Irrationality of certain infinite series II

Wolfram Koepf, Dieter Schmersau

Received: March 5, 2010

Summary: In a recent paper a new direct proof for the irrationality of Euler's number

$$
e=\sum_{k=0}^{\infty} \frac{1}{k!}
$$

and on the same lines a simple criterion for some fast converging series representing irrational numbers was given. In the present paper, we give some generalizations of our previous results.

1 Irrationality criterion

Our considerations in [3] lead us to the following criterion for irrationality, where

$$
\lfloor x\rfloor:=\max \{n \in \mathbb{N} \mid n \leqq x\}
$$

denotes the floor function (Gauss bracket).
Theorem 1.1 Let $\sum_{j=1}^{\infty} b_{j}$ be a convergent series with $b_{j} \geqq 0$ for all natural numbers $j \in \mathbb{N}:=\{1,2,3, \ldots\}$ and $b_{j}>0$ for infinitely many $j \in \mathbb{N}$. Let $a:=\sum_{j=1}^{\infty} b_{j} \in \mathbb{R}$ denote its limit and $s_{n}:=\sum_{j=1}^{n} b_{j}$ denote the corresponding partial sums. If

$$
\left\lfloor n s_{n}\right\rfloor=\lfloor n a\rfloor
$$

for almost all $n \in \mathbb{N}$, i. e. for all but finitely many $n \in \mathbb{N}$, then a is irrational.

Proof: From the given assumptions on b_{j} it follows that $s_{n}<a$ for all $n \in \mathbb{N}$ and therefore

$$
n s_{n}<n a \quad(n \in \mathbb{N})
$$

We write $n s_{n}=\left\lfloor n s_{n}\right\rfloor+R_{n}$ with $0 \leqq R_{n}<1$ and $n a=\lfloor n a\rfloor+\widetilde{R}_{n}$ with $0 \leqq \widetilde{R}_{n}<1$. Therefore we have for all $n \in \mathbb{N}$

$$
\left\lfloor n s_{n}\right\rfloor+R_{n}<\lfloor n a\rfloor+\widetilde{R}_{n}
$$

from which it follows by assumption that for almost all $n \in \mathbb{N}$

$$
\left\lfloor n s_{n}\right\rfloor+R_{n}<\left\lfloor n s_{n}\right\rfloor+\widetilde{R}_{n}
$$

and hence $\widetilde{R}_{n}>R_{n}$. Since $R_{n} \geqq 0$ for all $n \in \mathbb{N}$, we therefore get $\widetilde{R}_{n}>0$ for almost all $n \in \mathbb{N}$. Using [3, Lemma 4.4], we deduce that a is irrational.

For convenience, we cite here Lemma 4.4 from [3]:
Lemma 4.4 [3] Let $c \in \mathbb{R}_{>0}$ be arbitrary, and let the remainder $0 \leqq R_{n}<1$ be defined by the division algorithm as

$$
n c=\lfloor n c\rfloor+R_{n} .
$$

If $R_{n}>0$ for almost all $n \in \mathbb{N}$, then c is irrational.
Our goal is to find rather general families of series satisfying the assumptions of Theorem 1.1. To identify such families we will emphasize on series for which $b_{j} \in \mathbb{Q}$.

2 Irrational series of rational numbers

In this section we consider converging infinite series $\sum_{j=1}^{\infty} b_{j}$ with $b_{j} \in \mathbb{Q}, b_{j} \geqq 0$. As in $\S 1$, we still use the notations $a=\sum_{j=1}^{\infty} b_{j}$ and $s_{n}=\sum_{j=1}^{n} b_{j}$, and we write $n s_{n}=\left\lfloor n s_{n}\right\rfloor+R_{n}$ with $0 \leqq R_{n}<1$ and $n a=\lfloor n a\rfloor+\widetilde{R}_{n}$ with $0 \leqq \widetilde{R}_{n}<1$. Finally we use the abbreviations $M_{n}:=\left\lfloor n s_{n}\right\rfloor \in \mathbb{N}_{\geqq 0}$ and $\widetilde{M}_{n}:=\lfloor n a\rfloor \in \mathbb{N}_{\geqq 0}$. To apply Theorem 1.1, we need to find sufficient conditions for the property

$$
\left\lfloor n s_{n}\right\rfloor=\lfloor n a\rfloor \quad \text { for almost all } n \in \mathbb{N} .
$$

