Functions satisfying holonomic q-differential equations

Wolfram Koepf
Department of Mathematics and Computer Science, University of Kassel, Germany, E-mail: koepf@mathematik.uni-kassel.de

Predrag M. Rajković

Department of Mathematics, Faculty of Mechanical Engineering
E-mail: pecar@masfak.ni.ac.yu

Sladjana D. Marinković

Department of Mathematics, Faculty of Electronic Engineering
E-mail: sladjana@elfak.ni.ac.yu
University of Niš, Serbia

Abstract

In a similar manner as in the papers [7] and [8], where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with power functions of q-holonomic functions are also q-holonomic and the resulting q-differential equations can be computed algorithmically.

Mathematics Subject Classification: 39A13, 33D15
Key words: q-derivative, q-differential equation, algorithm, algebra of q-holonomic functions.

1 Preliminaries

The purpose of this paper is to continue the research exposed in [7] and [8]. There, the authors discussed holonomic functions which are the solutions of homogeneous linear differential equations with polynomial coefficients.

In the present investigation, we consider a similar problem from the point of view of q-calculus. As general references for q-calculus see [2] and [4]. We begin with a few definitions.

Let $q \neq 1$. The q-complex number $[a]_{q}$ is given by

$$
[a]_{q}:=\frac{1-q^{a}}{1-q}, \quad a \in \mathbb{C} .
$$

Of course

$$
\lim _{q \rightarrow 1}[a]_{q}=a
$$

The q-factorial of a positive integer $[n]_{q}$ and the q-binomial coefficient are defined by

$$
[0]_{q}!:=1, \quad[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

The q-Pochammer symbol is given as

$$
\begin{aligned}
(a ; q)_{0} & =1 \\
(a ; q)_{k} & =(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{k-1}\right), \quad k=1,2, \ldots, \\
(a ; q)_{\infty} & =\lim _{k \rightarrow \infty}(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{k-1}\right)
\end{aligned}
$$

and

$$
(a ; q)_{\lambda}=\frac{(a ; q)_{\infty}}{\left(a q^{\lambda} ; q\right)_{\infty}} \quad(|q|<1, \lambda \in \mathbb{C}) .
$$

The q-derivative of a function $f(x)$ is defined by

$$
\begin{equation*}
D_{q} f(x):=\frac{f(x)-f(q x)}{x-q x}(x \neq 0), \quad D_{q} f(0):=\lim _{x \rightarrow 0} D_{q} f(x), \tag{1}
\end{equation*}
$$

and higher order q-derivatives are defined recursively

$$
\begin{equation*}
D_{q}^{0} f:=f, \quad D_{q}^{n} f:=D_{q} D_{q}^{n-1} f, \quad n=1,2,3, \ldots \tag{2}
\end{equation*}
$$

Of course, if f is differentiable at x, then

$$
\lim _{q \rightarrow 1} D_{q} f(x)=f^{\prime}(x) .
$$

The next four lemmas are well-known in q-calculus and their proofs can be seen, for example, in [3] or [4].

Lemma 1.1. For an arbitrary pair of functions $u(x)$ and $v(x)$ and constants $\alpha, \beta \in$ \mathbb{C} and $q \neq 1$, we have linearity and product rules

$$
\begin{aligned}
D_{q}(\alpha u(x)+\beta v(x)) & =\alpha D_{q} u(x)+\beta D_{q} v(x), \\
D_{q}(u(x) \cdot v(x)) & =u(q x) D_{q} v(x)+v(x) D_{q} u(x) \\
& =u(x) D_{q} v(x)+v(q x) D_{q} u(x) .
\end{aligned}
$$

Lemma 1.2. The Leibniz rule for the higher order q-derivatives of a product of functions is given as

$$
D_{q}^{n}(u(x) \cdot v(x))=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} D_{q}^{n-k} u\left(q^{k} x\right) D_{q}^{k} v(x) .
$$

Lemma 1.3. For an arbitrary function $u(x)$ and for $t(x)=c x^{k}\left(c, k \in \mathbb{C}, q^{k} \neq 1\right)$ we have for the composition with $t(x)$

$$
D_{q}(u \circ t)(x)=D_{q^{k}} u(t) \cdot D_{q} t(x) .
$$

Lemma 1.4. The values of the function for the shifted argument and for higher q derivatives are connected by the two relations:

$$
\begin{align*}
f\left(q^{n} x\right) & =\sum_{k=0}^{n}(-1)^{k}(1-q)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\binom{k}{2}} x^{k} D_{q}^{k} f(x), \tag{3}\\
D_{q}^{n} f(x) & =\frac{1}{(1-q)^{n} x^{n}} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} q^{\binom{k}{2}-(n-1) k} f\left(q^{k} x\right) . \tag{4}
\end{align*}
$$

For our further work, it is useful to write the product rule in slightly different form.
Lemma 1.5. The product rule for the q-derivative can be written in the form

$$
\begin{equation*}
D_{q}(u(x) \cdot v(x))=u(x) D_{q} v(x)+v(x) D_{q} u(x)-(1-q) x D_{q} u(x) D_{q} v(x) . \tag{5}
\end{equation*}
$$

In the same manner, higher q-derivatives can be expressed by

$$
D_{q}^{n}(u(x) \cdot v(x))=\sum_{\nu=0}^{n} \sum_{\mu=0}^{n} \alpha_{\nu \mu}(x) D_{q}^{\nu} u(x) D_{q}^{\mu} v(x),
$$

where $\alpha_{\nu \mu}(x)$ are appropriate polynomials.
Let us finally recall that the q-hypergeometric series is given by ([2], [6])

$$
{ }_{r} \phi_{s}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r} \\
b_{1}, b_{2}, \ldots, b_{s}
\end{array} \right\rvert\, q, x\right):=\sum_{k=0}^{\infty} \frac{\prod_{j=1}^{r}\left(a_{j} ; q\right)_{k}}{\prod_{j=1}^{s}\left(b_{j} ; q\right)_{k}} \frac{x^{k}}{(q ; q)_{k}}\left((-1)^{k} q^{\binom{k}{2}}\right)^{1+s-r} .
$$

