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1. Introduction

A sequence of polynomials {pn(x)}, where pn(x) is of exact degree n in x, is said to be orthogonal

with respect to a Lebesgue-Stieltjes measure dα(x) if∫ ∞
−∞

pm(x)pn(x)dα(x) = 0, m 6= n. (1)

Implicit in this definition is the assumption that the moments

µn =

∫ ∞
−∞

xndα(x), n = 0, 1, 2, . . . , (2)

are finite. If the nondecreasing, real-valued, bounded function α(x) also happens to be absolutely con-

tinuous with dα(x) = ρ(x)dx, ρ(x) ≥ 0, then (1) and (2) reduce to∫ ∞
−∞

pm(x)pn(x)ρ(x)dx = 0, m 6= n, (3)

and

µn =

∫ ∞
−∞

ρ(x)xndx, n = 0, 1, 2, . . . , (4)

respectively, and the sequence {pn(x)} is said to be orthogonal with respect to the weight function ρ(x).

If on the other hand, α(x) is a step-function with jumps ρj at x = xj , j = 0, 1, 2, . . ., then (1) and (2)

take the form of a sum:
∞∑
j=0

pm(xj)pn(xj)ρj = 0, m 6= n (5)

and

µn =

∞∑
j=0

xnj ρj , n = 0, 1, 2, . . . . (6)
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The polynomials pn, in monic form, are given explicitly in terms of the moments by [37]

pn(x) =
Kn

dn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn+1 · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where

dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn · · · µ2n−1

µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
under the condition dn 6= 0, n ≥ 0.

The previous representation shows that the moments characterize fully the orthogonal family {pn(x)}.

In [1, P. 295, Theorem 6.3.3] for example, the authors used the moments of the Jacobi polynomials to

give the hypergeometric representation of these polynomials.

Note that the classical continuous and discrete orthogonal polynomial families are very much related5

to probability theory [34] (see also [24]). In the continuous case, the measures of the Hermite, Laguerre

and Jacobi polynomials are the normal, the Gamma and the Beta distributions, respectively. In the

discrete case, the measures of the Charlier, the Meixner, the Krawtchouk and the Hahn polynomials are

the Poisson, the Pascal, the binomial and the hypergeometric distributions. Of course moments play an

important role in probability theory and statistics (see [24]).10

Despite the important role that the moments play in various topics of orthogonal polynomials and

applications to other domains such as statistics and probability theory, no exhaustive repository of mo-

ments for the well-known classical orthogonal polynomials can be found in the literature. The book by

Koekoek, Lesky and Swarttouw [26] which is one of the best and most famous documents containing

almost all kinds of formulas and relations for the Askey-Wilson scheme does not provide information15

about the moments. In addition, despite the fact that almost all the moments of the classical orthog-

onal polynomials of the continuous, the discrete and q-discrete have been previously published in the

litterature (see for example [3, 9, 10]) , it is not the case for the classical orthogonal polynomials of the

quadratic and the q-quadratic variable. It becomes therefore a very interesting task to investigate this

topic in order not only to make also available in the litterature the moments of the classical orthogonal20

polynomials of a quadratic and q-quadratic variable but also to provide and exhaustive reposipory of the

moments of all classical orthogonal polynomials.

The paper is organized as follows:

• In Section 2, we present some basic definitions and give some important properties that will be

used throughout the paper;25

• in Section 3, some useful Taylor formulas for polynomials and applications are given and used to

find connection coefficients between suitable polynomial bases;

• in Section 4, we use the results given in Section 3 to deduce explicit representations of the (canonical)
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moments of all the orthogonal families listed in [26]. Some generating functions for these moments

are also provided.30

The results of this paper appeared in the Ph.D. thesis [31] of the first author.

2. Definitions and miscellaneous properties

In this section we recall basic definitions and introduce some difference operators that will be useful

along this paper.

Definition 1. [26, P. 4] The Pochhammer symbol or shifted factorial is defined by

(a)0 := 1 and (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1), a 6= 0 n = 1, 2, 3, . . . .

The following notation (falling factorial) will also be used:

a0 := 1 and an = a(a− 1)(a− 2) · · · (a− n+ 1), n = 1, 2, 3, . . . .

It should be noted that the Pochhammer symbol and the falling factorial are linked as follows:

(−a)n = (−1)nan.

Definition 2. [26, P. 5] The hypergeometric series rFs is defined by

rFs

 a1, · · · , ar

b1, · · · , bs

∣∣∣∣∣∣ z
 :=

∞∑
n=0

(a1, · · · , ar)n
(b1, · · · , bs)n

zn

n!
,

where

(a1, . . . , ar)n = (a1)n · · · (ar)n.

Definition 3. [26, P. 11] The q-variant of the shifted factorial, also called q-Pochhammer symbol, is35

defined by

(a; q)0 = 1,

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1), n = 1, 2, . . . .

For n =∞ we set

(a; q)∞ =

∞∏
n=0

(1− aqn), |q| < 1.

In order to deal with some families of orthogonal polynomials and other basic hypergeometric func-

tions, the following more general notation (see [25])

(x	 y)nq = (x− y)(x− qy) · · · (x− qn−1y), (7)

which is the so-called q-power basis, will be used.

Definition 4. [26, P. 15] The q-hypergeometric function denoted by rφs is defined by

rφs

 a1, a2, · · · , ar

b1, b2, · · · , bs

∣∣∣∣∣∣ q; z
 =

∞∑
n=0

(a1, · · · , ar; q)n
(b1, · · · , bs; q)n

[
(−1)nq(

n
2)
]1+s−r zn

(q, q)n
,

where

(a1, a2, · · · , am; q)n = (a1; q)n(a2, q)n · · · (am; q)n.
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We will also use the following common notations

[a]q =
1− qa

1− q
, a ∈ C, q 6= 1, (8)

[
n

m

]
q

=
(q; q)n

(q; q)m(q; q)n−m
, 0 ≤ m ≤ n, (9)

called the q-bracket and the q-binomial coefficient, respectively.40

The following difference and divided difference operators will also be frequently used.

Definition 5. Let f be a function of the variable x.

1. The forward and the backward difference operators ∆ and ∇ are, respectively, defined by:

∆f(x) = f(x+ 1)− f(x), ∇f(x) = f(x)− f(x− 1).

For m ∈ N≥0 = {1, 2, 3, . . . }, one sets

∆m+1f(x) = ∆(∆mf(x)), and ∆0f(x) = f(x).

2. The q-difference operator Dq is defined as:

Dqf(x) :=
f(x)− f(qx)

(1− q)x
if x 6= 0 ,

and Dqf(0) = f ′(0) provided that f is differentiable at x = 0.

If m is a nonnegative integer, we have

Dm+1
q f(x) = Dq

(
Dm
q f(x)

)
; D0

qf(x) = f(x).

3. The difference operator D is defined as follows:

Df(x) = f

(
x+

i

2

)
− f

(
x− i

2

)
, where i2 = −1.

4. The divided difference operator D is defined as follows:

Df(x2) =
f((x+ i

2 )2)− f((x− i
2 )2)

2ix
, i2 = −1.

3. Taylor formulas, power derivatives and connection formulas

In this section, we give some tools for the computations of the moments given in the next section.

Some Taylor formulas are proved, the power derivatives of some operators are given. As applications, we45

compute some connection coefficients between suitable polynomial sets that appear in the computation

of the moments.

Proposition 6 (See e.g. [2, 23]). Let f(x) be a polynomial of degree n in the variable x. The following

expansion formula holds

f(x) =

n∑
m=0

[Dm
q f ](y)

[m]q!
(x	 y)mq . (10)
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Proof. We assume f is a polynomial of degree n, and we write

f(x) =

n∑
m=0

cm(x	 y)mq .

