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Abstract. In this paper, by using the extended Sturm-Liouville theorem for symmetric
functions, we introduce the following differential equation

X (1= X" @ (X) — 2x((@+ b+ 1)X*™ —a+m— 1)@/, (x) + (a, X" + B+

n
= 0,000,
in which f=-2s(2s+2a-2m+1); y=2s(2s+2a-2m+1)-2Q2r+1)(r+a—m+1) and
a, =(Mn+25+(r —s+(m=1)/2)(—(=)"))(MNn+ 25+ 2a+ 14+ 2mb-+ (r—s-+(m—1)/2)1—(~)")) and show
that one of its basic solutions is a class of incomplete symmetric polynomials orthogonal with
respect to the weight function |X| 2a(l —x’™)® on [-1,1]. We also obtain the norm square value

of this orthogonal class.
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1. Introduction
In the classical case, systems of orthogonal polynomials are set up such that the nth
polynomial @ (X) has exact degree n. Such systems are most often complete and in particular

form a basis of the space of polynomials. In this work we will consider incomplete sets of
orthogonal polynomials such that the system (®, (X)) does not contain polynomials of every

degree. Although such systems do not have all properties as in the classical case, they can
nevertheless directly be applied to functions approximation since we will compute their norm
square values.

It is well known when partial differential equations are solved by the method of separation of
variables, the problem reduces to the solution of ordinary differential equations [1]. The
solutions of these ordinary equations can, in many interesting problems of mathematical
physics, be expressed in terms of special functions. In order to obtain such solutions of the



partial differential equations in specific cases, we have to impose some additional conditions
on the problem solutions to finally have a unique solution. These conditions eventually
transform the problem to a boundary value problem [1]. Hence, we first focus our discussion
on the solutions of boundary value problems obtained by the method of separation of
variables. It has been shown [1] that the method of separation of variables can extensively be
applied for solving partial differential equations of the form

L. 0%U .o du
XY, ) A(t)—+B (tH)— |=Lu, 1
pX,y )[ ()atz ()at] (1

where

Lu =div (k(X, yaz) gradu)—q(x, Y, Z)U B (2)
divl?zDivergence of vector F , 3)
gradF=ﬁT+ﬁT+ﬁE . (4)

OX oy oz

The equation (1) describes the propagation of a vibration such as electromagnetic or acoustic
waves if A"(t)=1 and B"(t) =0 and describes transfer processes such as heat transfer or the
diffusion of particles in a medium when A’(t)=0 and B’(t)=1 and finally describes the
corresponding time-independent processes if A" (t)=0 and B (t)=0 [1].

To have a unique solution of equation (1), which corresponds to an actual physical problem,
some supplementary conditions must be imposed as we said. The most typical conditions are

initial or boundary conditions [1]. The initial conditions for equation (1) are usually the values
of u(x,y,z,t) and ou(x,y,z,t)/ot, while the simplest boundary condition is in the form

=0, )

S

[a(x, Y,Z)u+ B(X, y,z)g—ﬂ

where a(X,y,z) and S(X,y,z) are given functions, S is the surface bounding the domain
where (5) is to be solved and ou/0dn is the derivative in the direction of the outward normal

to S. Particular solutions of (1) under the boundary conditions (5) will be found if one looks
for a solution of the form

u(x,y,z,t)y=T()v(x,y,z). (6)

By substituting (6) into the main equation (1) one respectively gets
AOT"+B ()T +AT =0, (7)
Lv+Apv=0, (8)

where A is a constant. Clearly (7) can be solved for typical problems in mathematical physics.
However, to solve (8) we should use a boundary condition that follows from (5), namely



{a(x, V. 2)V+ B(x, y,z)%} -0, ©)

S

The described problem is known as multidimensional boundary value problem. Nevertheless,
it can be simplified to a one-dimensional problem if (8) is reduced to an equation of the form

Ly+4 p(x)y=0, (10)
where
d

Ly=d—(k(X)d—yJ—Q(X)y, k(x)>0, p(x)>0. (11)
X dx

The equation (10) should be considered on an open interval, say (a,b), with boundary
conditions in the form

a, y(a)+ ﬂ1 y'(a) =0,

: (12)
a,y(b)+ p,y'(b) =0,

where «,, a, and f,, f, are the given constants and k(X),k'(X),q(X) and p(x) in (10) and
(11) are to be assumed continuous for X e[a,b].