For that purpose, we use a constructive approach. Assume $\left(p_{n}\right)_{n \in \mathbb{N}}$ is a sequence of integers $p_{n} \in \mathbb{N}_{\geq 0}$ with

$$
\begin{equation*}
n p_{n} s_{n} \in \mathbb{N}_{\geqq 0} \quad \text { for all } n \in \mathbb{N} \text {. } \tag{2.1}
\end{equation*}
$$

If $b_{j}=\frac{a_{j}}{c_{j}}$ with $a_{j} \in \mathbb{N}_{\geqq 0}, c_{j} \in \mathbb{N}$ and $\operatorname{gcd}\left(a_{j}, c_{j}\right)=1$, then $p_{n}=\operatorname{lcm}\left(c_{1}, \ldots, c_{n}\right)$ is such a choice.

We would like to note a crucial consequence of (2.1). Since $R_{n}=n s_{n}-M_{n}$, we have $p_{n} R_{n}=n p_{n} s_{n}-p_{n} M_{n}$. (2.1) implies $n p_{n} s_{n}-p_{n} M_{n} \in \mathbb{Z}$, and since $R_{n} \geqq 0$, we get

$$
\begin{equation*}
p_{n} R_{n} \in \mathbb{N}_{\geqq 0} \quad \text { for all } n \in \mathbb{N} \text {. } \tag{2.2}
\end{equation*}
$$

Now we consider the remainder sequence $\sum_{j=n+1}^{\infty} b_{j}=\sum_{j=1}^{\infty} b_{n+j}$. If we demand furthermore that the remainder tends to zero in a certain specific way, namely

$$
\begin{equation*}
\sum_{j=1}^{\infty} b_{n+j}<\frac{1}{n p_{n}} \tag{2.3}
\end{equation*}
$$

then it follows from $a=s_{n}+\sum_{j=1}^{\infty} b_{n+j}$ that

$$
\begin{equation*}
a<s_{n}+\frac{1}{n p_{n}} \quad \text { for all } n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

This finally yields together with $s_{n} \leqq a$

$$
\begin{equation*}
0 \leqq a-s_{n}<\frac{1}{n p_{n}} \quad \text { for all } n \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

At this point, we would like to interrupt our general considerations with an instructive example.

Example 2.1 Consider the series $a=\sum_{j=1}^{\infty} \frac{1}{j!}$ converging to $a=e-1$. Then $s_{n}=$ $\sum_{j=1}^{n} \frac{1}{j!}$. Here obviously $n!s_{n} \in \mathbb{N}$, hence $p_{n}:=(n-1)$! is a suitable candidate sequence satisfying (2.1). The question is whether p_{n} does also satisfy (2.3). Since

$$
\sum_{j=1}^{\infty} \frac{1}{(n+j)!}<\sum_{j=1}^{\infty} \frac{n+j-1}{(n+j)!}=\sum_{j=1}^{\infty}\left(\frac{1}{(n+j-1)!}-\frac{1}{(n+j)!}\right)
$$

