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An algorithmic approach is decribed for working with orthogonal polynomials
and special functions. This approach is based on the notion of an holonomic
system fn(x) which satisfies a linear homogeneous recurrence relation with co-
efficients that are polynomials in n and x, and furthermore also satisfies a linear
homogeneous differential equation with polynomial coefficients. The author
introduces the notion of an admissible family which satisfies a holonomic re-
currence relation and a differentiation rule with rational coefficients in n and
x. It is shown that every admissible family is also a holonomic system and
various properties of admissible families are given. Quite a few hypergeometric
functions (and thus also a lot of classical orthogonal polynomials) turn out to
be admissible families. Algorithms are given to generate shifts fn±k(x), deriva-
tives f (k)

n (x), compositions fn(r(x)) for rational functions r, sums and products
of admissible families. Other algorithms generate identities and the derivative
rule. Several examples are given, including Whittaker functions, Laguerre poly-
nomials, Jacobi polynomials, Krawtchouk polynomials, Meixner polynomials,
and Charlier polynomials. Finally the author shows how one can find identities
involving parameter derivatives of Gegenbauer and Laguerre polynomials.
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