − 1)/2, q > −1.

5.5 Finite classical orthogonal polynomials with weight function W2(x, p) = x−pe−(1/x)

on [0, ∞)

If we consider the fraction W ′
2(x)/W2(x) = (−px + 1)/x2, then the main parameters become

a = 1, b = 0, c = 0, d = −p + 2, e = 1. (57)

In ref. [9], the polynomials of this type are called Romanovski-Bessel polynomials. In ref. [10],
these polynomials are denoted by N

(p)
n (x), for which we have

N(p)
n (x) = (−1)n(n + 1 − p)nP̄n

(−p + 2 1
1 0 0

∣∣∣x)
= (−1)n2F0

(−n, 1 − p + n

−
∣∣∣∣ − x

)
.

(58)
Also, in ref. [10], it is shown that the finite set {N(p)

n (x)}n=N
n=0 is orthogonal with respect to the

weight function W2(x, p) on [0, ∞) if and only if p > 2N + 1. Using the general relation,
equation (38) helps us to compute the norm square value of these polynomials as follows:

∫ ∞

0
x−pe−(1/x)P̄ 2

n

(−p + 2 1
1 0 0

∣∣∣x)
dx = n!(−1)n∏n

k=1 (−p + n + k)

∫ ∞

0
x2nx−pe−(1/x)dx.

(59)
Consequently, the complete orthogonality relation is

∫ ∞

0
x−pe−(1/x)N(p)

n (x)N(p)
m (x)dx =

(
n!(p − (n + 1))!

p − (2n + 1)

)
δn,m for

m, n = 0, 1, 2, . . . , N <
p − 1

2
. (60)
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5.6 Finite classical orthogonal polynomials with weight function
W

(p,q)

3 (x; A, B, C, D) = ((Ax + B)2 + (Cx + D)2)−p

exp(q arctan((Ax + B)/(Cx + D))) on (−∞, ∞)

Similar to the two previous cases, by computing W ′
3(x)/W3(x), we get the parameters

a = A2 + C2, b = 2(AB + CD), c = B2 + D2,

d = 2(1 − p)(A2 + C2), e = q(AD − BC) + 2(1 − p)(AB + CD).
(61)

In ref. [9], the polynomials of this type are called Romanovski-pseudo-Jacobi polynomials.
In ref. [12], the related polynomials are denoted by J

(p,q)
n (x; A, B, C, D), for which we have

J (p,q)
n (x; A, B, C, D) = (−1)n(n + 1 − 2p)n(A

2 + C2)n

× P̄n

(
2(1 − p)(A2 + C2), q(AD − BC) + 2(1 − p)(AB + CD)

A2 + C2, 2(AB + CD), B2 + D2 |x
)

= (−1)n(n + 1 − 2p)n
(
AB + CD + (AD − BC)i + x(A2 + C2)

)n

× 2F1

(
−n, −n + p − q

2
i

2p − 2n

∣∣∣∣∣ 2i(AD − BC)

(A − Ci)(B + Di + x(A + Ci))

)
.

(62)

According to ref. [12], these polynomials are finitely orthogonal with respect to the weight
function W

(p,q)

3 (x; A, B, C, D) on (−∞, ∞) and satisfy the following orthogonality relation:∫ ∞

−∞
W

(p,q)

3 (x; A, B, C, D)J (p,q)
n (x; A, B, C, D)J (p,q)

m (x; A, B, C, D) dx

=
(

n!(A2 + C2)n�(2p − n)

(AD − BC)2p−2n−1�(2p − 2n)

∫ π/2

−π/2
(A cos θ − C sin θ)2p−2n−2eqθ dθ

)
δn,m

(63)

valid if and only if m, n = 0, 1, 2, . . . , N < p − 1/2 and AD − BC > 0, q ∈ R.

6. How to find the parameters if a special case of the weight function (27) is given?

By referring to the previous sections, it is easy to see that the best way for finding a, b, c, d, e

is to compute the logarithmic derivative W ′(x)/W(x) and match the pattern in relation (27).
Let us clarify this approach by some examples given below.