(i. e., $\frac{n+j-1}{(n+j)!}$ is Gosper-summable [2] w. r. t. j), we set

$$
S_{m}:=\sum_{j=1}^{m}\left(\frac{1}{(n+j-1)!}-\frac{1}{(n+j)!}\right),
$$

and we get by telescoping $S_{m}=\frac{1}{n!}-\frac{1}{(n+m)!}$. Therefore $\lim _{m \rightarrow \infty} S_{m}=\frac{1}{n!}$, hence

$$
\sum_{j=1}^{\infty} \frac{1}{(n+j)!}<\frac{1}{n!}=\frac{1}{n p_{n}}
$$

so that p_{n} satisfies (2.3).
Our considerations result in the following
Theorem 2.2 Assume the series $\sum_{j=1}^{\infty} b_{j}$ converges to a and the summands b_{j} satisfy $b_{j} \in \mathbb{Q}$ and $b_{j} \geqq 0$ for all $j \in \mathbb{N}$. If there is a sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ satisfying (2.1) and (2.3), then $\left\lfloor n s_{n}\right\rfloor=\lfloor n a\rfloor$ is valid for all $n \in \mathbb{N}$.

Proof: By (2.5), we have

$$
0 \leqq a-s_{n}<\frac{1}{n p_{n}}
$$

for all $n \in \mathbb{N}$, and therefore $0 \leqq p_{n} n a-p_{n} n s_{n}<1$ or

$$
0 \leqq p_{n}\left(\tilde{M}_{n}+\widetilde{R}_{n}\right)-p_{n}\left(M_{n}+R_{n}\right)<1 .
$$

Hence

$$
-p_{n} \widetilde{R}_{n} \leqq p_{n} \widetilde{M}_{n}-p_{n} M_{n}-p_{n} R_{n}<1-p_{n} \widetilde{R}_{n}
$$

Because $0 \leqq \widetilde{R}_{n}<1$, we get

$$
-p_{n}<p_{n} \tilde{M}_{n}-p_{n} M_{n}-p_{n} R_{n}<1
$$

Since by (2.2) $p_{n} \widetilde{M}_{n}-p_{n} M_{n}-p_{n} R_{n} \in \mathbb{Z}$, this yields furthermore

$$
p_{n} R_{n}-p_{n}<p_{n} \tilde{M}_{n}-p_{n} M_{n} \leqq p_{n} R_{n} .
$$

Because $0 \leqq R_{n}<1$, this leads to

$$
-p_{n}<p_{n} \tilde{M}_{n}-p_{n} M_{n}<p_{n}
$$

and dividing by p_{n} finally gives

$$
-1<\tilde{M}_{n}-M_{n}<1
$$

This relation, however, shows that $M_{n}=\widetilde{M}_{n}$ for all $n \in \mathbb{N}$ as announced because $\widetilde{M}_{n}-M_{n} \in \mathbb{Z}$.

Combining Theorem 2.2 with Theorem 1.1 yields
Theorem 2.3 Assume the series $\sum_{j=1}^{\infty} b_{j}$ converges to a and the summands b_{j} satisfy $b_{j} \in \mathbb{Q}, b_{j} \geqq 0$ for all $j \in \mathbb{N}$ and $b_{j}>0$ for infinitely many $n \in \mathbb{N}$. If there is a sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ satisfying (2.1) and (2.3), then a is irrational.

If we apply Theorem 2.3 to Example 2.1, then we deduce the well-known result that e is irrational.

3 Example types of irrational series

In this section, we give some rather general example types for which the above criterion is applicable.

Definition 3.1 (Cantor series) A sequence $\left(g_{j}\right)_{j \in \mathbb{N}}$ of positive integers $g_{j} \in \mathbb{N}_{\geq 2}$ is called a Cantor basis. We use the abbreviation $G_{n}:=g_{1} \cdots g_{n}$. A series of the form

$$
z_{0}+\sum_{j=1}^{\infty} \frac{z_{j}}{G_{j}}
$$

with $z_{j} \in \mathbb{N}_{\geqq 0}, z_{j} \leqq g_{j}-1$ for all $j \in \mathbb{N}$ and $z_{j}<g_{j}-1$ for infinitely many $j \in \mathbb{N}$ is called Cantor series with basis $\left(g_{j}\right)_{j \in \mathbb{N}}$, see [4, pp. 69].