Next we apply the operator Dq k times to both sides of this relation and get

Dk
q f(x) =

n∑
m=k

cm
[m]q!

[m− k]q!
(x	 y)m−kq .

Taking x = y, it follows that [Dk
q f ](y) = ck[k]q! and the proposition follows.

Corollary 7. We have the following connection formula between the q-power and the power bases

xn =

n∑
m=0

yn−m
[
n

m

]
q

(x	 y)mq . (11)

Remark 8. This corollary will be useful for the computations of the canonical moments of the Al Salam

Carlitz I polynomials.50

Theorem 9. Define the polynomial basis θn(a, x) by

θn(a, x) = (a− ix)n(a+ ix)n =

n−1∏
k=0

(x2 + (a+ k)2), θ0(a, x) = 1.

If f is a polynomial of degree n in x2, then

f(x) =

n∑
k=0

fkθk(a, x),

where

fk =
Dkf(i(a+ k

2 ))

k!
.

Proof. First remark that θk(a, ai) = 0 for all k > 0. Hence

Djf(x) =

n∑
k=j

fk
k!

(k − j)!
θk−j(a+

j

2
, x) = fjj! +

n∑
k=j+1

fk
k!

(k − j)!
θk−j(a+

j

2
, x)

and for x = i
(
a+ j

2

)
, we get

Djf

(
i

(
a+

j

2

))
= fjj!.

Theorem 10 (see [11]). Let k be a nonnegative integer. Then

Dkf(x) =

k∑
l=0

(−k)l
l!

(2ix− k − 2l)

(2ix− k + l)k+1
f

(
x+

k − 2l

2
i

)
. (12)

Corollary 11. The following result is valid

Dkx2n =

k∑
l=0

(−k)l
l!

(2ix− k + 2l)

(2ix− k + l)k+1

(
x+

k − 2l

2
i

)2n

. (13)

Proof. Take f(x) = x2n in (12) to get the result.

Corollary 12. The following connection formula is valid

x2n = (−1)n
n∑
k=0

1

k!

k∑
l=0

(−k)l
l!

(−2a− 2k + 2l)

(−2a− 2k + l)k+1
(a+ k − l)2n

θk(a, x). (14)
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Proof. The proof follows from Theorem 9 and Theorem 10 with f(x) = x2n.

Remark 13. This connection is useful for the computation of the moments of the Wilson and the

Continuous Dual Hahn polynomials.55

Theorem 14. Define the polynomial basis ηn(a, x) = (a + ix)n. If f is a polynomial of degree n in x,

then

f(x) =

n∑
k=0

fkηk(a, x),

where

fk =
(−1)k

k!
Dkf

(
i

(
a+

k

2

))
.

Proof. First remark that ηk(a, ai) = 0 for all k > 0. Hence

Djf(x) =

n∑
k=j

(−1)kfk
k!

(k − j)!
ηk−j(a+

j

2
, x) = (−1)jfjj! +

n∑
k=j+1

fk
k!

(k − j)!
ηk−j(a+

j

2
, x)

and for x = i
(
a+ j

2

)
, we get

Djf
(
i

(
a+

j

2

))
= (−1)jj!fj .

This proves the theorem.

Remark 15. Note that in Theorem 14, there is a need to have an explicit representation of Dkf(x)

in order to have a better expression of the Taylor formula. The following proposition gives the required

expression.

Proposition 16 (Power of D). Let k be a nonnegative integer, then the following relation holds

Dkf(x) =

k∑
l=0

(−1)l
(
k

l

)
f

(
x+

k − 2l

2
i

)
. (15)

Proof. The proof is done by induction. The relation is obvious for k = 1. Assume it is true for a fixed60

integer k > 0. Then, we have

Dk+1f(x) = D(Dkf(x))

=

k∑
l=0

(−1)l
(
k

l

)
Df
(
x+

k − 2l

2
i

)

=

k∑
l=0

(−1)l
(
k

l

)(
f

(
x+

k − 2l + 1

2
i

)
− f

(
x+

k − 2l − 1

2
i

))

=

k∑
l=0

(−1)l
(
k

l

)
f

(
x+

k − 2l + 1

2
i

)
+

k+1∑
l=1

(−1)l
(

k

l − 1

)
f

(
x+

k − 2l + 1

2
i

)

=

k+1∑
l=0

(−1)l
(
k + 1

l

)
f

(
x+

k − 2l + 1

2
i

)
.

Corollary 17. The following connection formula is valid.

xn =

n∑
k=0

1

k!

k∑
l=0

(−1)l
(
k

l

)
((a+ l)i)nηk(a, x). (16)
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Proof. First, we apply Theorem 14 with f(x) = xn to get

xn =

n∑
k=0

(
(−1)k

k!
Dkxn∣∣x=i(a+ k

2 )

)
ηk(a, x).

Next, using Proposition 16, we have

Dkxn =

k∑
l=0

(−1)l
(
k

l

)(
x+

k − 2l

2
i

)n
.

Then, we have

Dkxn∣∣i(a+ k
2 )

=

k∑
l=0

(−1)l
(
k

l

)
((a+ k − l)i)n

= (−1)k
k∑
l=0

(−1)l
(
k

l

)
((a+ l)i)

n
.

This completes the proof.

Remark 18. This connection is useful for the computation of the moments of the Continuous Hahn and65

the Meixner-Pollaczek polynomials.

Proposition 19 (see [11]). The following q-derivative rule is valid.

(Dnq f)(x) =
2nq

n(1−n)
4

(q1/2 − q−1/2)n

n∑
k=0

[
n

k

]
q

qk(n−k)z2k−nf̌(q(n−2k)/2z2)

(q1+n−2kz2; q)k(q2k−n+1z−2; q)n−k
(17)

where f̌(z) = f((z + 1/z)/2), z = eiθ, x = cos θ.

Proposition 20 (see [21]). If f(x) is a polynomial in x = cos θ of degree n, then

f(x) =

n∑
k=0

fk(aeiθ, ae−iθ; q)k (18)

where

fk =
(q − 1)k

(2a)k(q; q)k
q−

k(k−1)
4 (Dkq f)(xk),

with

xk =
1

2
(aqk/2 + q−k/2/a).

Corollary 21. If f(x) is a polynomial of degree n in x = cos θ, then

f(x) =

n∑
k=0

fk(aeiθ, ae−iθ; q)k,

with

fk = qk
k∑
j=0

q−(k−j)2a2(j−k)f̌(aqk−j)

(q, q1+2(k−j)a2; q)j(q, q−1−2(k−j)a−2; q)k−j
. (19)

Remark 22. Note that, by a change of variable j := k − j, the pk’s in Corollary 21 can be written as

fk = qk
k∑
j=0

q−j
2

a−2j f̌(aqj)

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
.

Corollary 23. The following connection formula is valid.

xn =

n∑
k=0

qk
k∑
j=0

q−j
2

a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(aeiθ, ae−iθ; q)k, x = cos θ. (20)

Remark 24. This connection is useful for the computation of the moments of orthogonal polynomials

on q-quadratic lattices.
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4. Moments of classical orthogonal polynomials70

4.1. Canonical moments and generalized moments

Definition 25. Let {pn(x)} be a polynomial set, i.e. deg(pn(x)) = n, orthogonal with respect to a

Lebesgue-Stieltjes measure dα(x). Let {θn(x)} be a polynomial set. The numbers

µn(θk(x)) =

∫ ∞
−∞

θn(x)dα(x), n = 0, 1, 2, . . . (21)

are the moments with respect to θn(x) of the family {pn(x)}, they are called generalized moments.

Remark 26. Note that in the previous definition, if θn(x) = xn, then the generalized moments are the

cononical moments.