Example 1 Consider the weight function: W(x) = (−x2 + 3x − 2)10; 1 < x < 2. If the
logarithmic derivative of this weight function is computed, then we get

W ′(x)

W(x)
= −20x + 30

−x2 + 3x − 2
= (d − 2a)x + (e − b)

ax2 + bx + c
=⇒

a = −1, b = 3, c = −2, d = −22, e = 33.

Consequently, the related monic orthogonal polynomials are P̄n

( −22, 33
−1, 3, −2

∣∣∣x)
. Note that

these polynomials are orthogonal with respect to the given weight function on [1, 2] for every
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value n. Also note that it is not necessary to know that these polynomials are the shifted Jacobi
polynomials on the interval [1, 2] as they can explicitly and independently be expressed by
the generic polynomials (9).

Example 2 If the weight function W(x) = (2x2 + 2x + 1)−10; −∞ < x < ∞ is given, then

W ′(x)

W(x)
= −40x − 20

2x2 + 2x + 1
=⇒ (a, b, c, d, e) = (2, 2, 1, −38, −18).

Hence, the related monic orthogonal polynomials are P̄n

(−38, −18
2, 2, 1

∣∣∣x)
. These polynomials

are finitely orthogonal for n ≤ 9, because, according to (63), we must have N = max{n} <

10 − (1/2). Hence, the finite set

{
P̄n

(−38, −18
2, 2, 1

∣∣∣x)}n=9

n=0

is orthogonal with respect to the

weight function (2x2 + 2x + 1)−10 on (−∞, ∞).

Example 3 Consider the weight function W(x) = exp(x(θ − x)); −∞ < x < ∞, θ ∈ R.
Then, we have

W ′(x)

W(x)
= −2x + θ =⇒ (a, b, c, d, e) = (0, 0, 1, −2, θ).

Hence, the related monic orthogonal polynomials are P̄n

( −2, θ

0, 0, 1

∣∣∣x)
for every value n.

Example 4 For the weight function W(x) = (
√

x/(x + 2)8); 0 < x < ∞, which is a special
case of the second kind of the Beta distribution, we have

W ′(x)

W(x)
= −15x + 2

2x2 + 4x
=⇒ (a, b, c, d, e) = (2, 4, 0, −11, 6)

that gives the monic orthogonal polynomials P̄n

(−11, 6
2, 4, 0

∣∣∣x)
for n ≤ 3 because accord-

ing to (56), 2n + 1 < 8 − (1/2). This means that the finite set

{
P̄n

(−11, 6
2, 4, 0

|x
)}n=3

n=0

is

orthogonal with respect to the weight function
√

x/(x + 2)8 on [0, ∞).

7. Classical orthogonal polynomial solutions of three-term recurrence equations

In ref. [13], this problem was solved in detail. In particular, it was shown how to transform a
given three-term recurrence equation into an equivalent three-term recurrence equation for the
corresponding monic solution family. Hence, in the sequel, we may assume that the solutions
of a given three-term recurrence equation are monic and use the formula (36) derived in this
article.

There are two ways to solve the problem to determine the classical orthogonal polynomial
solutions of a given three-term recurrence equation. The first way is to compare the given
recurrence equation with equation (36). This leads to a system of polynomial equations for the
five parameters a, b, c, d, e. This procedure was investigated in ref. [13], and a Maple package
was developed to perform this task. The second way is to equate the first five terms of each
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two recurrence equations together, which leads to a polynomial system with five equations
and five unknowns a, b, c, d and e. Let us give an example.

Example 5 If the recurrence equation

P̄n+1(x) = (x + n + 3)P̄n(x) − n(n + 1)

4
P̄n−1(x); P̄0(x) = 1 and P̄1(x) = x + 3

is given, then find the explicit form of the polynomials, their differential equation, their weight
function and finally their orthogonality relation.