Example 3.2 (Cantor series) If we set $g_{j}=j+1$, we have $G_{n}=g_{1} \cdots g_{n}=(n+1)!$. Hence the exponential series of Example 2.1 is clearly a Cantor series.
W. 1. o. g. we assume $z_{0}=0$. Therefore let $a=\sum_{j=1}^{\infty} \frac{z_{j}}{(j+1)!}, z_{j} \in \mathbb{N}_{\geqq 0}, z_{j} \leqq j$ for all j and $z_{j}<j$ for infinitely many j. We would like to prove that every such Cantor series converges towards an irrational number a if the series does not terminate.

Again we set $s_{n}=\sum_{j=1}^{n} \frac{z_{j}}{(j+1)!}$. Of course $(n+1)!s_{n} \in \mathbb{N}$ and therefore $p_{n}=$ $(n-1)!(n+1)$ satisfies (2.1). Since $z_{j} \leqq j$ for all j and $z_{j}<j$ for infinitely many j, we get for the residues

$$
a-s_{n}=\sum_{j=1}^{\infty} \frac{z_{n+j}}{(n+j+1)!}<\sum_{j=1}^{\infty} \frac{n+j}{(n+j+1)!}=\frac{1}{(n+1)!}=\frac{1}{n p_{n}}
$$

by the computation of Example 2.1. Therefore p_{n} satisfies (2.3), too. Therefore, by Theorem 2.3, if the series does not terminate, a is irrational.

We remark that this criterion is sharp in the sense that if we assume $z_{j} \leqq j$ without having $z_{j}<j$ for infinitely many j, then irrationality is not guaranteed which is shown by the non-terminating series $\sum_{j=1}^{\infty} \frac{j}{(j+1)!}=1$. Note that the summand $\frac{j}{(j+1)!}$ again is Gosper-summable [2], hence the sum is telescoping, so that this sum can be computed automatically.

We would like to note that for these very special Cantor series, [4] shows moreover that every $a \in \mathbb{R}_{\geqq 0}$ has exactly one representation of the form

$$
\begin{equation*}
a=z_{0}+\sum_{j=1}^{\infty} \frac{z_{j}}{(j+1)!} \tag{3.1}
\end{equation*}
$$

with $z_{j} \in \mathbb{N}, z_{j} \leqq j$ for all j and $z_{j}<j$ for infinitely many j.
As another comment we mention that as soon as one knows the representation (3.1) of a positive real number a, its irrationality status in clear. This would be of particular interest for the Euler-Mascheroni constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\ln n\right)
$$

whose irrationality status is still unknown, see e. g. [6].
We give another example.
Example 3.3 In this example we assume that $\left(q_{j}\right)_{j \in \mathbb{N}}$ is an arbitrary sequence of positive integers, and $Q_{j}=q_{1} \cdots q_{j}$. We consider the series $a=\sum_{j=1}^{\infty} \frac{z_{j}}{j!Q_{j}}$ with $z_{j} \in \mathbb{N}_{\geqq 0}, z_{j} \leqq$ $j q_{j}-1$ for all j and $z_{j}<j q_{j}-1$ for infinitely many j, and set $s_{n}:=\sum_{j=1}^{n} \frac{z_{j}}{j!Q_{j}}$.

Then obviously $s_{n} \leqq a$ for all $n \in \mathbb{N}$, and $n!Q_{n} s_{n} \in \mathbb{N} \geqq 0$. Therefore the numbers $p_{n}:=(n-1)!Q_{n}$ satisfy (2.1). We will show that (2.3) is also valid so that Theorem 2.3 applies.

