Taylor \& Francis Group

A generalization of Student's \boldsymbol{t}-distribution from the viewpoint of special functions

WOLFRAM KOEPF* \dagger and MOHAMMAD MASJED-JAMEI \ddagger
\dagger Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
\ddagger Department of Mathematics, K.N.Toosi University of Technology, Sayed Khandan, Jolfa Av., Tehran, Iran

(Received 1 July 2005)

Abstract

Student's t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally, some particular sub-cases of these distributions are considered.

Keywords: Probability distributions; Cauchy integral; Dominated convergence theorem; Pearson distribution family; Student's t-distribution; Fisher F-distribution; Normal distribution; Gamma distribution; Chi-square distribution

MSC 2000: 60E05, 62E20, 33C45

1. Introduction

The Pearson differential equation is given as

$$
\begin{equation*}
\frac{\mathrm{d} W}{\mathrm{~d} x}=\frac{d x+e}{a x^{2}+b x+c} W(x) \tag{1}
\end{equation*}
$$

which is intimately connected with classical orthogonal polynomials and defines their weight functions $W(x)$, see e.g. [1], and its solution

$$
W(x)=W\left(\begin{array}{cc}
d & e \tag{2}\\
a & b \\
c & c
\end{array}\right)=\exp \int \frac{d x+e}{a x^{2}+b x+c} \mathrm{~d} x
$$

[^0]where a, b, c, d, e are all real parameters. There are several special sub-cases of equation (2). One of them is the Beta distribution, which is usually represented by the integral [2]
\[

$$
\begin{equation*}
\int_{C}\left(L_{1}(t)\right)^{a}\left(L_{2}(t)\right)^{b} \mathrm{~d} t \tag{3}
\end{equation*}
$$

\]

where $L_{1}(t)$ and $L_{2}(t)$ are linear functions, a, b are complex numbers and C is an appropriate contour. The Euler and Cauchy integrals [3] are two important sub-classes of Beta-type integrals which are often used in applied mathematics. The Euler integral is given by

$$
\begin{align*}
\int_{a}^{b}(t-a)^{c-1}(t-b)^{d-1} \mathrm{~d} t= & \frac{\Gamma(c) \Gamma(d)}{\Gamma(c+d)}(a+b)^{c+d-1} \\
& (\operatorname{Re} c>0, \quad \operatorname{Re} d>0, \quad a>0, b>0) \tag{4}
\end{align*}
$$

while the Cauchy integral is represented by the formula

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} t}{(a+i t)^{c}(b-i t)^{d}}=\frac{\Gamma(c+d-1)}{\Gamma(c) \Gamma(d)}(a+b)^{1-(c+d)} \tag{5}
\end{equation*}
$$

in which $i=\sqrt{-1}, \operatorname{Re}(c+d)>1, \operatorname{Re} a>0$ and $\operatorname{Re} b>0$. Note that in both relations (4) and (5), $\Gamma(a)=\int_{0}^{\infty} x^{a-1} \mathrm{e}^{-x} \mathrm{~d} x$ denotes the Gamma function.

The relation (5) is a suitable tool to compute some different-looking definite integrals. For this purpose, we use the relation

$$
\begin{equation*}
\left(\frac{a-i b}{a+i b}\right)^{i q}=\exp \left(2 q \arctan \frac{b}{a}\right) \quad(a, b, q \in \mathbf{R}) \tag{6}
\end{equation*}
$$

which rewrites the complex left-hand side in terms of the real right-hand side. Consequently,

$$
\begin{equation*}
(b-i t)^{p+i q}(b+i t)^{p-i q}=\left(b^{2}+t^{2}\right)^{p} \exp \left(2 q \arctan \frac{t}{b}\right) \tag{7}
\end{equation*}
$$

Now if equation (7) is substituted, then the integral (5) changes towards

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(b^{2}+t^{2}\right)^{p} \exp \left(2 q \arctan \frac{t}{b}\right) \mathrm{d} t=\frac{\Gamma(-2 p-1)}{\Gamma(-p+i q) \Gamma(-p-i q)}(2 b)^{2 p+1} \tag{8}
\end{equation*}
$$

The above integral plays a key role to introduce a generalization of the t-distribution.

