Previous | Up | Next Article
MR2910507 (Review) 68W30 (33F10 39A06)
Horn, Peter (D-UKSL-IM); Koepf, Wolfram [Koepf, Wolfram A.] (D-UKSL-IM);
Sprenger, Torsten (D-UKSL-IM)
m-fold hypergeometric solutions of linear recurrence equations revisited. (English summary)
Math. Comput. Sci. 6 (2012), no. 1, 61-77.1661-8289
Given a linear recurrence with polynomial coefficients in $F[x]$ (F is a field containing the rational numbers) using the classical shift operator S, i.e., $S(x)=x+1$, and given a positive integer m, the authors present algorithms to compute all right factors of the form $S^{m}-a$ with a from $K(x)$. In addition, they consider this problem for the q-case, i.e., by taking the shift operator $S(x)=q x$ where $F=K(q)$ is a rational function field. More precisely, utilizing an adapted version of an m-fold Newton polygon, they extend the ideas of van Hoeij's algorithm to the m-fold case and to the q-case. In addition, using the properties of the Newton polygon, they obtain more efficient versions of the known variants of Petkovšek's algorithm (i.e., the 1 -fold version $/ m$-fold version and the classical version $/ q$-case version). The article is supplemented by concrete examples using a Maple package.

Reviewed by Carsten Schneider
(C) Copyright American Mathematical Society 2013