Theorem 27. Let {θn(x)} be a polynomial set. Assume that one can find explicit representations of the

coefficients Cm(n) in the expansion

xn =

n∑
m=0

Cm(n)θm(x). (22)

Then, the canonical moments µn can be computed from the generalized moments µn(θk(x)) using the

relation

µn =

n∑
m=0

Cm(n)µm(θk(x)). (23)

Proof. Assume the conditions of the theorem are satisfied. We have75

µn =

∫ ∞
−∞

xndα(x) =

∫ ∞
−∞

(
n∑

m=0

Cm(n)θm(x)

)
dα(x)

=

n∑
m=0

Cm(n)

∫ ∞
−∞

θm(x)dα(x) =

n∑
m=0

Cm(n)µm(θk(x)).

Theorem 28. Assume that the coefficients Im(n) (called inversion coefficients) in the expansion

θn(x) =

n∑
m=0

Im(n)Pm(x) (24)

are given. Then, for all n ∈ N, the generalized moments of the family (Pn)n with respect to the basis

θn(x) can be computed by the formula

µn(θk(x)) = I0(n)P0µ0. (25)

Proof. Using the expansion (24), we have

µn(θk(x)) =
1

P0
(θn(x), P0) =

1

P0

n∑
k=0

Ik(n)(Pn, P0) =
1

P0
I0(n)(P0, P0) = I0(n)P0µ0,

where (f, g) is the inner product defined by

(f, g) =

∫ ∞
−∞

f(x)g(x)dα(x).

Note that this result was announced in [20].

Corollary 29. Using the notations of Theorems 27 and 28, the canonical moments of the orthogonal

family {pn} can be computed for all n ∈ N by the formula

µn = µ0p0

n∑
m=0

Cm(n)I0(m). (26)
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4.2. Continuous orthogonal polynomials80

Note that by P (α,β)
n (x), C(λ)

n (x), Tn(x), Un(x), Pn(x), L(α)
n (x), Hn(x), B(α)

n (x), we denote, respec-

tively, the Jacobi, Gegenbauer (ultraspherical), Chebyshev of first kind, Chebyshev of second kind, Legen-

dre, Laguerre, Hermite and Bessel polynomials. They have the following hypergeometric representations

(see [26])

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

 −n, n+ α+ β + 1

α+ 1

∣∣∣∣∣∣ 1− x
2

, α > −1, β > −1 (J1)

= (−1)n
(β + 1)n

n!
2F1

 −n, n+ α+ β + 1

β + 1

∣∣∣∣∣∣ 1 + x

2

, (J2)

C(λ)
n (x) =

(2λ)n(
λ+ 1

2

)
n

P
(λ− 1

2 ,λ−
1
2 )

n (x)

=
(2λ)n
n!

2F1

 −n, n+ 2λ

λ+ 1
2

∣∣∣∣∣∣ 1− x
2

, λ 6= 0.

85

Tn(x) =
P

(− 1
2 ,−

1
2 )

n (x)

P
(− 1

2 ,−
1
2 )

n (1)
= 2F1

 −n, n
1
2

∣∣∣∣∣∣ 1− x
2

,
Un(x) = (n+ 1)

P
( 1

2 ,
1
2 )

n (x)

P
( 1

2 ,
1
2 )

n (1)
= (n+ 1)2F1

 −n, n+ 2

3
2

∣∣∣∣∣∣ 1− x
2

,
Pn(x) = 2F1

 −n, n+ 1

1

∣∣∣∣∣∣ 1− x
2


L(α)
n (x) =

(α+ 1)n
n!

1F1

 −n

α+ 1

∣∣∣∣∣∣x
, α > −1,

Hn(x) = (2x)n2F0

 −n2 ,−
n−1

2

−

∣∣∣∣∣∣− 1

x2

,
B(α)
n (x) = 2F0

 −n, n+ α+ 1

−

∣∣∣∣∣∣−x2
, n = 0, 1, . . . , N, α < −2N − 1.

In the classical continuous case the computation of the moments is rather straightforward. For example,

for the Laguerre polynomials, by their definition the moments are given as values of the Gamma function.

Nevertheless, since the inversion formulas can be used in principle for their computation, for the sake of

completeness we state here the inversion coefficients for the classical continuous orthogonal polynomials

which are given in the literature (see [6], [17], [28], [32], [33]).90
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Theorem 30. The following inversion formulas are valid

(1− x)n =

n∑
m=0

(
n

m

)
(−1)m2nm!(α+m+ 1)n−m

(α+ β +m+ 1)m(α+ β + 2m+ 2)n−m
P (α,β)
m (x), (27)

(1 + x)n =

n∑
m=0

(
n

m

)
2nm!(β +m+ 1)n−m

(α+ β +m+ 1)m(α+ β + 2m+ 2)n−m
P (α,β)
m (x), (28)

xn = (1 + α)n

n∑
m=0

(−n)m
(1 + α)m

L(α)
m (x), (29)

xn =
n!

2n

bn/2c∑
k=0

1

k!(n− 2k)!
Hn−2k(x), (30)

xn =

n∑
m=0

(
n

m

)
(−1)m(−2)n

(α+m+ 1)m(α+ 2m+ 2)n−m
B(α)
m (x). (31)

Remark 31. Representations (29) and (30) were already known (see for example [28, 40]).

Next, we provide several representations for the Jacobi polynomial moments (compare [13]).

Theorem 32. The canonical moments of the Jacobi polynomials have the following representations:95

µn =
Γ(α+ 1)n!

Γ(α+ n+ 2)
2F1

 −β, n+ 1

α+ n+ 2

∣∣∣∣∣∣−1

+ (−1)n
Γ(β + 1)n!

Γ(β + n+ 2)
2F1

 −α, n+ 1

β + n+ 2

∣∣∣∣∣∣−1


= 2α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
2F1

 −n, α+ 1

α+ β + 2

∣∣∣∣∣∣ 2
 (32)

= (−1)n2α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
2F1

 −n, β + 1

α+ β + 2

∣∣∣∣∣∣ 2
 (33)

Proof. Let us prove the first representation. We rewrite

µn =

∫ 1

0

xn(1− x)α(1 + x)βdx+ (−1)n
∫ 1

0

xn(1 + x)α(1− x)βdx.

Next, the use of the integral representation for the Gauss hypergeometric function [26, P. 8]

2F1

 a, b

c

∣∣∣∣∣∣ z
 =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−adx

with z = −1 gives the desired result. In fact, for the first integral

∫ 1

0

xn(1− x)α(1 + x)βdx, using the

integral representation of the Gauss hypergeometric function with b = n+ 1, c = α+ n+ 2 and a = −β,

it follows that

∫ 1

0

xn(1− x)α(1 + x)βdx =
Γ(α+ 1)Γ(n+ 1)

Γ(α+ n+ 2)
2F1

 −β, n+ 1

α+ β + 2

∣∣∣∣∣∣−1

.
The second integral is computed in the same manner.

Next, we develop the second representation. For α > −1 and β > −1, the Jacobi polynomials

P
(α,β)
n (x) are orthogonal in the interval (−1; 1) and fulfil the orthogonality relation [26, P. 217]∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x)dx =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
δmn.
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It follows that

µ0 =

∫ 1

−1

(1− x)α(1 + x)αdx = 2α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
.

We first prove relation (32). From the inversion formula (27) the zeroth inversion coefficient is

I0(n) = 2n
Γ(α+ 1 + n)Γ(α+ β + 2)

Γ(α+ β + n+ 2)Γ(α+ 1)
= 2n

(α+ 1)n
(α+ β + 2)n

.

Hence, the generalized Jacobi moments with respect to the basis (1− x)n have the representation

µn((1− x)k) = 2n+α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)

(α+ 1)n
(α+ β + 2)n

.

Finally, using the binomial formula in the form

xn =

n∑
m=0

(−1)m
(
n

m

)
(1− x)m

and Theorem 28, (32) follows.

