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Abstract. In this paper, by using the extended Sturm-Liouville theorem for symmetric 
functions, we introduce the following differential equation 
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that one of its basic solutions is a class of incomplete symmetric polynomials orthogonal with 
respect to the weight function bma xx )1( 22 −  on [-1,1]. We also obtain the norm square value 
of this orthogonal class.  
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1. Introduction 
In the classical case, systems of orthogonal polynomials are set up such that the nth 
polynomial )(xnΦ  has exact degree n. Such systems are most often complete and in particular 
form a basis of the space of polynomials. In this work we will consider incomplete sets of 
orthogonal polynomials such that the system ( )(xnΦ ) does not contain polynomials of every 
degree. Although such systems do not have all properties as in the classical case, they can 
nevertheless directly be applied to functions approximation since we will compute their norm 
square values. 
It is well known when partial differential equations are solved by the method of separation of 
variables, the problem reduces to the solution of ordinary differential equations [1]. The 
solutions of these ordinary equations can, in many interesting problems of mathematical 
physics, be expressed in terms of special functions. In order to obtain such solutions of the 
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partial differential equations in specific cases, we have to impose some additional conditions 
on the problem solutions to finally have a unique solution. These conditions eventually 
transform the problem to a boundary value problem [1]. Hence, we first focus our discussion 
on the solutions of boundary value problems obtained by the method of separation of 
variables. It has been shown [1] that the method of separation of variables can extensively be 
applied for solving partial differential equations of the form 
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The equation (1) describes the propagation of a vibration such as electromagnetic or acoustic 
waves if 1)(* =tA  and 0)(* =tB  and describes transfer processes such as heat transfer or the 
diffusion of particles in a medium when 0)(* =tA  and 1)(* =tB  and finally describes the 
corresponding time-independent processes if 0)(* =tA  and 0)(* =tB  [1]. 
To have a unique solution of equation (1), which corresponds to an actual physical problem, 
some supplementary conditions must be imposed as we said. The most typical conditions are 
initial or boundary conditions [1]. The initial conditions for equation (1) are usually the values 
of ),,,( tzyxu  and ttzyxu ∂∂ /),,,( , while the simplest boundary condition is in the form 
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where ),,( zyxα  and ),,( zyxβ  are given functions, S is the surface bounding the domain 
where (5) is to be solved and η∂∂ /u  is the derivative in the direction of the outward normal 
to S. Particular solutions of (1) under the boundary conditions (5) will be found if one looks 
for a solution of the form  
                                                       ),,()(),,,( zyxvtTtzyxu = .                                                (6)                    
 
By substituting (6) into the main equation (1) one respectively gets 
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where λ  is a constant. Clearly (7) can be solved for typical problems in mathematical physics. 
However, to solve (8) we should use a boundary condition that follows from (5), namely  
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The described problem is known as multidimensional boundary value problem. Nevertheless, 
it can be simplified to a one-dimensional problem if (8) is reduced to an equation of the form  
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The equation (10) should be considered on an open interval, say ),( ba , with boundary 
conditions in the form  
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where 21 , αα and 21 , ββ  are the given constants and )(,)(,)( xqxkxk ′  and )(xρ  in (10) and 
(11) are to be assumed continuous for ],[ bax∈ .  
The simplified boundary value problem (10)-(12) is called a regular Sturm-Liouville problem 
[1]. Moreover, if one of the boundary points a and b is singular (i.e. 0)( =ak  or 0)( =bk ), the 
problem will be transformed to a singular Sturm-Liouville problem. In this case, one can 
ignore boundary conditions (12) and directly obtain the orthogonality relation. 
By noting this, now suppose )(xyn  and )(xym  are two solutions (eigenfunctions) of equation 
(10). According to Sturm-Liouville theory [1], they should be orthogonal with respect to the 
weight function )(xρ  on ),( ba  under the conditions (12), i.e. 
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Many important special functions in theoretical and mathematical physics are the solutions of 
regular or singular Sturm-Liouville problems that satisfy the orthogonality relation (13). For 
instance, the associated Legendre functions [1], Bessel functions [1], trigonometric sequences 
related to Fourier analysis [2,5], ultraspherical functions [2,5], Hermite functions [1] and so on 
[3,4] are particular solutions of some Sturm-Liouville problems.  
Fortunately, most of these mentioned functions are symmetric and satisfy the symmetry 
property )()1()( xx n

n
n Φ−=−Φ . They have found various applications in mathematical 

physics and engineering [1,5]. Now, if we can extend the above-mentioned examples 
symmetrically and preserve their orthogonality property, it seems that we will be able to find 
some new applications in physics and engineering which extend the previous applications. In 
this paper, we extend one of the classical symmetric orthogonal sequences and obtain its 
orthogonality property directly.  
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For this purpose, we should first refer to a key theorem in [3] in which a symmetric 
generalization of usual Sturm-Liouville problems with symmetric solutions is presented.  
 