The simplified boundary value problem (10)-(12) is called a regular Sturm-Liouville problem
[1]. Moreover, if one of the boundary points a and b is singular (i.e. k(a) =0 or k(b)=0), the

problem will be transformed to a singular Sturm-Liouville problem. In this case, one can
ignore boundary conditions (12) and directly obtain the orthogonality relation.
By noting this, now suppose Yy, (X) and Y, (X) are two solutions (eigenfunctions) of equation

(10). According to Sturm-Liouville theory [1], they should be orthogonal with respect to the
weight function p(X) on (a,b) under the conditions (12), i.e.

0 (nzm),

b b
{p(xwx)ym(x)dx=up(x)yn(x)de5n,m if 5n,m={1 ), (13)

Many important special functions in theoretical and mathematical physics are the solutions of
regular or singular Sturm-Liouville problems that satisfy the orthogonality relation (13). For
instance, the associated Legendre functions [1], Bessel functions [1], trigonometric sequences
related to Fourier analysis [2,5], ultraspherical functions [2,5], Hermite functions [1] and so on
[3,4] are particular solutions of some Sturm-Liouville problems.

Fortunately, most of these mentioned functions are symmetric and satisfy the symmetry

property @ (-X)=(=1)"® (X). They have found various applications in mathematical

physics and engineering [1,5]. Now, if we can extend the above-mentioned examples
symmetrically and preserve their orthogonality property, it seems that we will be able to find
some new applications in physics and engineering which extend the previous applications. In
this paper, we extend one of the classical symmetric orthogonal sequences and obtain its
orthogonality property directly.



For this purpose, we should first refer to a key theorem in [3] in which a symmetric
generalization of usual Sturm-Liouville problems with symmetric solutions is presented.

1.1. Theorem [3]. Let @, (x)=(-1)"®,(-x) be a sequence of independent symmetric
functions that satisfies the differential equation

AX) D7 (X)+ B(x) D}, (X) + (/In CX)+D(Xx)+(1- (—1)”)E(x)/2)(1)n(x) =0, (14)
where A(x), B(x), C(x), D(x) and E(x) are real functions and {4,} is a sequence of
constants. If A(x), (C(x)>0), D(x) and E(x) are even functions and B(x) is odd then

j.W*(x)CDn(x)cbm(x)dx = U W*(x)CDﬁ(x)dx]&n,m : (15)

where W™ (x) denotes the corresponding weight function as

BOOZ A0 gy - COO oy [ B gy (16)

W0 =Coenn(| =208 a0 P a0 ™

Of course, the weight function defined in (16) must be positive and even on [-v,v] and x=v
must be a root of the function

AX)K (X) = A(X)exp(f%?(x)d ) =ex IAE ;dx) (17)

i.e. AV)K(v)=0. Since K(x)=W'(x)/C(x) is an even function it follows that
A(-v) K(=v) = 0 automatically.

As we said, by using this theorem, many symmetric orthogonal functions can be generalized
[3,4]. Here we introduce incomplete symmetric orthogonal polynomials of Jacobi type as the

solutions of a generalized Sturm-Liouville equation of type (14). For this purpose, let us
consider the shifted Jacobi polynomials on [0,1] as:

Pn‘,i‘.””(X)=Zn)(—l)k(”+“zﬂ+kj(:+0k‘jxk, (18)
k=0 -

that satisfy the differential equation [2,5]
X1=X)y" —(@+B+2)x—(a+)y+n(n+a+B+1)y=0; y=P*"(x), (19)

and orthogonality relation [5]



Fn+a+DHI'(n+ g +1)
@n+a+B+DI(+DT(n+a+p+1) "

1
[x“@=07 P (0P (x)dx = (20)
0

By referring to the main Theorem 1.1 and noting the Jacobi differential equation (19), we can
construct a differential equation of type (14) whose solutions are orthogonal with respect to an

even weight function, say |X|za (1—x>™)®, on the symmetric interval [-1,1]. Hence, let us first

substitute
9(x) =x"P”(x"); A,0eR, (2D

into equation (19) to obtain the differential equation of g(X) as

X>(1-x)g" +x(22— (@ + f+1)0-1)x’ =24 + b +1)g’

(22)
+(@n+a+ B+ (@+ f+1)0A- )X’ + 2 —abi)g =0.
If we write for convenience
2A—(a+p+1)0—-1=p, _
(@+f+]) P or equivalently a = q+24-1 and f=- P*g -1, (23)
-2A+af+1=q, 0 0
then the differential equation (22) is changed to
x*(1-x%)g" + x(pxe +q)g’+((9n+/1)(9n+/1— p-1x’-A(1+q —1))g =0
q+24-1 p+q_ (24)

)
< g=xP,?% ¢ (9.