In order to prove (32), we follow the same method using relation (28), and the binomial formula

xn =

n∑
m=0

(−1)n−m
(
n

m

)
(1 + x)m.

Using the definition and the Beta function (see e.g. [27]), one gets

Theorem 33. The following representations for the canonical moments are valid for:100

(a) the Gegenbauer polynomials

µn =


√
π

Γ(λ+ 1
2 )

Γ(λ+1)
(2p)!

22pp!(λ+1)p
, if n = 2p.

0 if n = 2p+ 1;
(34)

(b) the Chebyshev polynomials of first kind

µn =


π(2p)!
22pp!2 if n = 2p,

0 if n = 2p+ 1.
(35)

(c) the Chebyshev polynomials of second kind

µn =


π(2p)!

22pp!(p+1)! if n = 2p,

0 if n = 2p+ 1.
(36)

(d) the Legendre polynomials

µn =

 2
2p+1 if n = 2p

0 if n = 2p+ 1.
(37)

Using the definition and the Gamma function (see e.g. [27]), one gets

Theorem 34. The following representations for the canonical moments are valid for:

(a) the Laguerre polynomials

µn = Γ (n+ α+ 1) , n = 0, 1, 2, . . . (38)

(b) the Hermite polynomials

µn =
1 + (−1)n

2
Γ

(
n+ 1

2

)
=


√
π (2p)!

22pp! if n = 2p

0 if n = 2p+ 1
, n = 0, 1, 2, . . . (39)
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4.3. Discrete orthogonal polynomials

We denote by Qn(x;α, β,N), Mn(x;β, c), Kn(x; p,N) and Cn(x; a) the Hahn, Meixner, Krawtchouk and

Charlier polynomials, respectively. They have the following hypergeometric representations (see [26])105

Qn(x;α, β,N) = 3F2

 −n,−x, n+ 1 + α+ β

α+ 1,−N

∣∣∣∣∣∣ 1
,

n, x = 0, 1, . . . , N, α > −1 and β > −1, or α < −N and β < −N,

Mn(x;β, c) = 2F1

 −n,−x

β

∣∣∣∣∣∣ 1− 1

c

, β > 0, 0 < c < 1, x = 0, 1, . . . ,

Kn(x; p,N) = 2F1

 −n,−x

−N

∣∣∣∣∣∣ 1

p

, 0 < p < 1, n, x = 0, 1, . . . , N,

Cn(x; a) = 2F0

 −n,−x

−

∣∣∣∣∣∣−1

a

, a > 0, x = 0, 1, . . . .

In order to obtain the canonical moments for these polynomials, we need the following theorem, which

can be found in in [28] and [40, Table 18] (where the polynomial systems were standardized differently).

Theorem 35. The Hahn, the Krawtchouk, the Meixner and the Charlier polynomials fulfil the following

inversion formulas

xn =

n∑
m=0

(
n

m

)
(−1)n−m(α+ 1)n(−N)n

(α+ β +m+ 1)m(α+ β + 2m+ 2)n−m
Qm(x;α, β,N), (40)

xn = (−p)n(−N)n

n∑
m=0

(−1)m
(
n

m

)
Km(x; p,N),

xn = (−1)n(β)n

(
c

c− 1

)n n∑
m=0

(−1)m
(
n

m

)
Mm(x;β, c),

xn =

n∑
m=0

(−1)m
(
n

m

)
anCk(x; a).

Theorem 36. The following representations for the canonical moments are valid for:110

(a) the Hahn polynomials

µn =
(α+ β + 1)N+1

(α+ β + 1)N !

n∑
m=0

(−1)mSm(n)
(α+ 1)m(−N)m

(α+ β + 2)m
; (41)

(b) the Krawtchouk polynomials

µn =

n∑
m=0

Sm(n)(−N)m(−p)m; (42)

(c) the Meixner polynomials

µn =
1

(1− c)β
n∑

m=0

(−1)mSm(n)(β)m

(
c

c− 1

)m
; (43)

(d) the Charlier polynomials

µn = ea
n∑

m=0

Sm(n)am, (44)

where Sm(n) denote the Stirling numbers of second kind defined by

xn =

n∑
m=0

Sm(n)xn. (45)
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Note that (44) appeared in [19] and [30] without the constant µ0 = ea. The results of Theorem 36 also

appeared in [3] and [24]. Note also that in [3] and [24], the authors used different techniques and different

standardizations as compare to the current manuscript.

Proof. We give the proof for the moments of the Hahn polynomials, the other moments are obtained115

similarly.

The Hahn polynomials Qn(x;α, β,N) fulfil the following orthogonality relation [26, P. 204]

N∑
x=0

(
α+ x

x

)(
β +N − x
N − x

)
Qn(x;α, β,N)Qm(x;α, β,N)

=
(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−N)nN !
δmn, (46)

for α > −1 and β > −1 or α < −N and β < −N.

With m = n = 0, it follows that

µ0 =
(α+ β + 1)N+1

(α+ β + 1)N !
.

From the inversion formula (40), for θn(x) = xn in 24, we get

I0(n) = (−1)n
(α+ 1)n(−N)n

(α+ β + 2)n
.

Therefore, the generalized Hahn moments with respect to the basis xn have the representation

µn
(
xk
)

= (−1)n
(α+ β + 1)N+1

(α+ β + 1)N !

(α+ 1)n(−N)n
(α+ β + 2)n

. (47)

Using the connection (45) between the powers and the falling factorials and Corollary 29, we obtain

(41).

Whereas the canonical moments of the Krawtchouk, Meixner and Charlier polynomials are expressed in120

terms of the complicated Stirling numbers, they have rather simple generating functions.

Theorem 37. 1. The canonical Krawtchouk moments have the following exponential generating func-

tion

(pez + 1− p)N =

∞∑
n=0

µn
zn

n!
. (48)

2. The canonical Meixner moments have the following exponential generating function

1

(1− cez)β
=

∞∑
n=0

µn
zn

n!
, |cez| < 1. (49)

3. The canonical Charlier moments have the following exponential generating function

eae
z

=

∞∑
n=0

µn
zn

n!
. (50)

Proof. By definition, the canonical Krawtchouk moments are given by

µn =

N∑
k=0

kn
(
N

k

)
pk(1− p)N−k.
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Therefore, it follows that

∞∑
n=0

µn
zn

n!
=

∞∑
n=0

(
N∑
k=0

kn
(
N

k

)
pk(1− p)N−k

)
zn

n!

=

N∑
k=0

((
N

k

)
pk(1− p)N−k

∞∑
n=0

(kz)n

n!

)

=

N∑
k=0

(
N

k

)
(pez)k(1− p)N−k

= (pez + 1− p)N .

Hence, (48) is proved.

By definition, the canonical Meixner moments are given by

µn =

∞∑
k=0

(β)kc
k

k!
kn

It therefore follows that

∞∑
n=0

µn
n!
zn =

∞∑
n=0

( ∞∑
k=0

(β)kc
k

k!
kn

)
zn

n!

=

∞∑
k=0

(
(β)kc

k

k!

∞∑
n=0

(kz)n

n!

)

=

∞∑
k=0

(β)k
k!

(cez)k =
1

(1− cez)β
.

This proves (49).125

By definition, the canonical Charlier moments are given by

µn =

∞∑
k=0

ak

k!
kn.

Therefore, we have:

∞∑
n=0

µn
n!
zn =

∞∑
n=0

( ∞∑
k=0

ak

k!
kn

)
zn

n!

=

∞∑
k=0

(
ak

k!

∞∑
n=0

(kz)n

n!

)

=

∞∑
k=0

akekz

k!
=
∞∑
k=0

(aez)k

k!

= eae
z

.