$2 \mathrm{On} q$-holonomic functions

For every function $f(x)$ which is a solution of a polynomial homogeneous linear q differential equation

$$
\begin{equation*}
\sum_{k=0}^{n} \tilde{p}_{k}(x) D_{q}^{k} f(x)=0 \quad\left(\tilde{p}_{n} \not \equiv 0\right) \quad\left(\tilde{p}_{k} \in \mathbb{K}(q)[x], n \in \mathbb{N}\right) \tag{6}
\end{equation*}
$$

we say that $f(x)$ is a q-holonomic function. The smallest such n is called the holonomic order of $f(x)$. Here \mathbb{K} is a field, typically $\mathbb{K}=\mathbb{Q}\left(a_{1}, a_{2}, \ldots\right)$ or $\mathbb{K}=$ $\mathbb{C}\left(a_{1}, a_{2}, \ldots\right)$ where a_{1}, a_{2}, \ldots denote some parameters. An equation of type (6) is called a q-holonomic equation.
Example 2.1. Since

$$
D_{q} x^{s}=[s]_{q} x^{s-1} \quad(x, \alpha, s \in \mathbb{R}),
$$

we have

$$
f(x)=x^{s} \Rightarrow x D_{q} f(x)-[s]_{q} f(x)=0
$$

or

$$
(q-1) x D_{q} f(x)-\left(q^{s}-1\right) f(x)=0,
$$

i.e. the power function is (for integer s) a q-holonomic function of first order.

Example 2.2. For $0<|q|<1, \lambda \in \mathbb{R}, x \neq 0,1$, we have

$$
D_{q}\left((x ; q)_{\lambda}\right)=-[\lambda]_{q}(q x ; q)_{\lambda-1}=\frac{-[\lambda]_{q}}{1-x}(x ; q)_{\lambda}
$$

Hence

$$
f(x)=(x ; q)_{\lambda} \Rightarrow(x-1) D_{q} f(x)-[\lambda]_{q} f(x)=0
$$

or

$$
(q-1)(x-1) D_{q} f(x)-\left(q^{\lambda}-1\right) f(x)=0 .
$$

Therefore the q-Pochhammer symbol is (for integer λ) also q-holonomic of first order.
Similarly, from

$$
D_{q}\left((x ; q)_{\infty}\right)=-(1-q)^{-1}(q x ; q)_{\infty}=-\frac{1}{1-q} \frac{1}{1-x}(x ; q)_{\infty}
$$

we get

$$
f(x)=(x ; q)_{\infty} \quad \Rightarrow \quad(1-x) D_{q} f(x)+\frac{1}{1-q} f(x)=0
$$

Example 2.3. The small q-exponential function

$$
e_{q}(x)={ }_{1} \phi_{0}\left(\left.\begin{array}{c}
0 \\
-
\end{array} \right\rvert\, q, x\right)=\sum_{n=0}^{\infty} \frac{1}{(q ; q)_{n}} x^{n}, \quad|x|<1,0<|q|<1
$$

has q-derivative

$$
\begin{aligned}
D_{q} e_{q}(x) & =\frac{e_{q}(x)-e_{q}(q x)}{x-q x} \\
& =\frac{1}{x-q x}\left(\sum_{n=0}^{\infty} \frac{1}{(q ; q)_{n}} x^{n}-\sum_{n=0}^{\infty} \frac{1}{(q ; q)_{n}}(q x)^{n}\right) \\
& =\frac{1}{x-q x} \sum_{n=0}^{\infty} \frac{x^{n}-(q x)^{n}}{(q ; q)_{n}} \\
& =\frac{1}{x-q x}\left\{x+\sum_{n=2}^{\infty} \frac{1-q^{n}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n-1}\right)\left(1-q^{n}\right)} x^{n}\right\} \\
& =\frac{x}{x-q x}\left\{1+\sum_{k=1}^{\infty} \frac{1}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)} x^{k}\right\} \\
& =\frac{1}{1-q} e_{q}(x)
\end{aligned}
$$

i.e. the small q-exponential function is q-holonomic of first order:

$$
f(x)=e_{q}(x) \Rightarrow(1-q) D_{q} f(x)-f(x)=0 .
$$

Note that this q-differential equation as well the resulting q-differential equations of the next four examples and similar ones can be obtained completely automatically by the qsumdiffeq command of the Maple package qsum by Böing and Koepf [1]. The above equation, e.g., is obtained using the command

```
qsumdiffeq(1/qpochhammer(q,q,n)*x^n,q,n,f(x))}
```

Example 2.4. The big q-exponential function

$$
E_{q}(x)={ }_{0} \phi_{0}\left(\left.\begin{array}{c}
- \\
-
\end{array} \right\rvert\, q,-x\right)=\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}} x^{n}, \quad 0<|q|<1
$$

has q-derivative

$$
D_{q} E_{q}(x)=\frac{1}{x-q x}\left(\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}} x^{n}-\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}}(q x)^{n}\right)=\frac{1}{1-q} E_{q}(q x)
$$

which can obtained be in a similar way as in Example 2.3. Since

$$
f(q x)=f(x)-(1-q) x\left(D_{q} f\right)(x),
$$

we conclude that the big q-exponential function is also q-holonomic of first order:

$$
f(x)=E_{q}(x) \Rightarrow(1-q)(x+1) D_{q} f(x)-f(x)=0
$$

Example 2.5. For $0<|q|<1, q$-sine and q-cosine functions

$$
\begin{aligned}
& \sin _{q}(x)=\frac{e_{q}(\mathrm{i} x)-e_{q}(-\mathrm{i} x)}{2 \mathrm{i}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(q ; q)_{2 n+1}} x^{2 n+1} \\
& \cos _{q}(x)=\frac{e_{q}(\mathrm{i} x)+e_{q}(-\mathrm{i} x)}{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(q ; q)_{2 n}} x^{2 n}
\end{aligned}
$$

satisfy

$$
(1-q)^{2} D_{q}^{2} f(x)+f(x)=0
$$

and are therefore q-holonomic of second order.
Example 2.6. The q-hypergeometric series ${ }_{r} \phi_{s}$ is q-holonomic. The qsumdiffeq command computes in particular for

$$
f(x)={ }_{2} \phi_{1}\left(\begin{array}{c|c}
a, b & q, x \\
c &
\end{array}\right)
$$

the q-holonomic equation

$$
\begin{aligned}
0= & (x a b q-c) x(q-1)^{2} D_{q}^{2} f(x) \\
& +(-x b-x a+1+x a b q-c+x a b)(q-1) D_{q} f(x) \\
& +(-1+a)(-1+b) f(x) .
\end{aligned}
$$