2. A generalization of the \boldsymbol{t}-distribution

The Student t-distribution $[4,5]$ having the probability density function (pdf)

$$
\begin{equation*}
T(t, m)=\frac{\Gamma((m+1) / 2)}{\sqrt{m \pi} \Gamma(m / 2)}\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \quad(-\infty<t<\infty, m \in \mathbf{N}) \tag{9}
\end{equation*}
$$

is perhaps one of the most important distributions in the sampling problems of normal populations. According to a theorem in mathematical statistics, if \bar{X} and S^{2} are, respectively, the mean value and variance of a stochastic sample with the size m of a normal population having the expected value μ and variance σ^{2}, then the random variable $T=(\bar{X}-\mu) /(S / \sqrt{m})$ has the probability density function (9) with $(m-1)$ degrees of freedom [5]. This theorem is used
in the test of hypotheses and interval estimation theory when the size of the sample is small, for instance less than 30 .

Now, by using equation (8), one can extend the pdf of the t-distribution. To meet this goal, we substitute $t \rightarrow t / \sqrt{m}, b=1, p=-((m+1) / 2)$ and $q \rightarrow q / 2$ in equation (8). This yields

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \mathrm{d} t=\frac{\sqrt{m} 2^{1-m} \Gamma(m) \pi}{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)} \tag{10}
\end{equation*}
$$

Since the right-hand side of equation (10) is an even function with respect to the variable q, we take a linear combination and get accordingly

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right) \mathrm{d} t \\
& \quad=\frac{\left(\lambda_{1}+\lambda_{2}\right) \sqrt{m} 2^{1-m} \Gamma(m) \pi}{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)} \tag{11}
\end{align*}
$$

Therefore, the above integral can be used to generalize distribution (9) by

$$
\begin{align*}
T\left(t, m, q, \lambda_{1}, \lambda_{2}\right)= & \frac{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)}{\left(\lambda_{1}+\lambda_{2}\right) \sqrt{m} 2^{1-m} \Gamma(m) \pi}\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \\
& \times\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right) \tag{12}
\end{align*}
$$

where $-\infty<t<\infty, m \in \mathbf{N}, q$ is a complex number and $\lambda_{1}, \lambda_{2} \geq 0$.
Note that $\lambda_{1}, \lambda_{2} \geq 0$ is a necessary condition, because the probability density function must always be positive. Also note that the normalization constant

$$
\frac{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)}{\left(\lambda_{1}+\lambda_{2}\right) \sqrt{m} 2^{1-m} \Gamma(m) \pi}
$$

of equation (12) is real, because the corresponding integrand is a real function on $(-\infty, \infty)$. It is clear that for $q=0$ in equation (12), the usual t-distribution is derived. Moreover, for $q=0$ the normalization constant of distribution (12) is equal to the normalization constant of the t-distribution. This fact can be proved by applying Legendre's duplication formula [3], i.e.

$$
\begin{equation*}
\Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)=\frac{\sqrt{\pi}}{2^{z-1}} \Gamma(z) . \tag{13}
\end{equation*}
$$

But, according to one of the basic theorems in sampling theory, $T(t, m)$ converges to the pdf of the standard normal distribution $N(t, 0,1)$ as $m \rightarrow \infty[2,5]$, that is

$$
\begin{equation*}
\lim _{m \rightarrow \infty} T(t, m)=N(t, 0,1) \tag{14}
\end{equation*}
$$

Here, we intend to show that this matter is also valid for the generalized distribution $T\left(t, m, q, \lambda_{1}, \lambda_{2}\right)$. To prove this claim, we use the dominated convergence theorem (DCT) [6]
to the real sequence of functions

$$
\begin{align*}
S_{m}^{(1)}\left(t, q, \lambda_{1}, \lambda_{2}\right)= & \left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)\right. \\
& \left.+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right) \tag{15}
\end{align*}
$$

For every $m \in \mathbf{N}$, it is not difficult to see that

$$
\begin{equation*}
\left|S_{m}^{(1)}\left(t, q, \lambda_{1}, \lambda_{2}\right)\right| \leq\left(\lambda_{1}+\lambda_{2}\right) \exp \left(|q| \frac{\pi}{2}\right) \quad(t \in \mathbf{R}) \tag{16}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} & \left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right) \\
& =\left(\lambda_{1}+\lambda_{2}\right) \exp \left(-\frac{t^{2}}{2}\right) \tag{17}
\end{align*}
$$

The DCT states that if for a continuous and integrable function $g(x)$, we have $\left|f_{m}(x)\right| \leq g(x)$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{a}^{b} f_{m}(x) \mathrm{d} x=\int_{a}^{b} \lim _{m \rightarrow \infty} f_{m}(x) \mathrm{d} x . \tag{18}
\end{equation*}
$$

