MR2217787 (2007b:33018) 33C45 (33F10 42C05)
Koepf, Wolfram (D-KSSL); Masjed-Jamei, Mohammad
A generic formula for the values at the boundary points of monic classical orthogonal polynomials. (English summary)
J. Comput. Appl. Math. 191 (2006), no. 1, 98-105.

In this paper the authors obtain a generic polynomial solution for the second-order differential equation

$$
\left(a x^{2}+b x+c\right) y_{n}^{\prime \prime}(x)+(d x+e) y_{n}^{\prime}(x)-n((n-1) a+d) y_{n}(x)=0,
$$

for $n \in \mathbb{N}$. This new expression for the monic polynomial solutions, \bar{P}_{n}, to the previous differential equation is given by formula (27) in the article. To obtain this expression for \bar{P}_{n}, the authors use another representation of \bar{P}_{n} obtained in [W. A. Koepf and M. Masjed-Jamei, Integral Transforms Spec. Funct. 17 (2006), no. 8, 559-576; MR2246501], the Rodrigues formula for \bar{P}_{n}, and several simplifications of hypergeometric expressions. As an application of this expression of \bar{P}_{n}, wellknown values of the classical orthogonal polynomials (Jacobi, Laguerre, Hermite and Bessel) at the boundary points are obtained.

Reviewed by Juan José Moreno-Balcázar
(C) Copyright American Mathematical Society 2007, 2011

