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Abstract. By using the extended Sturm-Liouville theorem for symmetric functions, we 
introduce the following differential equation 
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in which )1222(2 +−+−= massβ ; )1)(12(2)1222(2 +−++−+−+= marrmassγ  and 
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n msrsmnm −−−+−++=α  and show that one of its basis solutions is a 

class of incomplete symmetric polynomials orthogonal with respect to the weight function 
)exp( 22 ma xx −  on ),( ∞−∞ . We also obtain the norm square value of this orthogonal class.  
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1. Introduction 
In the classical case, systems of orthogonal polynomials are set up such that the nth 
polynomial )(xnΦ  has exact degree n. Such systems form a basis of the space of polynomials 
and are most often complete. In this work we will consider incomplete sets of polynomials 
orthogonal with respect to the weight function )exp( 22 ma xx −  on ),( ∞−∞  such that the 
system ( )(xnΦ ) does not contain polynomials of every degree. Although such systems do not 
have all properties as in the classical case, they can nevertheless directly be applied to function 
approximation since we will explicitly compute their norm square values. 
We start our discussion with the equation 
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where 21 , αα and 21 , ββ  are given constants and )(,)(,)( xqxkxk ′  and )(xρ  in (1) and (2) 
are to be assumed continuous for ],[ bax∈ .  
The boundary value problem (1)-(3) is called a regular Sturm-Liouville problem [1]. In this 
sense, if one of the boundary points a and b is singular (i.e. 0)( =ak  or 0)( =bk ), the 
problem will be transformed to a singular Sturm-Liouville problem and one can then ignore 
the boundary conditions (3) and obtain the orthogonality relation directly.  
Now suppose )(xyn  and )(xym  are two solutions (eigenfunctions) of equation (1). According 
to Sturm-Liouville theory [1], they should be orthogonal with respect to the weight function 

)(xρ  on ),( ba  under the conditions (3), i.e. 
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Many important special functions in theoretical and mathematical physics are solutions of 
regular or singular Sturm-Liouville problems that satisfy the orthogonality relation (4). For 
instance, the associated Legendre functions [1], Bessel functions [1], trigonometric sequences 
related to Fourier analysis [2,5], ultraspherical functions [2,5], Hermite functions [1] and so on 
[3] are particular solutions of some Sturm-Liouville problems.  
 
Fortunately, most of these mentioned functions are symmetric and satisfy the symmetry 
property )()1()( xx n

n
n Φ−=−Φ . Hence, they have found various applications in mathematical 

physics and engineering [1,5]. Now, if we can extend the above-mentioned examples 
symmetrically and preserve their orthogonality property, it seems that we will be able to find 
some new applications in physics and engineering which might extend the previous 
applications. In this paper, we extend one of the classical symmetric orthogonal sequences and 
obtain its orthogonality property directly.  
For this purpose, we should first refer to a key theorem in [3] in which a symmetric 
generalization of usual Sturm-Liouville problems with symmetric solutions is presented.  
 
1.1. Theorem [3]. Let )()1()( xx n

n
n −Φ−=Φ  be a sequence of independent symmetric 

functions that satisfies the differential equation 
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where )(,)(,)(,)( xDxCxBxA  and )(xE  are real functions and }{ nλ  is a sequence of 
constants. If )(),0)((,)( xDxCxA >  and )(xE  are even functions and )(xB  is odd then 
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 where )(* xW  denotes the corresponding weight function as 
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Of course, the weight function defined in (16) must be positive and even on ],[ vv−  and vx =  
must be a root of the function 
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i.e. 0)()( =vKvA . In this sense, since )(/)()( * xCxWxK =  is an even function so 

0)()( =−− vKvA  automatically. 
 