4.4. q-Orthogonal polynomials

These polynomials have the following q-hypergeometric representations (see e.g. [26]):

(a) The Big q-Jacobi polynomials

pn(x; a, b, c; q) = 3φ2

 q−n, abqn+1, x

aq, cq

∣∣∣∣∣∣ q; q


14



(b) The q-Hahn polynomials

Qn(q−x;α, β,N ; q) = 3φ2

 q−n, αβqn+1, q−x

αq, q−N

∣∣∣∣∣∣ q; q


(c) The Big q-Laguerre polynomials

Pn(x, a, b; q) = 3φ2

 q−n, 0, x

aq, bq

∣∣∣∣∣∣ q; q
 =

1

(b−1q−n; q)n
2φ1

 q−n, aqx−1

aq

∣∣∣∣∣∣ q; xb
.

(d) The Little q-Jacobi polynomials

pn(x; a, b|q) = 2φ1

 q−n, abqn+1

aq

∣∣∣∣∣∣ q; qx
.

(e) The q-Meixner polynomials

Mn(q−x; b, c; q) = 2φ1

 q−n, q−x

bq

∣∣∣∣∣∣ q;−q
n+1

c

.
(f) The Quantum q-Krawtchouk polynomials

Kqtm
n (q−x; p,N ; q) = 2φ1

 q−n, q−x

q−N

∣∣∣∣∣∣ q; pqn+1

.
(h) The q-Krawtchouk polynomials130

Kn(q−x; p,N ; q) = 3φ2

 q−n, q−x,−pqn

q−N , 0

∣∣∣∣∣∣ q; q
, n = 0, 1, 2, . . . , N.

(g) The Affine q-Krawtchouk polynomials

K Aff
n (q−x; p,N ; q) = 3φ2

 q−n, 0, q−x

pq, q−N

∣∣∣∣∣∣ q; q
 n = 0, 1, 2, . . . , N.

(i) The Little q-Laguerre polynomials

pn(x, a|q) = 2φ1

 q−n, 0

aq

∣∣∣∣∣∣ q; qx
 =

1

(a−1q−n; q)n
2φ0

 q−n, x−1

0

∣∣∣∣∣∣ q; xa
.

(j) The q-Laguerre polynomials

L(α)
n (x) =

(qα+1; q)n
(q; q)n

1φ1

 q−n

qα+1

∣∣∣∣∣∣ q;−qn+α+1x

.
(k) The Alternative q-Charlier (also called q-Bessel) polynomials

Kn(x; a; q) = 2φ1

 q−n,−aq−n

0

∣∣∣∣∣∣ q; qx
.
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(l) The q-Charlier polynomials

Cn(q−x; a; q) = 2φ1

 q−n, q−x

0

∣∣∣∣∣∣ q;−q
n+1

a

.
(m) The Al Salam-Carlitz I polynomials

U (a)
n (x; q) = (−a)nq(

n
2)2φ1

 q−n, x−1

0

∣∣∣∣∣∣ q; qxa
.

(n) The Al Salam-Carlitz II polynomials

V (a)
n (x; q) = (−a)nq−(n2)2φ0

 q−n, x

0

∣∣∣∣∣∣ q; q
n

a

.
(o) The Stieltjes-Wigert polynomials135

Sn(x; q) =
1

(q; q)n
1φ1

 q−n

0

∣∣∣∣∣∣ q;−qn+1x

.
(p) The Discrete q-Hermite I polynomials

hn(x; q) = q(
n
2) 2φ1

 q−n; x−1

0

∣∣∣q;−qx
 .

(q) The Discrete q-Hermite II polynomials

h̃n(x; q) = i−nq−(n2) 2φ0

 q−n; ix

−

∣∣∣q;−qn
 .

These polynomials fulfill the following inversion formulas (see [4], [16], [31], [35], [3, Table 19])

Theorem 38. The Big q-Jacobi, the q-Hahn, the Big q-Laguerre, the q-Meixner, the Quantum q-

Krawtchouk, the q-Krawtchouk, the Affine q-Krawtchouk, the q-Charlier, the Al Salam-Carlitz II and
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the Discrete q-Hermite II polynomials fulfil the following inversion formulas, respectively

(x; q)n =

n∑
m=0

(−1)m
[
n

m

]
q

q(
m
2 )(aq, cq; q)n

(abqm+1; q)m(abq2m+2; q)n−m
Pm(x; a, b, c; q), (51)

(q−x; q)n =

n∑
m=0

[
n

m

]
q

(−1)mq(
m
2 )(αq, q−N ; q)n

(αβqm+1; q)m(αβq2m+2; q)n−m
Qm(q−x;α, β,N |q),

(x; q)n =

n∑
m=0

(−1)m
[
n

m

]
q

q(
m
2 )(aq, bq; q)nPm(x; a, b; q),

(q−x; q)n =

n∑
m=0

(−1)n−mq
m(5m+1)

2 −n(m+1)cn
[
n

m

]
q

(bq; q)nMm(q−x; b, c; q),

(q−x; q)n =

n∑
m=0

(−1)m
[
n

m

]
q

q(
m
2 )

pm(n+1)
(q−N ; q)n(pq)−nKqtm

m (q−x; p,N |q),

(q−x; q)n =

n∑
m=0

[
n

m

]
q

(−1)mq(
m
2 )(q−N ; q)n

(−pqm; q)m(−pq2m+1; q)n−m
Km(q−x; p,N ; q),

(q−x; q)n =
n∑

m=0

(−1)m
[
n

m

]
q

q(
m
2 )(pq, q−N ; q)nK

Aff
m (q−x; p,N ; q),

(q−x; q)n =

n∑
m=0

(−1)n−man
[
n

m

]
q

q
m(m+1)

2 −n(m+1)Cm(q−x; a; q), (52)

(x; q)n =

n∑
m=0

(−1)n
[
n

m

]
q

an−mqm(m−n)+(n2)V (a)
m (x; q),

(x; q)n =

n∑
m=0

(−1)m
[
n

m

]
q

qm(m−n)+(n2)h̃m(x; q).

Theorem 39. The following representations for the canonical moments are valid:140

The Big q-Jacobi polynomials

µn = aq
(abq2, a−1c, ac−1q; q)∞
(aq, bq, cq, abc−1q; q)∞

n∑
m=0

(−1)m
[
n

m

]
q

q−nm+(m+1
2 ) (aq, cq; q)m

(abq2; q)m
. (53)

The q-Hahn polynomials

µn =
(αβq2; q)N

(βq; q)N (αq)N

n∑
m=0

(−1)m
[
n

m

]
q

q−mn+(m+1
2 ) (αq, q−N ; q)m

(αβq2; q)m
. (54)

The Big q-Laguerre polynomials

µn = aq
(q, a−1b, ab−1q; q)∞

(aq, bq; q)∞

n∑
m=0

(−1)m
[
n

m

]
q

q−nm+(m+1
2 )(aq, bq; q)m. (55)

The q-Meixner polynomials

µn =
(−c; q)∞

(−bcq; q)∞

n∑
m=0

[
n

m

]
q

q−nm+(m2 )cm(bq; q)m. (56)

17



The Quantum q-Krawtchouk polynomials

µn =
pN (q; q)N
(q, q; q)N

q(
N+1

2 )
n∑

m=0

(−1)m
[
n

m

]
q

q−nm+(m+1
2 ) (q−N ; q)m

(pq)m
(57)

The q-Krawtchouk polynomials145

µn =
(−pq; q)N
pNq(

N+1
2 )

(−pqN+1; q)n
(−pq; q)n

1

qnN
, n = 0, 1, 2, . . . , N. (58)

The Affine q-Krawtchouk polynomials

µn = (pq)−N
n∑

m=0

(−1)m
[
n

m

]
q

q−nm+(m+1
2 )(pq, q−N ; q)m. (59)

The q-Charlier polynomials

µn = (−a; q)∞
(
−a−1q; q

)
n

(
a

q

)n
q−(n2) (compare [10, P. 50]). (60)