Considering the limit relation (17), we therefore obtain

$$
\begin{align*}
& \lim _{m \rightarrow \infty} T\left(t, m, q, \lambda_{1}, \lambda_{2}\right) \\
& \quad=\frac{\lim _{m \rightarrow \infty}\left(1+t^{2} / m\right)^{-((m+1) / 2)}\left(\lambda_{1} \exp (q \arctan (t / \sqrt{m}))+\lambda_{2} \exp (-q \arctan (t / \sqrt{m}))\right)}{\int_{-\infty}^{\infty} \lim _{m \rightarrow \infty}\left(1+t^{2} / m\right)^{-((m+1) / 2)}\left(\lambda_{1} \exp (q \arctan (t / \sqrt{m}))+\lambda_{2} \exp (-q \arctan (t / \sqrt{m}))\right) \mathrm{d} t} \\
& \quad=\frac{\left(\lambda_{1}+\lambda_{2}\right) \exp \left(-t^{2} / 2\right)}{\int_{-\infty}^{\infty}\left(\lambda_{1}+\lambda_{2}\right) \exp \left(-t^{2} / 2\right) \mathrm{d} t} \tag{19}\\
& \quad=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right)=N(t, 0,1) .
\end{align*}
$$

Remark 1 Taking the limit on both sides of (11) as $m \rightarrow \infty$, the following asymptotic relation is obtained for the Gamma function

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\Gamma(x+i y) \Gamma(x-i y)}{2^{-(2 x-1)} \sqrt{2 x-1} \Gamma(2 x-1)}=\frac{2}{\sqrt{2 \pi}} \tag{20}
\end{equation*}
$$

To compute the expected value of the distribution given by the pdf (12), it is sufficient to consider the definite integral

$$
\begin{array}{rl}
\int_{-\infty}^{\infty} t & t\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \mathrm{d} t \\
& =\frac{\sqrt{m} 2^{1-m} \Gamma(m) \pi}{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)}\left(\frac{q \sqrt{m}}{m-1}\right) \tag{21}
\end{array}
$$

which gives the expected value of (12) as

$$
\begin{equation*}
E[T]=\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right) \frac{q \sqrt{m}}{m-1} . \tag{22}
\end{equation*}
$$

In contrast, as $E\left[1+T^{2} / m\right]$ can be easily computed, after some calculations, we get for the variance measure of (12)

$$
\begin{equation*}
\operatorname{Var}[T]=E\left[T^{2}\right]-E^{2}[T]=\frac{m\left(q^{2}+m-1\right)}{(m-2)(m-1)}-\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{2}\left(\frac{m q^{2}}{(m-1)^{2}}\right) . \tag{23}
\end{equation*}
$$

It is valuable to point out that as expected, $q=0$ in equations (22) and (23) gives the expected value and variance of the usual t-distribution, respectively.

It is known that the t-distribution has a close relationship with the Fisher F-distribution [1], defined by its pdf

$$
\begin{equation*}
F(x, m, k)=\frac{\Gamma((m+k) / 2)(k / m)^{k / 2}}{\Gamma(k / 2) \Gamma(m / 2)} x^{k / 2-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)} \quad(m, k \in \mathbf{N}, 0<x<\infty), \tag{24}
\end{equation*}
$$

where $x=t^{2}$ and $k=1$ in equation (24). In other words, we have

$$
\begin{equation*}
T(t, m)=F\left(t^{2}, m, 1\right) \tag{25}
\end{equation*}
$$

By referring to the above relation and the fact that the t-distribution was generalized by relation (12), it is now natural to generalize the pdf of the F-distribution (24) as follows

$$
\begin{align*}
F\left(x, m, k, q, \lambda_{1}, \lambda_{2}\right)= & B x^{k / 2-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)}\left(\lambda_{1} \exp \left(q \arctan \sqrt{\frac{k}{m} x}\right)\right. \\
& \left.+\lambda_{2} \exp \left(-q \arctan \sqrt{\frac{k}{m} x}\right)\right), \tag{26a}
\end{align*}
$$

where

$$
\begin{align*}
\frac{1}{B}= & \int_{0}^{\infty} x^{k / 2-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)}\left(\lambda_{1} \exp \left(q \arctan \sqrt{\frac{k}{m} x}\right)\right. \\
& \left.+\lambda_{2} \exp \left(-q \arctan \sqrt{\frac{k}{m} x}\right)\right) \mathrm{d} x \tag{26b}
\end{align*}
$$