As mentioned, using this theorem many symmetric orthogonal functions can be generalized 
[3]. Here we intend to introduce incomplete symmetric orthogonal polynomials of Laguerre 
type as solutions of a generalized Sturm-Liouville equation of type (5). For this purpose, we 
first consider the generalized Laguerre polynomials on ),0[ ∞  as: 
 

                                                          ∑
=









−
+−

=
n

k

k
k

n x
kn

n
k

xL
0

)(

!
)1()(

αα ,                                        (9) 

that satisfy the differential equation [2,5] 
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and the orthogonality relation [5] 
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By referring to Theorem 1.1 and the Laguerre differential equation (10), we can now construct 
a differential equation of type (5) whose solutions are orthogonal with respect to an even 
weight function, namely )exp( 22 ma xx − , on the symmetric interval ),( ∞−∞ . Hence, we first 
substitute 
                                                       R∈= θλθαλ ,;)()( )( xLxxg n ,                                          (12) 
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into equation (10) to obtain the differential equation of )(xg  as 
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If for convenience we take 
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then the differential equation (13) is transformed to 
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By referring to Theorem 1.1, let us now define the following odd and even polynomial 
sequences 
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Therefore, the polynomial sequence )(xnΦ  defined in (16) can be written in a unique form as 
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According to definitions (16) and equation (15), )(2 xnΦ  should satisfy the equation 
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Hence, combining these two equations finally gives 
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which is a special case of the generalized Sturm-Liouville equation (5). In this way, the weight 
function corresponding to equation (21) takes the form 
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Note that we can, without loss of generality, suppose that 1=K  and since )(xW  must be 

positive, and therefore the weight function (31) can be considered as )exp( 22 ma xx −  for 
222 −+= qma . 

 
1.2. Corollary. Suppose in the generic equation (5) that                                                     
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Then, the differential equation corresponding to options (23) has a polynomial solution as 
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which satisfies the orthogonality relation                                                                                (25) 
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To compute the norm square value of (25) we can directly use the orthogonality relation (11) 
so that for jn 2=  we have          
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and for 12 += jn  the norm square is                                                                                      

( )
22 4 3 2( )22 2 ( , ) 2 4 2 2 22

2 1 2 1

22 4 3 2 2 4 3 2( )
2 2

0

exp( ) ( ; , ) exp( ) ( )

1 1 2 4 3( ) ( ).
! 2

a r m
a m r s a r m mm

j j j

a r m a r m
tm m

j

N x x x a m dx x x L x dx

a rt e L t dx j
m m j m

+ + −
∞ ∞ + +

+ +−∞ −∞

+ + − + + −
∞ −

 
= − Φ = −  

 

  + +
= = Γ + 

 

∫ ∫

∫
     

                                                                                                                                                 (27) 
Therefore, combining both relations (35) and (36) gives         
                                                 

                        .212
2

142
2!)2/)((

1






 −+

+
++

+
−

Γ
−

= n
n

n
n m

sr
m

san
nm

N σ
σ

σ
                   (28) 

                                                                                                                                                  
This value shows that the orthogonality (25) is valid if and only if 0142 >++ sa ; 

0342 >++ ra  and finally 1)1( 2 =− a  because the weight function must be even.  
 
Now, it is time to present some practical examples. 
 
Example 1. Find the standard properties of incomplete symmetric polynomials orthogonal 
with respect to the weight function )exp( 44 xx −  on ),( ∞−∞ .  
To solve the problem, it is sufficient in (24) to choose 2== am  to get the polynomials 
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and the orthogonality relation 
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As (29) shows, )2,2;(),( xsr

nΦ  are incomplete symmetric polynomials with the degrees 
respectively {2s, 2r +1, 2s + 4, 2r + 5, 2s + 8, 2r + 9, ...}. For instance we have 
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,...}11,10,7,6,3,2{)2,2;(ofdegrees )1,1( =Φ xn . 
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Example 2. A generalization of generalized Hermite polynomials (GHP) 
 
It is known that the generalized Hermite polynomials [5] are orthogonal with respect to the 
weight function )exp( 22 xx a −  on ),( ∞−∞ . Now if 1=m  in (24), a generalization of GHP as  
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Again, as (32) shows, )1,;(),( axsr

nΦ  are incomplete symmetric polynomials with the degrees 
respectively ),( srD  = {2s, 2r +1, 2s + 2, 2r + 3, 2s + 4, 2r + 5, ...} though they are complete for 

0== sr , because in this case we have +== Z,...}3,2,1,0{)0,0(D . Finally we add that there is 
also an incomplete symmetric class of Jacobi polynomials [4] that are orthogonal with respect 
to the weight function bma xx )1( 22 −  on ]1,1[− . 
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