Example 2.7 Many q-orthogonal polynomials are q-holonomic. The $\operatorname{Big} q$-Jacobi polynomials (see e.g. [5], 3.5) are given by

$$
f(x)=P_{n}(x ; a, b, c ; q)={ }_{3} \phi_{2}\left(\left.\begin{array}{c|c}
q^{-n}, a b q^{n+1}, x & q, q \\
a q, c q
\end{array} \right\rvert\,\right.
$$

They satisfy the q-holonomic equation

$$
\begin{aligned}
0= & q^{n} a(b q x-c)(q-1)^{2}(1-q x) D_{q}^{2} f(x) \\
& +(q-1)\left(a b q^{n+1}+a b q^{2 n+1} x+x-q^{n} a-q^{n} c-a b q^{n+1} x-a b q^{n+2} x+q^{n+1} a c\right) D_{q} f(x) \\
& +\left(q^{n}-1\right)\left(a b q^{n+1}-1\right) f(x)
\end{aligned}
$$

which is again easily determined by the qsumdiffeq command.
The following lemma will be the crucial tool for the investigations of the next section.
Lemma 2.1. If $f(x)$ is a function satisfying a holonomic equation (6) of order n, then the functions $D_{q}^{l} f(x)(l=n, n+1, \ldots)$ can be expressed as

$$
\begin{equation*}
D_{q}^{l} f(x)=\sum_{k=0}^{n-1} p_{k}^{(l)}(x) D_{q}^{k} f(x), \tag{7}
\end{equation*}
$$

where $p_{k}^{(l)}(x)$ are rational functions defined by
$p_{k}^{(l)}(x)=\left\{\begin{array}{cc}\delta_{k l}, & 0 \leq l<n-1, \\ -\frac{\tilde{p}_{k}(x)}{\tilde{p}_{n}(x)}, & l=n \\ p_{k-1}^{(l-1)}(q x)+D_{q} p_{k}^{(l-1)}(x)+p_{n-1}^{(l-1)}(q x) p_{k}^{(n)}(x), & l>n,\end{array}\right.$
for $0 \leq k \leq n-1$ and 0 for other k 's.
Proof. The representations (7) and the corresponding coefficients are evident by Equation (6) for $l=0,1, \ldots, n$. By q-deriving and using Lemma 1.1, from

$$
D_{q}^{n} f(x)=\sum_{k=0}^{n-1} p_{k}^{(n)}(x) D_{q}^{k} f(x)
$$

we get

$$
\begin{aligned}
D_{q}^{n+1} f(x) & =\sum_{k=0}^{n-1} D_{q}\left(p_{k}^{(n)}(x) D_{q}^{k} f(x)\right) \\
& =\sum_{k=0}^{n-1} p_{k}^{(n)}(q x) D_{q}^{k+1} f(x)+\sum_{k=0}^{n-1} D_{q}\left(p_{k}^{(n)}(x)\right) D_{q}^{k} f(x) \\
& =\sum_{k=0}^{n-1}\left(p_{k-1}^{(n)}(q x)+D_{q}\left(p_{k}^{(n)}(x)\right) D_{q}^{k} f(x)\right)+p_{n-1}^{(n)}(x) D_{q}^{n} f(x) \\
& =\sum_{k=0}^{n-1} p_{k}^{(n+1)}(x) D_{q}^{k} f(x),
\end{aligned}
$$

with

$$
p_{k}^{(n+1)}(x)=p_{k-1}^{(n)}(q x)+D_{q} p_{k}^{(n)}(x)+p_{n-1}^{(n)}(q x) p_{k}^{(n)}(x) \quad(0 \leq k \leq n-1)
$$

Repeating the procedure, we get the representation and coefficients for arbitrary $l>n$. \diamond
We finish this section by noting that there are functions which are not q-holonomic.
Lemma 2.2. The exponential function $f(x)=a^{x}(a>0, a \neq 1)$ is not q-holonomic.
Proof. Taking successive q-derivatives of $f(x):=a^{x}$ generates iteratively the functions of the list $L:=\left\{a^{x}, a^{q x}, a^{q^{2} x}, \ldots\right\}$. Since the members of L are linearly independent over $\mathbb{K}(q)[x]$, the linear space over $\mathbb{K}(q)[x]$ generated by L has infinite dimension. This is equivalent to the fact that there is no q-holonomic equation for $f(x)$. \diamond

3 Operations with q-holonomic functions

In this section, we will formulate and prove a few theorems about q-holonomic functions provided by derivation, addition or multiplication of the given q-holonomic functions.

Theorem 3.1. If $f(x)$ is a q-holonomic function of order n, then the function $h_{m}(x)=$ $D_{q}^{m} f(x)$ is a q-holonomic function of order at most n for every $m \in \mathbb{N}$. Furthermore, there is an algorithm to compute the corresponding q-differential equation.

Proof. If we prove the statement for $m=1$, the final conclusion follows by mathematical induction.

Let $h(x)=D_{q} f(x)$, where the function $f(x)$ satisfies (6). If $\tilde{p}_{0}(x) \equiv 0$, then immediately $h(x)$ is a q-holonomic function of order $n-1$.