For $q=0$, equation (26a) is the usual F-distribution defined in equation (24).
According to the following theorem, the generalized function (26) converges to a special case of the Gamma distribution [5], defined by

$$
\begin{equation*}
G(x, \alpha, \beta)=\frac{\beta^{-\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp \left(\frac{-x}{\beta}\right) \quad(\alpha, \beta>0,0<x<\infty) . \tag{27}
\end{equation*}
$$

Theorem 1 If the Gamma distribution is given by definition (27), then we have

$$
\lim _{m \rightarrow \infty} F\left(x, m, k, q, \lambda_{1}, \lambda_{2}\right)=G\left(x, \alpha=\frac{k}{2}, \beta=2\right)=\chi_{k}^{2}
$$

where χ_{k}^{2} denotes the pdf of the chi-square distribution.

Proof Let us define the sequence

$$
\begin{aligned}
S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)= & x^{k / 2-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)}\left(\lambda_{1} \exp \left(q \arctan \sqrt{\frac{k}{m} x}\right)\right. \\
& \left.+\lambda_{2} \exp \left(-q \arctan \sqrt{\frac{k}{m} x}\right)\right) .
\end{aligned}
$$

It is easy to show that

$$
\begin{equation*}
\left|S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)\right| \leq\left(\lambda_{1}+\lambda_{2}\right) x^{(k / 2)-1} \exp \left(|q| \frac{\pi}{2}\right) \quad(x \in[0, \infty), k \in \mathbf{N}) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1}+\lambda_{2}\right) x^{(k / 2)-1} \exp (-x / 2) \tag{29}
\end{equation*}
$$

Therefore, according to the DCT, we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} F\left(x, m, k, q, \lambda_{1}, \lambda_{2}\right) & =\frac{\lim _{m \rightarrow \infty} S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)}{\int_{0}^{\infty} \lim _{m \rightarrow \infty} S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right) \mathrm{d} x} \\
& =\frac{x^{(k / 2)-1} \exp (-x / 2)}{\int_{0}^{\infty} x^{(k / 2)-1} \exp (-x / 2) \mathrm{d} x}=G\left(x, \frac{k}{2}, 2\right) \tag{30}
\end{align*}
$$

Moreover, it is not difficult to show that

$$
\begin{equation*}
F\left(t^{2}, m, 1, q, \lambda_{1}, \lambda_{2}\right)=T\left(t, m, q, \lambda_{1}, \lambda_{2}\right) . \tag{31}
\end{equation*}
$$

3. Some particular sub-cases of the generalized t (and F) distribution

In this section, we will study some symmetric and asymmetric sub-cases of the generalized distributions (12) and (26).

3.1 A symmetric generalization of the \mathbf{t}-distribution, the case $q=i b$ and $\lambda_{1}=\lambda_{2}=1 / 2$

If the special case $q=i b$ and $\lambda_{1}=\lambda_{2}=1 / 2$ is considered in (12), then

$$
\begin{align*}
T\left(t, m, i b, \frac{1}{2}, \frac{1}{2}\right)=T_{S}(t, m, b)= & \frac{\Gamma((1+m+b) / 2) \Gamma((1+m-b) / 2)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi} \\
& \times\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \cos \left(b \arctan \frac{t}{\sqrt{m}}\right) \tag{32}
\end{align*}
$$

is a symmetric generalization of the ordinary t-distribution in which $-1 \leq b \leq 1$.
The usual pdf of the t-distribution is obviously derived by $b=0$ in (32). Note that according to the Legendre duplication formula we reach the normalization constant of the t-distribution if $b=0$ is considered in equation (32). In other words, we have

$$
\begin{equation*}
b=0 \Longrightarrow \frac{\Gamma^{2}((1+m) / 2)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi}=\frac{\Gamma((1+m) / 2)}{\sqrt{m \pi} \Gamma(m / 2)} . \tag{33}
\end{equation*}
$$

Also note that the parameter b in the generalized distribution (32) must belong to $[-1,1]$, because the pdf must always be positive and, therefore, we ought to have
$\cos (b \arctan (t / \sqrt{m})) \geq 0$. In contrast, as for $-(\pi / 2) \leq \theta \leq \pi / 2$ we have $\cos \theta \geq 0$, therefore, to prove $\cos (b \arctan (t / \sqrt{m})) \geq 0$, it is sufficient to prove that

$$
\begin{equation*}
-1 \leq b \leq 1 \Longleftrightarrow b \arctan \frac{t}{\sqrt{m}} \subseteq\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad(t \in \mathbf{R}, \quad m \in \mathbf{N}) . \tag{34}
\end{equation*}
$$

