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� Introduction

Formal Laurent�Puiseux series of the form

f�x� �
�X

k�k�

akx
k�n ���

with coe�cients ak � C �k � ZZ� are important in many branches of mathematics� Maple supports
the computation of truncated series with its series command	 and through the powerseries

package 
�� innite series are available� In the latter case	 the series is represented as a table of
coe�cients that have already been determined together with a function for computing additional
coe�cients� This is known as lazy evaluation� But these tools fail	 if one is interested in an explicit
formula for the coe�cients ak �

In this article we will describe the Maple implementation of an algorithm presented in 
���
���
which computes an exact formal power series �FPS� of a given function� This procedure will enable
the user to reproduce most of the results of the extensive bibliography on series 
��� We will give
an overview of the algorithm and then present some parts of it in more detail�

This package is available through the Maple�share library with the name FPS� We will �avor
this procedure with the following example�

� FormalPowerSeries�sin�x�� x����

infinity
����� k �	 k 
 ��
� ���� x
� ����������������
 �	 k 
 ���
�����
k � �

� Preliminary Results

To deal with many special functions	 it is a good idea to consider the �generalized� hypergeometric
series

pFq

�
a� a� � � � ap
b� b� � � � bq

�����x
�
��

�X
k��

�a��k � �a��k � � ��ap�k
�b��k � �b��k � � � �bq�k k�x

k ���

�



where �a�k denotes the Pochhammer symbol �or shifted factorial� dened by

�a�k ��

��
�

� if k � �

a � �a� �� � � ��a� k � �� if k � IN
�

We have dened this function in our package under the name pochhammer�

The coe�cients Ak of the hypergeometric series
�P
k��

Akx
k are the unique solution of the special

recurrence equation �RE�

Ak�� ��
�k � a�� � �k� a�� � � ��k � ap�

�k � b�� � �k � b�� � � ��k � bq��k � ��
�Ak �k � IN�

with the initial condition
A� �� � �

Note that Ak��
Ak

is rational in k� Moreover if Ak��
Ak

is a rational function R�k� in the variable k then
the corresponding function f is connected with a hypergeometric series� i�e�	 if k � �� is a pole
of R	 then f corresponds to a hypergeometric series evaluated at some point Ax �where A is the
quotient of the leading coe�cients of the numerator and the denominator of R�� whereas	 if k � ��
is no pole of R	 then f may be furthermore shifted by some factor xs �s � ZZ��

We further mention that the function f corresponding to the hypergeometric series

f�x� �� pFq

�
a� a� � � � ap
b� b� � � � bq

�����x
�

satises the di�erential equation �DE�

��� � b� � �� � � ��� � bq � ��f � x�� � a�� � � ��� � ap�f ���

where � is the di�erential operator x d
dx � An inspection of the hypergeometric DE ��� shows that

it is of the form
QX
j��

QX
l��

cljx
lf �j� � � ���

with certain constants clj � C and Q � maxfp� qg� �� Because of their importance in our devel�
opment	 we call a DE of the form ���	 i�e� a homogeneous linear DE with polynomial coe�cients	
simple�

We extend the considerations to formal Laurent�Puiseux series �LPS� with a representation

f ��
�X

k�k�

akx
k�n �ak� �� �� ���

for some k� � ZZ	 and n � IN� LPS are formal Laurent series	 evaluated at n
p
x� A formal Laurent

series �n � �� is a shifted FPS	 and corresponds to a meromorphic f with a pole of order �k� at the
origin� The number n in development ��� is called the Puiseux number of �the given representation
of� f �

�



Definition � �Functions of hypergeometric type�� An LPS f with representation ��� is
called to be of hypergeometric type if its coe�cients ak satisfy a RE of the form

ak�m � R�k� ak for k � k� ���

ak � Ak for k � k�� k� � �� � � � � k� �m� �

for some m � IN� Ak � C �k � k� � �� k� � �� � � � � k� �m � ��� Ak� � C n f�g� and some rational
function R� The number m is then called the symmetry number of �the given representation of� f �
A RE of type �	� is also called to be of hypergeometric type�

We want to emphasize that the above terminology of functions of hypergeometric type is pretty
more general than the terminology of a generalized hypergeometric function� It covers e�g� the
function sin x which is not a generalized hypergeometric function as obviously no RE of type ���
with m � � holds for its series coe�cients� So sin x is not of hypergeometric type with symmetry
number �� it is	 however	 of hypergeometric type with symmetry number �� A more di�cult example
of the same kind is the function earcsinx which is neither even nor odd	 and nevertheless turns out to
be of hypergeometric type with symmetry number �	 too� Also functions like x�� sin x are covered
by the given approach� Moreover the terminology covers composite functions like sin

p
x	 which do

not have a Laurent	 but a Puiseux series development� Each LPS with symmetry number m	 and
Puiseux number n	 can be represented as the sum of nm shifted m�fold symmetric functions�

We remark further that one can extend the denition of functions of hypergeometric type to
include also the functions of the form

R
f where f is an arbitrary LPS �see 
��	 Section ��� Note

that because of the logarithmic terms these functions	 in general	 do not represent LPS�
In 
�� it has been proven	 that each LPS of hypergeometric type satises a simple DE	 which

is essential for our development� Now assume	 a function f representing an LPS is given� In order
to nd the coe�cient formula	 it is a reasonable approach to search for its DE	 to transfer this
DE into its equivalent RE	 and you are done by an adaption of the coe�cient formula for the
hypergeometric function corresponding to transformations on f which preserve its hypergeometric
type� Below	 we will discuss these steps in detail�

The outline of the algorithm to produce a formal Laurent�Puiseux series expansion of the
function f with respect to the variable x around x � � is shown in Algorithm �� Note that series
expansions around other points can easily be reduced to this case�

� Search of the DE

In this section we present the algorithm that searches for a simple DE of degree k for a given
function f � We set up the equation

f �k��x� �
k��X
j��

Aj f
�j��x� � �

and expand it� Then we collect the coe�cients of all the rationally dependent terms and equate
them to zero� For testing whether two terms are rationally dependent	 we divide one by the other
and test whether the quotient is a rational function in x or not� This is an easy and fast approach�
Of course	 we could also use the Risch normalization procedure 
��	 �� to generate the rationally
independent terms	 but rst this normalization is rather expensive and only works for elementary
functions and second	 our simplied approach will not lead to wrong results	 it may at most happen
that we miss a simpler solution	 which	 in practice	 rarely happens	 however� This procedure by its
own is available under the name SimpleDE�

�



FormalPowerSeries�f� x���

for k �� � to kmax do

Search a simple DE of degree k of the form

DE �� f �k��x� �
k��X
j��

Aj f
�j��x� � � ���

where the Aj are rational functions in x�
if the search was successful	 then

Convert the DE into a recurrence equation of the form

RE ��
MX
j��

pjak�j � � ���

for the coe�cients ak	 where pj are polynomials in k and M � IN
if the RE only contains one or two summands then

f is of hypergeometric type and the RE can be solved
elif the DE has constant coe�cients then

f is of exp�like type and the RE can also be solved�
fi

fi�
if f �k��x� is a rational function in x	 then

use the rational Algorithm and integrate the result k times�
fi

od

Algorithm �� Algorithm FormalPowerSeries

The resulting di�erential equation only depends on the form of the derivatives f �j��x� �which
of course must be known to the system�� As an example we look at the Airy wave function Ai	
whose derivative presently �in Maple� is given as

� diff�Ai�x��x��

�	 �	
x � BesselK�	�� 	� x �

� �� �����������������������������
Pi

The simple DE then becomes

� SimpleDE�Ai�x��x��

 � �  	 �
� d � 	  d � � d �
������ F�x�� x � x ����� F�x�� � ������ F�x�� � �
� � � � dx  � 	 �
� dx  � dx 

which is not the simple DE of lowest degree valid for Ai� This happens since the second derivative
is not expressed in terms of Ai �and diff�Ai�x��x�� itself �or in other words since Ai itself is not
expressed in terms of BesselK�� We may introduce a new function newAi by dening its derivatives

�



� �diffnewAi� �� �e�x� �� diff�e�x��newAiPrime�e��

� �diffnewAiPrime� �� �e�x� �� diff�e�x��e�newAi�e��

� SimpleDE�newAi�x��x��

 	 �
� d �
������ F�x�� � x F�x� � �
� 	 �
� dx 

and we get the expected di�erential equation for the Airy wave function Ai�
It may happen	 that for a given function f�x� a DE of degree k exists	 but which has neither

constant coe�cients �which we call the explike case� nor is the corresponding RE of hypergeometric
type and hence no closed form for the LPS can be computed� What we can do in this situation is
to look for a DE of higher degree which then will have free parameters as from the existence of a
DE of degree k follows the existence of families of DEs of higher degree� These parameters can be
set freely and we can try to choose them in such a way	 that we can use our tools to compute a
formal LPS	 i�e� we either need a RE of hypergeometric type or a DE with constant coe�cients�

For the rst case we convert the DE into the corresponding RE of the form ��� and try to set
all the coe�cients but two to zero� For example	 let f�x� � x�� ex sin x� We nd DEs of degree �
and of degree �	 but none of the corresponding REs can be solved� The RE which corresponds to
the DE of degree � has the form

	X
j��

pj�k� ak�j � �

where

p��k� � �A� � �A
 � �

p��k� � ��A� � ��A
 � ��� �A
k � �A�k

p��k� � ��A
 � �A�k � �A� � �� � �k � �A
k � A�k
�

p
�k� � �� � k��A
k
� � �A
k � ��� �A
�

p	�k� � �k � ���� � k��k� � k � ��

The solution of the equations p��k� � �� p��k� � �� p
�k� � � �forcing that only two terms of the
sum remain� with respect to A� and A
 is

A� � �� k� � �k � ��

k
 � �k� � k � �
� A
 �

��

k� � �k � �
�

This results in the following RE of hypergeometric type �after multiplying by �k��� �k�
�
k��k�� �

�k � �� �k � �� �k � �� �k � �� ak�� � � ak � �

with symmetry number m � �� Of course	 we try to keep the symmetry number	 that is the number
of resulting sums	 as small as possible� The nal result for this example is

� FormalPowerSeries�exp�x��sin�x�x� x��

infinity � infinity �
� ����� k �� k� k �� k�� � ����� k �� k� k �� 
 � k��
� � ���� �� 	�� x � � � ���� �� 	�� x �
� � �������������������������� 
 � � ������������������������������
�  �� 
 � k�� � �  �� 
 � k�� �	 k 
 �� �
� ����� � � ����� �
� k � �  � k � � 