We get again a telescoping series

$$
\begin{aligned}
a-s_{n} & =\sum_{j=1}^{\infty} \frac{z_{n+j}}{(n+j)!Q_{n+j}}<\sum_{j=+1}^{\infty} \frac{(n+j) q_{n+j}-1}{(n+j)!Q_{n+j}} \\
& =\sum_{j=1}^{\infty}\left(\frac{1}{(n+j-1)!Q_{n+j-1}}-\frac{1}{(n+j)!Q_{n+j}}\right),
\end{aligned}
$$

so that we conclude that

$$
a-s_{n}=\sum_{j=1}^{\infty} \frac{z_{n+j}}{(n+j)!Q_{n+j}}<\frac{1}{n!Q_{n}}=\frac{1}{n p_{n}}
$$

so that by Theorem $2.3 a$ is irrational if additionally $z_{j}>0$ for infinitely many j, i. e., if the series does not terminate.

We apply this criterion to certain specific cases:

1. $q_{j}=j$ leads to

$$
a=\sum_{j=1}^{\infty} \frac{z_{j}}{j!^{2}}
$$

with $z_{j} \in \mathbb{N}_{\geqq 0}, z_{j} \leqq j^{2}-1$ and $z_{j}<j^{2}-1$ for infinitely many j. In particular one deduces that $a=\sum_{j=1}^{\infty} \frac{1}{j!^{2}}$ is irrational. Note that a is related to the modified Bessel function of the first kind:

$$
a=I_{0}(2)-1 .
$$

2. $q_{j} \geqq 2$ for infinitely many j. Then $j q_{j}-1 \geqq 2 j-1$ for infinitely many j. If we set $z_{j}=j-1$, then we get $z_{j} \leqq j q_{j}-1$ for all j and $z_{j}=j-1<2 j-1$ for infinitely many j. Therefore $\sum_{j=1}^{\infty} \frac{j-1}{j!Q_{j}}$ is irrational.
Next, we consider a similar example.
Example 3.4 In this example we assume again that $\left(q_{j}\right)_{j \in \mathbb{N}}$ is an arbitrary sequence of positive integers, and $Q_{j}=q_{1} \cdots q_{j}$. We consider the series $a=\sum_{j=1}^{\infty} \frac{z_{j}}{j!Q_{j}}$ with $z_{j} \in \mathbb{N}_{\geq 0}, z_{j}>0$ for infinitely many j, and $z_{j} \leqq K$ for some $K \in \mathbb{N}$ and all $j \in \mathbb{N}$. We set $s_{n}:=\sum_{j=1}^{n} \frac{z_{j}}{j!Q_{j}}$ and claim that from these assumptions it follows that $a:=\lim _{n \rightarrow \infty} s_{n}$ is irrational.

We have obviously $s_{n}<a$ for all $n \in \mathbb{N}$ since $z_{j}>0$ for infinitely many j. Furthermore $n!Q_{n} s_{n} \in \mathbb{N}_{\geqq 2}$. Therefore $p_{n}=(n-1)$! Q_{n} is a suitable "candidate" satisfying (2.1).

Inspecting the residues for this series, we get

$$
\sum_{j=n+1}^{\infty} \frac{z_{j}}{j!Q_{j}}=\sum_{j=1}^{\infty} \frac{z_{n+j}}{(n+j)!Q_{n+j}} \leqq K \cdot \sum_{j=1}^{\infty} \frac{1}{(n+j)!Q_{n+j}}
$$

For the latter series we can write

$$
\sum_{j=1}^{\infty} \frac{1}{(n+j)!Q_{n+j}}=\frac{1}{n!Q_{n}} \sum_{j=1}^{\infty} \frac{n!Q_{n}}{(n+j)!Q_{n+j}}
$$

Since

$$
\frac{Q_{n}}{Q_{n+j}} \leqq 1 \quad \text { and } \quad \frac{n!}{(n+j)!} \leqq \frac{1}{(n+1)^{j}}
$$

for all j and for $j>1$ further

$$
\frac{n!}{(n+j)!}<\frac{1}{(n+1)^{j}}
$$

(see e. g. [1]), we get

$$
\sum_{j=1}^{\infty} \frac{n!Q_{n}}{(n+j)!Q_{n+j}}<\sum_{j=1}^{\infty} \frac{1}{(n+1)^{j}}=\frac{1}{n}
$$