For this purpose, let us consider the sequence $U_{m}(t)=\arctan t / \sqrt{m}$. We have

$$
\begin{align*}
U_{m}^{\prime}(t) & =\left(\frac{1}{\sqrt{m}}\right) /\left(1+\frac{t^{2}}{m}\right)>0 \Longrightarrow\left[\min U_{m}(t), \max U_{m}(t)\right] \\
& =\left[U_{m}(-\infty), U_{m}(\infty)\right]=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] . \tag{35}
\end{align*}
$$

Now, if we demand the sequence $b U_{m}(t)=b \arctan t / \sqrt{m}$ to belong to $[-\pi / 2, \pi / 2]$, it is clear that we must have $|b| \leq 1$, which proves relation (34). Figures 1 and 2 clarify this matter for $b \in[-1,1]$ and $b \notin[-1,1]$ in the interval $(-10,10)$.

Figure 1 shows the pdf $T_{S}(t, 4,1 / 2)$ with normalization constant $35 \sqrt{2} / 128$ and figure 2 shows the non-positive function $T_{S}(t, 4,3)=(4 / \pi)\left(1+t^{2} / 4\right)^{-5 / 2} \cos (3 \arctan (t / 2))$ in the interval $(-10,10)$. As these figures show, the generalized distribution (32) is symmetric, i.e.

$$
\begin{equation*}
T_{S}(-t, m, b)=T_{S}(t, m, b) \quad(t \in \mathbf{R}) \tag{36}
\end{equation*}
$$

Moreover, according to equations (22) and (23), the expected value and variance of distribution (32) take the forms

$$
\begin{equation*}
E[t]=0, \quad \operatorname{Var}[t]=\frac{m\left(m-1-b^{2}\right)}{(m-1)(m-2)} . \tag{37}
\end{equation*}
$$

Clearly, $b=0$ in these relations gives the expected value and variance of the t-distribution.

Theorem $2 T_{S}(t, m, q)$ converges to $N(t, 0,1)$ as $m \rightarrow \infty$.

Figure 1. $\quad b=1 / 2, m=4$.

Figure 2. $\quad b=3, m=4$.

Proof If the sequence $S_{m}^{(3)}(t, b)=\cos (b \arctan t / \sqrt{m})\left(1+t^{2} / m\right)^{-((m+1) / 2)}$ is considered, then one can show that

$$
\begin{equation*}
\left|S_{m}^{(3)}(t, b)\right|=\left|\cos \left(b \arctan \frac{t}{\sqrt{m}}\right)\right| \cdot\left|\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)}\right| \leq 1 \quad(t \in \mathbf{R}) \tag{38}
\end{equation*}
$$

Consequently, we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} T_{S}(t, m, b) & =\lim _{m \rightarrow \infty} \frac{\cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-((m+1) / 2)}}{\int_{-\infty}^{\infty} \cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-((m+1) / 2)} \mathrm{d} t} \\
& =\frac{\lim _{m \rightarrow \infty} \cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-((m+1) / 2)}}{\int_{-\infty}^{\infty} \lim _{m \rightarrow \infty} \cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-((m+1) / 2)} \mathrm{d} t} \tag{39}\\
& =\frac{\exp \left(-t^{2} / 2\right)}{\int_{-\infty}^{\infty} \exp \left(-t^{2} / 2\right) \mathrm{d} t}=N(t, 0,1)
\end{align*}
$$

By referring to equation (26a), we can now define the generalized F-distribution corresponding to the first given sub-case as follows

$$
\begin{align*}
F\left(x, m, k, i b, \frac{1}{2}, \frac{1}{2}\right)= & F_{1}(x, m, k, b)=B x^{(k / 2)-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)} \\
& \times \cos \left(b \arctan \sqrt{\frac{k}{m} x}\right) \quad(-1 \leq b \leq 1) \tag{40a}
\end{align*}
$$

where

$$
\begin{align*}
\frac{1}{B} & =\int_{0}^{\infty} x^{(k / 2)-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)} \cos \left(b \arctan \sqrt{\frac{k}{m} x}\right) \mathrm{d} x \\
& =2\left(\frac{m}{k}\right)^{k / 2} \int_{0}^{\pi / 2} \sin ^{(k-1)} \theta \cos ^{(m-1)} \theta \cos (b \theta) \mathrm{d} \theta \tag{40b}
\end{align*}
$$