The Al-Salam-Carlitz II polynomials

µn =
1

(aq; q)∞

n∑
m=0

[
n

m

]
q

amqm(m−n) (see [9, Eq.(10.10), P.197]). (61)

The Discrete q-Hermite II polynomials

µn =
(q2,−q,−q; q2)∞

(q3,−q2,−q2; q2)∞

n∑
m=0

(−1)m
[
n

m

]
q

qm(m−n). (62)

Proof. We prove the result for the Big q-Jacobi polynomials, the other results are proved similarly. The150

Big q-Jacobi polynomials Pn(x; a, b, c; q) fulfil the following orthogonality relation [26, P. 438]∫ aq

cq

(a−1x, c−1x; q)∞
(x, bc−1x; q)∞

Pm(x; a, b, c; q)Pn(x; a, b, c; q)dqx

= aq(1− q) (abq2, a−1c, ac−1q; q)∞
(aq, bq, cq, abc−1q; q)∞

× 1− abq
1− abq2n+1

(q, bq, abc−1q; q)n
(aq, abq, cq; q)n

(−caq2)nq(
n
2)δmn.

By taking m = n = 0 in the orthogonality relation it follows that

µ0 = aq(1− q) (abq2, a−1cac−1q; q)∞
(aq, bq, cq, abc−1q; q)∞

.

From the inversion formula (51), we get the zeroth inversion coefficient

I0(n) =
(aq, cq; q)n
(abq2; q)n

.

Hence, the Big q-Jacobi generalized moments with respect to (x; q)n have the representation

µn((x; q)k) = aq(1− q) (abq2, a−1c, ac−1q; q)∞
(aq, bq, cq, abc−1q; q)∞

(aq, cq; q)n
(abq2; q)n

.

Finally, using the connection formula (see [1], [4], [31])

xn =

n∑
m=0

(−1)m
[
n

m

]
q

q−mn+(m+1
2 )(x; q)m,

and Corollary 29, we obtain (53).
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Theorem 40 (see [3, 4, 16] ). The Little q-Jacobi, the Little q-Legendre, the Little q-Laguerre, the

q-Laguerre, the Alternative q-Charlier/q-Bessel and the Stieltjes-Wigert polynomials fulfil the following

inversion formulas, respectively155

xn =

n∑
m=0

[
n

m

]
q

(−1)mq(
m
2 )(aq; q)n

(abqm+1; q)m(abq2m+2; q)n−m
pm(x; a, b|q),

xn =

n∑
m=0

(−1)m
[
n

m

]
q

(−1)mq(
m
2 )(q; q)n

(qm+1; q)m(q2m+2; q)n−m
Pm(x|q),

xn =

n∑
m=0

(−1)m
[
n

m

]
q

q(
m
2 )(aq; q)npm(x; a|q),

xn =

n∑
m=0

(−1)m
[
n

m

]
q

q
(m−n)(2α+3m+n+1)

2 −m(m+α)(q; q)m(qm+α+1; q)n−mL
(α)
m (x; q),

xn =

n∑
m=0

[
n

m

]
q

(−1)mq(
m
2 )

(−aqm; q)m(−aq2m+1; q)n−m
ym(x; a|q),

xn =

n∑
m=0

(−1)m
[
n

m

]
q

q
(m−n)(3m+n+1)

2 −m2

(q; q)mSm(x; q).

Theorem 41. The following representations for the canonical moments are valid.

(a) The Little q-Jacobi polynomials

µn =
(abqn+2; q)∞
(aqn+1; q)∞

=
(abq2; q)∞
(aq; q)∞

(aq; q)n
(abq2; q)n

. (63)

(b) The Little q-Laguerre polynomials

µn =
(aq; q)n
(aq; q)∞

, compare with [3, P. 91]. (64)

(c) The q-Laguerre polynomials

µ(d)
n =

(q,−cqα+1,−c−1q−α; q)∞
(qα+1,−c,−c−1q; q)∞

q−(n2)−n(α+1)(qα+1; q)n, (65)

for the discrete orthogonality, and

µ(c)
n =

(q−α; q)∞
(q; q)∞

Γ(−α)Γ(α+ 1)q−(n2)−n(α+1)(qα+1; q)n, (66)

for the continuous orthogonality.

(d) The q-Bessel polynomials

µn =
(−aq; q)∞
(−aq; q)n

. (67)

(e) The Stieltjes-Wigert polynomials160

µn = − ln q(q; q)∞q
−(n+1

2 ). (68)

Note that these moments appeared in [3, P. 91] and [10, P. 223].

Proof. Since the polynomials involved in this theorem are represented in the power basis, their canonical

moments are easy to compute, by just taking the zeroth inversion coefficients in the inversion formulas,

multiplied by µ0 which comes from the orthogonality relations.
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Theorem 42 (see [31]). The Al Salam-Carlitz I and the Discrete q-Hermite I fulfil the following inversion165

formulas, respectively

(x	 1)nq =

n∑
m=0

an−m
[
n

m

]
q

U (a)
m (x; q), (69)

(x	 1)nq =

n∑
m=0

(−1)n−m
[
n

m

]
q

hm(x; q).

Theorem 43. The canonical moments of the Al Salam-Carlitz I and the Discrete q-Hermite I polynomials

have the following representations, respectively

µn = (1− q)(q, a, a−1q; q)∞

n∑
i=0

[
n

i

]
q

ai, (70)

µn = (1− q)(q,−1,−q; q)∞
1 + (−1)n

2
(q; q2)n/2, compare with [3, P. 91]. (71)

Proof. Since the Discrete q-Hermite I are the Al Salam-Carlitz I polynomials for a = −1, it is sufficient

to prove the result for the Al Salam-Carlitz I case.170

The Al-Salam-Carlitz I polynomials U
(a)
n (x; q) fulfil the following orthogonality relation [26, P. 534]∫ 1

a

(qx, a−1qx; q)∞U
(a)
m (x; q)U (a)

n (x; q)dqx

= (−a)n(1− q)(q; q)n(q, a, a−1q; q)∞q
(n2)δmn, a < 0.

With m = n = 0, it follows that

µ0 = (1− q)(q, a, a−1q; q)∞.

From the inversion formulas (69) for θn(x) = (x	 1)nq , we have the zeroth inversion coefficient

I0(n) = an.

Hence, the Al Salam-Carlitz I generalized moments with respect to the q-power basis are

µn((x	 1)kq ) = (1− q)(q, a, a−1q; q)∞a
n,

takng into account Eq. (25). Finally, using the connection formula (11) and Corollary 29, (70) follows.

Remark 44. From the q-hypergeometric representation of the Al-Salam Carlitz I polynomials given in

item (l) page 16 we realized using the relation xn(x−1; q)n = (x 	 1)nq , that the basis (x 	 1)nq is the175

appropriate and natural basis to be used. This remark can be emphasized by the fact that the inversion

formula given above is in term of this basis.

4.5. Orthogonal polynomials on quadratic lattices

Note that by Wm(x2; a, b, c, d), Sm(x2; a, b, c), pm(x; a, b, c, d), P
(λ)
m (x;φ), we denote, respectively, the

Wilson, the Continuous Dual Hahn, the Continuous Hahn, and the Meixner-Pollaczek polynomials. Their180
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hypergeometric representation (see [26]) are:

Wn(x2; a, b, c, d)

(a+ b)n(a+ c)n(a+ d)n
= 4F3

 −n, n+ a+ b+ c+ d− 1, a+ ix, a− ix

a+ b, a+ c, a+ d

∣∣∣∣∣∣ 1


Sn(x2; a, b, c)

(a+ b)n(a+ c)n
= 3F2

 −n, a− ix, a+ ix

a+ b, a+ c

∣∣∣∣∣∣ 1


pn(x; a, b, c, d) = in
(a+ c)n(a+ d)n

n!
3F2

 −n, n+ a+ b+ c+ d− 1, a+ ix

a+ c, a+ d

∣∣∣∣∣∣ 1


P (λ)
n (x;φ) =

(2λ)n
n!

einφ2F1

 −n, λ+ ix

2λ

∣∣∣∣∣∣ 1− e−2iφ

,
where

λ(x) = x(x+ γ + δ + 1).