Collecting the above inequalities, we deduce for the residues

$$
\sum_{j=n+1}^{\infty} \frac{z_{j}}{j!Q_{j}}<\frac{1}{n!Q_{n}} \cdot \frac{K}{n}
$$

and therefore

$$
s_{n}<a<s_{n}+\frac{1}{n!Q_{n}} \cdot \frac{K}{n} .
$$

This yields-as usual-the desired result.
Finally, we will discuss hypergeometric series that in many instances are of one of the types of Examples 3.3-3.4. By

$$
{ }_{p} F_{q}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array} \right\rvert\, x\right)=\sum_{j=0}^{\infty} \frac{\left(a_{1}\right)_{j} \cdots\left(a_{p}\right)_{j}}{\left(b_{1}\right)_{j} \cdots\left(b_{q}\right)_{j}} \cdot \frac{x^{j}}{j!}
$$

we denote as usual the generalized hypergeometric series, where

$$
(a)_{j}:=a(a+1) \cdots(a+j-1)
$$

is the Pochhammer symbol or shifted factorial. Let ${ }_{p} F_{q}^{\star}:={ }_{p} F_{q}-1$. This series starts with $j=1$ (like the series considered in our article). Obviously a series ${ }_{p} F_{q}^{\star}$ is irrational if and only if the corresponding $p_{p} F_{q}$ is.

Example 3.5 In this example, we consider hypergeometric series representing irrational values.

1. Let $m \in \mathbb{N}$. We consider

$$
{ }_{0} F_{1}^{\star}\left(\begin{array}{c|c}
- & 1 \\
m &)=\sum_{j=1}^{\infty} \frac{1}{(m)_{j} j!} ~
\end{array}\right.
$$

Example 3.3 with $q_{j}:=m+j-1$ and therefore $Q_{j}:=(m)_{j}$ shows that ${ }_{0} F_{1}^{\star}(m ; 1)$ and therefore ${ }_{0} F_{1}(m ; 1)$ is irrational. The modified Bessel function is of this type. Analogously ${ }_{0} F_{1}\left(m ; \frac{1}{k}\right)$ is irrational for every $k \in \mathbb{N}$. Furthermore, a similar argument shows that ${ }_{0} F_{q}\left(m ; \frac{1}{k}\right)$ is irrational for every $m, q, k \in \mathbb{N}$.
2. The hyperbolic functions

$$
\cosh x=\sum_{j=0}^{\infty} \frac{x^{2 k}}{(2 k)!} \quad \text { and } \quad \sinh x=\sum_{j=0}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}
$$

are given as power series whose every second Taylor coefficient vanishes. Here Example 3.4 applies, and the values $\cosh \left(\frac{1}{k}\right)$ and $\sinh \left(\frac{1}{k}\right)$ are irrational whenever $k \in \mathbb{N}$.

References

[1] K. Knopp. Theorie und Anwendung der unendlichen Reihen. Springer, fifth edition, 1964.
[2] W. Koepf. Hypergeometric Summation. Vieweg, 1998.
[3] W. Koepf, D. Schmersau. Irrationality of certain infinite series. Analysis 30, 2010, 27-34.
[4] W. Rautenberg. Elementare Grundlagen der Analysis. BI Wissenschaftsverlag, 1993.
[5] D. Schmersau, W. Koepf. Die reellen Zahlen als Fundament und Baustein der Analysis. Oldenbourg, 2000.
[6] J. Sondow. Criteria for irrationality of Euler's constant. Proc. Amer. Math. Soc. 131, 2003, 3335-3344.

Wolfram Koepf
Department of Mathematics
University of Kassel
Heinrich-Plett-Str. 40
34132 Kassel
Germany
koepf@mathematik.uni-kassel.de

Dieter Schmersau
Department of Mathematics
Free University of Berlin
Arnimallee 2-6
14195 Berlin
Germany