Theorem $3 \quad F_{1}(x, m, k, b)$ converges to the chi-square distribution as $m \rightarrow \infty$.
Proof We define the sequence $S_{m}^{(4)}(x, k, q)=x^{k / 2-1}(1+(k / m) x)^{-((m+k) / 2)} \cos (b \arctan$ $\sqrt{k / m x})$ to get

$$
\begin{equation*}
\left|S_{m}^{(4)}(x, k, b)\right| \leq x^{(k / 2)-1} \quad(x \in[0, \infty), \quad k \in \mathbf{N}, \quad|b|<1) \tag{41}
\end{equation*}
$$

Hence, according to DCT, we find out that

$$
\begin{align*}
\lim _{m \rightarrow \infty} F_{1}(x, m, k, b) & =\lim _{m \rightarrow \infty} \frac{S_{m}^{(4)}(x, k, b)}{\int_{0}^{\infty} S_{m}^{(4)}(x, k, b) \mathrm{d} x}=\frac{x^{(k / 2)-1} \exp (-x / 2)}{\int_{0}^{\infty} x^{(k / 2)-1} \exp (-x / 2) \mathrm{d} x} \\
& =G\left(x, \frac{k}{2}, 2\right) \tag{42}
\end{align*}
$$

It is not difficult to verify that the generalized distributions $T_{S}(t, m, b)$ and $F_{1}(x, m, k, b)$ are related with each other as follows

$$
\begin{equation*}
F_{1}\left(t^{2}, m, 1, b\right)=T_{S}(t, m, b) \tag{43}
\end{equation*}
$$

Remark 2 Here is a good position to mention that in ref. [7], a class of orthogonal polynomials is studied, whose weight function [8] corresponds to the ordinary t-distribution. The related polynomials are defined as

$$
\begin{equation*}
I_{n}^{(p)}(x)=n!\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{p-1}{n-k}\binom{n-k}{k}(2 x)^{n-2 k} \tag{44a}
\end{equation*}
$$

and satisfy the orthogonality relation

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-(p-1 / 2)} I_{n}^{(p)}(x) I_{m}^{(p)}(x) \mathrm{d} x \\
& \quad=\left(\frac{n!2^{2 n-1} \sqrt{\pi} \Gamma^{2}(p) \Gamma(2 p-2 n)}{(p-n-1) \Gamma(p-n) \Gamma(p-n+1 / 2) \Gamma(2 p-n-1)}\right) \delta_{n, m} \tag{44b}
\end{align*}
$$

where $m, n=0,1,2, \ldots, N<p-1$ and $\delta_{n, m}=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ 1 & \text { if } & n=m\end{array}\right.$.
For $n=m=0$ in equation (44b), an integral is derived that corresponds to the t-distribution. Furthermore, the mentioned comment holds for the F-distribution. In [7], a sequence of orthogonal polynomials is studied which is defined by

$$
\begin{equation*}
M_{n}^{(p, q)}(x)=(-1)^{n} n!\sum_{k=0}^{n}\binom{p-(n+1)}{k}\binom{q+n}{n-k}(-x)^{k}, \tag{45}
\end{equation*}
$$

and satisfies the orthogonality relation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{q}}{(1+x)^{p+q}} M_{n}^{(p, q)}(x) M_{m}^{(p, q)}(x) \mathrm{d} x=\left(\frac{n!(p-(n+1))!(q+n)!}{(p-(2 n+1))(p+q-(n+1))!}\right) \delta_{n, m} \tag{46}
\end{equation*}
$$

where $m, n=0,1,2, \ldots, N<p-(1 / 2), q>-1$.
Clearly, the weight function of integral (46) corresponds to the usual F-distribution in the case $n=m=0$.

3.2 An asymmetric generalization of the \mathbf{t}-distribution, the case $\lambda_{2}=0$

From the orthogonality relations (44b) and (46), it can be concluded that the category of Pearson distributions must have a related class of orthogonal polynomials. In ref. [9], a class of orthogonal polynomials is studied, whose weight function is a specific case of (2) and is represented by

$$
\begin{equation*}
W_{n}^{(p, q)}(x ; a, b, c, d)=\left((a x+b)^{2}+(c x+d)^{2}\right)^{-p} \exp \left(q \arctan \frac{a x+b}{c x+d}\right) \quad(-\infty<x<\infty), \tag{47}
\end{equation*}
$$