Now, by noting Theorem 1.1, let us define the following odd and even polynomial sequences

q+4s—1’7M71)
Q,,(x)=x*P, 2" ™ (x); A=2s,5€Z" and #=2m, meN, 25)
g+4r+l  p+q

, 1)
@,,,, () =x""P, 2" "™ (x*™); A=2r+1,reZ" and =2m, meN,

;keZ. It is clear that we

I-(-D" 0 if n=2k
and assume from now that o, = ———=

2 1 if n=2k+1
generally have
u+w

u+(w-u)o, = 5

(26)

- u if n=2k,
+(—1)“%:{ 1

w if n=2k+1.

Therefore, the polynomial sequence @ (X) defined in (25) can be written in a unique form as



q+2s+2r+(=1)"(2s-2r-1) p+a_,

(Dn(x) = (XZS + (er+1 - Xzs)o-n) |:)[n/2],+ am som )(sz)' (27)

According to definitions (25) and differential equation (24), ®,,(X) should satisfy the
equation
X2 (1= XM @4, (0 + X (P +), ()

(28)
+ ((2m n+2s)2mn+2s—p—1)x*" —2s(2s+q — 1))CD2n (x)=0,
and @, ., (X) should satisfy
K (=X @5, 00 + X (X7 + Q)50 29)

+ ((2mn +2r +1)(2mn+2r — p) x*™ —(2r +1)(2r + q))CDZM(x) =0.
Hence, combining these two equations finally gives

X (1=x"")®" (x) + x(px2m +q)CI);(x)+
{(Mn+2s+Q2r+1-m-2s)c, )(MN+2s—p-1+Q2r+1-m-2s)c,)x"" (30)
~2s(2s+q-1)—(2r+D2r+q)-2s2s+q-1))o,} ©,(x) =0,

which is a special case of the generalized Sturm-Liouville equation (14). Also, the weight
function corresponding to (30) takes the form

p+q

m 2m+1
+ q)_(zx_(2m+2)x )dX) — K X2m+q—2(1_X2m) om 1. (31)

W0 =" exp( [P B

Note that we can, without loss of generality, suppose that K =1 and since W(X) must be

positive, the weight function (31) can be considered as |X| 2a(l —x*™)° for 2a=2m+q-2 and
b=-1-(p+q)/2m.

1.2. Corollary. Suppose in the generic equation (14) that

A(X) = x> (1-x™) an even function,

B(x) = -2x((a+mb+1)x>" —a+m-1) an odd function,

C(x)=x>">0 an even function, (32)
D(x) =—-2s(2s+2a—-2m+1) an even function,

E(x)=2s(2s+2a-2m+1)-22r+1)(r+a—m+1) an even function,
A, =(MN+2s+2r+1-m-2s)c,)(Mn+2s+2a+1+2mb+2r+1-m-2s)o,).

Then, the differential equation corresponding to options (32) has a polynomial solution as



a+l-m+s+r 1) 2s-2r-1 b)

O (x;a,b,m) = (x> + (x> = x**)0,) Py 0. am (™, (33)

which satisfies the orthogonality relation (34)

1 1

f X2 (1= x> D (x; ,b,m)d* (x; a,b, m)dx = [ j X2 (1- xz”‘)b(cI)(n“S)(x; a,b, m))2 de So-

-1 -1

To compute the norm square value of (34) we can directly use the orthogonality relation (20)
so that for n=2] we have

2a+4s+1-2m

1 1 b ?
sz :IXZa(l_XZm)b(q);fj,S) (X,a,b, m))2 dX:J.X26+4S (I_XZm)b[Pj(’+ 2m )(sz)j dX
-1 -1

. 2a+4s+1
1 1 2a+ds+l-2m (2a+4s+1—2m b) 2 F(J +—
=— [t o (1—t)b[|f>j+ m (t)j dx =
m ,

0 (2mj+a+23+%+mb)l“(j+1)l“(j+

W(j+b+1)

b

b)
(35)