1.1. Theorem [3]. Let )()1()( xx n

n
n −Φ−=Φ  be a sequence of independent symmetric 

functions that satisfies the differential equation 
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where )(,)(,)(,)( xDxCxBxA  and )(xE  are real functions and }{ nλ  is a sequence of 
constants. If )(),0)((,)( xDxCxA >  and )(xE  are even functions and )(xB  is odd then 
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 where )(* xW  denotes the corresponding weight function as 
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Of course, the weight function defined in (16) must be positive and even on ],[ vv−  and vx =  
must be a root of the function 
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i.e. 0)()( =vKvA . Since )(/)()( * xCxWxK =  is an even function it follows that 

0)()( =−− vKvA  automatically. 
 
As we said, by using this theorem, many symmetric orthogonal functions can be generalized 
[3,4]. Here we introduce incomplete symmetric orthogonal polynomials of Jacobi type as the 
solutions of a generalized Sturm-Liouville equation of type (14). For this purpose, let us 
consider the shifted Jacobi polynomials on [0,1] as: 
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that satisfy the differential equation [2,5] 
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and orthogonality relation [5] 
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By referring to the main Theorem 1.1 and noting the Jacobi differential equation (19), we can 
construct a differential equation of type (14) whose solutions are orthogonal with respect to an 
even weight function, say bma xx )1( 22 − , on the symmetric interval [-1,1]. Hence, let us first 
substitute 
                                                   R∈= + θλθβαλ ,;)()( ),(
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into equation (19) to obtain the differential equation of )(xg  as 
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If we write for convenience 
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then the differential equation (22) is changed to 
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Now, by noting Theorem 1.1, let us define the following odd and even polynomial sequences 
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Therefore, the polynomial sequence )(xnΦ  defined in (25) can be written in a unique form as 
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According to definitions (25) and differential equation (24), )(2 xnΦ  should satisfy the 
equation 
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Hence, combining these two equations finally gives 
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which is a special case of the generalized Sturm-Liouville equation (14). Also, the weight 
function corresponding to (30) takes the form 
  

         .)1()
)1(

))22(2()(exp()(
1

2222
22

122
2 −

+
−−+

+

−=
−

+−−+
= ∫ m

qp
mqm

m

mm
m xxKdx

xx
xmxqpxxxxW  (31) 

                   
Note that we can, without loss of generality, suppose that 1=K  and since )(xW  must be 
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Then, the differential equation corresponding to options (32) has a polynomial solution as 
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which satisfies the orthogonality relation                                                                                (34) 
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To compute the norm square value of (34) we can directly use the orthogonality relation (20) 
so that for jn 2=  we have                                                                                                       
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Therefore, combining both relations (35) and (36) gives                                                         
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This value shows that the orthogonality (34) is valid if and only if 1−>b ; 0142 >++ sa ; 

02142 >+++ mbsa ; N∈m ; 0342 >++ ra ; 02342 >+++ mbra  and finally 1)1( 2 =− a  
because the weight function must be even. Now, it is a good position to present some practical 
examples. 
 
Example 1. Find the standard properties of incomplete symmetric polynomials orthogonal 
with respect to the weight function 44 1 xx −  on [-1,1].  
To solve the problem, it is sufficient in (33) to choose 2== am  and 2/1=b  to get the 
polynomials 
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that satisfy the differential equation 
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As (38) shows, )2,2/1,2;(),( xsr

nΦ  are incomplete symmetric polynomials with the degrees 
respectively {2s, 2r +1, 2s + 4, 2r + 5, 2s + 8, 2r + 9, ...}. For instance we have 
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Example 2. A generalization of generalized ultraspherical polynomials (GUP) 
 
It is known that the generalized ultraspherical polynomials [4,5] are orthogonal with respect to 
the weight function ba xx )1( 22 −  on [-1,1]. Now if 1=m  in (33), a generalization of GUP as  
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Again, as (41) shows, )1,,;(Φ ),( baxsr

n  are incomplete symmetric polynomials with the degrees 
respectively ),( srD  = {2s, 2r +1, 2s + 2, 2r + 3, 2s + 4, 2r + 5, ...} though it is complete for 

0== sr , because in this case we have +== Z,...}3,2,1,0{)0,0(D . 
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