where a, b, c, d, p, q are all real parameters. This function is a sub-case of the Pearson distribution (2), because the logarithmic derivative of function (47) is a rational function. Hence, equation (47) is a special case of the Pearson distribution family. For convenience, we chose a particular sub-case of (47) in ref. [9] to generalize the usual t-distribution.
If $a=1 / \sqrt{m}, b=0, c=0, d=1$ and $p=-((m+1) / 2) \quad(m \in \mathbf{N})$ is selected in equation (47), one gets

$$
\begin{equation*}
W^{(-(m+1) / 2, q)}\left(t ; \frac{1}{\sqrt{m}}, 0,0,1\right)=\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \quad(m \in \mathbf{N}, q \in \mathbf{R}) . \tag{48}
\end{equation*}
$$

As

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \mathrm{d} t=\sqrt{m} \int_{-\pi / 2}^{\pi / 2} \mathrm{e}^{q \theta} \cos ^{(m-1)} \theta \mathrm{d} \theta \tag{49}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{-\pi / 2}^{\pi / 2} \mathrm{e}^{q \theta} \cos ^{(m-1)} \theta \mathrm{d} \theta=\frac{(m-1)!\left(q-\left(1+(-1)^{m} / 2\right)(q-1)\right)\left(\mathrm{e}^{q \pi / 2}+(-1)^{m} \mathrm{e}^{-q \pi / 2}\right)}{\prod_{k=0}^{\lfloor(m-1) / 2\rfloor}\left(q^{2}+(m-2 k-1)^{2}\right)} . \tag{50}
\end{equation*}
$$

Hence, an asymmetric generalization of the t-distribution may be defined as

$$
\begin{equation*}
T_{A}(t, m, q)=K\left(1+\frac{t^{2}}{m}\right)^{-((m+1)) / 2} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \quad(-\infty<t<\infty, m \in \mathbf{N}, q \in \mathbf{R}) \tag{51a}
\end{equation*}
$$

such that

$$
\begin{equation*}
K=\frac{\prod_{k=0}^{\lfloor(m-1) / 2\rfloor}\left(q^{2}+(m-2 k-1)^{2}\right)}{\sqrt{m}(m-1)!\left(q-\left(1+(-1)^{m} / 2\right)(q-1)\right)\left(\mathrm{e}^{q \pi / 2}+(-1)^{m} \mathrm{e}^{-q \pi / 2}\right)} . \tag{51b}
\end{equation*}
$$

The distribution (51a) with normalization constant given by (51b) was defined in ref. [9] based on this particular approach. But here we can modify and simplify it. For this task, we set $\lambda_{2}=0$ in (12), and get

$$
\begin{align*}
T_{A}(t, m, q)= & \frac{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi}\left(1+\frac{t^{2}}{m}\right)^{-((m+1) / 2)} \\
& \times \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) . \tag{52a}
\end{align*}
$$

This is in fact an explicit representation of the asymmetric generalization of the t-distribution. For this distribution, we clearly have

$$
\begin{equation*}
T_{A}(-t, m, q)=T_{A}(t, m,-q) \tag{52b}
\end{equation*}
$$

The asymmetry is also shown by figures 3 and 4 .

Figure 3. $q=1, m=4$.

According to equations (51a) and (51b), the explicit definitions of the two mentioned figures have, respectively, the forms

From figure 3,

$$
T_{A}(t, 4,1)=\frac{5}{6 \cosh (\pi / 2)}\left(1+\frac{t^{2}}{4}\right)^{-5 / 2} \mathrm{e}^{\arctan (t / 2)}
$$

From figure 4,

$$
T_{A}(t, 3,1)=\frac{5 \sqrt{3}}{12 \sinh (\pi / 2)}\left(1+\frac{t^{2}}{3}\right)^{-2} \mathrm{e}^{\arctan (t / \sqrt{3})}
$$

The following statements (A1-A5) collect the properties of the asymmetric distribution (52).