These polynomials fulfil the following inversion formulas (for details see [31]).

Theorem 45 (see [31]). The following inversion formulas are valid

θn(x) =

n∑
m=0

(
n

m

)
(−1)m(a+ b+m)n−m(a+ c+m)n−m(a+ d+m)n−m

(a+ b+ c+ d+m− 1)m(a+ b+ c+ d+ 2m)n−m
Wm(x2; a, b, c, d), (72)

θn(x) =

n∑
m=0

(−1)m
(
n

m

)
(a+ b+m)n−m(a+ c+m)n−mSm(x2; a, b, c),

where

θn(x) = (a− ix)n(a+ ix)n,

(a+ ix)n =

n∑
m=0

(
n

m

)
(−i)mm!(a+ c+m)n−m(a+ d+m)n−m

(a+ b+ c+ d− 1 +m)m(a+ b+ c+ d+ 2m)n−m
pm(x; a, b, c, d), (73)

(λ+ ix)n =

n∑
m=0

(
n

m

)
(−1)mm!(2λ+m)n−m

(1− e−2iφ)neimφ
P (λ)
m (x;φ).

Theorem 46. The following representations for the canonical moments are valid for:185

(a) the Wilson polynomials

µn = µ0

n∑
k=0

k∑
l=0

(−k)l
k!l!

(a+ b)k(a+ c)k(a+ d)k
(a+ b+ c+ d)k

(−2a− 2k + 2l)

(−2a− 2k + l)k+1
(a+ k − l)2n

, (74)

with

µ0 = 2π
Γ(a+ b)Γ(a+ c)Γ(b+ c)Γ(b+ d)Γ(c+ d)

Γ(a+ b+ c+ d)
;

(b) the Continuous Dual Hahn polynomials

µn = µ0

n∑
k=0

k∑
l=0

(−k)l
k!l!

(−2a− 2k + 2l)(a+ c)k(a+ d)k
(−2a− 2k + l)k+1

(a+ k − l)2n
, (75)

with

µ0 = Γ(a+ b)Γ(a+ c)Γ(b+ c);

(c) the Continuous Hahn polynomials

µn = µ0

n∑
k=0

k∑
l=0

(−1)l

k!

(
k

l

)
(a+ c)k(a+ d)k
(a+ b+ c+ d)k

((a+ l)i)n, (76)
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with

µ0 =
Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
;

(d) the Meixner-Pollaczek polynomials

µn =
2πΓ(2λ)

(2 sinφ)2λ

n∑
k=0

k∑
l=0

(−1)l

k!

(
k

l

)
(2λ)k((a+ l)i)n

(1− e−2iφ)k
. (77)

Proof. The Wilson polynomials fulfil the orthogonality relation [26, P. 186]∫ ∞
0

∣∣∣∣Γ(a+ ix)Γ(b+ ix)Γ(c+ ix)Γ(d+ ix)

Γ(2ix)

∣∣∣∣2Wm(x2; a, b, c, d)Wn(x2; a, b, c, d)dx

=
2πΓ(n+ a+ b)Γ(n+ a+ c)Γ(n+ b+ c)Γ(n+ b+ d)Γ(n+ c+ d)n!

Γ(2n+ a+ b+ c+ d)(n+ a+ b+ c+ d− 1)−1
n

δmn.

With m = n = 0, it follows that

µ0 = 2π
Γ(a+ b)Γ(a+ c)Γ(b+ c)Γ(b+ d)Γ(c+ d)

Γ(a+ b+ c+ d)
.

From the inversion formula (72), it follows that the zeroth inversion coefficient is

I0(n) =
(a+ b)n(a+ c)n(a+ d)n

(a+ b+ c+ d)n
.

Application of Theorem 28 gives the following Wilson generalized moments

µn(θn(a, x)) = 2π
Γ(a+ b)Γ(a+ c)Γ(b+ c)Γ(b+ d)Γ(c+ d)

Γ(a+ b+ c+ d)

(a+ b)n(a+ c)n(a+ d)n
(a+ b+ c+ d)n

,

where θn(a, x) is defined as in Theorem 45. Combining these generalized moments with the connection190

formula (14), and using Corollary 29, we obtain (74). The other moments are obtained similarly.

4.6. Orthogonal polynomials on q-quadratic lattices

These polynomials have the following q-hypergeometric representations (see [26]):

(a) The Askey-Wilson polynomials

anpn(x; a, b, c, d|q)
(ab, ac, ad; q)n

= 4φ3

 q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣∣∣ q; q
, x = cos θ.

(b) The Continuous Dual q-Hahn polynomials

anpn(x; a, b, c|q)
(ab, ac; q)n

= 3φ2

 q−n, aeiθ, ae−iθ

ab, ac

∣∣∣∣∣∣ q, q
, x = cos θ.

(c) The Continuous q-Hahn polynomials

(aeiφ)npn(x; a, b, c, d|q)
(abe2iθ, ac, ad; q)n

= 4φ3

 q−n, abcdqn−1, aei(θ+2φ), ae−iθ

abe2iφ, ac, ad

∣∣∣∣∣∣ q, q
, x = cos(θ + φ).

(d) The Al-Salam-Chihara polynomials

Qn(x; a, b|q) =
(ab; q)n
an

3φ2

 q−n, aeiθ, ae−iθ

ab, 0

∣∣∣∣∣∣ q, q
, x = cos θ.
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(e) The q-Meixner-Pollaczek polynomials

Pn(x; a|q) = a−ne−inφ
(a2; q)n
(q; q)n

3φ2

 q−n, aei(θ+2φ), ae−iθ

a2, 0

∣∣∣∣∣∣ q, q
, x = cos(θ + φ).

(f) The continuous q-Jacobi polynomials

P (α,β)
n (x|q) =

(qα+1; q)n
(q; q)n

4φ3

 q−n, qn+α+β+1, q
1
2α+ 1

4 eiθ, q
1
2α+ 1

4 e−iθ

qα+1,−q 1
2 (α+β+1),−q 1

2 (α+β+2)

∣∣∣∣∣∣ q; q
, x = cos θ.

(g) The continuous big q-Hermite polynomials

Hn(x; a, |q) = a−n3φ2

 q−n, aeiθ, ae−iθ

0, 0

∣∣∣∣∣∣ q, q
, x = cos θ.

(h) The continuous q-Laguerre polynomials

P (α)
n (x|q) =

(qα+1; q)n
(q; q)n

3φ2

 q−n, q
1
2α+ 1

4 eiθ, q
1
2α+ 1

4 e−iθ

qα+1, 0

∣∣∣∣∣∣ q, q
, x = cos θ.

(i) The continuous q-Hermite polynomials

Hn(x|q) = einθ2φ0

 q−n, 0

−

∣∣∣∣∣∣ q, qne−2iθ

, x = cos θ.