Hence, let $\tilde{p}_{0}(x) \not \equiv 0$. Then, by Lemma 2.1, we have

$$
D_{q}^{n} f(x)=\sum_{k=0}^{n-1} p_{k}^{(n)}(x) D_{q}^{k} f(x),
$$

wherefrom

$$
\begin{aligned}
f(x) & =\frac{1}{p_{0}^{(n)}(x)}\left(D_{q}^{n} f(x)-\sum_{k=1}^{n-1} p_{k}^{(n)}(x) D_{q}^{k} f(x)\right) \\
& =\frac{1}{p_{0}^{(n)}(x)}\left(D_{q}^{n-1} h(x)-\sum_{k=0}^{n-2} p_{k+1}^{(n)}(x) D_{q}^{k} h(x)\right) .
\end{aligned}
$$

Also, by q-deriving, we get

$$
\begin{aligned}
D_{q}^{n} h(x) & \\
& =D_{q}^{n+1} f(x)=\sum_{k=0}^{n-1} p_{k}^{(n+1)}(x) D_{q}^{k} f(x) \\
& =p_{0}^{(n+1)}(x) f(x)+\sum_{k=1}^{n-1} p_{k}^{(n+1)}(x) D_{q}^{k-1} h(x) \\
& =\frac{p_{0}^{(n+1)}(x)}{p_{0}^{(n)}(x)}\left(D_{q}^{n-1} h(x)-\sum_{k=0}^{n-2} p_{k+1}^{(n)}(x) D_{q}^{k} h(x)\right)+\sum_{k=0}^{n-2} p_{k+1}^{(n+1)}(x) D_{q}^{k} h(x) .
\end{aligned}
$$

Hence,

$$
D_{q}^{n} h(x)=\sum_{k=0}^{n-1} P_{k}(x ; h) D_{q}^{k} h(x),
$$

where

$$
\begin{aligned}
P_{k}(x ; h) & =p_{k+1}^{(n+1)}(x)-\frac{p_{0}^{(n+1)}(x)}{p_{0}^{(n)}(x)} p_{k+1}^{(n)}(x), \quad k=0,1, \ldots n-2, \\
P_{n-1}(x ; h) & =\frac{p_{0}^{(n+1)}(x)}{p_{0}^{(n)}(x)} .
\end{aligned}
$$

By multiplying with the common denominator of the rational functions $\left\{P_{k}(x ; h), k=\right.$ $0,1, \ldots, n-1\}$, we can conclude that $h(x)$ satisfies the equation

$$
\sum_{k=0}^{n} \tilde{P}_{k}(x ; h) D_{q}^{k} h(x)=0,
$$

i.e it is a q-holonomic function of order $\leq n$. \diamond

Example 3.1. In Example 2.2, for the q-Pochhammer symbol we proved that it satisfies

$$
f(x)=(x ; q)_{\infty} \quad \Rightarrow \quad(1-x) D_{q} f(x)+\frac{1}{1-q} f(x)=0 .
$$

Now, we have
$h_{m}(x)=D_{q}^{m}\left((x ; q)_{\infty}\right) \quad \Rightarrow \quad\left(1-q^{m} x\right) D_{q} h_{m}(x)+\frac{q^{m}}{1-q} h_{m}(x)=0 \quad\left(m \in \mathbb{N}_{0}\right)$.
Theorem 3.2. If $u(x)$ and $v(x)$ are q-holonomic functions of order n and m respectively, then the functions $u(x)+v(x)$ are q-holonomic functions of order at most $m+n$ and there is an algorithm to compute the corresponding q-differential equations.

Proof. If $u(x)$ and $v(x)$ are q-holonomic functions of order n and m respectively, they satisfy holonomic equations

$$
\begin{equation*}
\sum_{k=0}^{n} \tilde{p}_{k}(x) D_{q}^{k} u(x)=0, \quad \sum_{j=0}^{m} \tilde{r}_{j}(x) D_{q}^{j} v(x)=0 \tag{8}
\end{equation*}
$$

where $\tilde{p}_{k}(x)$ and $\tilde{r}_{j}(x)$ are polynomials and $\tilde{p}_{n} \not \equiv 0, \tilde{r}_{m} \not \equiv 0$. According to Lemma 2.1, $D_{q}^{l} u(x)$ and $D_{q}^{l} v(x)$ can be represented as

$$
\begin{equation*}
D_{q}^{l} u(x)=\sum_{k=0}^{n-1} p_{k}^{(l)}(x) D_{q}^{k} u(x), \quad D_{q}^{l} v(x)=\sum_{j=0}^{m-1} r_{j}^{(l)}(x) D_{q}^{j} v(x), \tag{9}
\end{equation*}
$$

where $p_{k}^{(l)}(x)$ and $r_{j}^{(l)}(x)$ are rational functions as mentioned lemma.
Let $h(x)=u(x)+v(x)$. Then, according to (9), we have

$$
\begin{equation*}
D_{q}^{l} h(x)=\sum_{k=0}^{n-1} p_{k}^{(l)}(x) D_{q}^{k} u(x)+\sum_{j=0}^{m-1} r_{j}^{(l)}(x) D_{q}^{j} v(x), \quad l=0,1, \ldots, m+n \tag{10}
\end{equation*}
$$

Taking the values for $l=0,1, \ldots, m+n-1$ in the above identities and expressing q-derivatives of $u(x)$ and $v(x)$ by q-derivatives of $h(x)$, we get

$$
\begin{aligned}
D_{q}^{k} u(x) & =\sum_{l=0}^{m+n-1} a_{k}^{(l)}(x) D_{q}^{l} h(x), \quad k=0,1, \ldots, n-1, \\
D_{q}^{j} v(x) & =\sum_{l=0}^{m+n-1} b_{j}^{(l)}(x) D_{q}^{l} h(x), \quad j=0,1, \ldots, m-1 .
\end{aligned}
$$

By eliminating $D_{q}^{k} u(x)(k=0,1, \ldots, n-1)$ and $D_{q}^{j} v(x)(j=0,1, \ldots, m-1)$ from the last identity $(l=m+n)$ of (10), we get

$$
D_{q}^{m+n} h(x)=\sum_{l=0}^{m+n-1} c_{l}(x) D_{q}^{l} h(x),
$$

where

$$
c_{l}(x)=\sum_{k=0}^{n-1} p_{k}^{(l)}(x) a_{k}^{(l)}(x)+\sum_{j=0}^{m-1} r_{j}^{(l)}(x) b_{j}^{(l)}(x)
$$

By multiplying with the common denominator of $\left\{c_{l}(x), l=0,1, \ldots m+n-1\right\}$, we get the holonomic equation for $h(x)$

$$
\sum_{l=0}^{m+n} \tilde{c}_{l}(x) D_{q}^{l} h(x)=0 .
$$

This proves that the q-holonomic order of $u(x)+v(x)$ is at most $m+n$, but can be less. An iterative version of the given algorithm will determine the q-holonomic equation of lowest order for $u(x)+v(x) . \diamond$

Note that the algorithm given in Theorem 3.2 finds a q-differential equation which is not only valid for $u(x)+v(x)$, but also for every linear combination $\lambda_{1} u(x)+\lambda_{2} v(x)$, in particular for $u(x)-v(x)$.