Solution If the above recurrence equation is compared with the main equation (36) directly,
then one can reach the values (a, b, c, d, e) = (0, 1, 2, 2, 6). Therefore, the explicit form of

the polynomials are given by P̄n

(
2, 6

0, 1, 2

∣∣∣x)
and consequently, their differential equation

is found as

(x + 2)y ′′
n(x) + (2x + 6)y ′

n(x) − 2n yn(x) = 0; n ∈ Z+.

The above computations are automatically done by the Maple package retode.mpl [13]
> read “retode.mpl";

Package“REtoDE”, Maple V − Maple 8

Copyright 2000–2002,Wolfram Koepf, University of Kassel

> RE := P(n + 1) − (x + n + 3) ∗ P(n) + n ∗ (n + 1)/4 ∗ P(n − 1) = 0;

RE := P(n + 1) − (x + n + 3)P(n) + 1

4
n(n + 1)P(n − 1) = 0

> REtoDE(subs(n = n + 1, RE), P (n), x);
[
(x + 2)

(
∂2

∂x2
P(n, x)

)
+ 2(x + 3)

(
∂

∂x
P (n, x)

)
− 2nP (n, x) = 0,

[I = [−2, ∞], ρ(x) = e2x(x + 2)], kn+1

kn

= 1

]

Also, the weight function of these polynomials takes the form

W

(
2, 6

0, 1, 2

∣∣∣x)
= exp

(∫
2x + 5

x + 2
dx

)
= C(x + 2)e2x

with a constant C. Note that the weight function is zero at x = −2 and x = −∞. So,
the orthogonality interval must be (−∞, −2]. On the other hand, since the weight function
must be positive on this interval, C = −1, and therefore the weight function is given by
W(x) = −(x + 2)e2x; −∞ < x < −2. Note that the retode program is not set up to decide
about the constant C correctly, and hence, wrongly assumed the interval (−2, ∞]. Now,
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substituting this weight function in equation (38) yields

‖Pn‖2 = n!(−1)n+1

2n

∫ −2

−∞
(x + 2)n+1e2xdx = e−4n!(n + 1)!

22n+2
.

Finally, the orthogonality relation for the related polynomials will be

∫ −2

−∞
(−(x + 2)e2x)P̄n

(
2, 6

0, 1, 2

∣∣∣∣ x
)

P̄m

(
2, 6

0, 1, 2

∣∣∣∣ x
)

dx

=
(

e−4n!(n + 1)!
22n+2

)
δn,m; n ∈ Z+.

Second method If the given recurrence equation is expanded for n = 1, 2, 3 and compared
with equation (25), then we have the following system:



P̄1(x) = x + 3 = x + e

d
=⇒ e

d
= 3

P̄2(x) = (x + 4)P̄1(x) − 1

2
P̄0(x) = x2 + 7x + 23

2
= P̄2

(
d e

a b c

∣∣∣x
)

=⇒ e + b

d + 2a
= 7

2
and

c(d + 2a) + e(e + b)

(d + 2a)(d + a)
= 23

2

P̄3(x) = (x + 5)P̄2(x) − 3

2
P̄1(x) = x3 + 12x2 + 45x + 53 = P̄3

(
d e

a b c

∣∣∣x
)

=⇒ e + 2b

d + 4a
= 4 and

c(d + 4a) + (e + b)(e + 2b)

(d + 4a)(d + 3a)
= 15 and

2c(d + 3a)(e + 2b) + ce(d + 4a) + e(e + b)(e + 2b)

(d + 4a)(d + 3a)(d + 2a)
= 53.

Solving this system eventually yields again that (a, b, c, d, e) = (0, 1, 2, 2, 6).

8. Conclusion

We have computed a generic formula for the polynomial solution families of the differential
equation of hypergeometric type. In particular, our formula gives a unified representation of the
classical orthogonal polynomials of Jacobi (including Gegenbauer, Chebyshev and Legendre),
Laguerre and Hermite as well as some finite classes of orthogonal polynomials. Furthermore,
some applications were given. Using computer algebra, we expect further applications of our
result.

The Maple software used in this article (hsum, retode) can be downloaded from the web
site http://www.mathematik.uni-kassel.de/ ∼koepf/Publikationen.
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