Note that these polynomials fulfill the following inversion formulas.195

Theorem 47 (see [31]). The Askey-Wilson, Continuous Dual q-Hahn, the Al-Salam-Chihara and the

Continuous big q-Hermite polynomials fulfil the following inversion formulas, respectively

Bn(x) =

n∑
m=0

[
n

m

]
q

q(
m
2 )(−a)m(abqm, acqm, adqm; q)n−m
(abcdqm−1; q)m(abcdq2m; q)n−m

pm(x; a, b, c, d), (see[1, 5, 15, 31, 35]) (78)

Bn(x) =

n∑
m=0

(−a)m
[
n

m

]
q

q(
m
2 )(abqm, acqm; q)n−mpm(x; a, b, c|q),

Bn(x) =

n∑
m=0

(−a)m
[
n

m

]
q

q(
m
2 )(abqm; q)n−mQm(x; a, b|q),

Bn(x) =

n∑
m=0

(−a)m
[
n

m

]
q

q(
m
2 )Hm(x; a|q),

where

Bn(x) = (aeiθ, ae−iθ; q)n, x = cos θ.

Remark 48. It should be noted that from the inversion formula for the Askey-Wilson polynomials (78),

the remaining inversion coefficients for the polynomials of the Askey scheme may be obtained by appro-200

priate limit transitions.
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Theorem 49. The following representations are valid for the canonical moments of:

(a) the Askey-Wilson polynomials

µn =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞

n∑
k=0

k∑
j=0

(ab, ac, ad; q)k
(abcd; q)k

qkq−j
2

a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
. (79)

(b) the Continuous Dual q-Hahn polynomials

µn =
2π

(q, ab, ac, bc; q)∞

n∑
k=0

k∑
j=0

qkq−j
2

a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(ab, ac; q)k. (80)

(c) the Al-Salam-Chihara polynomials

µn =
2π

(q, ab; q)∞

n∑
k=0

k∑
j=0

qkq−j
2

a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
(ab; q)k. (81)

(d) the Continuous Big q-Hermite polynomials

µn =
2π

(q; q)∞

n∑
k=0

k∑
j=0

qkq−j
2

a−2j(aqj + a−1q−j)k

(q, q1+2ja2; q)k−j(q, q−1−2ja−2; q)j
. (82)

Proof. From the Askey-Wilson orthogonality relation (see e.g [26]), with m = n = 0, it follows that

µ0 =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞
.

From the inversion formula (78), we get the zeroth inversion coefficient

I0(n) =
(ab, ac, ad; q)n

(abcd; q)n
.

Hence, using Eq. (25), the generalized Askey-Wilson moments with respect to Bn(x) = (aeiθ, ae−iθ; q)n

have the representation

µn(Bn(x)) =
2π(abcd; q)∞

(q; ab, ac, ad, bc, bd, cd; q)∞

(ab, ac, ad; q)n
(abcd; q)n

. (83)

Finally, using (20) and Corollary 29, we obtain (79). The other canonical moments are computed using

similar arguments as in the proof of Theorem 46.

Note that formula (79) appeared in [12].205

Remark 50. Note also that by appropriate limit transitions, one may obtain the canonical moments of

the remaining polynomials from the moments of the Askey-Wilson polynomials (79). For example, the

moments of the Continuous Dual q-Hahn polynomials given in (80) is obtaining by taking d = 0 in the

Askey-Wilson moments given by(79).210

Theorem 51. The Continuous q-Hahn and the q-Meixner-Pollaczek polynomials fulfil the following in-

version formulas, respectively

Bn(x) =

n∑
m=0

[
n

m

]
q

(−aeiφ)mq(
m
2 )(abqme2iφ, acqm, adqm; q)n−m

(abcdqm; q)m(abcdq2m; q)n−m
Pm(x; a, b, c, d|q), see[31]

Bn(x) =

n∑
m=0

(−aeiφ)m
[
n

m

]
q

q(
m
2 )(q; q)m(a2qm; q)n−mPm(x; a|q), see[31]

where

Bn(x) = (aei(θ+2φ), ae−iθ; q)n, x = cos(θ + φ).
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Theorem 52. The Continuous q-Hahn and the q-Meixner canonical moments have the following repre-

sentations, respectively.

µn = µ0

n∑
k=0

k∑
j=0

(abe2iφ, ac, ad; q)k
(abcd; q)k

qkq−j
2

a−2je2iφ(ae−iφqj + a−1eiφq−j)k

(q, q1+2ja2e−2iφ; q)k−j(q, q−1−2ja−2e2iφ; q)j
, (84)

where

µ0 =
4π(abcd; q)∞

(q, abe2iφ, ac, ad, bc, bd, cde−2iφ; q)∞

and215

µn =
2π

(a2, q; q)∞

n∑
k=0

k∑
j=0

qkq−j
2

a−2je2iφ(ae−iφqj + a−1eiφq−j)k

(q, q1+2ja2e−2iφ; q)k−j(q, q−1−2ja−2e2iφ; q)j
(a2, q; q)k. (85)

Proof. The proof this theorem is similar to the one of Theorem 49.

Theorem 53. The Continuous q-Jacobi and the Continuous q-Laguerre polynomials fulfil the following

inversion formulas, respectively, see [31].

Bn(x) =

n∑
m=0

[
n

m

]
q

(−1)m(q; q)mq
(m2 )(qα+1+m; q)n−m(−q 1

2 (α+β+1),−q 1
2 (α+β+2); q)n

(qm+α+β+1; q)m(q2m+α+β+2; q)n−m
P (α,β)
m (x|q),

Bn(x) =

n∑
m=0

(−1)m
[
n

m

]
q

q(
m
2 )(q; q)m(qα+1+m; q)n−mP

(α)
m (x|q),

where

Bn(x) = (q
1
2α+ 1

4 eiθ, q
1
2α+ 1

4 e−iθ; q)n, x = cos θ.

Theorem 54. The Continuous q-Jacobi and the Continuous q-Laguerre canonical moments have the

following representations.220

µn = µ0

n∑
k=0

k∑
j=0

qk−j
2−(α+ 1

2 )j(qj+
α
2 + 1

4 + q−j−
α
2−

1
4 )k

(q, q2j+α+ 3
2 ; q)k−j(q, q−2j−α− 3

2 ; q)j

(qα+1,−q 1
2 (α+β+1),−q 1

2 (α+β+2); q)k
(qα+β+2; q)k

, (86)

where

µ0 =
2π(q

1
2 (α+β+2), q

1
2 (α+β+3); q)∞

(q, qα+1, qβ+1,−q 1
2 (α+β+1),−q 1

2 (α+β+2); q)∞

and

µn =
2π

(q, qα+1; q)∞

n∑
k=0

k∑
j=0

qkq−j
2

q−(α+ 1
2 )j(qj+

α
2 + 1

4 + q−j−
α
2−

1
4 )k(qα+1; q)k

(q, q2j+α+ 3
2 ; q)k−j(q, q−2j−α− 3

2 ; q)j
. (87)

Proof. The proof this theorem is similar to the one of Theorem 49.

Theorem 55. The Continuous q-Hermite polynomials have the following representation:

µ2n+1 = 0, µ2n =
π(−1)n

(q; q)∞

n∑
k=0

(−1)k
(

2n

k

)
(1 + qn−k)q

(n−k)(n−k−1)
2 , n = 0, 1, 2, . . . (88)

In order to prove this theorem, we need the following lemma.

Lemma 56 (See Lemma 13.1.4 in [18]). The following relation is valid∫ π

0

e2ijθ(e2iθ, e−2iθ; q)∞dθ =
π(−1)j

(q; q)∞
(1 + qj)qj(j−1)/2. (89)
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Proof of the theorem. Note that µn = 0 when n is odd. We start by writing

cosn θ =
1

2n

n∑
k=0

(
n

k

)
ei(n−2k).

Next, we use the the relation (89) to get:

µ2n =

∫ π

0

(cos θ)2n(e2iθ, e−2iθ; q)∞dθ

=
1

22n

2n∑
k=0

(
2n

k

)∫ π

0

e2i(n−k)(e2iθ, e−2iθ; q)∞dθ

=
π(−1)n

(q; q)∞

n∑
k=0

(−1)k
(

2n

k

)
(1 + qn−k)q

(n−k)(n−k−1)
2 .
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