Example 3.2. The small q-exponential function from Example 2.3 is q-holonomic of first order and satisfies

$$
u(x)=e_{q}(x) \Rightarrow D_{q}^{k} u(x)=\frac{1}{(1-q)^{k}} u(x) \quad(k=0,1, \ldots)
$$

Also, the q-sine from Example 2.5 is q-holonomic of second order and satisfies

$$
v(x)=\sin _{q}(x) \Rightarrow D_{q}^{k+2} v(x)=\frac{-1}{(1-q)^{2}} D_{q}^{k} v(x) \quad(k=0,1, \ldots)
$$

Now, by the algorithm given in the proof of Theorem 3.2, the function $h(x)=u(x)+$ $v(x)$ satisfies

$$
D_{q}^{3} h(x)=\frac{1}{1-q} D_{q}^{2} h(x)-\frac{1}{(1-q)^{2}} D_{q} h(x)+\frac{1}{(1-q)^{3}} h(x) .
$$

i.e., it is q-holonomic of third order.

Theorem 3.3. If $u(x)$ and $v(x)$ are q-holonomic functions of order n and m respectively, then the function $u(x) \cdot v(x)$ is q-holonomic of order at most $m \cdot n$ and there is an algorithm to compute the corresponding q-differential equation.

Proof. If $u(x)$ and $v(x)$ are q-holonomic functions of order n and m respectively, they satisfy holonomic equations (8), and their q-derivatives (9).

Let $h(x)=u(x) \cdot v(x)$. Then, according to (1.5), we have

$$
\begin{aligned}
D_{q}^{l} h(x) & =\sum_{\nu=0}^{l} \sum_{\mu=0}^{l} \alpha_{\nu \mu}(x) D_{q}^{\nu} u(x) D_{q}^{\mu} v(x) \\
& =\sum_{\nu=0}^{l} \sum_{\mu=0}^{l} \alpha_{\nu \mu}(x)\left(\sum_{k=0}^{n-1} p_{k}^{(\nu)}(x) D_{q}^{k} u(x)\right)\left(\sum_{j=0}^{m-1} r_{j}^{(\mu)}(x) D_{q}^{j} v(x)\right)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
D_{q}^{l} h(x)=\sum_{k=0}^{n-1} \sum_{j=0}^{m-1} \beta_{k j}^{(l)}(x) D_{q}^{k} u(x) D_{q}^{j} v(x) \quad(l=0,1, \ldots, m n), \tag{11}
\end{equation*}
$$

where

$$
\beta_{k j}^{(l)}(x)=\sum_{\nu=0}^{l} \sum_{\mu=0}^{l} \alpha_{\nu \mu}(x) p_{k}^{(\nu)}(x) r_{j}^{(\mu)}(x) .
$$

Taking the relations for (11) for $l=0,1, \ldots, m n-1$ and expressing the q-derivatives $D_{q}^{k} u(x) D_{q}^{j} v(x)$ by q-derivatives of $h(x)$, we get

$$
D_{q}^{k} u(x) D_{q}^{j} v(x)=\sum_{l=0}^{m n-1} \gamma_{k j}^{(l)}(x) D_{q}^{l} h(x) \quad(0 \leq k \leq n-1 ; 0 \leq j \leq m-1)
$$

Eliminating all those $D_{q}^{k} u(x) D_{q}^{j} v(x)$ from the last identity $(l=m n)$ of (11), it becomes

$$
D_{q}^{m n} h(x)=\sum_{l=0}^{m n-1} \sigma_{l}(x) D_{q}^{l} h(x),
$$

where

$$
\sigma_{l}(x)=\sum_{k=0}^{n-1} \sum_{j=0}^{m-1} \beta_{k j}^{(l)}(x) \gamma_{k j}^{(l)}(x) .
$$

By multiplying with the common denominator of $\left\{\sigma_{l}(x), l=0,1, \ldots m n-1\right\}$, we get the q-holonomic equation for $h(x)$

$$
\sum_{l=0}^{m n} \tilde{\sigma}_{l}(x) D_{q}^{l} h(x)=0 .
$$

This proves that the q-holonomic order of $u(x) \cdot v(x)$ is at most $m n$, but can be less. An iterative version of the given algorithm will determine the q-holonomic equation of lowest order for $u(x) \cdot v(x) \cdot \diamond$

Note furthermore that by Lemma 2.2 there is no similar algorithm for the quotient $u(x) / v(x)$
Example 3.3. We use again $u(x)=e_{q}(x)$ and $v(x)=\sin _{q}(x)$. Now, by the given algorithm the function $h(x)=u(x) \cdot v(x)$ satisfies

$$
(1-q)^{2} D_{q}^{2} h(x)-\left(1-q^{2}\right) D_{q} h(x)+\left(q x^{2}-(1+q)(x-1)\right) h(x)=0,
$$

i.e., it is q-holonomic of second order.

Theorem 3.4. If $u(x)$ is a q-holonomic function of order n, then the function $w(x)=$ $u\left(x^{\nu}\right)(\nu \in \mathbb{N})$ is a q-holonomic function of order at most n and there is an algorithm to compute the corresponding q-differential equation.