Figure 4. $q=1, m=3$.
(A1) The expected value and variance of (52) are, respectively, represented by

$$
\begin{equation*}
E[t]=\frac{q \sqrt{m}}{m-1}, \quad \operatorname{Var}[t]=\frac{m\left(q^{2}+(m-1)^{2}\right)}{(m-2)(m-1)^{2}}, \tag{53}
\end{equation*}
$$

$q=0$ in these relations gives the expected value and variance of the t-distribution.
(A2) $T_{A}(t, m, q)$ converges to $N(t, 0,1)$ as $m \rightarrow \infty$.
The proof is similar to the first case if one chooses $\lambda_{2}=0$ and $\lambda_{1}=1$ in the defined sequence $S_{m}^{(1)}\left(t, q, \lambda_{1}, \lambda_{2}\right)$.
(A3) By the definition (26) and considering the case $\lambda_{2}=0$, we can define

$$
\begin{align*}
F\left(x, m, k, q, \lambda_{1}, 0\right)= & F_{2}(x, m, k, q)=D x^{k / 2-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)} \\
& \times \exp \left(q \arctan \sqrt{\frac{k}{m} x}\right)(q \in \mathbf{R}, m, k \in \mathbf{N}, \quad 0<x<\infty) \tag{54a}
\end{align*}
$$

where

$$
\begin{align*}
\frac{1}{D} & =\int_{0}^{\infty} x^{k / 2-1}\left(1+\frac{k}{m} x\right)^{-((m+k) / 2)} \exp \left(q \arctan \sqrt{\frac{k}{m} x}\right) \mathrm{d} x \\
& =2\left(\frac{m}{k}\right)^{k / 2} \int_{0}^{\pi / 2} \sin ^{(k-1)} \theta \cos ^{(m-1)} \theta \mathrm{e}^{q \theta} \mathrm{~d} \theta \tag{54b}
\end{align*}
$$

(A4) $F_{2}(x, m, k, q)$ converges to the chi-square distribution as $m \rightarrow \infty$.
The proof is similar to the proof of Theorem 1 when $\lambda_{2}=0$ and $\lambda_{1}=1$.
(A5) The distributions $F_{2}(x, m, k, q)$ and $T_{A}(t, m, q)$ are related to each other by

$$
\begin{equation*}
F_{2}\left(t^{2}, m, 1, q\right)=T_{A}(t, m, q) \tag{55}
\end{equation*}
$$

Remark 3 There is another symmetric generalization of the t-distribution when we set $\lambda_{1}=$ λ_{2} in definition (12). Its pdf is given as

$$
\begin{align*}
T\left(-t, m, q, \lambda_{1}, \lambda_{1}\right)= & T\left(t, m, q, \lambda_{1}, \lambda_{1}\right)=\frac{\Gamma((1+m+i q) / 2) \Gamma((1+m-i q) / 2)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi} \\
& \times\left(1+\frac{t^{2}}{m}\right)^{-(m+1) / 2} \cosh \left(q \arctan \frac{t}{\sqrt{m}}\right) . \tag{56}
\end{align*}
$$

Therefore, to summarize the last section, we in fact considered the three following particular sub-cases of the general distribution (12),
(a) $q=i b$ and $\lambda_{1}=\lambda_{2}=1 / 2$; symmetric case
(b) $\lambda_{2}=0$; asymmetric case
(c) $\lambda_{1}=\lambda_{2}$; symmetric case

References

[1] Nikiforov, A.F. and Uvarov, V.B., 1988, Special Functions of Mathematical Physics (Basel Boston: Birkhäuser).
[2] Press, W.H., Flannery, B.P., Teukolsky S.A. and Vetterling, W.T., 1992, Beta Function, T Student distribution and F-Distribution. In: Numerical Recipes in Fortran: The Art of Scientific Computing. (2nd edn) (Cambridge: Cambridge University Press), Section 6.2, 219-223.
[3] Arfken, G., 1985, Mathematical Methods for Physicists (New York: Academic Press).
[4] "Student" (W.S.Gosset), 1908, The probable error of a mean. Biometrika, 6, 1-25.
[5] Walpole, R.E. and Freund, J.E., 1980, Mathematical Statistics (Englewood Cliffs, NJ: Prentice Hall).
[6] de Barra, G., 1981, Measure Theory and Integration (New York: Ellis Horwood).
[7] Masjed-Jamei, M., 2002, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, Journal of Integral Transforms and Special Functions, 13, 169-190.
[8] Chihara, S.A., 1978, An Introduction to Orthogonal Polynomials (New York: Gordon and Breach).
[9] Masjed-Jamei, M., 2004, Classical orthogonal polynomials with weight function $\left((a x+b)^{2}+(c x+d)^{2}\right)^{-p}$ $\exp (q \arctan ((a x+b) /(c x+d)) ; x \in(-\infty, \infty)$ and a generalization of T and F distributions, Journal of Integral Transforms and Special Functions, 15, 137-153.

[^0]: *Corresponding author. Email: koepf@mathematik.uni-kassel.de