2a+4s+1
i_|_

and for n =2 j+1 the norm square is

2a+4r+3-2m

2
1 1
( ,b)
N2j+1 _ J‘XZa (1 _ X2m)b (cD(erJsr; (X, a, b, m))2 dx = J'X2a+4r+2 (1 _ XZm)b(Pj’+ 2m (XZm )J dx =
-1 -1

. 2a+4r+3. .
I 2a+dr+3-2m 2ardrdam 2 I(j+ %) I'(j+1+b)
(1-t)° t) | dx= m

2m 2m
—Jt P

2a+4r+3
0 —_—t

by
(36)

(2mj+a+2r+§+mb)l“(j +DI(j+

Therefore, combining both relations (35) and (36) gives

n-o, 2a+4s+1 2r+1-2s
I'( + +
N 2 2m

gn)r(n_;“ +b+1)

" n- n- -
(m(n—an)+a+23+%+mb+(2r+1—25)an)1"( 20"+1)1"( ZCT”+2aJ;45+1+b+2r+1 250
m m

n)
(37)

This value shows that the orthogonality (34) is valid if and only if b>-1; 2a+4s+1>0;

2a+4s+1+2mb>0; meN; 2a+4r+3>0; 2a+4r+3+2mb >0 and finally (-1)** =1

because the weight function must be even. Now, it is a good position to present some practical
examples.

Example 1. Find the standard properties of incomplete symmetric polynomials orthogonal

with respect to the weight function x*v1—x* on[-1,1].
To solve the problem, it is sufficient in (33) to choose m=a=2 and b=1/2 to get the
polynomials



1 (1+s+r+(_1)n 25—2r—1,l)
CDS'S)(X;LE,Z) =(X*+ (X" =x*)o, )P, 2, 4“0 xMY;rsezZt, (38)

that satisfy the differential equation

X (1-xH) D" (X)+ 2x(1 —4x4)(I)’n(x) +
{2n+2s+(2r-1-2s)c,)(2n+2s+7+(2r-1-2s)o, ) x* (39)
~28(2s +1)+(2s(2s + 1) = 2(2r +1)(r +1))o,} ®,(X) =0,

and orthogonality relation

jx CD(”)(X2— 2)c1>(”>(x2 2)dx

n- - n- 3
O—“+s+§+2r 2s+10_n)r( O'n+) (40)

I'( 2

S,
7 2r-2s+1 nk
+S+o+ o))
4 2

As (38) shows, ®\"¥(x;2,1/2,2) are incomplete symmetric polynomials with the degrees
respectively {2s, 2r +1,2s+4,2r +5,2s+8,2r + 9, ...}. For instance we have

degreesofCD“O)(X2 ,2) =10,3,4,7,8,11,.. }degreesof®(2°)(x2 ,2) =10,5,4,9,8,13,...}

and degrees of @Y (x;2,~ 2) {2,3,6,7,10,11,...} .

Example 2. A generalization of generalized ultraspherical polynomials (GUP)

It is known that the generalized ultraspherical polynomials [4,5] are orthogonal with respect to
the weight function x**(1—x*)" on [-1,1]. Now if m =1 in (33), a generalization of GUP as

(a+s+r+(—1)”(s—r—l) b)

Q" (x;a,b,1) = (X** + (x> =x*)0, )P, 11 277(x%), 41)
is derived for r =s =0 that satisfies the differential equation

x> (1—- x2)CI);;(x)—2x((a+b+1)x2 —a)CD;(x)+
{(N+2s+(2r-2s)c,)(N+2s+2a+1+2b+(2r-2s)c,) x> (42)
—-2s(2s+2a-1) +(23(2s +2a-1)-2Q2r+1)(r + a))an} d (x)=0,

and orthogonality relation



1
j X2 (1-x2)" D9 (%:8,b,1) DI (x;8,b,1) dx =8, , x
-1

_ 43
n a”+b+1) (43)

n-o,+2a+4s+1
n 5 +Qr+1-29)0,) I

n-— n—-o, +2a+4s+1
(n—an+a+25+%+b+(2r+1—25)an)1“( 20”+1)1“( In

I(

+b+@2r+1-2s)o,)

Again, as (41) shows, ®'"*(x;a,b,1) are incomplete symmetric polynomials with the degrees
respectively D"® = {2s, 2r +1, 2s + 2, 2r + 3, 2s + 4, 2r + 5, ...} though it is complete for
r =s =0, because in this case we have D"” ={0,1,2,3,.} =Z".
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