Proof. By assumption $u(t)$ satisfies a q-holonomic equation

$$
\begin{equation*}
\sum_{k=0}^{n} \tilde{p}_{k}(t) D_{q}^{k} u(t)=0 \tag{12}
\end{equation*}
$$

where $\tilde{p}_{k}(t)$ are polynomials and $\tilde{p}_{n} \not \equiv 0$. Then, by Lemma $2.1, D_{q}^{l} u(t)$ can be represented as

$$
\begin{equation*}
D_{q}^{l} u(t)=\sum_{k=0}^{n-1} p_{k}^{(l)}(t) D_{q}^{k} u(t), \tag{13}
\end{equation*}
$$

where $p_{k}^{(l)}(t)$ are rational functions determined by that lemma.
Let $t=x^{\nu}$. Using Lemma 1.3, we have

$$
D_{q} w(x)=D_{q^{\nu}} u(t) D_{q}\left(x^{\nu}\right)=\frac{u(t)-u\left(q^{\nu} t\right)}{\left(1-q^{\nu}\right) t}[\nu]_{q} x^{\nu-1}
$$

According to (4), we get

$$
D_{q} w(x)=\sum_{j=1}^{\nu} e_{j, \nu}(x) D_{q}^{j} u(t),
$$

where

$$
e_{j, \nu}(x)=(-1)^{j-1}(1-q)^{j-1}\left[\begin{array}{c}
\nu \tag{14}\\
j
\end{array}\right]_{q} q^{\left(\frac{j}{2}\right)} x^{\nu j-1}, \quad j=1,2, \ldots, \nu
$$

By (13), we can write

$$
D_{q} w(x)=\sum_{j=1}^{\nu} e_{j, \nu}(x) \sum_{k=0}^{n-1} p_{k}^{(j)}(t) D_{q}^{k} u(t)=\sum_{k=0}^{n-1} f_{k, \nu}^{(1)}(x) D_{q}^{k} u(t),
$$

where

$$
\begin{equation*}
f_{k, \nu}^{(1)}(x)=\sum_{j=1}^{\nu} p_{k}^{(j)}\left(x^{\nu}\right) e_{j, \nu}(x), \quad k=0,1, \ldots, n-1 \tag{15}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
D_{q}^{2} w(x) & =\sum_{k=0}^{n-1} D_{q}\left(f_{k, \nu}^{(1)}(x) D_{q}^{k} u(t)\right) \\
& =\sum_{k=0}^{n-1} D_{q} f_{k, \nu}^{(1)}(x) D_{q}^{k} u(t)+\sum_{k=0}^{n-1} f_{k, \nu}^{(1)}(q x) D_{q}\left(D_{q}^{k} u(t)\right)
\end{aligned}
$$

As before, the second sum in the above term can be transformed to

$$
\begin{aligned}
\sum_{i=0}^{n-1} f_{i, \nu}^{(1)}(q x) D_{q}\left(D_{q}^{i} u(t)\right) & =\sum_{i=0}^{n-1} f_{i, \nu}^{(1)}(q x) \sum_{j=1}^{\nu} e_{j, \nu}(x) D_{q}^{j}\left(D_{q}^{i} u(t)\right) \\
& =\sum_{i=1}^{n-1} \sum_{j=1}^{\nu} f_{i, \nu}^{(1)}(q x) e_{j, \nu}(x) D_{q}^{i+j} u(t) \\
& =\sum_{i=1}^{n-1} \sum_{j=1}^{\nu} f_{i, \nu}^{(1)}(q x) e_{j, \nu}(x) \sum_{k=0}^{n-1} p_{k}^{(i+j)}(t) D_{q}^{k} u(t) .
\end{aligned}
$$

Hence,

$$
D_{q}^{2} w(x)=\sum_{k=0}^{n-1} f_{k, \nu}^{(2)}(x) D_{q}^{k} u(t),
$$

where

$$
f_{k, \nu}^{(2)}(x)=D_{q} f_{k, \nu}^{(1)}(x)+\sum_{i=0}^{n-1} \sum_{j=1}^{\nu} f_{i, \nu}^{(1)}(q x) e_{j, \nu}(x) p_{k}^{(i+j)}\left(x^{\nu}\right), \quad k=0,1, \ldots, n-1 .
$$

By induction, we obtain the representations

$$
\begin{equation*}
D_{q}^{l} w(x)=\sum_{k=0}^{n-1} f_{k, \nu}^{(l)}(x) D_{q}^{k} u(t), \quad l=0,1,2, \ldots, n \tag{16}
\end{equation*}
$$

where $f_{k, \nu}^{(0)}(x)=\delta_{k 0}, \quad f_{k, \nu}^{(1)}(x)$ is given in (15) and

$$
\begin{equation*}
f_{k, \nu}^{(l)}(x)=D_{q} f_{k, \nu}^{(l-1)}(x)+\sum_{i=0}^{n-1} \sum_{j=1}^{\nu} f_{i, \nu}^{(l-1)}(q x) e_{j, \nu}(x) p_{k}^{(i+j)}\left(x^{\nu}\right) . \tag{17}
\end{equation*}
$$

Taking the first n of the identities (16), we can determine

$$
D_{q}^{k} u(t)=\sum_{l=0}^{n-1} b_{l, \nu}^{(k)}(x) D_{q}^{l} w(x), \quad k=0,1, \ldots, n-1,
$$

where $b_{l, \nu}^{(k)}(x)$ are rational functions. Substituting this in identity (16), we get

$$
D_{q}^{n} w(x)=\sum_{k=0}^{n-1} f_{k, \nu}^{(l)}(x) \sum_{l=0}^{n-1} b_{l, \nu}^{(k)}(x) D_{q}^{l} w(x)=\sum_{l=0}^{n-1} c_{l, \nu}(x) D_{q}^{l} w(x),
$$

where

$$
c_{l, \nu}(x)=\sum_{k=0}^{n-1} f_{k, \nu}^{(l)}(x) b_{l, \nu}^{(k)}(x) .
$$

By multiplying with the common denominator of $\left\{c_{l, \nu}(x), l=0,1, \ldots, n-1\right\}$, we obtain

$$
\sum_{l=0}^{n} \tilde{c}_{l, \nu}(x) D_{q}^{l} w(x)=0
$$

Example 3.4. In Example 2.1, it was proved that

$$
u(x)=x^{s} \Rightarrow(q-1) x D_{q} u(x)-\left(q^{s}-1\right) u(x)=0 .
$$

Hence $n=1, \tilde{p}_{1}(x)=(q-1) x$ and $\tilde{p}_{0}(x)=-\left(q^{s}-1\right)$. By the procedure of Theorem 3.4, we get for $w(x)=u(x)^{\nu}$

$$
D_{q} w(x)=f_{0, \nu}^{(1)}(x) w(x) \quad \text { where } \quad f_{0, \nu}^{(1)}(x)=\frac{q^{s \nu}-1}{q-1} \cdot \frac{1}{x} .
$$