�



infinity �
� ����� k �� k� k �� k 
 	��
� � ���� �� 	�� x �


 � � �������������������������������
�  �� k 
 �� �� 
 � k�� �	 k 
 ���
� ����� �
� k � � 

Note that one of the four sums �with the powers x	k�
� vanishes as a result of a vanishing initial
coe�cient�

If this step fails	 then we try to choose the parameters such that the DE gets constant coe�cients�
Let us look at a rather similar example	 f�x� � x ex sin��x�� We again nd DEs of second and third
order	 but their corresponding REs cannot be solved� The DE of degree � has two free parameters
A� and A
 as expected

x�
d	

dx	
f�x� � A
x

� d


dx

f�x� �A�x

� d�

dx�
f�x��

�
�A
 � �A� � ��� x�� ���A
 � �A� � �� x

	 d

dx
f�x� ��

���A
 � �A� � ��x� � ���A
� �A� � ���x� ��A
 � �A� � ��
	
f�x� � � �

The DE will have constant coe�cients	 if both A� and A
 are constants and if they meet the
following equations

�A
 � �A� � � � �
��A
 � �A� � �� � �

�

The solution of this system of equations is A� � �� and A
 � ��� If we insert these values in the
di�erential equation and divide by x�	 then we get the DE

d	

dx	
f�x�� �

d


dx

f�x� � ��

d�

dx�
f�x�� ��

d

dx
f�x� � ��f�x� � �

which has constant coe�cients leading to a constant coe�cient RE for bk given by f�x� �
P bk

k� x
k

that can be solved�

� FormalPowerSeries�x�exp�x��sin�	�x��x��

infinity
�����  k �	 k �	 �
� � �� � cos�k arctan�	�� k �� � sin�k arctan�	�� k� k
� �� 	� �������������������������� 
 �� ��������������������������� x
 � k� k� 
�����
k � �

� Conversion to the Recurrence Equation

As it has been proven in 
��	 this transformation is done by the substitution

xlf �j��x� �� �k���l�j � ak�j�l ���

into the DE�
We give here a small Maple procedure which performs this transformation� We assume	 that

the jth derivative of f�x� is represented by the expression f�j�� You may compare the procedure
ConvertDEtoRE with the rule based solution presented in 
���

�



� ConvertDEtoRE �� proc�de� f� x� a� k� local X� F� l� j�

� if type�de��
�� then

� map�ConvertDEtoRE� de� f� x� a� k�

� else

� X �� select�has� j�de� x��

� F �� select�has� j�de� f��

� l �� degree�X� x��

� j �� op���F��

� deXF � pochhammer�k
��l�j� � a�k
j�l�

� fi

� end�

The following example converts the left hand side of the DE for ex into the corresponding left hand
side of the RE for the coe�cients ak of the FPS of ex�

� ConvertDEtoRE�F����F���� F� x� a� k��

�k 
 �� a�k 
 �� � a�k�

The search of a DE and its conversion to the RE is directly available through the command
SimpleRE� We see that newAi�x�� is of hypergeometric type with symmetry numberm � �	 whereas
the second RE is not of hypergeometric type�

� SimpleRE�newAi�x�	�� x��

�k � �� �k 
 �� a�k 
 �� � � a�k � �� � �

� SimpleRE�x���x�x�	�� x��

�� � k� a�k� 
 �k � �� a�k � �� 
 �k � �� a�k � 	� � �

The latter example is the generating function of the Fibonacci numbers	 and we get the expected
RE� Note	 that the common factor �k � �� ensures	 that the RE holds � k � ZZ�

� Solving a Recurrence Equation of Hypergeometric Type

If the recurrence equation of a function f�x� is of the form

Q�k� ak�m � P �k� ak ����

�P�Q polynomials� then f is of hypergeometric type and the corresponding series representation has
symmetry number m� The explicit formula for the coe�cients can be found by the hypergeometric
coe�cient formula ��� and some initial conditions� Based on the analysis of the polynomials P �k�
and Q�k�	 we will convert the RE into one corresponding to a Taylor series by applying a sequence
of transformations stated in the following lemma which preserve the hypergeometric type�

Lemma � Let f be a formal Laurent series �FLS� of hypergeometric type with representation ����
whose coe�cients ak satisfy a RE of the form �	�� then the following functions are of hypergeometric
type� too� Their coe�cients bk satisfy a RE whose relation to the RE of f is also given�

�a� xnf�x� bk�m � R�k � n� bk n � ZZ

�b� f�Ax� bk�m � AmR�k� bk A � C
�c� f�xn� bk�nm � R�k�n� bk n � IN

�d� f�x��m� bk�� � R�km� bk
�e� f ��x� bk�m � k�m��

k�� R�k � �� bk

�



For a proof of this lemma we refer to 
��	 Lemma ��� and Theorem ����
First of all	 we inspect the roots of P �k� and Q�k� of the RE ����� If there are any rational

roots	 then we know that f corresponds �possibly� to a Puiseux series� In this case we transform f

to a function of Laurent type by an application of transformation �c�	 where n is the least common
multiple of the denominators of all rational roots of P �k� and Q�k�� The FLS we get when we solve
the transformed RE can be transformed back to the LPS of f by substituting x by x��n�

Let us now assume that f can be expanded in a FLS� We reduce this problem to solving the RE
of a function which has a FPS expansion� For that we remove the nite pole of f at the origin by
multiplying f with a suitable power of x �transformation �a��� From the information of the RE we
can determine which power we have to use� Let us assume that f may be expanded in a Laurent
series	 i�e� that 	 k� � � k 
 k� � ak � �� From these known coe�cients we can derive further
ones using the given RE in the form

ak�m �
P �k�

Q�k�
ak� ����

If we know that ak � � then also ak�m � � provided that Q�k� �� �� Let kmin be the smallest
integer root of Q�k�� Consequently ak � � � k � kmin �m� From this it follows	 that

g � x��kmin�m� f

may be expanded into a FPS	 i�e� g has no pole at the origin	 given the assumption that f may be
expanded in a Laurent series� This latter assumption can be tested by computing the limit of g as
x tends to �� This limit must be nite� �Since we also allow logarithmic singularities	 we test in fact
whether the limit of x � g is ��� If this is not the case	 then the assumption that f may be expanded
into a FLS is wrong and f must have an essential singularity	 i�e� �	 k� � � k 
 k� � ak � ��
Otherwise the FPS of g exists and can again easily be transformed back to the FLS of f �

What we nally have to show is how to solve a RE which corresponds to a given function f
which has a FPS expansion� The RE ���� is valid � k � Q�k� �� �	 especially � k � kmax where
kmax is the largest root of Q�k�� Consequently we must determine ak for k � �� �� � � � � kmax � m
and have to solve the hypergeometric RE for x�k f�x��m� using ��� for k � kmax� We investigate
now how this condition can be weakened�

The coe�cient ak is given by the limit lim
x��

f �k��x��k�� Let us assume	 that this limit is nite�

Then the hypergeometric RE can be solved in the case that � j � � � Q�k � j m� �� �	 otherwise
simply ak x

k is added to the result� Moreover note	 that

�P �k� � � � ak � ��� � j � � � Q�k � j m� �� � � ak is nite � � j � � � a�k � j m� � �

and in this case the RE does not have to be solved and it is enough to add ak x
k to the result� The

indices k � j m� j � � no longer need to be considered�
If ak is innite	 then we found a logarithmic singularity which we can remove by working with

g � �x�k f�x���

and by integrating and shifting the resulting power series S� The RE of g can be obtained from
the RE of f by applying transformations �a� and �e�� The constant term which we lose by the
di�erentiation can be determined by computing the limit

lim
x��

f�x��xk �
Z
S�x� dx�

�



Note that g in general is a function with a FLS expansion and we rst must remove the pole to get a
function with a FPS expansion� This is the reason why we have chosen a recursive implementation
of the RE solver� The procedure hypergeomRsolve accepts as parameters f�x�� P �k�� Q�k� and
the symmetry number m� Every application of a transformation of Lemma � is nothing else
but a recursive call of the RE solver� One may inspect which steps the algorithm performs by
assigning the variable infolevel�FormalPowerSeries	� As an example we trace the computation
for f�x� � x�� sin

p
x� A DE of degree � is found whose corresponding RE is of hypergeometric

type� From the root of �k � � it follows that the Puiseux number is � and so transformation �c�
with n � � is applied� The resulting function is of Laurent type� The smallest integer root of Q�k�
of the transformed RE is �� and the symmetry number is m � �	 hence we multiply the function
with x� and adjust the RE accordingly� We end up with the function sin x whose FPS can be
computed directly� This result is then transformed back to the LPS of f�x� according to the two
transformations we applied�

� infolevel�FormalPowerSeries� �� ��

� FormalPowerSeries�sin�sqrt�x��x�x��

FPSFPS� looking for DE of degree �
FPSFPS� looking for DE of degree 	
FPSFPS� DE of degree 	 found�
FPSFPS� DE �

	
� x F���x� 
 �� x F��x� 
 �	 
 x� F�x� � �

FPShypergeomRE� RE is of hypergeometric type�
FPShypergeomRE� Symmetry number m � �
FPShypergeomRE� RE� 	 �k 
 	� �	 k 
 �� a�k 
 �� � � a�k�
FPShypergeomRE� RE modified by k � �	�k
FPShypergeomRE� �� f �� sin�x�x�	

FPShypergeomRE� RE is of hypergeometric type�
FPShypergeomRE� Symmetry number m � 	
FPShypergeomRE� RE� �k 
 �� �k 
 �� a�k 
 	� � � a�k�
FPShypergeomRE� working with x�	�f
FPShypergeomRE� �� f �� sin�x�

FPShypergeomRE� RE is of hypergeometric type�
FPShypergeomRE� Symmetry number m � 	
FPShypergeomRE� RE� �k 
 	� �k 
 �� a�k 
 	� � � a�k�
FPShypergeomRE� RE valid for all k �� �
FPShypergeomRE� a��� � �
FPShypergeomRE� a�	�j� � � for all j���
FPShypergeomRE� a��� � �

infinity
����� k �k � �	�
� ���� x
� ����������������
 �	 k 
 ���
�����
k � �

� infolevel�FormalPowerSeries� �� ��

� Rational Algorithm

If the given function �or any of its derivatives� is rational in x we can apply the rational algorithm
as described in Section � of 
��� First the complex partial fraction decomposition of f�x� has to be
calculated� Each term of the form c

�x���j can be expanded by the binomial series whose coe�cients

�



are

ak �
����j c
�j�k

�
j � k � �

k

�
�

� FormalPowerSeries����x����	��x�	���x��

infinity
����� k k k
� �k� � 	 	 k� 
 	 �� 
 k�� 	 � x
� � �	 ���������������������������������
 k
����� 	 k�
k � �

� FormalPowerSeries���
x
x�	
x�����x�����x�	���x��

infinity �
� ����� k k�
� � �� 	 � ��� x �

x 
 � 
 � � �	 ���������������
�  k �
� ����� 	 �
� k � � 

� FormalPowerSeries�C�B�A � A�x � B�x
x�	��x��

infinity
����� k k k
� C �A A � B B � x
� ������������������
 k k
����� �A � B� B B A A
k � �

To get the complex partial fraction decomposition we must factor the denominator which may
be rather complicated	 hence the rational algorithm to compute the full partial fraction expansion
presented in 
�� may be used� The following example uses this code� This method can be forced to
be used	 if the environment variable 
EnvExplicit is set to false�

� FormalPowerSeries���x��
x
���x��

infinity
�����  ����� 	 ��
� � � 	� 
 �� alpha � �� alpha 
 �� alpha � k
� � � �		� �������������������������������������� x
 �  �� 
 k� �

����� � ����� alpha �
k � � �alpha � �� 

�
�� �� RootOf� Z 
  Z 
 ��

A closed form of the Fibonacci numbers can be derived by computing the FPS of their generating
function x���� x� x���

� expand�FormalPowerSeries�x���x�x�	��x���

infinity �
� �����  k k ��

�	 � � � x x ��
� �� � � � �� ����������������� 
 ���������������������

�  � �	 k �	 k��
� ����� � ��	 � � �	� �� �	 � �	 � � �
� k � � 

The expand command converts the coe�cient in the usual notation� If the factorization of the
numerator is avoided	 then the following result is obtained�

��



�  EnvExplicit �� false�

� FormalPowerSeries�x���x�x�	��x��

infinity
�����  ����� �
� � � alpha � 	 � k
� � � � �� ������������� x
 �  �� 
 k��

����� � ����� alpha �
k � � � 	 �

�alpha � RootOf�� � 
  Z 
  Z � 

�  EnvExplicit �� � EnvExplicit��

� Special Functions� in Particular Orthogonal Polynomials

The algorithm has been extended to handle many special functions	 in particular orthogonal poly�
nomials 
���� Our implementation covers this approach�

We have seen	 that the only precondition which must be met by a function to be covered by
the algorithm is that its derivative is dened in terms of functions which also may be handled by
our algorithm�

In the case of families of orthogonal polynomials we have the following special situation� The
general derivative of an orthogonal polynomial of degree n can be dened in terms of the orthogonal
polynomials of degree n	 and n � �� But on the other hand	 furthermore a recurrence equation is
known which allows to express the polynomial of degree n in terms of the polynomials of degree
n��	 and n��� Combining these two facts	 it is possible to nd a second order DE for the general
polynomial of degree n� If the resulting RE is of hypergeometric type �which depends on the point
of expansion� the algorithm further yields an LPS representation for the general polynomial of
degree n�

Similarly if a function family F �n� x� possesses a di�erentiation rule of the form

	F �n� x�

	x
� p��n� x�F �n� x� � p��n� x�F �n� �� x�

with rational expressions p�	 and p� �or a similar rule with m rather than � expressions on the
right� then by the product and chain rules of di�erentiation the second derivative has the form

	�F �n� x�

	x�
� q��n� x�F �n� x� � q��n� x�F �n� �� x� � q��n� x�F �n� �� x�

with rational expressions q�� q�	 and q�	 and all higher derivatives of F �n� x� obtain similar repre�
sentations� Each di�erentiation increases the number of representing expressions by one� However	
if we further know a recurrence equation of the form

F �n� x� � r��n� x�F �n� �� x� � r��n� x�F �n� �� x�

with rational expressions r�	 and r� �or a similar equation with m rather than � expressions on
the right� then a recursive application of this equation can be used to simplify each combination of
derivatives of F �n� x� to a sum of � �or m	 respectively� rationally independent ones�

To give an example	 we consider the Fibonacci polynomials� The recurrence equation of the
family of Fibonacci polynomials Fn�x� is

Fn�x� � xFn���x� � Fn���x�

F��x� � �

F��x� � ��

��



We can teach our procedure to use this recurrence equation by assigning the table FPSRecursion�
The second index species the number of arguments of the function family�

� FPSRecursion�Fibonacci� 	� �� �n�x� �� x�Fibonacci�n���x� 
 Fibonacci�n�	�x��

The derivative rule is given by

	Fn�x�

	x
�

�n� �� xFn�x� � �nFn���x�

x� � �
�

and written in Maple

� �diffFibonacci� �� proc�n� e� x�

� diff�e�x� ���n����e�Fibonacci�n�e�
	�n�Fibonacci�n���e���e�	
��

� end�

This rule has been derived as follows� First	 an explicit formula of Fn�x� has been computed

using our algorithm to generate the FPS of the generating function
�P
n��

Fn�x� t
n � t

��x t�t� of the

Fibonacci polynomials that is an easy consequence of the recurrence equation�

� FormalPowerSeries�t���x�t�t�	�� t��

	 �	 k 	 �	 k k
�� �� �	 x � �	 �x 
 �� � 
 �� �	 x 
 �	 �x 
 �� � � t

Sum�� ����������������������������������������������������������������������
	 �	 k 	 �	 k 	 �	

�� �	 x � �	 �x 
 �� � �� �	 x 
 �	 �x 
 �� � �x 
 ��

k � � �� infinity�

After some simplications	 the coe�cient of this FPS	 i�e� Fn�x� has the following form�

� F �� ���	�x
�	��x�	
�����	���n���	�x��	��x�	
�����	���n��x�	
�����	��

	 �	 n 	 �	 n
��	 x 
 �	 �x 
 �� � � ��	 x � �	 �x 
 �� �

F �� �������������������������������������������������������
	 �	

�x 
 ��

We now make the following ansatz for the derivative rule	 namely

Fn�x�
� � a Fn�x� � b Fn���x�

and try to solve this equation for the unknown parameters a	 and b�

� eq �� diff�F�x� � �a�F 
 b�subs�n�n���F���

� eq �� numer�normal�eq� expanded���

� indets�eq��

	 �	 	 �	 n
!n� a� b� x� �x 
 �� � ��	 x 
 �	 �x 
 �� � �

	 �	 n 	 �	
��	 x � �	 �x 
 �� � � �x 
 �� "

� solve�!coeffs�eq� !#������"�"� !a�b"��

x �n � �� n
!a � ���������� b � 	 ������"

	 	
x 
 � x 
 �

� assign�#��

� a�Fibonacci�n�x�
b�Fibonacci�n���x��

��



x �n � �� Fibonacci�n� x� n Fibonacci�n � �� x�
������������������������� 
 	 ���������������������

	 	
x 
 � x 
 �

Note that	 again	 the above procedure essentially equates the coe�cients of the rationally indepen�
dent terms of our setting to zero�

The algorithm trying to nd a DE computes the rst and the second derivative of Fn�x�	
expresses all occurrences of Fn�x� in terms of Fn���x� and Fn���x�	 and nally returns the following
solution�

� SimpleDE�Fibonacci�n�x��x��

 	 �
	 � d �  d �

�x 
 �� ������ F�x�� � �n � �� �n 
 �� F�x� 
 � x ����� F�x�� � �
� 	 � � dx 
� dx 

If we declare the initial value for x � � which is � for even n and � for odd n �which follows from
the recurrence equation for x � �� Fn��� � Fn����� and the initial conditions for n � � and n � ��
we can compute the formal power series of the Fibonacci polynomial�

� Fibonacci �� proc�n�x�

� if x�� then sin�n�Pi	��	

� elif n�� then �

� elif n�� then �

� else �procname�args��

� fi

� end�

� Fib �� FormalPowerSeries�Fibonacci�n�x�� x��

	
Fib �� sin��	 n Pi� �n � �� �n 
 ��

infinity �
� ����� k �	 k��
� � ���� �� �	 n 
 �	 
 k�� ��	 n 
 �	 
 k�� x �
� � �����������������������������������������������������
�  �n � 	 k � �� �n 
 	 k 
 �� �	 k�� �
� ����� �
� k � � 

��� �	 n 
 �	�� ��	 n 
 �	���

infinity �
� ����� k �	 k 
 ���

	 � � ���� �� �	 n 
 k�� ��	 n 
 k�� x �
n cos��	 n Pi� � � ���������������������������������������������

�  �	 k 
 ��� �
� ����� �
� k � � 


 �	 ������������������������������������������������������������������������
�� �	 n�� ��	 n��

Note	 that some of the factorials may have negative arguments	 and hence the limits of the coe��
cients must be considered�

Let�s for example compute F���x� and F���x� which are polynomials of degree � and �� respec�
tively� For n � �� � even we must only consider the second term of the solution Fib for k up
to n�� � � � � �as we shall show soon�� Similarly for n � �� � odd we only consider the even
coe�cients of Fib for k up to �n� ���� � ��

� limit�subs�Sum�sum� infinity��� op�	�Fib��� n�����

��



� � � �
x 
 � x 
 	� x 
 	� x 
 � x

� limit�subs�Sum�sum� infinity��� op���Fib��� n�����

�� � � � 	
x 
 � x 
 	� x 
 �� x 
 �� x 
 �

In the second term of the above solution	 the form of the odd coe�cients are

a�k�� �
n cos�
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�

�

�

����k
��k� ���



n
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�


n
�

�
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� � k
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�

�
n cos�
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�

�
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� �


n
�
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n
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� sin
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�

�

sin






n
� � k
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�

cos�


n
�

�
����k

��k� ���

�


� � n

� � k
�

�


n
� � k

� sin


n
�

�

sin






n
� � k

��

�
cos�



n
�

�

��k� ���

�


� � n

� � k
�

�


n
� � k

� �

���
��

�
��k����

�n��k��
�n
�
�k����

if n is even

� if n is odd

where we used the identities
��x� �� � x��x� � x� �

��x����� x� �



sin�
x�
�

and
sin�a� b� � sin a cos b� cos a sin b �

Similarly we get for the even coe�cients

a�k �
sin�



n
�

�
����k

��k��

�
�
��n� �� � k

	
�

n � �k � �

n� ��
�
��n� ��

	
�

�
��

�n� �
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�
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n � ��
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�n� �
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�

�
sin�
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�
�
��n� �� � k
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�
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�

�
sin�



n
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�
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�
sin�
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�
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��k��
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� � �
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	 �

�
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�
�
�
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�
� �n� ��

�
sin

��
�
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�
sin�



n
�

�

��k��

�
�
� � �

��n� �� � k
	

�
�
�
��n� ��� k

	 �

���
��

�
��k��

� �� �n����k��
� �� �n����k��

if n is odd

� if n is even

Note that a�k�� � � for k � n
� 	 and a�k � � for k � n��

� �

��



If we make use of this additional information we end up with the following closed formula for
the general Fibonacci polynomial Fn�x��

Fn�x� �

������
�����

n����P
k��

�
��k����

�n
�
�k��

�n
�
�k����

x�k�� if n is even

�n�����P
k��

�
��k��

��
�
�n����k��

��
�
�n����k��

x�k if n is odd

�

Our implementation covers derivative rules and uses recurrence equations for the following
families of special functions� the Fibonacci polynomials Fibonacci�n�x�	 the Bessel functions
BesselJ�n�x�	 BesselY�n�x�	 BesselI�n�x�	 and BesselK�n�x� �see 
��	 ����� and ������	
the Hankel functions Hankel��n�x�	 and Hankel��n�x� �see 
��	 ������	 the Kummer
functions KummerM�a�b�x�	 and KummerU�a�b�x� �see 
��	 �������	 the Whittaker functions
WhittakerM�n�m�x�	 and WhittakerW�n�m�x� �see 
��	 �������	 the associated Legendre functions
LegendreP�a�b�x�	 and LegendreQ�a�b�x� �see 
��	 ������	 the orthogonal polynomials
JacobiP�n�a�b�x�	 GegenbauerC�n�a�x�	 ChebyshevT�n�x�	 ChebyshevU�n�x�	 LegendreP�n�x�	
LaguerreL�n�a�x�	 and HermiteH�n�x� �see 
��	 ������ and �������	 and the iterated integrals of
the complementary error function erfc�n�x� �see 
��	 �������

As orthogonal polynomials are polynomials	 for each xed number n there is a simple DE of
order one� This is the reason why we use di�erent names from those in the packages orthopoly or
combinat	 as otherwise for xed n evaluation occurs	 and a rst order DE is created which does
not possess the structure of the polynomial system	 and second	 the derivative of orthopoly�T	
can not be dened� For example

� SimpleDE�LaguerreL���a�x��x��

 	 �
� d �  d �
������ F�x�� x 
 � F�x� 
 �a 
 � � x� ����� F�x�� � �
� 	 � � dx 
� dx 

generates the second order DE which structurally characterizes the third Laguerre polynomial	
whereas with the Laguerre polynomial out of the orthopoly package we get

� SimpleDE�orthopoly�L����a�x��x��

	 	
��� 
 �� a � �� x 
 � a � � a x 
 � x � F�x� 


	 	 � 	 	 �
�� 
 �� a � �� x 
 � a � �� a x 
 � x 
 a � � a x 
 � a x � x �

 d �
����� F�x�� � �
� dx 

We note that by a general result the sum	 product	 and composition with rational functions and
rational powers of functions satisfying the type of DE considered	 inherit this property 
���	 so that
the algorithm is capable to generate the DE of a large class of functions� Here we give some more
examples�

� SimpleDE�exp�x	��WhittakerW�a�b��x��x��

� � 	 	 	 �  d �
�x � � x � � x b 
 x 
 � a x � �� F�x� � � x �x � 	� ����� F�x��

� dx 

��



 	 �
� d � �


 � ������ F�x�� x � �
� 	 �
� dx 

� SimpleDE�LegendreP�n�����x���x��

 	 �
	 � d � �  d �

x �x � 	� �x � �� ������ F�x�� 
 n �n 
 �� F�x� 
 	 �x � �� ����� F�x�� � �
� 	 � � dx 
� dx 

� FormalPowerSeries�JacobiP�n�a�b�x��x����

FPShypergeomRE� provided that �� $� min�����a���

binomial�a 
 n� n� n a�

infinity �
� ����� �� k� k�
� � �� n 
 k�� �b 
 a 
 n 
 k�� ��	� �x � �� �
� � �����������������������������������������������
�  �n � k� �a 
 k�� k� �
� ����� �
� k � � 

��� n�� �b 
 a 
 n���

Note	 that here again for ��n� k�����n�� the corresponding limits must be considered�

	 Asymptotic Series

The same algorithm can also be used to compute asymptotic expansions� Note	 that we only look
for asymptotic series of the form of a Laurent�Puiseux series� Such series are unique	 a property
which is not given for general asymptotic expansions� As a consequence the results we compute
may di�er from the truncated asymptotic expansions returned by the Maple command asympt�

One special thing of Laurent�Puiseux asymptotic expansions is	 that they are only valid as long
as the indeterminate approaches the expansion point from one side� If the expansion point is not�	
then one may specify with an option right or left from which side one approaches the expansion
point�

� FormalPowerSeries�erf�x�� x�infinity��

�

� FormalPowerSeries�arctan��x�� x��� right��

infinity �
� ����� k �	 k 
 ���
� � ���� x �

�	 Pi � � � �����������������
�  	 k 
 � �
� ����� �
� k � � 

� FormalPowerSeries�exp�x�� x��infinity��

�

� FormalPowerSeries�exp�x�� x�infinity��

FPSFPS� ERROR� essential singularity

��



� FormalPowerSeries�exp�x��Ei��x� 
 exp��x��Ei�x�� x�infinity��

infinity �
� ����� �
� � �	 k 
 	��

	 � � �� 
 	 k�� ��x� �
�  �
� ����� �
� k � � 

� FormalPowerSeries�exp�x�����erf�sqrt�x���� x�infinity��

infinity
����� �� k� �� k� ��	 
 k�
� ���� �	 k�� � ��x�
� ��������������������������������������
 k�
�����
k � �
�����������������������������������������������

�	
Pi

By a plot of arctan��x�	 e�g	 one may realize that	 indeed	 the resulting series representation is
one sided	 only�


 Examples

In this section we present some more results generated with the procedure FormalPowerSeries�
First	 we consider the FPS of the Airy wave function Ai� Since we use our own denition of the

derivatives	 we also must dene the initial values for x � � �see e�g� 
��	 �������������������

� newAi��� �� ����	��GAMMA�	���

� newAiPrime��� �� ��������GAMMA�����

� FormalPowerSeries�newAi�x��x��

infinity �
� ����� �� k� �� k� �

�� � � � x �
� � � ����������������������

�  pochhammer�	�� k� k��
� ����� �
� k � � 

�� �������������������������������������
GAMMA�	��

infinity �
� ����� �� k� �� k 
 �� �

�� � � � x �
� GAMMA�	�� � � ����������������������

�  pochhammer���� k� k��
� ����� �
� k � � 

� �	 ������������������������������������������������
Pi

Note	 that Maple is not yet able to compute even a truncated power series of Ai�x�� The same
holds obviously for the following example as long as the parameter a is left as an unknown�

� FormalPowerSeries�x�a�sin�x�	��x��

��



infinity
����� k �� k 
 	 
 a�
� ���� x
� ��������������������
 �� 
 	 k��
�����
k � �

The next two examples are interesting results which may be unexpected� It turns out	 that
both	 earccoshx and earccosx are of hypergeometric type�

� FormalPowerSeries�exp�arccos�x���x��

  k � � � �
� � ��������� � �
� �� � � 	 � k �	 k��
� � � � �j 
 ���� � x �
�infinity � � � � �
� ����� � � � � �
� � � j � �  �

exp��	 Pi� � � ����������������������������������
�  �	 k�� �
� ����� �
� k � � 

  k � � � �
� � ��������� � �
� �� � � 	 � k �	 k 
 ���
� � � � ��	 
 j 
 j �� � x �
�infinity � � � � �
� ����� � � � � �
� � � j � �  �

� exp��	 Pi� � � ������������������������������������������
�  �	 k 
 ��� �
� ����� �
� k � � 

� FormalPowerSeries�exp�arccosh�x���x��

infinity �
� ����� �� k� �	 k��
� � � �	 k�� x �

� I � � ��������������������� 
 x
�  	 �
� ����� �k�� �	 k � �� �
� k � � 

If we substitute Sum �the inert form of summation� by sum which tries to get a closed formula	 then
we get the well known identity earccoshx � x�

p
x� � ��

� eval�subs�Sum�sum�#���

	 �	
I �� � x � 
 x

In fact	 both earccoshx and earccosx are the special cases a � � and a �
p�� of the function

�x�
p
x� � ��a�

The following example has a logarithmic singularity at x � � and hence the FPS of f � is
computed�

� FormalPowerSeries�arcsech�x�� x� real��

infinity �
� ����� �� k� �	 k 
 	��
� � �� 
 	 k�� � x �

ln�	� � ln�x� � �	 � � �����������������������������
�  	 �
� ����� �k�� �k 
 �� �	 k 
 	� �
� k � � 

��



The next two examples are FPS expansions of two denite integrals	 namely the polylogarithm

function and
xR
�
erf�t��t dt� Note that for the second integral we have used the inert function of Int

which is only a placeholder and does not try to compute a closed form�

� FormalPowerSeries�dilog���x�� x��

infinity
����� �k 
 ��
� x
� ��������

 	
����� �k 
 ��
k � �

� FormalPowerSeries�Int�erf�t�t�t����x�� x��

infinity
����� k �	 k 
 ��
� ���� x
� ����������������

 	
����� k� �	 k 
 ��
k � �

	 �������������������������
�	

Pi

The next two examples are FPS of functions which contain orthogonal polynomials�
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As we have seen above	 we have three tools available to compute a formal power series repre�
sentation of a given function	 and it may happen for some examples	 that several of these tools may
be applied� Normally the solutions of a RE of hypergeometric type leads to the simplest results	

��



but this is not true in general� Hence we added the possibility for the user to choose a method by
adding an additional argument which is either hypergeometric	 explike or rational�
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�� Conclusion

We have presented an algorithm	 and its implementation in Maple	 to compute FPS� Since it is
a goal of Computer Algebra to work with formal objects	 we think this is a very powerful and

��



valuable addition�
The algorithm is beside of rational operations based on two basic tools� solving systems of

equations and computing symbolic limits� No truncated series is ever computed� For the case of
asymptotic series	 one sided limits are computed and for all other cases complex ones� The power
of the procedure for computing LPS stands and falls with the capabilities of the tool for computing
limits� The algorithms which are used in Maple to compute limits are described in 
�	 ���

Further	 in cases when the resulting RE cannot be solved explicitly	 it can	 in principle be used
to calculate the coe�cients iteratively in a lazy evaluation scheme� This is particularly e�cient as
the resulting RE always is homogeneous and linear	 so that each coe�cient can be calculated by
nitely many of its predecessors� We note that the algorithm to nd a simple DE works	 and so such
a RE always exists	 if the input function is constructed by integration	 di�erentiation	 addition	
multiplication	 and the composition with rational functions or rational powers	 from functions with
the same property	 see 
���� This gives a huge class of functions to which the method can be applied�
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