Finally,

$$
w(x)=u\left(x^{\nu}\right) \Rightarrow(q-1) x D_{q} w(x)-\left(q^{s \nu}-1\right) w(x)=0 .
$$

Example 3.5. In Example 2.2, it was proved that

$$
u(x)=(x ; q)_{\lambda} \Rightarrow(q-1)(x-1) D_{q} u(x)-\left(q^{\lambda}-1\right) u(x)=0 .
$$

Using our algorithm we get for $w(x)=u\left(x^{2}\right)=\left(x^{2} ; q\right)_{\lambda}$ the q-holonomic equation $(q-1)(x-1)(x+1)\left(x^{2} q-1\right) D_{q} w(x)-x\left(q^{\lambda}-1\right)\left(x^{2} q^{\lambda+1}-q-1+x^{2} q\right) f(x)=0$ and similar, but more complicated, equations for $\left(x^{\nu} ; q\right)_{\lambda}$ for higher $\nu \in \mathbb{N}$.
Example 3.6. In Example 2.5, for the q-sine function, we got

$$
u(x)=\sin _{q}(x) \Rightarrow(1-q)^{2} D_{q}^{2} u(x)+u(x)=0
$$

Now, for $w(x)=u\left(x^{2}\right)$, we have

$$
D_{q} w(x)=f_{0,2}^{(1)}(x) u(t)+f_{1,2}^{(1)}(x) D_{q} u(t),
$$

with

$$
f_{0,2}^{(1)}(x)=\frac{q x^{3}}{1-q}, \quad f_{1,2}^{(1)}(x)=(1+q) x
$$

and

$$
D_{q}^{2} w(x)=f_{0,2}^{(2)}(x) u(t)+f_{1,2}^{(2)}(x) D_{q} u(t)
$$

with

$$
\begin{aligned}
& f_{0,2}^{(2)}(x)=\frac{(q x)^{2}\left(-2-q-q^{2}+q^{3} x^{4}\right)}{(1-q)^{2}} \\
& f_{1,2}^{(2)}(x)=\frac{(1+q)\left(1-q+q^{2}\left(1+q^{2}\right) x^{4}\right)}{1-q} .
\end{aligned}
$$

By eliminating $D_{q} u(t)$, we get

$$
D_{q}^{2} w(x)=c_{0,2}(x) w(x)+c_{1,2}(x) D_{q} w(x)
$$

wherefrom we get for the function $w(x)=u\left(x^{2}\right)$ the following equation

$$
x D_{q}^{2} w(x)-\left(1+q^{2} \frac{1+q^{2}}{1-q} x^{4}\right) D_{q} w(x)+q x^{3}\left(\frac{1-q^{4}}{(1-q)^{3}}+\frac{q^{2}}{(1-q)^{2}} x^{4}\right) w(x)=0 .
$$

4 Sharpness of the algorithms

In the previous section we proved that the sum, product and composition with powers of q-holonomic functions are q-holonomic too. In this section we show that the given bounds for the orders are sharp in all algorithms considered.
Example 4.1. The functions $u(x)=x^{2}$ and $v(x)=x^{3}$ are q-holonomic of first order. According to Theorem 3.2, the function $h(x)=u(x)+v(x)$ is q-holonomic of order at most two. However, all polynomials are q-holonomic functions of first order, and we find that $h(x)$ satisfies the equation

$$
x(1+x) D_{q} h(x)-\left([2]_{q}+[3]_{q} x\right) h(x)=0 .
$$

This example shows that the order of the sum of some q-holonomic functions can be strictly less than the sum of their orders. This applies if the two functions $u(x)$ and $v(x)$ are linearly dependent over $\mathbb{K}(q)(x)$.

However, we will prove that for every algorithm given in the previous section there are functions for which the maximal order is attained.

Lemma 4.1. The functions $E_{q}\left(x^{\mu}\right)(\mu=1,2, \ldots, n)$ are linearly independent over $\mathbb{K}(q)(x)$.

Proof. Let us consider a linear combination

$$
r_{1} E_{q}(x)+r_{2} E_{q}\left(x^{2}\right)+\cdots+r_{n} E_{q}\left(x^{n}\right)=0
$$

where $r_{\mu}=r_{\mu}(x)(\mu=1,2, \ldots, n)$ are rational functions and suppose that $r_{\nu} \not \equiv 0$. Then,

$$
r_{\nu} E_{q}\left(x^{\mu}\right)=-\sum_{\substack{\mu=0 \\ \mu \neq \nu}}^{n} r_{\mu} E_{q}\left(x^{\mu}\right)
$$

i.e.,

$$
\begin{equation*}
\sum_{\substack{\mu=0 \\ \mu \neq \nu}}^{n} \frac{r_{\mu}}{r_{\nu}} \frac{E_{q}\left(x^{\mu}\right)}{E_{q}\left(x^{\nu}\right)}=-1 \tag{18}
\end{equation*}
$$

Since

$$
A(m)=\lim _{x \rightarrow \infty} \frac{\sum_{n=0}^{m} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}}\left(x^{\mu}\right)^{n}}{\sum_{n=0}^{m} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}}\left(x^{\nu}\right)^{n}}=\lim _{x \rightarrow \infty} x^{m(\mu-\nu)}=\left\{\begin{array}{cl}
+\infty, & \mu>\nu \\
0, & \mu<\nu
\end{array}\right.
$$

we have

$$
\lim _{x \rightarrow \infty} \frac{E_{q}\left(x^{\mu}\right)}{E_{q}\left(x^{\nu}\right)}=\lim _{m \rightarrow \infty} A(m)=\left\{\begin{array}{cl}
+\infty, & \mu>\nu \\
0, & \mu<\nu
\end{array}\right.
$$

This is a contradiction with (18). Hence, it follows that $r_{\mu} \equiv 0$ for all $\mu=1,2, \ldots, n$, i.e. $E_{q}\left(x^{\mu}\right)(\mu=1,2, \ldots, n)$ are linearly independent over $\mathbb{K}(q)[x]$. \diamond

Lemma 4.2. The function

$$
\begin{equation*}
F_{n}(x)=\sum_{\mu=1}^{n} E_{q}\left(x^{\mu}\right) \tag{19}
\end{equation*}
$$

is q-holonomic of order n.
Proof. The function $E_{q}(x)$ satisfies the q-holonomic equation of first order (see Example 2.4)

$$
(1-q)(t+1) D_{q} f(t)-f(t)=0
$$

With respect to Theorem 3.4, for each $\mu \in \mathbb{N}$, the function $E_{q}\left(x^{\mu}\right)$ is q-holonomic of first order and one has

$$
\begin{equation*}
D_{q}^{l}\left(E_{q}\left(x^{\mu}\right)\right)=f_{0, \mu}^{(l)}(x) E_{q}\left(x^{\mu}\right), \quad l=0,1, \ldots \tag{20}
\end{equation*}
$$

where $f_{0, \mu}^{(l)}(x)$ are rational functions given as in (17).

According to Theorem 3.2, the function $F_{n}(x)$ is q-holonomic of order at most n. Therefore

$$
D_{q}^{l} F_{n}(x)=\sum_{\mu=1}^{n} D_{q}^{l}\left(E_{q}\left(x^{\mu}\right)\right)=\sum_{\mu=1}^{n} f_{0, \mu}^{(l)}(x) E_{q}\left(x^{\mu}\right) .
$$

Let us suppose that the function $F_{n}(x)$ satisfies a q-holonomic equation of order m, i.e.

$$
\begin{equation*}
D_{q}^{m} F_{n}(x)+\sum_{i=0}^{m-1} A_{i} D_{q}^{i} F_{n}(x)=0 \tag{21}
\end{equation*}
$$

This equation can be represented in the form

$$
\sum_{\mu=1}^{n}\left(f_{0, \mu}^{(m)}(x)+\sum_{i=0}^{m-1} A_{i} f_{0, \mu}^{(i)}(x)\right) E_{q}\left(x^{\mu}\right)=0
$$

Since $E_{q}\left(x^{\mu}\right)(\mu=1,2, \ldots, n)$ are linearly independent over $\mathbb{K}(q)[x]$, it follows that

$$
f_{0, \mu}^{(m)}(x)+\sum_{i=0}^{m-1} A_{i} f_{0, \mu}^{(i)}(x)=0, \quad \mu=1,2, \ldots, n
$$

This can be written in the form of the system of equations

$$
\sum_{i=0}^{m-1} A_{i} f_{0, \mu}^{(i)}(x)=-f_{0, \mu}^{(m)}(x), \quad \mu=1,2, \ldots, n
$$

with unknown rational functions $A_{i}=A_{i}(x)$.
If $m<n$, then the system is overdetermined and has no solution. Hence it follows that $m=n$. \diamond

Theorem 4.3. For each $n \in \mathbb{N}$ there is a function F which is q-holonomic of order n, such that $H=D_{q} F$ is q-holonomic of order n.
Proof. The function defined by (19) satisfies the statement. \diamond
Theorem 4.4. For each $n, m \in \mathbb{N}$ there are functions U and V that are q-holonomic of order n and m respectively, such that $H=U+V$ is q-holonomic of order $n+m$.

Proof. Consider the functions

$$
\begin{equation*}
U(x)=\sum_{\mu=1}^{n} E_{q}\left(x^{\mu}\right) \quad \text { and } \quad V(x)=\sum_{\mu=n+1}^{n+m} E_{q}\left(x^{\mu}\right) . \tag{22}
\end{equation*}
$$

According to Lemma 4.2, they are q-holonomic of order n and m respectively, and the function

$$
H(x)=U(x)+V(x)=\sum_{\mu=1}^{n+m} E_{q}\left(x^{\mu}\right)
$$

is q-holonomic of order $n+m . \diamond$

Theorem 4.5. For each $n, m \in \mathbb{N}$ there are functions U and V that are q-holonomic of order n and m respectively, such that $H=U \cdot V$ is q-holonomic of order $n \cdot m$.

Proof. The statement is valid for the functions defined by (22), because in the function

$$
H(x)=U(x) \cdot V(x)=\sum_{\mu=1}^{n} \sum_{\nu=n+1}^{n+m} E_{q}\left(x^{\mu}\right) E_{q}\left(x^{\nu}\right)
$$

there are $n m$ linearly independent summands $E_{q}\left(x^{\mu}\right) E_{q}\left(x^{\nu}\right)(\mu=1,2, \ldots, n ; \nu=$ $n+1, n+2, \ldots, n+m)$ over $\mathbb{K}(q)[x]$. The proof of their independence is again based on Lemma 4.1. \diamond

Theorem 4.6. For each $n \in \mathbb{N}$ there is a function F which is q-holonomic of order n, such that $W(x)=F\left(x^{\nu}\right)$ is q-holonomic of order n.

Proof. Starting from the function $F_{n}(x)$ defined by (19), we can form

$$
W(x)=F_{n}\left(x^{\nu}\right)=\sum_{\mu=1}^{n} E_{q}\left(x^{\mu \nu}\right)
$$

which is of the same type as $F_{n}(x) . \diamond$

References

[1] H. Böing, W. Koepf, Algorithms for q-hypergeometric summation in computer algebra, Journal of Symbolic Computation 28, 1999, 777-799.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd ed, Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, Cambridge, 2004.
[3] W. Hahn, Lineare Geometrische Differenzengleichungen, 169 Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz, 1981.
[4] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
[5] R. Koekoek, R.F. Swarttouw, Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report of Delft University of Technology No 9817, 1998.
[6] W. Koepf, Hypergeometric Summation - An algorithmic approach to Summation and Special Function Identities, Advanced Lectures in Mathematics, Vieweg, Braunschweig-Wiesbaden, 1998.
[7] W. Koepf, D. Schmersau, Spaces of Equations Satisfying Simple Differential Equations, Konrad-Zuse-Zentrum Berlin (ZIB), Technical Report TR 94-2, 1994.
[8] Salvy, B., Zimmermann, P., GFUN: A package for the manipulation of generating and holonomic functions in one variable, ACM Transactions on Mathematical Software 20, 1994, 163-177.

